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Abstract. The aim of the present article is to give an overview of spectral theory on metric graphs
guided by spectral geometry on discrete graphs and manifolds. We present the basic concept of metric
graphs and natural Laplacians acting on it and explicitly allow infinite graphs. Motivated by the
general form of a Laplacian on a metric graph, we define a new type of combinatorial Laplacian. With
this generalised discrete Laplacian, it is possible to relate the spectral theory on discrete and metric
graphs. Moreover, we describe a connection of metric graphs with manifolds. Finally, we comment on
Cheeger’s inequality and trace formulas for metric and discrete (generalised) Laplacians.

1. Introduction

A metric graph X is by definition a topological graph (i.e., a CW complex of dimension 1), where
each edge e is assigned a length ℓe. The resulting metric measure space allows to introduce a family of
ordinary differential operators acting on each edge e considered as interval Ie = (0, ℓe) with boundary
conditions at the vertices making the global operator self-adjoint. One also refers to the pair of the
graph and the self-adjoint differential operator as quantum graph.

Quantum graphs are playing an intermediate role between difference operators on discrete graphs
and partial differential operators on manifolds. On the one hand, they are a good approximation of
partial differential operators on manifolds or open sets close to the graph, see Section 5. On the other
hand, solving a system of ODEs reduces in many cases to a discrete problem on the combinatorial
graph, see Section 4.

The spectral relation between metric and (generalised) discrete Laplacians has the simplest form
if the graph is equilateral, i.e., if all lengths are the same, say, ℓe = 1. This fact and related results
have already been observed by many authors (see e.g. [vB85, C97, CaW05, Pa06, BaF06, Pa07,
P07a, BGP08] and the references therein). Moreover, for non-equilateral graphs, one has at least a
spectral relation at the bottom of the spectrum. In particular, one can define an index (the Fredholm
index of a generalised “exterior derivative” in the discrete and metric case) and show that they agree
(Theorem 4.3). The result extends the well-known fact that the index equals the Euler characteristic
for standard graphs. Such index formulas have been discussed e.g. in [KPS07, FKW07, P07b]. For
convergence results of a sequence of discrete Laplacians towards a metric graph Laplacian, we refer
to [F06] and the references therein.

Spectral graph theory is an active area of research. We do not attempt to give a complete overview
here, and the choice of the selected topics depends much on the author’s taste. Results on spectral
theory of combinatorial Laplacians can be found e.g. in [D84, MW89, CdV98, CGY96, Ch97, HSh99,
Sh00, HSh04]. For metric graph Laplacians we mention the works [R84, vB85, N87, KoS99, Ha00,
KoS03, K04, FT04a, K05, BaF06, KoS06, Pa06, HP06, BaR07].

Many concepts from spectral geometry on manifolds carry over to metric and discrete graphs, and
the right notion for a general scheme would be a metric measure space with a Dirichlet form. In
particular, metric graphs fall into this class; and they can serve as a toy model in order to provide
new results in spectral geometry.

This article is organised as follows: In the next section, we define the generalised discrete Laplacians.
Section 3 is devoted to metric graphs and their associated Laplacians. In Section 4 we describe
relations between the discrete and metric graph Laplacians. Section 5 contains the relation of a
metric graph with a family of manifolds converging to it. Section 6 is devoted to the study of the first
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non-zero eigenvalue of the Laplacian. In particular, we show Cheeger’s inequality for the (standard)
metric graph Laplacian. Section 7 contains material on trace formulas for the heat operator associated
to (general) metric and discrete graph Laplacians. In particular, we show a “discrete path integral”
formula for generalised discrete graph Laplacians (cf. Theorem 7.7).

Outlook and further developments. Let us mention a few aspects which are not included in this
article in order to keep it at a reasonable size. Our basic assumption is a lower bound on the edge
lengths. If we drop this condition, we obtain fractal metric graphs, i.e., (infinite) metric graphs with
infe ℓe = 0. A simple example is given by a rooted tree, where the length ℓn of an edge in generation
n tends to 0. New effects occur in this situation: for example, the Laplacian on compactly supported
functions can have more than one self-adjoint extension; one needs additional boundary conditions
at infinity (see e.g. [So04]).

Another interesting subject are (infinite) covering graphs with finite or compact quotient, for
example Cayley graphs associated to a finitely generated group. For example, if the covering group
is Abelian, one can reduce the spectral theory to a family of problems on the quotient (with discrete
spectrum) using the so-called Floquet theory. There are still open questions, for example whether
the (standard) discrete Laplacian of an equilateral maximal Abelian covering has full spectrum or
not. This statement is proven if all vertices have even degree (using an “Euler”-circuit). One can ask
whether similar statements hold also for general metric graph Laplacians. For more details, we refer
to [HSh99] and the references therein.

Metric graphs have a further justification: The wave equation associated to the (standard) metric
graph Laplacian has finite propagation speed, in contrast to the corresponding equation for the
(standard) discrete Laplacian (see [FT04b, Sec. 4] for details). Note that the latter operator is
bounded, whereas the metric graph Laplacian is unbounded as differential operator. Therefore, one
can perform wave equation techniques on metric graphs (and indeed, this has been done, see for
example the scattering approach in [KoS99]).

Acknowledgements. The author would like to thank the organisers of the programme “Limits of
graphs in group theory and computer science” held at the Bernoulli Center of the École Polytechnique
Fédérale de Lausanne (EPFL), especially Prof. Alain Valette, for the kind invitation and hospitality.
The present article is an extended version of a lecture held at the EPFL in March 2007.

2. Discrete graphs and general Laplacians

In this section, we define a generalised discrete Laplacian, which occurs also in the study of metric
graph Laplacians as we will see in Section 4.

Let us fix the notation: Suppose G is a countable, discrete, weighted graph given by (V, E, ∂, ℓ)
where (V, E, ∂) is a usual graph, i.e., V denotes the set of vertices, E denotes the set of edges, ∂ : E −→
V ×V associates to each edge e the pair (∂−e, ∂+e) of its initial and terminal point (and therefore an
orientation). Abusing the notation, we also denote by ∂e the set {∂−e, ∂+e}.

That G is an (edge-)weighted graph means that there is a length or (inverse) edge weight func-
tion ℓ : E −→ (0,∞) associating to each edge e a length ℓe. For simplicity, we consider internal edges
only, i.e., edges of finite length ℓe < ∞, and we also make the following assumption on the lower
bound of the edge lengths:

Assumption 2.1. Throughout this article we assume that there is a constant ℓ0 > 0 such that

ℓe ≥ ℓ0, e ∈ E, (2.1)

i.e., that the weight function ℓ−1 is bounded. Without loss of generality, we also assume that ℓ0 ≤ 1.

For each vertex v ∈ V we set

E±
v := { e ∈ E | ∂±e = v } and Ev := E+

v ·∪ E−
v ,
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i.e., E±
v consists of all edges starting (−) resp. ending (+) at v and Ev their disjoint union. Note

that the disjoint union is necessary in order to allow self-loops, i.e., edges having the same initial and
terminal point. The degree of v ∈ V is defined as

deg v := |Ev| = |E+
v | + |E−

v |,
i.e., the number of adjacent edges at v. In order to avoid trivial cases, we assume that deg v ≥ 1, i.e.,
no vertex is isolated. We also assume that deg v is finite for each vertex.

We want to introduce a vertex space allowing us to define Laplace-like combinatorial operators
motivated by general vertex boundary conditions on quantum graphs. The usual discrete (weighted)
Laplacian is defined on scalar functions F : V −→ C on the vertices V , namely

△△△F (v) = − 1

deg v

∑

e∈Ev

1

ℓe

(
F (ve) − F (v)

)
, (2.2)

where ve denotes the vertex on e opposite to v. Note that △△△ can be written as △△△ = d∗d with

d : ℓ2(V ) −→ ℓ2(E), (dF )e = F (∂+e) − F (∂−e), (2.3)

where ℓ2(V ) and ℓ2(E) carry the norms defined by

‖F‖2
ℓ2(V ) :=

∑

v∈V

|F (v)|2 deg v and ‖η‖2
ℓ2(E) :=

∑

e∈E

|ηe|2
1

ℓe
, (2.4)

and d∗ denotes the adjoint with respect to the corresponding inner products. We sometimes refer to
functions in ℓ2(V ) and ℓ2(E) as 0- and 1-forms, respectively.

We would like to carry over the above concept for the vertex space ℓ2(V ) to more general vertex
spaces G . The main motivation to do so are metric graph Laplacians with general vertex boundary
conditions as defined in Section 3 and their relations with discrete graphs (cf. Section 4).

Definition 2.2.

(i) Denote by G max
v := CEv the maximal vertex space at the vertex v ∈ V , i.e., a value F (v) ∈

G max
v has deg v components, one for each adjacent edge. A (general) vertex space at the vertex

v is a linear subspace Gv of G max
v .

(ii) The corresponding (total) vertex spaces associated to the graph (V, E, ∂) are

G
max :=

⊕

v∈V

G
max
v and G :=

⊕

v∈V

Gv,

respectively. Elements of G are also called 0-forms. The space G carries its natural Hilbert
norm, namely

‖F‖2
G

:=
∑

v∈V

|F (v)|2 =
∑

v∈V

∑

e∈Ev

|Fe(v)|2.

Associated to a vertex space is an orthogonal projection P =
⊕

v∈V Pv in G max, where Pv is
the orthogonal projection in G max

v onto Gv.
(iii) We call a general subspace G of G max local iff it decomposes with respect to the maximal

vertex spaces, i.e., if G =
⊕

v Gv and Gv ≤ G
max
v . Similarly, an operator A on G is called local

if it is decomposable with respect to the above decomposition.
(iv) The dual vertex space associated to G is defined by G ⊥ := G max⊖G and has projection P⊥ =1− P .

Note that a local subspace G is closed since Gv ≤ G max
v is finite dimensional. Alternatively, a vertex

space is characterised by fixing an orthogonal projection P in G which is local.

Example 2.3. The names of the vertex spaces in the examples below will become clear in the
quantum graph case. For more general cases, e.g. the discrete magnetic Laplacian, we refer to [P07b].



4 OLAF POST

(i) Choosing Gv = C1(v) = C(1, . . . , 1), we obtain the continuous or standard vertex space
denoted by G std

v . The associated projection is

Pv =
1

deg v
E

where E denotes the square matrix of rank deg v where all entries equal 1. This case corre-
sponds to the standard discrete case mentioned before. Namely, the natural identification

•̃ : G
std −→ ℓ2(V ), F 7→ F̃ , F̃ (v) := Fe(v),

(the latter value is independent of e ∈ Ev) is isometric, since the weighted norm in ℓ2(V ) and
the norm in G std agree, i.e.,

‖F‖2
G std =

∑

v∈V

∑

e∈Ev

|Fe(v)|2 =
∑

v∈V

|F̃ (v)|2 deg v = ‖F̃‖2
ℓ2(V ).

(ii) We call G min
v := 0 the minimal or Dirichlet vertex space, similarly, G max is called the maximal

or Neumann vertex space. The corresponding projections are P = 0 and P = 1.
(iii) Assume that deg v = 4 and define a vertex space of dimension 2 by

Gv = C(1, 1, 1, 1)⊕ C(1, i,−1,−i).

The corresponding orthogonal projection is

P =
1

4




2 1 + i 0 1 − i
1 + i 0 1 − i 2

0 1 − i 2 1 + i
1 − i 2 1 + i 0


 .

We will show some invariance properties of this vertex space in Example 2.14 (ii).

For the next definition, we need some more notation. Let E0,v ⊂ Ev be a subset of the set of
adjacent edges at v. We denote by Gv↾E0,v

the subspace of Gv where the coordinates not in E0,v are
set to 0, i.e.,

Gv↾E0,v
:= {F (v) |Fe(v) = 0, ∀ e ∈ Ev \ E0,v }.

Definition 2.4. A vertex space Gv at the vertex v is called irreducible if for any decomposition
Ev = E1,v ·∪E2,v such that Gv = Gv↾E1,v

⊕ Gv↾E2,v
we have either E1,v = ∅ or E2,v = ∅. A vertex space

G associated to a graph G is irreducible if all its components Gv are irreducible.
By definition, the minimal vertex space G min

v = 0 is irreducible iff deg v = 1.

In other words, a vertex space Gv is irreducible, if its projection Pv does not have block structure
(in the given coordinates). The notion of irreducibility is useful in order to obtain a “minimal”
representation of G by splitting a vertex with a reducible vertex space into several vertices. Repeating
this procedure, we obtain:

Lemma 2.5. For any vertex space G associated to a graph G = (V, E, ∂), there exists a graph

G̃ = (Ṽ , E, ∂̃) and a surjective graph morphism π : G̃ −→ G such that G decomposes as

G =
⊕

ev∈eV

G̃ev and Gv =
⊕

ev∈π−1{v}
G̃ev.

In addition, each G̃ev is irreducible.

Note that the edge set of G̃ is the same as for the original graph G.

Proof. We construct the vertex set Ṽ of G̃ as follows: Let v ∈ V and Gv be an irreducible vertex

space, then v is also an element of Ṽ . Otherwise, if Gv = Gv↾E1,v
⊕ Gv↾E2,v

is a reducible vertex space
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(for G), we replace the vertex v in V by two different vertices v1, v2 in Ṽ with adjacent edges E1,v

and E2,v, in particular, G̃ = (V \ {v} ∪ {v1, v2}, E, ∂̃) where

∂̃±e =

{
∂±e, if ∂±e 6= v,

vi, if ∂± = v and e ∈ Evi
for i = 1, 2.

The associated vertex space at vi is G̃vi
:= Gv↾Ei,v

for i = 1, 2. Repeating this procedure, we finally

end with a graph G̃ (denoted with the same symbol), such that each vertex space G̃ev is irreducible.
The map π is defined by πe = e and πṽ = v if ṽ came from splitting a vertex space at the original

vertex v. It is easy to see that π is a graph morphism (i.e, ∂±πe = π∂̃±e) and surjective. �

Definition 2.6. We call the graph G̃ constructed in Lemma 2.5 the irreducible graph of the vertex
space G associated to the graph G. We say that the vertex space is connected if the associated
irreducible graph is a connected graph.

Note that on the level of the vertex space G , passing to the irreducible graph is just a reordering
of the coordinate labels, namely, a regrouping of the labels into smaller sets.

For example, the maximal vertex space G max associated to a graph G (with deg v ≥ 2 for all vertices
v) is not irreducible, and its irreducible graph is

G̃ =
·⋃

e∈E

Ge where Ge := (∂e, {e}, ∂↾{e}) (2.5)

is a graph with two vertices and one edge only. The vertex space is

G
max =

⊕

e∈E

(C∂−e ⊕ C∂+e) (2.6)

where C∂±e is a copy of C. The irreducible graph of the minimal vertex space G min = 0 is the same
as above.

However, the standard vertex space G
std associated to a graph G is already irreducible and G̃ = G.

Therefore, the standard vertex space is connected iff the underlying graph is connected; i.e., the
notion of “connectedness” agrees with the usual one.

Now, we define a generalised coboundary operator or exterior derivative associated to a vertex
space. We use this exterior derivative for the definition of an associated Laplace operator below:

Definition 2.7. Let G be a vertex space of the graph G. The exterior derivative on G is defined via

dG : G −→ ℓ2(E), (dG F )e := Fe(∂+e) − Fe(∂−e),

mapping 0-forms onto 1-forms.

We often drop the subscript G for the vertex space. The proof of the next lemma is straightforward
(see e.g. [P07b, Lem. 3.3]):

Lemma 2.8. Assume the lower lengths bound (2.1), then d is norm-bounded by
√

2/ℓ0. The adjoint

d
∗ : ℓ2(E) −→ G

fulfills the same norm bound and is given by

(d∗η)(v) = Pv

({1

ℓ e

y

ηe(v)
})

∈ Gv,

where
y

ηe(v) := ±ηe if v = ∂±e denotes the oriented evaluation of ηe at the vertex v.

Definition 2.9. The discrete generalised Laplacian associated to a vertex space G is defined as
△△△

G
:= d∗

G
dG , i.e.,

(△△△
G
F )(v) = Pv

({1

ℓ e

(
Fe(v) − Fe(ve)

)})

for F ∈ G , where ve denotes the vertex on e ∈ Ev opposite to v.
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Remark 2.10.

(i) From Lemma 2.8 it follows that △△△
G

is a bounded operator on G with norm estimated from
above by 2/ℓ0.

(ii) Note that the orientation of the edges plays no role for the “second order” operator △△△
G
.

(iii) We can also define a Laplacian △△△1
G

:= dG d∗
G

acting on the space of “1-forms” ℓ2(E) (and
△△△0

G
:= △△△

G
= d∗

G
dG ). For more details and the related supersymmetric setting, we refer

to [P07b]. In particular, we have

σ(△△△1
G
) \ {0} = σ(△△△0

G
) \ {0}.

Moreover, in [P07b, Ex. 3.16–3.17] we discussed how these generalised Laplacians can be
used in order to analyse the (standard) Laplacian on the line graph and subdivision graph
associated to G (see also [Sh00]).

(iv) Assume that G is equilateral (i.e., ℓe = 1), which implies σ(∆
G
) ⊆ [0, 2]. Then using the

1-form Laplacian, one can show the spectral relation

σ(△△△
G⊥) \ {0, 2} = 2 − (σ(△△△

G
) \ {0, 2}),

i.e., if λ /∈ {0, 2}, then λ ∈ σ(△△△
G⊥) iff 2 − λ ∈ σ(△△△

G
) (cf. [P07b, Lem. 3.13 (iii)]).

The next example shows that we have indeed a generalisation of the standard discrete Laplacian:

Example 2.11.

(i) For the standard vertex space G std, it is convenient to use the unitary transformation from

G std onto ℓ2(V ) associating to F ∈ G the (common value) F̃ (v) := Fe(v) as in Example 2.3 (i).
Then the exterior derivative and its adjoint are unitarily equivalent to

d̃ : ℓ2(V ) −→ ℓ2(E), (d̃F̃ )e = F̃ (∂+e) − F̃ (∂−e)

and

(d̃∗η)(v) =
1

deg v

∑

e∈Ev

1

ℓe

y

ηe(v),

i.e., d̃ is the classical coboundary operator already defined in (2.3) and d̃∗ its adjoint.
Moreover, the corresponding discrete Laplacian △△△

G std is unitarily equivalent to the usual

discrete Laplacian △△△ = d̃∗d̃ defined in (2.2) as one can easily check.
(ii) Passing to the irreducible graph of a vertex space G is a reordering of the coordinate labels,

and in particular, the Laplacian is the same (up to the order of the coordinate labels). Namely,
for the minimal vertex space G min = 0, we have d = 0, d∗ = 0 and △△△

G min = 0.
For the maximal vertex space, we have

(△△△G maxF )e(v) =
{ 1

ℓe

(
Fe(v) − Fe(ve)

)}

e∈Ev

and

△△△G max =
⊕

e∈E

△△△Ge
where △△△Ge

∼= 1

ℓe

(
1 −1
−1 1

)
.

In particular, in both cases, the Laplacians are decoupled and any connection information of
the graph is lost.

Of course, the decoupled minimal and maximal cases are uninteresting when analysing the graph
and its properties. Moreover, it is natural to assume that the vertex space is connected and irreducible,
since the other cases can be reduced to this one.

Let us analyse the generalised Laplacian in the special case when all lengths are equal, say, ℓe = 1
and when there are no double edges. Then we can write the Laplacian in the form

∆
G

= 1− MG , MG := PAmax,
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where MG : G −→ G is called the principle part of the generalised discrete Laplacian, and
Amax : G max −→ G max the generalised adjacency matrix, defined by

Amax{F (w)}w = {Amax(v, w)F (w)}v, Amax(v, w) : C
Ew −→ C

Ev

for F ∈ G max. Furthermore, Amax(v, w) = 0 if v, w are not joined by an edge and

Amax(v, w)e,e′ = δe,e′, e ∈ Ev, e′ ∈ Ew

otherwise. In particular, written as a matrix, Amax(v, w) has only one entry 1 and all others equal to
0. The principle part of the Laplacian then has the form

(MG F )(v) =
∑

e∈Ev

AG (v, ve)F (ve),

for F ∈ G similar to the form of the principle part of the standard Laplacian defined for G std ∼= ℓ2(V ),
where

AG (v, w) := PvA
max(v, w)Pw : Gw −→ Gv.

Equivalently,

MG =
⊕

v∈V

∑

w∈V

AG (v, w) (2.7)

where the sum is actually only over those vertices w connected with v. In particular, in the standard
case G = G

std, the matrix AG std(v, w) consists of one entry only since G
std
v

∼= C(deg v) isometrically,
namely AG std(v, w) = 1 if v and w are connected and 0 otherwise, i.e., AG std is (unitarily equivalent
to) the standard adjacency operator in ℓ2(V ).

Let us return to the general situation (i.e., general lengths ℓe and possibly double edges). In [P07b,
Lem. 2.13] we showed the following result on symmetry of a vertex space:

Lemma 2.12. Assume that the vertex space Gv of a vertex v with degree d = deg v is invariant
under permutations of the coordinates e ∈ Ev, then Gv is one of the spaces G min

v = 0, G max = CEv ,
G

std = C(1, . . . , 1) or (G std)⊥, i.e., only the minimal, maximal, standard and dual standard vertex
space are invariant.

If we only require invariance under the cyclic group of order d, we have the following result:

Lemma 2.13. Assume that the vertex space Gv of a vertex v with degree d = deg v is invariant under
a cyclic permutation of the coordinates e ∈ Ev = {e1, . . . , ed}, i.e., edge ei 7→ ei+1 and ed 7→ e1, then
Gv is an orthogonal sum of spaces of the form G p

v = C(1, θp, θ2p, . . . , θ(d−1)p) for p = 0, . . . , d − 1,
where θ = e2πi/d.

Proof. The (representation-theoretic) irreducible vector spaces invariant under the cyclic group are
one-dimensional (since the cyclic group is Abelian) and have the form G p

v as given below. �

We call G p
v a magnetic perturbation of G std

v , i.e., the components of the generating vector (1, . . . , 1)
are multiplied with a phase factor (see e.g. [P07b, Ex. 2.10 (vii)]).

Example 2.14.

(i) If we require that the vertex space Gv is cyclic invariant with real coefficients in the corre-
sponding projections, then Gv is C(1, . . . , 1) or C(1,−1, . . . , 1,−1) (if d even) or their sum.
But the sum is reducible since

Gv = C(1, . . . , 1) ⊕ C(1,−1, . . . , 1,−1) = C(1, 0, 1, 0, . . . , 1, 0) ⊕ C(0, 1, 0, 1, . . . , 0, 1)

and the latter two spaces are standard with degree d/2. In other words, the irreducible
graph at v associated to the boundary space Gv splits the vertex v into two vertices v1 and
v2 adjacent with the edges with even and odd labels, respectively. The corresponding vertex
spaces are standard.
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(ii) The sum of two cyclic invariant spaces is not always reducible: Take the cyclic invariant
vertex space Gv = G 0

v ⊕ G 1
v ≤ C4 of dimension 2 given in Example 2.3 (iii). Note that Gv

is irreducible, since the associated projection P does not have block structure. This vertex
space is maybe the simplest example of an (cyclic invariant) irreducible vertex space which
is not standard or dual standard. Note that if deg v = 3, then an irreducible vertex space is
either standard or dual standard (or the corresponding version with “weights”, i.e., (1, . . . , 1)
replaced by a sequence of non-zero numbers).

We finally develop an index theory associated to a vertex space G . We define the Hilbert chain
associated to a vertex space G as

CG,G : 0 −→ G
dG−→ ℓ2(E) −→ 0.

Obviously, the chain condition is trivially satisfied since only one operator is non-zero. In this situation
and since we deal with Hilbert spaces, the associated cohomology spaces (with coefficients in C) can
be defined as

H0(G, G ) := ker dG
∼= ker dG / ran 0,

H1(G, G ) := ker d
∗
G

= ran d
⊥
G
∼= ker 0/ ran dG

where ran A := A(H1) denotes the range (“image”) of the operator A : H1 −→ H2. The index or
Euler characteristic of this cohomology is then defined as

ind(G, G ) := dim ker dG − dim ker d
∗
G
,

i.e., the Fredholm index of dG , provided at least one of the dimensions is finite. Note that for
the standard vertex space G std ∼= ℓ2(V ), the exterior derivative is just (equivalent to) the classical
coboundary operator defined in (2.3). In particular, the corresponding homology spaces are the
classical ones, and dim Hp(G, G std) counts the number of components (p = 0) and edges not in a
spanning tree (p = 1).

Using the stability of the index under (at least) continuous perturbations, we can calculate the
index via simple (decoupled) model spaces and obtain (see [P07b, Sec. 4]):

Theorem 2.15. Let G be a vertex space associated with the finite graph G = (V, E, ∂), then

ind(G, G ) = dim G − |E|.
Note that in particular, if G = G std, i.e., if G ∼= ℓ2(V ) is the standard vertex space, we recover the

well-known formula for (standard) discrete graphs, namely

ind(G, G std) = |V | − |E|,
i.e., the index is the Euler characteristic χ(G) := |V | − |E| of the graph G. On the other hand, in
the “extreme” cases, we have

ind(G, G max) = |E| and ind(G, G min) = −|E|.
since dim G max =

∑
v∈V deg v = 2|E| and dim G min = 0. Again, the index equals the Euler charac-

teristic of the decoupled graph χ( ·⋃e Ge)) =
∑

e χ(Ge) = 2|E| (see Eq. (2.5)) resp. the relative Euler
characteristic χ(G, V ) = χ(G) − χ(V ) = −|E|.

In [P07b, Lem. 4.4] we established a general result on the cohomology of the dual G ⊥ of a vertex

space G . It shows that actually, G ⊥ and the oriented version of G , i.e.,
y

G = {F ∈ G max |
y

F ∈ G },
are related:

Lemma 2.16. Assume that the global length bound

ℓ0 ≤ ℓe ≤ ℓ+ for all e ∈ E (2.8)

holds for some constants 0 < ℓ0 ≤ ℓ+ < ∞. Then H0(G, G ⊥) and H1(G,
y

G ) are isomorphic. In

particular, if G is finite, then ind(G, G ⊥) = − ind(G,
y

G ).

The change of orientation also occurs in the metric graph case, see e.g. Lemma 3.7.
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3. Metric graphs

In this section, we fix the basic notion for metric and quantum graphs and derive some general
assertion needed later on.

Definition 3.1. Let G = (V, E, ∂) be a discrete graph. A topological graph associated to G is a CW
complex X containing only 0-cells and 1-cells, such that the 0-cells are the vertices V and the 1-cells
are labelled by the edge set E.

A metric graph X = X(G, ℓ) associated to a weighted discrete graph (V, E, ∂, ℓ) is a topological
graph associated to (V, E, ∂) such that for every edge e ∈ E there is a continuous map Φe : Ie −→ X,
Ie := (0, ℓe), whose image is the 1-cell corresponding to e, and the restriction Φe : Ie −→ Φ(Ie) ⊂ X
is a homeomorphism. The maps Φe induce a metric on X. In this way, X becomes a metric space.

Given a weighted discrete graph, we can abstractly construct the associated metric graph as the
disjoint union of the intervals Ie for all e ∈ E and appropriate identifications of the end-points of
these intervals (according to the combinatorial structure of the graph), namely

X =
·⋃

e∈E

Ie/∼. (3.1)

We denote the union of the 0-cells and the union of the (open) 1-cells (edges) by X0 and X1, i.e.,

X0 = V →֒ X, X1 =
⋃

e∈E

Ie →֒ X,

and both subspaces are canonically embedded in X.

Remark 3.2.

(i) The metric graph X becomes canonically a metric measure space by defining the distance of
two points to be the length of the shortest path in X, joining these points. We can think
of the maps Φe : Ie −→ X as coordinate maps and the Lebesgue measures on the intervals
Ie induce a (Lebesgue) measure on the space X. We will often abuse the notion and write
X = (G, ℓ) or X = (V, E, ∂, ℓ) for the metric graph associated to the weighted discrete graph
(G, ℓ) with G = (V, E, ∂).

(ii) Note that two metric graphs X = (G, ℓ), X ′ = (G′, ℓ′) can be isometric as metric spaces but
not isomorphic as graphs: The metric on a metric graph X cannot distinguish between a
single edge e of length ℓe in G and two edges e1, e2 of length ℓe1

, ℓe2
with ℓe = ℓe1

+ ℓe2
joined

by a single vertex of degree 2 in G′: The underlying graphs are not (necessarily) isomorphic.
For a discussion on this point, see for example [BaR07, Sec. 2].

Since a metric graph is a topological space, and isometric to intervals outside the vertices, we can
introduce the notion of measurability and differentiate function on the edges. We start with the basic
Hilbert space

L2(X) :=
⊕

e∈E

L2(Ie), f = {fe}e with fe ∈ L2(Ie) and

‖f‖2 = ‖f‖2
L2(X) :=

∑

e∈E

∫

Ie

|fe(x)|2 dx.

In order to define a natural Laplacian on L2(X) we introduce the maximal or decoupled Sobolev
space of order k as

H
k
max(X) :=

⊕

e∈E

H
k(Ie),

‖f‖2
Hk

max(X) :=
∑

e∈E

‖fe‖2
Hk(Ie)

,
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where Hk(Ie) is the classical Sobolev space on the interval Ie, i.e., the space of functions with (weak)
derivatives in L2(Ie) up to order k. We define the unoriented and oriented value of f on the edge e
at the vertex v by

f
e
(v) :=

{
fe(0), if v = ∂−e,

fe(ℓ(e)), if v = ∂+e
and

y

f
e
(v) :=

{
−fe(0), if v = ∂−e,

fe(ℓ(e)), if v = ∂+e.

Note that f
e
(v) and

y

f
e
(v) are defined for f ∈ H1

max(X). Even more, we have shown in [P07b, Lem. 5.2]
the following result:

Lemma 3.3. Assume the lower lengths bound (2.1), then the evaluation operators

• : H
1
max(X) −→ G

max and
y• : H

1
max(X) −→ G

max,

given by f 7→ f = {{f
e
(v)}e∈Ev

}v ∈ G
max =

⊕
v G

max
v =

⊕
v C

Ev and similarly
y

f ∈ G
max, are bounded

by 2ℓ
−1/2
0 .

These two evaluation maps allow a very simple formula of a partial integration formula on the
metric graph, namely

〈f ′, g〉L2(X) = 〈f,−g′〉L2(X) + 〈f,
y

g〉G max, (3.2)

where f ′ = {f ′
e}e and similarly for g. Basically, this follows from partial integration on each interval

Ie and a reordering of the labels by

E =
·⋃

v∈V

E+
v =

·⋃

v∈V

E−
v .

Remark 3.4. If we distinguish between functions (0-forms) and vector fields (1-forms), we can say
that 0-forms are evaluated unoriented, whereas 1-forms are evaluated oriented. In this way, we should
interprete f ′ and g as 1-forms and f , g′ as 0-forms.

Let G be a vertex space (i.e., a local subspace of G max, or more generally, a closed subspace)
associated to the underlying discrete graph. We define

H
k
G
(X) :=

{
f ∈ H

k
max(X)

∣∣ f ∈ G
}

and H
k
y

G
(X) :=

{
f ∈ H

k
max(X)

∣∣y

f ∈ G
}
.

Note that these spaces are closed in Hk
max(X) as pre-image of the bounded operators • and

y•, respec-
tively, of the closed subspace G , and therefore itself Hilbert spaces.

We can now mimic the concept of exterior derivative:

Definition 3.5. The exterior derivative associated to a metric graph X and a vertex space G is the
unbounded operator dG in L2(X) defined by dG f := f ′ for f ∈ dom dG := H1

G
(X).

Remark 3.6.

(i) Note that dG is a closed operator (i.e., its graph is closed in L2(X)⊕ L2(X)), since H1
G
(X) is

a Hilbert space and the graph norm of d = dG given by ‖f‖2
d := ‖df‖2 + ‖f‖2 is the Sobolev

norm, i.e, ‖f‖d = ‖f‖H1
max(X).

(ii) We can think of d as an operator mapping 0-forms into 1-forms. Obviously, on a one-
dimensional smooth space, there is no need for this distinction, but the distinction between
0- and 1-forms makes sense through the boundary conditions f ∈ G , see also the next lemma.

The adjoint of dG can easily be calculated from the partial integration formula (3.2), namely the
boundary term has to vanish for functions in the domain of d∗

G
:

Lemma 3.7. The adjoint of dG is given by d∗
G
g = −g′ with domain dom d∗

G
= H

1
y

G⊥
(X).

As for the discrete operators, we define the Laplacian as

∆G := d∗
G dG

with domain dom ∆
G

:= { f ∈ dom dG | df ∈ dom d∗
G
}. Moreover, we have (see e.g. [K04, Thm. 17]

or [P07a, Sec. 5] for different proofs):
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Proposition 3.8. Assume the lower lengths bound (2.1), then ∆
G

is self-adjoint on

dom ∆G :=
{

f ∈ H
2
max(X)

∣∣ f ∈ G ,
y

f ′ ∈ G
⊥ }.

Proof. By definition of ∆
G
, the Laplacian is the non-negative operator associated to the non-negative

quadratic form f 7→ ‖df‖2 with domain H
1
G
(X). The latter is closed since H

1
G
(X) is a Hilbert

space equipped with the associated quadratic form norm defined by ‖f‖2
H1(X) = ‖df‖2 + ‖f‖2, see

Remark 3.6 (i). It remains to show that ∆
G

is a closed operator, i.e., dom ∆
G

is a Hilbert space
equipped with the graph norm defined by ‖f‖2

∆ := ‖f‖2 + ‖f ′′‖2. By Lemma 3.3, the domain is a
closed subspace of H2

max(X), and it remains to show that the Sobolev and the graph norms

‖f‖2
H2

max(X) = ‖f‖2 + ‖f ′‖2 + ‖f ′′‖2 and ‖f‖2
∆ = ‖f‖2 + ‖f ′′‖2,

are equivalent, i.e., that there is a constant C > 0 such that ‖f ′‖2 ≤ C(‖f‖2 + ‖f ′′‖2). The latter
estimate is true under the global lower bound on the length function (2.1) (see e.g. [HP06, App. C]).

�

Definition 3.9. A metric graph X together with a self-adjoint Laplacian (i.e, an operator acting as
(∆f)e = −f ′′

e on each edge) will be called quantum graph.

For example, (X, ∆
G
) is a quantum graph; defined by the data (V, E, ∂, ℓ, G ).

Example 3.10. The standard vertex space G std leads to continuous functions in H1
G std(X), i.e., the

value of f
e
(v) is independent of e ∈ Ev. Note that on each edge, we already have the embedding

H1(Ie) ⊂ C(Ie), i.e., f is already continuous inside each edge. In particular, a function f is in the

domain of ∆
G std iff f ∈ H2

max(X), f is continuous and
y

f ′(v) ∈ (G std)⊥. The latter condition on the
derivative is a flux condition, namely ∑

e∈Ev

y

f ′
e
(v) = 0

for all v ∈ V . The corresponding metric graph Laplacian ∆
G std is called standard, or sometimes also

Kirchhoff Laplacian.

Remark 3.11.

(i) There are other possibilities how to define self-adjoint extensions of a Laplacian, namely for
any self-adjoint (bounded) operator L on G , one can show that ∆(G ,L) is self-adjoint on

dom∆(G ,L) :=
{

f ∈ H
2
G (X)

∣∣P
y

f ′ = Lf
}
,

where P is the projection in G max onto the space G . The domain mentioned in Proposi-
tion 3.8 corresponds to the case L = 0. For more details, we refer e.g. to [K04, Thm. 17]
or [P07a, Sec. 4], [KPS07] (and references therein) and the next remark for another way of a
parametrisation of self-adjoint extensions.

(ii) One can encode the vertex boundary conditions also in a (unitary) operator S on G max, the
scattering operator. In general, S = S(λ) depends on the eigenvalue (“energy”) parameter
λ, namely, S(λ) is (roughly) defined by looking how incoming and outgoing waves (of the

form x 7→ e±i
√

λx) propagate through a vertex. In our case (i.e., if L = 0 in ∆(G ,L) described

above), one can show that S is independent of the energy, namely,

S =

(1 0
0 −1) = 2P − 1 (3.3)

with respect to the decomposition G max = G ⊕G ⊥, and where P is the orthogonal projection
of G in G max.

(iii) As in the discrete case, we can consider ∆0
G

:= ∆
G

as the Laplacian on 0-forms, and ∆1
G

:=
dG d∗

G
as the Laplacian on 1-forms, and again, by supersymmetry, we have the spectral relation

σ(∆1
G
) \ {0} = σ(∆0

G
) \ {0}.
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For more details and more general exterior derivatives corresponding to the case L ≥ 0, we
refer to [P07b, Sec. 5].

Using the definition A ≤ B iff dom a ⊃ dom b and a(f) ≤ b(f) for all f ∈ dom b where a, b are
the quadratic forms associated to the self-adjoint (unbounded) non-negative operators A and B (i.e.,
a(f) := ‖A1/2f‖2 = 〈Af, f〉 for f ∈ dom a := dom A1/2 and f ∈ dom A, respectively), we have the
following simple observation:

Lemma 3.12. Assume that G1 ≤ G2 are two vertex spaces, then ∆
G2

≤ ∆
G1

.

Proof. The assertion follows directly from the inclusion H
1
G1

(X) ⊂ H
1
G2

(X) and the fact that the
quadratic forms are given by di(f) := ‖df‖2

L2(X) with dom di = H1
Gi

(X). �

If X is compact, i.e., the underlying graph is finite, we have:

Proposition 3.13. Assume that X is compact, then the spectrum of ∆
G

is purely discrete, i.e., there
is an infinite sequence {λk}k of eigenvalues where λk = λk(∆G

) = λk(G ) denotes the k-th eigenvalue
(repeated according to its multiplicity) and λk → ∞ as k → ∞.

Proof. We have to show that the resolvent of ∆
G

is a compact operator. This assertion follows easily
from the estimate ∆

G
≥ ∆

G max =
⊕

e ∆N
Ie

where ∆N
Ie

is the Neumann Laplacian on the interval Ie

having discrete spectrum λk(G
max) = (k−1)2π2/ℓ2

e (k = 1, 2, . . . ): The inequality implies the opposite
inequality for the resolvents in −1; and therefore

0 ≤ (∆G + 1)−1 ≤ (∆G max + 1)−1 =
⊕

e∈E

(∆N
Ie

+ 1)−1.

Since E is finite, the latter operator is compact and therefore also the resolvent of ∆
G
. �

Combining the last two results together with the variational characterisation of the eigenvalues
(the min-max principle), we have the inequality

λk(∆G2
) ≤ λk(∆G1

)

for all k ∈ N where G1 ≤ G2 are two vertex spaces. Moreover,

λN
k

( ·⋃

e

Ie

)
= λk(∆G max) ≤ λk(∆G ) ≤ λk(∆G min) = λD

k

( ·⋃

e

Ie

)

where λD
k

( ·⋃
e Ie

)
is the spectrum of the (decoupled) Dirichlet operator ∆

G min =
⊕

e ∆D
Ie

. Note that

λN
k

( ·⋃
e Ie

)
= 0 for k = 1, . . . , |E|, and λN

k+|E|
( ·⋃

e Ie

)
= λD

k

( ·⋃
e Ie

)
where the latter sequence is a

reordering of the individual Dirichlet eigenvalues λD
k (Ie) = k2π2/ℓ2

e repeated according to multiplicity.
In particular, for an equilateral metric graph (i.e, ℓe = 1 for all edges e), then

(m − 1)2π2 ≤ λk(∆G
) ≤ m2π2, k = (m − 1)|E| + 1, . . . , m|E|, m = 1, 2, . . .

For non-compact metric graphs, we can characterise the spectrum via generalised eigenfunctions,

i.e., functions f : X −→ C satisfying the local vertex conditions f(v) ∈ Gv and
y

f(v) ∈ G ⊥
v , but no

integrability condition at infinity: A measure ρ on R is a spectral measure for ∆
G

iff for all measurable
I ⊂ R we have ρ(I) = 0 iff the spectral projector satisfies 1I(∆G

) = 0. In this case, we have the
following result (cf. [HP06, App. B]):

Proposition 3.14. Assume the lower lengths bound (2.1). Let Φ: X −→ (0,∞) be a bounded weight
function, which is also in L2(X). Then for almost every λ ∈ σ(∆

G
) (with respect to a spectral

measure), there is a generalised eigenfunction f = fλ associated to λ such that

‖Φf‖2 =

∫

X

|f(x)|2Φ(x)2 dx < ∞.
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The function Φ can be constructed according to the graph. Denote by BX(x0, r) the metric ball of
radius r > 0 around the point x0 ∈ X. For example, on a graph with sub-exponential volume growth,
i.e., for any ε > 0 there exists Cε > 0 such that

vol1 BX(x0, r) :=

∫

X

1BX(x0,r) dx ≤ Cεe
εr,

the weight function Φ can be chosen in such a way that it decays slower than exponentially, i.e.,

min Φ(BX(x0, r)) ≥ C̃εe
−εr. In particular, we can choose Φ(x) := e−εd(x,x0) ≤ 1, and, by Fubini, ‖Φ‖2

equals
∫ 1

0

vol1{ x ∈ X |Φ(x)2 > t } dt =

∫ 1

0

vol1 BX

(
x0,

− log t

2ε

)
dt ≤ Cε

∫ 1

0

t−1/2 dt < ∞.

4. Relations between discrete and metric graphs

In this section, we describe two cases, in which (parts of the) spectrum of a metric graph can be
described in terms of the discrete graph. The first case deals with so-called equilateral metric graphs,
i.e., graphs where all lengths are the same, say, ℓe = 1. The second case treats the spectrum at the
bottom, also in the general (non-equilateral) case.

4.1. Equilateral metric graphs. An effective way of describing the relation between metric graph
Laplacians and the underlying (generalised) discrete one are so-called boundary triples. We do not give
the general definition here. instead, we refer to [P07a, BGP08] and the references therein. In brief, a
boundary triple (originally developped for PDE boundary value problems) describes an abstraction
of Green’s formula.

In order to describe the notions needed here, we define a maximal Laplacian in H := L2(X) with
domain

dom ∆max
G := H

2
G (X) =

{
f ∈ H

2
max(X)

∣∣ f ∈ G
}
,

i.e., we only fix the vertex values f to be in the vertex space G with associated projection P . One
can show similarly as in the proof of Proposition 3.8 that dom∆max

G
is a closed operator.

We define the boundary operators on the domain of the maximal Laplacian as

Γ0 : H
2
G
(X) −→ G , f 7→ f (4.1a)

Γ1 : H
2
G
(X) −→ G , f 7→ P

y

f ′. (4.1b)

Green’s formula in this setting reads as

〈∆max
G f, g〉H − 〈f, ∆max

G g〉H = 〈Γ0f, Γ1g〉G − 〈Γ1f, Γ0g〉G
as one can easily see with the help of (3.2). As self-adjoint reference operator, we denote by ∆0 the
restriction of ∆max

G
to ker Γ0. Note that ∆0 is precisely the metric graph Laplacian associated to the

minimal vertex space G
min = 0, and therefore decoupled, i.e.,

∆0 =
⊕

e∈E

∆D
Ie

,

where ∆D
Ie

denotes the Laplacian on Ie with Dirichlet boundary conditions and spectrum given by
σ(∆D

Ie
) = { (πk/ℓe)

2 | k = 1, 2, . . .} and σ(∆0) is the union of all these spectra.
In the general theory of boundary triples, one can show that Γ0 restricted to N z = ker(∆max

G
− z))

is a topological isomorphism between N z and G provided z /∈ σ(∆0) =: Σ. We denote its inverse
by β(z) : G −→ N z ⊂ L2(X) (Krein’s Γ-field). In other words, f = β(z)F is the solution of the
Dirichlet problem

(∆ − z)f = 0, f = F.

Here, we can give an explicit formula for β(z), namely we have

fe(x) = Fe(∂−e)s−,e,z(x) + Fe(∂+e)s+,e,z(x),
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where1

s−,e,z(x) =
sin(

√
z(ℓe − x))

sin
√

zℓe

and s+,e,z(x) =
sin(

√
zx)

sin
√

zℓe

. (4.2)

denote the fundamental solutions for z /∈ σ(∆0).
Taking the derivative of f = β(z)F on G , i.e., defining

Q(z)F := Γ1β(z)F,

we obtain a (bounded) operator Q(z) : G −→ G , called Krein’s Q-function or Dirichlet-to-Neumann
map. Here, a simple calculation shows that

(Q(z)F )e(v) =

√
z

sin(
√

zℓe)

[
cos(

√
zℓe)Fe(v) − Fe(ve)

]
.

if z /∈ Σ. In particular, if the metric graph is equilateral (without loss of generality, ℓe = 1), we have

Q(z) =

√
z

sin
√

z

[
△△△G − (1 − cos

√
z)
]
.

The abstract theory of boundary triples gives here the following result between the metric and
discrete Laplacian. For a proof and more general self-adjoint Laplacians as in Remark 3.11 (i) we
refer to [P07a, Sec. 5]. Certain special cases can be found for example in [C97, Pa06, BGP08]; and
Pankrashkin announced a more general result in [Pa07]. For a related result concerning a slightly
different definition of a metric graph Laplacian, see [BaF06] and the references therein. For spectral
relations concerning averaging operators we refer to [CaW05].

Theorem 4.1. Assume the lower bound on the edge lengths (2.1).

(i) For z /∈ σ(∆0) we have the explicit formula for the eigenspaces

ker(∆G − z) = β(z) ker Q(z).

(ii) For z /∈ σ(∆
G
) ∪ σ(∆0) we have 0 /∈ σ(Q(z)) and Krein’s resolvent formula

(∆
G
− z)−1 = (∆0 − z)−1 − β(z)Q(z)−1(β(z))∗

holds.
(iii) Assume that the graph is equilateral (say, ℓe = 1), then for λ ∈ C\R or λ ∈ R in the spectral

gap (π2k2, π2(k + 1)2) (k = 1, 2, . . . ) of ∆0 or λ < π2, we have

(∆
G
− λ)−1 = (∆0 − λ)−1 − sin

√
λ√

λ
β(λ)

(
△△△

G
− (1 − cos

√
λ)
)−1

(β(λ))∗

and

λ ∈ σ•(∆G
) ⇔ (1 − cos

√
λ) ∈ σ•(△△△G

)

for all spectral types, namely, • ∈ {∅, pp, disc, ess, ac, sc, p}, the entire, pure point (set of
all eigenvalues), discrete, essential, absolutely and singular continuous, and point spectrum

(σp(A) = σpp(A)). The multiplicity of an eigenspace is preserved.

Remark 4.2. (i) The eigenspaces in Theorem 4.1 (i) for an equilateral graph can be constructed
from the discrete data F ∈ ker(△△△

G
− (1 − cos

√
z)) by applying Krein’s Γ-function, the

“solution operator”, namely, f = β(z)F is the corresponding eigenfunction of the metric
graph Laplacian. The converse is also true: Given f ∈ ker(∆(G ,0)−z), then the corresponding

eigenfunction F ∈ ker(△△△
G
− (1 − cos

√
z)) is just the restriction of f to the vertices, namely

F = f .

1For z = 0, we set s−,e,0(x) := 1 − x/ℓe and s+,e,0(x) := x/ℓe.
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(ii) The resolvent formula in Theorem 4.1 (ii) is very explicit, since

(∆0 − z)−1 =
⊕

e∈E

(∆D
Ie
− z)−1

is decoupled and explicit formulas for the resolvent on the interval are known. In particular,
the analysis of the (equilateral) metric graph resolvent is reduced to the analysis of the
discrete Laplacian resolvent (see also [KoS06, KPS07]).

Krein’s resolvent formula (ii) is very useful when analysing further properties of the quan-
tum graph (X, ∆

G
) via the resolvent.

(iii) We excluded the Dirichlet spectrum σ(∆0) = Σ. These values may occur in the spectrum of
∆

G
or not. For example, if G is the standard vertex space G

std and if X contains a loop with
an even number of edges each having the same length, we can define on each edge a Dirichlet
solution on the edge (with opposite sign on successive edges). This function is continuous in
the vertices, and satisfies also the Kirchhoff condition in each vertex. Therefore, on a metric
graph, compactly supported eigenfunctions may exist.

4.2. Relation at the bottom of the spectrum. Let us analyse the spectrum at the bottom in
more detail. As in Section 2 we define the Hilbert chain associated to the exterior derivative dG as

CX,G : 0 −→ H
1
G
(X)

dG−→ L2(X) −→ 0

and call elements of the first space 0-forms, and of the second space 1-forms. The associated coho-
mology spaces (with coefficients in C) are defined as

H0(X, G ) := ker dG
∼= ker dG / ran 0,

H1(X, G ) := ker d∗
G = ran d⊥

G
∼= ker 0/ randG

The index or Euler characteristic of the cohomology associated to the metric graph X with vertex
space G is then defined as

ind(X, G ) := dim ker dG − dim ker d∗
G
,

i.e., the Fredholm index of dG , provided at least one of the dimensions is finite.
We have the following result (for more general cases cf. [P07b], and for a different approach

see [FKW07]):

Theorem 4.3. Assume that G is a weighted discrete graph with lower lengths bound (2.1), and
denote by X the associated metric graph, and by G a vertex space associated to G. Then there is an
isomorphism Φ∗ = Φ∗

0 ⊕ Φ∗
1 with

Φ∗
p : Hp(X, G ) −→ Hp(G, G ).

More precisely, Φ∗ is induced by a Hilbert chain morphism Φ , i.e.,

CX,G : 0 - H
1
G
(X)

dG - L2(X) - 0

CG,G : 0 - G

Φ0

? dG - ℓ2(E)

Φ1

?
- 0

is commutative, where

Φ0f := f = Γ0f, Φ1g :=
{∫

Ie

ge(x) dx
}

e
.

In particular, if G is finite (and therefore X compact), then

ind(G, G ) = ind(X, G ).

For general results on Hilbert chains and their morphisms we refer to [L02, Ch. 1] or [BL92].
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Proof. The operators Φp are bounded. Moreover, that Φ is a chain morphism follows from

(Φ1dG f)e =

∫

Ie

f ′
e(x) dx = fe(ℓe) − fe(0) = (dG f)e = (dG Φ0f)e.

Furthermore, there is a Hilbert chain morphism Ψ, i.e.,

CX,G : 0 - H
1
G (X)

dG- L2(X) - 0

CG,G : 0 - G

Ψ0

6

dG - ℓ2(E)

Ψ1

6

- 0

given by

Ψ0F := β(0)F = {Fe(∂−e)s−,e,0 + Fe(∂+e)s+,e,0}e, Ψ1η := {ηe1Ie
/ℓe}e

(see Eq. (4.2)), i.e., we let Φ0F be the affine (harmonic) function on Ie with boundary values fixed;
and Φ1η be an (edgewise) constant function. Again, the chain morphism property Ψ1dG = dG Ψ0 can
easily be seen. Furthermore, ΦΨ is the identity on the second (discrete) Hilbert chain CG,G . It follows
now from abstract arguments (see e.g. [BL92, Lem. 2.9]) that the corresponding induced maps Φ∗

p are
isomorphisms on the cohomology spaces. �

Remark 4.4. The sub-complex Ψ(CG,G ) of CX,G consists of the subspace of edge-wise affine functions
(0-forms) and of edge-wise constant functions (1-forms). In this way, we can naturally embed the
discrete setting into the metric graph one. In particular, assume that 0 < ℓ0 ≤ ℓe ≤ ℓ+ < ∞, then

‖Ψ0F‖2 =
∑

e

1

ℓe

∫ ℓe

0

|Fe(∂−e)(ℓe − x) + Fe(∂+e)x|2 dx

=
∑

e

1

3ℓe

∫ ℓe

0

|Fe(∂−e)2 + Fe(∂−e)Fe(∂+e) + Fe(∂+e)2|,

so that
1

2ℓ+
‖F‖2

G
≤ ‖Ψ0F‖2 ≤ 5

6ℓ0
‖F‖2

G
,

i.e., redefining the norm on G by ‖F‖G ,1 := ‖Ψ0F‖ gives an equivalent norm turning Ψ0 into an
isometry. Moreover, ‖Ψ1η‖ = ‖η‖ℓ2(E). For more details on this point of view (as well as “mixed”
types of discrete and metric graphs), we refer to [FT04b] and references therein.

5. Relations between metric graphs and manifolds

Let us briefly describe the relation of a metric graph X0 = (V, E, ∂, ℓ) with manifolds. For more
details, we refer to the review article [EP07] and the references therein. Let Xε be a d-dimensional
connected manifold with metric gε. If Xε has boundary, we denote it by ∂Xε; let us stress that our
discussion covers different kind of models, like the ε-neighbourhood of an metric graph embedded in
R

ν , as well as sleeve-type manifolds (like the surface of a pipeline network) having no boundary. We
assume that Xε can be decomposed into open sets Uε,e and Uε,v, i.e.,2

Xε =
·⋃

e∈E

Uε,e ·∪ ·⋃

v∈V

Uε,v. (5.1)

2 The expression A = ·⋃
i
Ai means that the Ai’s are open (in A), mutually disjoint and the interior of

⋃
i
Ai equals

A.
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Denote the metric on Xε by gε. To simplify the discussion here, we assume that Uε,e and Uε,v are
isometric to

Uε,e
∼= (Ie × F, gε,e) gε,e = dx2

e + ε2h (5.2a)

Uε,v
∼= (Uv, gε,v) gε,v = ε2gv (5.2b)

where (F, h) is a compact m-dimensional manifold with m := (d−1), and (Uv, gv) is an ε-independent
d-dimensional manifold (cf. Figure 1). Strictly speaking, for a metric graph X0 embedded in R2, the
edge neighbourhoods of the associated ε-neighbourhood Xε := { x ∈ R2 | dist(x, X0) < ε } must be
shorter in the longitudinal direction in order to have space for the vertex neighbourhoods. Neverthe-
less, this fact causes only an error of order ε for the associated metrics, which does not matter in our
convergence analysis below.

Uε,e

Ie

Uε,v

v

ε

ε

Figure 1. The associated edge and vertex neighbourhoods with Fε = S1
ε, i.e., Uε,e and

Uε,v are 2-dimensional manifolds with boundary.

Note that ∂Uε,v \ ∂Xε has (deg v)-many components isometric to (F, ε2h) denoted by (∂eUv, ε
2h)

for e ∈ Ev. The cross section manifold F has a boundary or does not have one, depending on the
analogous property of Xε.

On the other hand, given a metric graph X0 and vertex neighbourhood manifolds Uv as below, we
can abstractly construct a graph-like manifold X1 from these building blocks according to the rules
of the graph with a family of metrics gε satisfying (5.1) and (5.2) with Xε = (X1, gε).

For simplicity, we suppose that volm F = 1. Then we have

dUε,e = εm dF dxe (5.3)

for the Riemannian densities. We consider the Hilbert space Hε = L2(Xε) and the Laplacian ∆Xε
:=

d∗d ≥ 0 (with Neumann boundary conditions if ∂Xε 6= ∅) where d denotes the exterior derivative. In
addition, we assume that the following uniformity conditions are valid,

cvol := sup
v∈V

vold Uv < ∞, λ2 := inf
v∈V

λN
2 (Uv) > 0, (5.4)

where λN
2 (Uv) denotes the second (i.e., first non-zero) Neumann eigenvalue of (Uv, gv). Roughly

speaking, the requirements (5.4) mean that the region Uv remains small w.r.t. the vertex index.
Obviously, these assumptions are trivially satisfied once the vertex set V is finite.

In order to compare operators in L2(X0) and L2(Xε) =
⊕

e L2(Ie) ⊗ L2(Fε) ⊕
⊕

v L2(Uε,v), we use
the identification operator

Jf := {fe ⊗ 1ε}e ⊕ {0v}v, (5.5)

where 1ε = ε−m/21 is the lowest normalised eigenfunction on Fε = (F, ε2h) and in turn 0v is the zero
function on Uv. This identification operator is quasi-unitary, i.e., J∗J = idH0

, ‖J‖ = 1, and one can
show that

‖(JJ∗ − idHε
)(∆Xε

+ 1)−1/2)‖ = O(ε1/2),
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where O(ε1/2) depends only on the lower lengths bound ℓ0 in (2.1), on cvol and λ2: Basically, we have

(idHε
−JJ∗)u =

∑

e∈E

∫

Ie

‖u(x, ·) − 〈u(x, ·),1ε〉Feε‖2
Fε

dx +
∑

v∈V

‖u‖2
Uε,v

and both contributions can be estimated in terms of O(ε)(‖du‖2 + ‖u‖2) as stated above.
The main statement of this section is the following (cf. [P06]):

Theorem 5.1. Assume the uniformity conditions (2.1), d0 := supv deg v < ∞ and (5.4). Then the
Laplacians ∆Xε

and ∆X0
are O(ε1/2)-close with respect to the quasi-unitary map J defined in (5.5),

i.e.
‖(∆Xε

+ 1)−1J − J(∆X0
+ 1)−1‖ ≤ O(ε1/2).

In addition, we have
‖(∆Xε

+ 1)−1 − J(∆X0
+ 1)−1J∗‖ ≤ O(ε1/2), (5.6)

where the error term depends only on ℓ0, d0, cvol and λ2.

Once the above resolvent estimates are established, one can develop a functional calculus for pairs
of operators (Hε, ∆Xε

) and (H0, ∆X0
) together with a quasi-unitary identification operator J , and

establish the above operator estimates also for more general functions ϕ than ϕ(λ) = (λ + 1)−1,
namely for spectral projectors (ϕ = 1I , I interval), or for the heat operator (ϕt(λ) = e−tλ, t > 0).
Moreover, we can show that the spectra are close to each other:

Theorem 5.2. Under the assumptions of the previous theorem, we have

‖1I(∆Xε
)J − J1I(∆X0

)‖ ≤ O(ε1/2) and ‖1I(∆Xε
) − J1I(∆X0

)J∗‖ ≤ O(ε1/2)

for the spectral projections provided I is a compact interval such that ∂I ∩σ(∆X0
) = ∅. In particular,

if I contains a single eigenvalue λ(0) of ∆X0
with multiplicity one corresponding to an eigenfunction

u(0), then there is an eigenvalue λ(ε) and an eigenfunction u(ε) of ∆Xε
such that

‖Ju(0) − u(ε)‖ = O(ε1/2).

In addition, the spectra converge uniformly on [0, Λ], i.e.

σ(∆Xε
) ∩ [0, Λ] → σ(∆X0

) ∩ [0, Λ]

in the sense of the Hausdorff distance on compact subsets of [0, Λ]. The same result is true if we
consider only the essential or the discrete spectral components.

In particular, the above theorem applies to the case when X0 (and therefore Xε) is compact, and
we obtain

λk(∆Xε
) − λk(∆X0

) = O(ε1/2). (5.7)

This estimate can also be proved directly by applying the min-max theorem, and estimating the errors
of the corresponding Rayleigh quotients. For more results (like a similar convergence of resonances)
we refer again to [EP07] and the references therein. Recently, Grieser showed in [Gr07] an asymptotic
expansion of the eigenvalues and the eigenfunctions also for other boundary conditions on ∂Xε, for
example Dirichlet.

6. Estimates on the first non-zero eigenvalue

Here, we comment on inequalities on the first non-zero eigenvalue of a graph, namely a lower bound
in terms of an isoperimetric constant. For details, see e.g. [Ch97, HSh04, N87].

Let X be a compact metric graph and Y ⊂ X be a non-empty open subset. We denote by |∂Y | the
number of points in the boundary (“volume” of dimension 0), and by vol1 Y :=

∫
X
1Y dx the total

length of Y (“volume” of dimension 1). Cheeger’s (isoperimetric) constant for the metric graph X is
defined as

h(X) := inf
Y

|∂Y |
min(vol1 Y, vol1 Y c)

(6.1)
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where Y c := X \ Y , and the infimum runs over all open, subset Y ⊂ X such that Y 6= ∅ and Y 6= X.
For simplicity, we assume that X is connected and that each vertex space is standard, i.e., Gv =

G std = C(1, . . . , 1). The corresponding (standard or Kirchhoff) Laplacian (denoted by ∆std
X ) has

discrete spectrum. In particular, the first eigenvalue fulfills λ1(∆
std
X ) = 0, while the second is positive

λ2(X) := λ2(∆
std
X ) > 0. If not already obvious, this follows from Theorem 4.3, and the fact that the

dimension of the 0-th cohomology group counts the number of components.
Cheeger’s theorem in this context is the following:

Theorem 6.1. Assume that X is a connected, compact metric graph with standard vertex space
G std and denote by λ2(X) > 0 the first non-zero eigenvalue of the standard (Kirchhoff) metric graph
Laplacian. Then we have

λ2(X) ≥ h(X)2

4
.

Proof. The proof follows closely the line of arguments as in the manifold case (see also [N87]). The
basic ingredient is the co-area formula

∫

X

|ϕ′(x)| dx =

∫ ∞

0

|{ x ∈ X |ϕ(x) = t }| dt

for any non-negative, edgewise C1-function ϕ.
Denote by f the corresponding eigenfunction associated to λ2(X). Without loss of generality, we

may assume that f is real-valued. Set X+ := { x ∈ X | f(x) > 0 }. Moreover, we may assume that
vol1 X+ ≤ vol1 Xc

+ (if this is not true, replace f by −f). Finally, X+ 6= ∅ and X+ 6= X since f
changes sign as second eigenfunction (only the first eigenfunction is constant).

Let g := 1X+
f , then g is non-negative and g 6= 0. Moreover, since g is continuous, we can perform

partial integration without additional boundary terms in ∂X+: In particular, if v ∈ ∂X+ is a vertex
then ge(v) = 0 for all adjacent edges e ∈ Ev. In particular, we have

λ2(X) =
〈g,−g′′〉
‖g‖2

=
‖g′‖2

‖g‖2
≥ 1

4

(∫
X
|(g2)′(x)| dx

‖g‖2

)2

(6.2)

where we used Cauchy-Schwarz for the latter inequality. Setting X(t) := { x ∈ X | g(x)2 > t }, the
co-area formula and Fubini yield

∫
X
|(g2)′(x)| dx

‖g‖2
=

∫∞
0
|{ x ∈ X | g(x)2 = t }| dt∫∞

0
vol1 X(t) dt

≥
∫ t0
0
|∂X(t)| dt

∫ t0
0

vol1 X(t) dt

since {g2 = t} ⊃ ∂X(t). Here, t0 := max g(X)2 > 0 because X+ 6= ∅. Moreover, X(t) is open (g is
continuous), vol1 X(t) ≤ vol1 X+ ≤ vol1 Xc

+ ≤ vol1 X(t)c, X(t) 6= ∅ for t ∈ [0, t0) and X(t) 6= X for
all t ≥ 0 since X+ 6= X. The definition of Cheeger’s constant finally yields the lower bound h(X) for
the last fraction. �

Remark 6.2. One might ask whether similar results hold for more general boundary spaces G (i.e.,
the metric graph Laplacian ∆

G
). There are several problems in the general case:

• If the projection Pv associated to Gv has complex entries, the eigenfunction may no longer
be chosen to be real-valued.

• If the function f ∈ dom ∆
G

is not continuous at a vertex, (e.g., negative on one edge and
positive on another edge meeting in the same vertex), the boundary terms of g appearing
from partial integration in (6.2) may not vanish at this vertex.

• The eigenfunction associated to the first non-zero eigenvalue may not change its sign (e.g.,
if it is a Dirichlet function on a single edge). In this case, one needs a modified Cheeger
constant (with vol1 Y in the denominator, and Y ⊂ X open, not intersecting the “Dirichlet”
vertices.



20 OLAF POST

Cheeger’s theorem for a (standard) finite discrete graph G = (V, E, ∂) can be proven in a similar
way. For simplicity, we assume that all weights are the same, say ℓe = 1, and that the graph has no
self-loops. We define Cheeger’s constant for the discrete graph G as

h(G) := inf
W

|E(W, W c)|
min(vol0 W, vol0 W c)

, (6.3)

where the infimum runs over all subsets W ⊂ V such that W 6= ∅ and W 6= V . Furthermore,
E(W, W c) is the set of all edges having one vertex in W and the other one in W c. The volume of W
is defined as vol0 W :=

∑
v∈W deg w. Note that vol0 W = ‖1W‖2

ℓ2(V ) (see (2.4)). For a proof of the

next theorem, see e.g. [Ch97, Thm. 2.2].

Theorem 6.3. Assume that G is a connected, finite discrete graph with standard vertex space G
std

and denote by λ2(G) > 0 the first non-zero eigenvalue of the standard discrete graph Laplacian as
defined in (2.2). Then we have

λ2(G) ≥ h(G)2

2
.

Again, it would be interesting to carry over the above result for more general discrete Laplacians,
namely for △△△

G
and a general vertex space G associated to G.

Let us finally mention an upper bound on the second eigenvalue in terms of the distance of subsets
(see [FT04b] or [CGY96] for the general scheme and a similar result for discrete graphs):

Theorem 6.4. Let X be a connected, compact metric graph and denote by λ2(X) the second (first
non-zero) eigenvalue of the standard metric graph Laplacian on X. Then

λ2(X) ≤ 4

d(A, B)2

(
log

vol1 X

(vol1 A vol1 B)1/2

)2

for any two disjoint measurable subsets A, B of X, where d(A, B) denotes the distance between the
sets A and B in the metric graph X.

One can prove similar results also for higher eigenvalues. Note that Theorems 6.1 and 6.4 also
hold in the manifold case (with the appropriate measures), and that they are consistent with the
eigenvalue approximation result of (5.7).

7. Trace formulas

In this last section we present some results concerning the trace of the heat operator. Trace
formulas for metric graph Laplacians appeared first in an article of Roth [R84] (see also [Ku07]),
where he used standard (Kirchhoff) boundary conditions; more general self-adjoint vertex conditions
(energy-independent, see Remark 3.11 (ii)) are treated in [KoS06, KPS07].

We first need some (technical) notation; inevitable in order to properly write down the trace
formula. For simplicity, we assume that the graph has no self-loops.

Definition 7.1. A combinatorial path in the discrete graph G is a sequence c =
(e0, v0, e1, v1, . . . , en, vn, en+1) where vi ∈ ∂ei ∩ ∂ei+1 for i = 0, . . . , n. We call |c| := n + 1 the
combinatorial length of the path c, and e−(c) := e0 resp. e+(c) := en+1 the initial resp. terminal edge
of c. Similarly, we denote by ∂−c := v0 and ∂+c := vn the initial resp. terminal vertex of c, i.e., the
first resp. last vertex in the sequence c. A closed path is a path where e−(c) = e+(c). A closed path
is properly closed if c is closed and ∂−c 6= ∂+c. Denote by Cn the set of all properly closed paths of
combinatorial length n, and by C the set of all properly closed paths.

If the graph does not have double edges, a properly closed combinatorial path can equivalently be
described by the sequence c = (v0, . . . , vn) of vertices passed by. In particular, |C0| = |V |, |C1| = 0
(no self-loops) and |C2| = 2|E|. Moreover, C3 = ∅ is equivalent that G is bipartite. A graph G is
called bipartite, if V = V+ ·∪ V− with E = E(V+, V−), see Eq. (6.3).
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Definition 7.2. Two properly closed paths c, c′ are called equivalent if they can be obtained from
each other by successive application of the cyclic transformation

(e0, v0, e1, v1, . . . , en, vn, e0) → (e1, v1, . . . , en, vn, e0, v0, e1.)

The corresponding equivalence class is called cycle and is denoted by c̃. The set of all cycles is denoted
by C̃. Given p ∈ N and a cycle c̃, denote by pc̃ the cycle obtained from c̃ by repeating it p-times. A
cycle c̃ is called prime, if c̃ = pc̃′ for any other cycle c̃′ implies p = 1. The set of all prime cycles is
denoted by C̃prim.

Definition 7.3. Let γ : [0, 1] −→ X be a metric path in the metric graph X, i.e., a continuous
function which is of class C1 on each edge and γ′(t) 6= 0 for all t ∈ [0, 1] such that γ(t) ∈ X1 = X \V ,
i.e., inside an edge. In particular, a path in X cannot turn its direction inside an edge. We denote
the set of all paths from x to y by Γ(x, y).

Associated to a metric path γ ∈ Γ(x, y) there is a unique combinatorial path cγ =
(e0, v0, e1, v1, . . . , en−1, vn, en+1) determined by the sequence of edges and vertices passed along γ(t)
for 0 < t < 1, (it is not excluded that γ(0) or γ(1) is a vertex; this vertex is not encoded in the
sequence c). In particular, if x = γ(0), y = γ(1) /∈ V , then x is on the initial edge e−(c) and y on the
terminal edge e+(c).

On the other hand, a combinatorial path c and two points x, y being on the initial resp. terminal
edge, i.e., x ∈ e−(c), y ∈ e+(c), but different from the initial resp. terminal vertex, i.e., x 6= ∂−(c) and
y 6= ∂+(c), uniquely determine a metric path γ = γc ∈ Γ(x, y) (up to a change of velocity). Denote
the set of such combinatorial paths from x to y by C(x, y).

Definition 7.4. The length of the metric path γ ∈ Γ(x, y) is defined as ℓ(γ) :=
∫ 1

0
|γ′(s)| ds. In

particular, if c = cγ = (e0, v0, . . . , en, vn, en+1) is the combinatorial path associated to γ, then

dc(x, y) := ℓ(γ) = |x − ∂−cγ| +
n∑

i=1

ℓei
+ |y − ∂−cγ|,

where |x − y| := |xe − ye| denotes the distance of x, y being inside the same edge e (or its closure),
and xe, ye ∈ Ie are the corresponding coordinates (x = Φexe, cf. Remark 3.2 (i)). Note that there
might be a shorter path between x and y outside the edge e. For a properly closed path c we define
the metric length of c as ℓ(c) = ℓ(γc) and similarly, ℓ(c̃) := ℓ(c) for a cycle. Note that this definition
is well-defined.

Finally, we need to define the scattering amplitudes associated to a combinatorial path c =
(e0, v0, . . . , en, vn, en+1) and a vertex space G . Denote by P = ⊕Pv its orthogonal projection in
G max onto G . Denote by S := 2P − 1 the corresponding scattering matrix defined in Eq. (3.3). In
particular, S is local, i.e., S = ⊕vSv and we define

SG (c) :=
n∏

i=0

Sei,ei+1
(vi),

where Se,e′(v) = 2Pe,e′(v) − δe,e′ for e, e′ ∈ Ev. For a cycle, we set S(c̃) := S(c), and this definition is
obviously well-defined, since multiplication of complex numbers is commutative.

For example, the standard vertex space G std has projection P = (deg v)−1E (all entries are the
same), so that

Sstd
e,e′(v) =

2

deg v
, e 6= e′, Sstd

e,e (v) =
2

deg v
− 1.

If in addition, the graph is regular, i.e, deg v = r for all v ∈ V , then one can simplify the scattering
amplitude of a combinatorial path c to

Sstd(c) =
(2

r

)a(2

r
− 1
)b
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where b is the number of reflections in c (ei = ei+1) and a the number of transmissions ei 6= ei+1) in
c.

We can now formulate the trace formula for a compact metric graph with Laplacian ∆
G

(cf. [R84,
Thm. 1], [KPS07, Thm. 4.1]):

Theorem 7.5. Assume that X is a compact metric graph (without self-loops), G a vertex space and
∆

G
the associated self-adjoint Laplacian (cf. Proposition 3.8). Then we have

tr e−t∆
G =

vol1 X

2(πt)1/2
+

1

2

(
dim G − |E|

)
+

1

2(πt)1/2

∑

ec∈ eCprim

∑

p∈N

SG (c̃)pℓ(c̃) exp
(
−p2ℓ(c̃)2

4t

)

for t > 0, where vol1 X =
∑

e ℓe is the total length of the metric graph X.

Remark 7.6.

(i) The first term in the RHS is the term expected from the Weyl asymptotics. The second term
is precisely 1/2 of the index ind(X, G ) of the metric (or discrete) graph X with vertex space
G , i.e., the Fredholm index of dG . In Theorem 4.3 we showed that the index is the same as
the discrete index ind(G, G ) (the Fredholm index of dG )). In [KPS07], the authors calculated
the second term as (trS)/4, but since S = 2P − 1, we have trS = 2 dim G − dim G max =
2(dim G − |E|). The last term in the trace formula comes from an combinatorial expansion.

(ii) The sum over prime cycles of the metric graph X is an analogue of the sum over primitive
periodic geodesics on a manifold in the celebrated Selberg trace formula, as well as an analogue
of a similar formula for (standard) discrete graphs, see Theorem 7.7.

(iii) Trace formulas can be used to solve the inverse problem: For example, Gutkin, Smilansky
and Kurasov, Nowaczyk [GS01, Ku07, KuN05] showed that if X does not have self-loops and
double edges, and if all its lengths are rationally independent, then the metric structure of the
graph is uniquely determined. Further extensions are given e.g. in [KPS07]. Counterexamples
in [R84, GS01, BSS06] show that the rational independence is really needed, i.e., there are
isospectral, non-homeomorphic graphs.

The proof of Theorem 7.5 uses the expansion of the heat kernel, namely one can show that

pt(x, y) =
1

2(πt)1/2

(
δx,y exp

(
−|x − y|2

4t

)
+

∑

c∈C(x,y)

S(c) exp
(
−dc(x, y)2

4t

))
,

where δx,y = 1 if x, y are inside the closure of the same edge (and not both on opposite sides of ∂e)
and 0 otherwise. The trace of e−t∆

G can now be calculated as the integral over pt(x, x). The first
term in the heat kernel expansion gives the volume term, the second splits into properly closed paths
leading to the third term (the sum over prime cycles), and the index term in the trace formula is the
contribution of non-properly closed paths. More precisely, a non-properly closed path runs through
its initial and terminal edge (which are the same by definition of a closed path) in opposite directions.
For more details, we refer to [R84] or [KPS07].

Let us finish with some trace formulas for discrete graphs. Assume for simplicity, that G is a simple
discrete graph, i.e., G has no self-loops and double edges, and that all lengths are the same (ℓe = 1).
For simplicity, we write v ∼ w if v, w are connected by an edge. Let G be an associated vertex space.
Since ∆

G
= 1− MG and MG (see Eq. (2.7)) are bounded operators on G , we have

tr e−t∆
G = e−t tr etMG = e−t

∞∑

n=0

tn

n!
tr Mn

G
.

Furthermore, using (2.7) n-times, we obtain

Mn
G

=
⊕

v0

∑

v1∼v

· · ·
∑

vn∼vn−1

AG (v0, v1)AG (v1, v2) · . . . · AG (vn−1, vn),
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and
trMn

G
=
∑

v0

∑

v1∼v0

· · ·
∑

vn−1∼vn−2

trAG (v0, v1)AG (v1, v2) · . . . · AG (vn−1, v0).

Note that the sum is precisely over all combinatorial, (properly) closed paths c = (v0, . . . , vn−1) ∈ Cn.
Denoting by

WG (c) := tr AG (v0, v1)AG (v1, v2) · . . . · AG (vn−1, v0).

the weight associated to the path c and the vertex space G , we obtain the following general trace
formula. In particular, we can write the trace as a (discrete) “path integral”:

Theorem 7.7. Assume that G is a discrete, finite graph with weights ℓe = 1 having no self-loops or
double edges. Then

tr e−t△△△
G = e−t

∞∑

n=0

∑

c∈Cn

tn

n!
WG (c) = e−t

∑

c∈C

t|c|

|c|!WG (c). (7.1)

Let us interprete the weight in the standard case G = G std. Here, AG std(v, w) can be interpreted
as operator from C(deg w) to C(deg v) (the degree indicating the corresponding ℓ2-weight) with
AG std(v, w) = 1 if v, w are connected and 0 otherwise. Viewed as multiplication in C (without
weight), AG std(v, w) is unitarily equivalent to the multiplication with (deg v deg w)−1/2 if v ∼ w resp.
0 otherwise. In particular, if c = (v0, . . . , vn−1) is of length n, then the weight is

W std(c) =
1

deg v0

· 1

deg v1

· . . . · 1

deg vn−1

.

If, in addition, G is a regular graph, i.e., deg v = r for all v ∈ V , then W std(c) = r−n. Then the trace
formula (7.1) reads as

tr e−t∆
G std = e−t

∞∑

n=0

tn

rnn!
|Cn| = e−t

(
|V | + |E|

2r2
t2 +

|C3|
6r3

t3 + . . .
)
,

since |C0| = |V |, |C1| = 0 (no self-loops) and |C2| = 2|E|. In particular, one can determine the
coefficients |Cn| form the trace formula expansion.

The weight W std(c) for the standard vertex space is a sort of probability of a particle chosing the
path c (with equal probability to go in any adjacent edge at each vertex). It would be interesting to
give a similar meaning to the “weights” WG (c) for general vertex spaces.
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