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Introduction

What is Stochastic Programming ?

- Mathematics for Decision Making under Uncertainty

- subfield of Mathematical Programming (MSC 90C15)
Stochastic programs are optimization models

- having special properties and structures,

- depending on the underlying probability distribution,

- requiring specific approximation and numerical approaches,
- having close relations to practical applications.

Selected recent monographs:

P. Kall/S.W. Wallace 1994, A. Prekopa 1995,

J.R. Birge/F. Louveaux 1997, J. Mayer/P. Kall 2005

A. Ruszezynski/A. Shapiro (eds.), Stochastic Programming, Hand-
book, Elsevier, 2003

S.W. Wallace/W.T. Ziemba (eds.), Applications of Stochastic Pro-
gramming, MPS-SIAM Series on Optimization, 2005.
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Application: Electricity Portfolio Management
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We consider the yearly electricity portfolio management of a mu-
nicipal German power utility. Its portfolio consists of the following
positions:

e power production (based on utility-owned thermal units),
e (mid-term) contracts (provided by large utilities),

e (physical) spot market trading and

e (financial) trading of futures.

The yearly time horizon is discretized into hourly intervals. The
underlying stochasticity consists in a bivariate stochastic load and
price process that is approximately represented by a finite num-
ber of scenarios. The objective is to maximize the total expected
revenue. The portfolio management model is a large scale (mixed-
integer) multistage stochastic program.

Should the expected revenue be maximized exclusively or should
the risk of its production and trading decisions simultaneously be
bounded or even minimized 7
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Stochastic Programming Model

Let {& )}, be a discrete-time stochastic data process defined on

some probability space (§2, F, IP) and with & taking values in _ Terue |
IR?. The stochastic decision x; at period ¢ varying in IR™ is as-

sumed to depend only on & = (&,...,&) (nonanticipativity). iG]
Let F; C F denote the o-algebra which is generated by &, i.e.,
Fi=oc{(&,...,&)} Wehave F; C Fyqfort=1,...,T—1and
we assume that F; = {0, Q} (i.e., & deterministic) and Fr = F. ] ]

We consider the (linear) stochastic programming model: pagesorso_|
iz :Ut 6 Xt7 Go Back I
min Z (be(&), )| ¢ is Fy — measurable,t = 1,..., T,
=1 Anxt + An (&)1 = (&), t=2,...,T Fat scren |

where the sets X; are nonempty and polyhedral, and Ay (+), be(+)
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and h(-) are affinely linear for each t =2,... T



To have the model well defined, we assume
v € Ly(Q, Fy, IP; IR™) and & € L.(Q, F, IP; RY),

where r > 1 and

—— . if only costs are random
if only right-hand sides are random
r =2 , if only costs and right-hand sides are random

Then nonanticipativity may be expressed as

x €N,
Nopa = {2z € x| L/(Q, F, IP; R™) : z; = [E[x:|F], Vt},

i.e., as a subspace constraint, by using the conditional expectation
IE[-|F;] with respect to the o-algebra F;.

For T' = 2 we have N,,, = IR™ x L.(Q), F, P; IR™2).

— infinite-dimensional optimization problem

oo , if all technology matrices are random and r =T
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Scenario-based models

Let Q be finite, i.e., Q = {w,}5_;, F power set of 2.

ps := IP({ws}) (probability of scenario s), s =1,...,.95,

& = &(ws) (data scenario s at stage t) and

x; (decision scenario s at t, s =1,..., 5, t=1,...,T.

Let & be a (finite) partition of 2 such that the smallest o-algebra

containing & is just F;. Then

BlalF) = Y. g [ al)Plde
C

ce&
S S
= 2. p) (2 padxe
0%

where yo denotes the characteristic function of C' € &;.
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The nonanticipativity condition (NA) is equivalent to

1
] = (BElw| ) =) “— Vo=1,...,5Vt
ieeé’g Z Ds

s=1
wSEC

Special case t = 1: & = {Q} and, hence, (NA) is equivalent to
x‘fzzsszlpsxf, oc=1,...,5 ie toxl =... =27

Then the stochastic program takes the scenario form:

S T
min {Z Zpsbt(ff)xf : o satisfies (NA), 27 € X3, t=1,...,T,

s=1 t=1

A} + An(&)Tiy = hl&),s = 1,...,S,t=2,...,T}

Since F; C Fii1, every element of & can be represented as the
union of certain elements of &,1. Representing the elements of &
by nodes and the above relations by arcs leads to a tree which is
called scenario tree.
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A scenario tree is based on a finite set N' C IN of nodes where

RN

Scenario tree with ¢, = 2, T' =5, |N'| = 23 and 11 leaves Page 9or 40|
n = 1 stands for the period root node, Gosack |

n_ is the unique predecessor of node n,
path(n):={1,...,n_,n}, t(n) := |path(n)], Full sereen_ |
N; :={n :t(n) =t}, nodes n € Np are the leaves,

A scenario corresponds to path(n) for some n € N, TN

Ny (n) is the set of successors to node n. o |
We have {7, }nens = {ps}5_; and m, := D nyeNy(m) T M EN.



{€" }nen, are the realizations of & and {2"},ecn; the realizations
of Tt.

Then the tree formulation of the model reads:

min {Z Tabin) (§7) 2" 1 2" € Xy
neN
Asyo(§")3" + A1 (§7)3" = hyy(€7),n € N}

Note that it holds for the dimensions |N| << T'S.



Dynamic programming

Theorem: (Evstigneev 76, Rockafellar /Wets 76)
Under weak assumptions the multistage stochastic program is
equivalent to the (first-stage) convex minimization problem

mm{/f x1, & x1 € X4},
where f is an integrand on IR™ X = given by

fz1,8):=(b1(&), 1) + Pa(w1, E5),

Oy(z1, ..., 1, &) =Inf {(bs(&), m) + B [Dera (21, . . ., 0, €| ]2

x; € Xy, Aroxe + Arazi—r = hi(&)}

fort =2,...,T, where & q(z1,..., 27,11 =0,

—'The integrand f depends on the probability measure [P in a
nonlinear way !



Stability
Home Page I

Let us introduce some notations. Let F' denote the objective

function defined on L,(Q2, F, IP; IR®) x L.(Q), F,IP; IR™) — IR rive Page |
by F(¢,x) = B[, (b(&), 7)), let

Xi(xi—1; &) = {xr € Xe|Avowe + A1 (&)1 = (&)}
denote the t-th feasibility set for every t = 2,...,7T and

Contents

]

X() = {z € XL, Ly(Q, Fo, P, R™)|2, € X1, 2, € Xy(zp_; &)} I I
the set of feasible elements with input £. Page 12010 |

Then the multistage stochastic program may be rewritten as

min{F (&, z) : ©z € X(£)}.
Furthermore, let v(£) denote its optimal value and let, for any
(87 Z O, Close |
(F(§,°) ={z € X(§) : F(§,z) < v(§) + a}

denote the a-level set of the stochastic program with input &.



The following conditions are imposed:

Home page_|
(A1) There exists a § > 0 such that for any £ e L.(Q), F, IP; IR?)
with ||€ —€||» < 0, any t = 2,...,T and any z; € X3, @, € e
Xz, 1;&), T =2,...,t — 1, the set X,(x;_1;&) is nonempty
(relatively complete recourse locally around &).

]
(A2) The optimal value v(€) is finite and the objective function F
is level-bounded locally uniformly at &, i.e., for some a > 0 there e8| [
exists a 4 > 0 and a bounded subset B of L.(Q, F,IP;IR™)
such that I,(F(£,-)) is nonempty and contained in B for all — [Reieiar]
¢ € L(Q, F, IP; IR%) with ||€ — £]|, < 6.

(A3) & € L.(Q, F, IP; IR?) for some r > 1.

Norms in L, and L, cose |

¢l = (ZE[II@W]) Jall, = (Zmuxtnf’])r [z

==
~I

t=1



Theorem:

Let (A1), (A2) and (A3) be satisfied and X; be bounded.

Then there exist positive constants L, a and 0 such that the
estimate

[0(€) — v(©)] < L(II€ — €|l + Dr(&. €))

holds for all S € L.(Q, F, IP; IR*) with || — €|, < 6.
Here, Dg(&, f) denotes the filtration distance of & and & defined
by

Ds(€,€) = sup inf
z€leg(F(£,))
€0 (ki)

Zmax{”aft 33t|jrt]||7°7 th [jt|f;f”|r’}7

where F; and F; denote the o-fields generated by &' and &,
t=1,...,T.



The filtration distance of two stochastic processes vanishes if their
filtrations coincide, in particular, if the model is two-stage. If _ Homepage_|
solutions exist, the filtration distance is of the simplified form

_ Title Page I
DAEE) = iuf, | > (e Bla il o~ B 7).

zely(F(&5))

4 l 44 |
ing that the spaces L, are finite-dimensional or reflexive Banach o

For example, solutions exist if €2 is finite or if 1 < ' < oo imply-

spaces (hence, the level sets are compact or weakly sequentially
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The following example shows that the filtration distance Dy is in-
dispensable for the stability result to hold.

Example: (Optimal purchase under uncertainty)

The decisions x; correspond to the amounts to be purchased at
each time period with uncertain prices are &, t = 1,...,7T, and
such that a prescribed amount a is achieved at the end of a given
time horizon. The problem is of the form

i

T (z¢,86) € Xy = Bi,
min { IE [Z ftﬂct] (24, 5¢) 18 (&1, - - ., & )-measurable, g
t=1

St—St_lzxt,t:2,...,T,

s1=0,s7 =a.
\ J

where the state variable s; corresponds to the amount at time t.
Let T' := 3 and & denote the stochastic price process having the
two scenarios £ = (3,2 +¢,3) (¢ € (0,1)) and €2 = (3,2,1) each
endowed with probability % Let ¢ denote the approximation of
&, given by the two scenarios £! = (3,2,3) and &2 = (3,2,1) with

1

the same probabilities 3
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Scenario trees for & (left) and &

We obtain
1 3+¢
v(&) = 5((2 +e)a+a)= 7 a
v(€) = 2a, but

o 1 1
1€ =€l < —(0+s+0)+§(0+0+0):§_

2

2

Hence, the multistage stochastic purchasing model is not stable

with respect to || - |1

However, the estimate for |v(¢)
valid with L = 1 since Dy(&, §)

— v(€)| in the stability theorem is
__a
=4,



Scenario tree approximations for &

Reference: Dupacové/Consigli/Wallace 2000

All known approaches consist of two steps:

(a) Simulation of (sufficiently many) scenarios of the stochastic
data process &;

(b) construction of scenario trees from simulation scenarios or
probability distribution information.

(a) Methods:

- Identifying and fitting statistical models to historical data (e.g.
(multivariate) time series models).

- sampling or resampling historical data as scenarios.

(b) Methods:

(b1) Construction based on distribution information:

- barycentric tree constructions;

- EVPI-based sampling methods;

- Regression fit to given (higher order) moments.
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(b2) Construction from simulation scenarios:
Given: N individual scenarios & with probabilities p; and fixed
starting point &7, i.e., forming a fan.

Figure 1: Example of a fan of individual scenarios with 7'=4 and N =7

Cluster-analysis-based methods:

- Studying the similarity of scenarios for t =T, ..., 2;

- “Bundling” scenarios in a cluster and definition of succesors and
predecessor, respectively, e.g., using the L,-norm.



Numerical methods for tree construction

Forward and backward algorithms have been developed for con-

structing a scenario tree &, to approximate a fan & of scenarios,
i.e., such that || — & ||, < e and Dg(€, &) < Const - &.

Algorithm (forward tree construction)

Step 1: Select ; such that Zthz g < e.

Step 2: Choose the stochastic process 52 with index set Iy of
scenarios and scenario bundles I ;, ¢ € Iy, such that the condition

>3 pille =€l < minfes, e}
1€y jE[Q,Z'
is satified. Hence, I and Iy ; are relatively large.

Step t: Determine disjoint index sets I and JF, where JF =
Uiejtk Jt]‘fi, such that I U JF = I;_1, and a stochastic process &

having N scenarios f“ with probabilities p; and such that
167 = €7 lns < e
Set Iy = UpIf and I;; = {i} U Jt’fi, i € IF, for some k.
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Example:
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Recursive construction of a bivariate load-price scenario tree start-
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ing with N = 58 scenarios (illustration, time period: 1 year)
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Decomposition of convex stochastic programs

Reference: Ruszczynski 03
First idea: Use of standard software for solving the stochastic pro-
gram in scenario tree form !

But: Models are huge even for small trees and, in addition, special
structures are not exploited !

= Decomposition is a successful alternative in many (practical)
situations.

Direct or primal decomposition approaches:

- starting point: Benders decomposition based on both feasibility
and objective cuts;

- variants: regularization to avoid an explosion of the number of
cuts and to delete inactive cuts; nesting when applied to solve the
dynamic programming equations on subtrees recursively; stochas-
tic cuts.
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Dual decomposition approaches:

(i) Scenario decomposition by Lagrangian dualization of nonan-
ticipativity constraints (solving the dual by bundle subgradient
methods, augmented Lagrangian decomposition, variable or oper-
ator splitting methods);

(ii) nodal decomposition by Lagrangian dualization of dynamic
constraints (same variants as in (i));

(iii) geographical decomposition by Lagrangian relaxation of cou-
pling constraints (same variants as in (i)).

Presently, nested Benders decomposition, stochastic decomposi-
tion and scenario decomposition (based on augmented Lagrangians
and on operator splitting) are mostly used for convex models !
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Expected costs versus risk

Often minimizing expected costs is not the only objective; deci-
sions should also enjoy minimal or bounded risk.
—mean-risk objective
Classical risk measure from financial mathematics:
Value-at-Risk (p € (0,1)):
VaR,(z) = —min{r € R: IP(z <r) > p}

VaR,(z) does not enjoy pleasant properties !

[s there a general concept of risk measures ?



Axiomatic characterization of risk

Let Z denote a linear space of real random variables on some
probability space (€2, F, IP). We assume that Z contains the
constants. A functional p : Z — IR is called a risk measure if it
satisfies the following two conditions for all z, z € Z:

(i) If 2 < Z, then p(z) > p(Z) (monotonicity).

(ii) For each r € IR we have p(z + 1) = p(z) —r
(translation invariance).

A risk measure p is called convex if it satisfies the condition
p(Az + (1 = X)) < Ap(z) + (1 = A)p(Z)

forall z, z € Z and X\ € [0, 1].
A convex risk measure is called coherent if it is positively homo-

geneous, i.e., p(Az) = Ap(z) for all A > 0 and z € Z.

References: Artzner/Delbaen/Eber/Heath 99, Follmer/Schied 02

Home Page I
Title Page I
Contents I

4 I 44 |
< I > |
Go Back I
Close I
Quit I



Examples:
(a) No convex risk measure: Value-at-Risk, standard deviation.
(b)Semideviation of order p (o € (0,1],r7 > 1):

S |=

p(z) = —Elz] + o (E|(max{0, E[z] — z})'])

(c) Conditional Value-at-Risk (p € (0, 1)):

1
CVaR,(z) := min{r + ﬂE[max{O, —z—r}:r e R}

1

= VaR,(z) + 1—]E[max{0, —z—VaR,(2)}]
—p

Advantage of C'VaR,: linearity properties are preserved.

(Rockafellar/Uryasev 02)

CVaR,(z) := mean of the tail distribution function F,

1 t>—-VaR,(z),
where Fy(t) == 9 Fr@) t< —VaR(2) and
P P
<

F(t) .= IP({z < t}) is the distribution function of z.



¢} >
-CVaR -VaR

VaR,(z) and CVaR,(z) for a continuously distributed z



Polyhedral risk measures: One-period case

Definition:

A risk measure p on Z will be called polyhedral if there exist
k,le IN,a,ce IR g we IR, apolyhedral set X C IR* and a
polyhedral cone Y C IR’ such that

p(z) = inf {{c,z) + E|(q,y)] : {(a,z) +{w,y) =z, € X,y €Y}

for each z € Z. Here, IE denotes the expectation on (€2, F, IP)
and (-, -) the scalar product on IR*.

The notion polyhedral risk measure is motivated by the polyhe-
drality of p(z) as a function of the scenarios of z if z is discrete.

Origin: Properties of the Conditional value-at-risk CVaR.

How to generalize this concept to the multiperiod case 7

Home Page I
Title Page I
Contents I

4 I 44 |
< I > |
Go Back I
Close I
Quit I



Multiperiod polyhedral risk measures

When (real) random variables zy, ..., zr with 2, € L,(Q, F, IP),
1 < p < 400, are considered that evolve over time and unveil
the available information with the passing of time, it may become
necessary to use multiperiod risk measures. We assume that a
filtration of o-fields F;, t = 1, ..., T, is given, i.e. F; C F4q C F,
and that F; = {0, Q}, i.e. that z; is always deterministic.

Definition: (Artzner et al. 01, 02)

A functional p on X{_; L,(§2, F, IP) is called multiperiod risk mea-
sure if

(1) If s < Z as., t =1,...,T, then p(z1, ..., 21) > p(Z1, ..., 21)
(monotonicity),

(ii) For each r € IR we have p(z1 +7,...,2p + 1) = p(z) — r
(translation invariance),

are satisfied. It is called a multiperiod coherent risk measure, if
p is convex and positively homogeneous on x!_ L,(Q, F;, IP) in
addition.
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[t is a natural idea to introduce risk measures as optimal values
of certain multistage stochastic programs. Home Page |

Definition: A multiperiod risk measure p on x/_;L,(Q, F;, IP) L
is called multiperiod polyhedral if there are k; € IN, ¢; € IR™, . |
t=1,....T, wy € R t=1,.... T, 7 =0,....t — 1, and

polyhedral cones Y; C IR, ¢t =1,...,T, such that «| »|

o k
' yteL(Q}—hP?Rt)athYi | |
z)=1inf < IF Ct, . y ;
p() { [tzl<tyt>] ZT O<wt7'7yt T>—Zt,t:1,...,T
Remark: A convex combination of (negative) expectation and e
of a multiperiod polyhedral risk measure is again a multiperiod e

polyhedral risk measure.

Our original multistage stochastic program then reads Fall screen |
min{(1 — y)E[F( 2)] —yp(F(§ x)) -z € X()} o |

(mean-risk objective)
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Theorem:
Let p be a functional on X7, L, (€2, F;, IP) having the form in the — Cfencfse |

previous definition. Assume

(i) complete recourse: (wyp,Y;) =R (t=1,...,T), e
T

(ii) dual feasibility: {u eR' ¢+ > uyw,, 4 € —Yt*} £ (), Contets_|
V=t

where the sets Y;* are the (polyhedral) polar cones of Y;. 1l ]

Then p is Lipschitz continuous on X;_; L,(2, F;, IP) and the fol- < |
lowing dual representation holds whenever p € (1, 4+00) and ]lg =+

l, = 12 Page 31 of 40 |

p
M€ LyQF,P), t=1,...,T o

T
pz2) =sup$ =B | Y Nz ; : |
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Corollary:

Let p be a functional on x7_;L,(Q, F, IP), p € (1,00), having
the form of a polyhedral risk measure. Let the above conditions
(i) and (ii) be satisfied and assume that the set

T
ci+ Y IEN|F]w,— € Y

v=t

A, = {)\ € x{_1Ly(Q,F, IP)

Is contained in

Dr = {)\ c X?:1L1<97E7P>
=1

AtEO,ZE[At]zl}.

Then p is a multiperiod polyhedral and coherent risk measure.

}



Example: (Naive multiperiod extensions of CVaR)
A first idea is to incorporate the Conditional-Value-at-Risk at all
time periods and to consider the weighted sum

1 _
Z 1 CVaR,, (%) Z Ve 7012]% {7“ + ;t]E [(r+2)"] }

=

with some weights v > 0, ZtT:lfyt = 1, and some confidence
levels aw, ag, ..., ar € (0,1). Here, a= = max {0, —a}.

Then p is a multiperiod polyhedral and coherent risk measure and
the corresponding dual feasible set is of the form

A =0
A=Srex L(QFP)0<N<2(Et=2,..,T)
E M =%

By interchanging sum and minimization one arrives at the variant

pelz) = inf, { +D BB [(z+7)] }
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of the above risk measure. Its dual representation is

[romere |
i M =0, BN =1,
No =< e x;_1L(QF, IP) :
v OSAtSﬁt (t:277T> _
However, both multiperiod coherent risk measures do not depend e
on the filtration, i.e. on the information flow.
>
Example:
Multiperiod risk measure p4 depending on the filtration [
( )\1 =0 )

0< X< 77pa 1)% (t =
A = P‘Hl’ﬂ] (t

Ay =X e xi Ly(Q,F, IP) B
EX] = ... = E[A] =

2,.
2,.




Electricity portfolio management (continued)

Test runs were performed on real-life data of the utility DREWAG
Stadtwerke Dresden GmbH leading to a MIP containing about 2.4
million variables in case of 21 load-price scenarios. The objective
function consists in a convex combination of expectation and (mul-
tiperiod) risk functional with a coefficient v € [0, 1], where v =0

corresponds to no risk.
Mio

Total revenue and v = 0



Mio

Total revenue with C'VaRy 5 and v = 0.25



Mio

Total revenue with p; and v = 0.25



Mio

AN A
2 o—al S Sor

Total revenue with py and v = 0.25



Mio

Total revenue with ps and v = 0.25
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