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1. Introduction. Stochastic optimization problems take into account random influence. In this paper, it is
assumed that this can be described by means of a probability distribution P on �k with some k ∈�. We consider
two-stage linear mixed-integer stochastic programs where the sum of the first-stage cost and the expectation
with respect to P of the second-stage cost has to be minimized. However, in most applications P is not known
exactly. Moreover, even if P is given, it might happen that the stochastic program can not be solved due to
technical limitations and one has to use a simpler approximating distribution that makes the problem solvable.
Hence, one often has to deal with statistical models and approximations Q of P . Of course, since solutions
and optimal values of the original problem containing the distribution P are of interest, it is necessary to have
statements at hand about stability of stochastic programs with respect to perturbations of P .
There are a number of such stability results in literature (see Römisch [35] for a recent survey). Most of

these results consist of (Lipschitz) continuity properties of solution and optimal values with respect to certain
probability metrics d�P�Q� (Römisch [35], Rachev and Römisch [33], and Rachev [32]). Especially in the
case that P is unknown, this may in the end not be completely satisfactory because in this case the distance
d�P�Q� is, of course, also unknown. Hence, the question arises whether it is possible to prove statistical
statements about the accuracy of solution and optimal values. In particular, confidence sets may be of interest.
Of course, such statistical statements require the availability of some statistical estimates associated with P , e.g.,
independent identically distributed (iid) samples of P . The latter are often called empirical estimates and they
can be understood as the so-called empirical measure Q= Pn with n ∈� denoting the samplesize.
Asymptotic properties of statistical estimators in stochastic programming have been studied intensively. We

refer to Ruszczyński and Shapiro [38, Chapters 6, 7, and 8] for various aspects and views. For two-stage
stochastic programs without integrality requirements, much is known. For the empirical estimator, the papers of
Dupačová and Wets [6], King and Wets [18], and Artstein and Wets [4] contain results on (epi-) consistency,
laws of large numbers, and asymptotic normality. In Shapiro [41], Rubinstein and Shapiro [37, Chapter 6], King
and Rockafellar [17], Pflug [26], and Shapiro [43], limit theorems for optimal values and solutions are derived
by imposing uniqueness of solutions and certain differentiability properties of objectives and/or integrands.
Convergence rates and large deviation-type results are derived, e.g., in Ermoliev and Norkin [8], Norkin [25],
Kaniovski et al. [16], Pflug [27], and Shapiro and Homem-de-Mello [44]. The situation is essentially different
for mixed-integer two-stage stochastic programs. In Schultz [39], conditions are given implying consistency,
convergence rates, and a law of the iterated logarithm for optimal values. Glivenko-Cantelli results for the
objective are established in Pflug et al. [28], and large deviation-type results are derived in Kleywegt et al. [20]
and Ahmed and Shapiro [1] for pure integer models and in Rachev and Römisch [33] and Römisch [35] for
the mixed-integer case. Much of this work is based on recent developments of empirical process theory, e.g., on
Talagrand’s work (Talagrand [45, 46]) (see also Giné [12] and the monographs (van der Vaart and Wellner [48]
and van der Vaart [47])).
In this paper, we extend the earlier work by deriving a uniform limit theorem for the objective of mixed-

integer two-stage stochastic programs. Its proof is again based on recent results of empirical process theory.
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While Banach spaces of continuous functions play an important role for such limit theorems in case of two-stage
stochastic programs without integrality constraints (cf. Shapiro [43]), the Banach space of bounded functions
has to be used in the mixed-integer situation. More precisely, it is shown that the family of integrands forms a
so-called Donsker class in the Banach space of bounded functions. As a consequence, a limit theorem for optimal
values is derived by relying on the infinite-dimensional delta method (see Römisch [36] for an introductory
overview) and on a recent Hadamard directional differentiability result for infimal value mappings on the space
of bounded functions (Lachout [21]). Furthermore, since the Hadamard directional derivative is not linear in
general, special bootstrap techniques are developed that allow to compute approximate confidence intervals for
optimal values.
So far there is some special work about confidence sets for solutions and optimal values of stochastic programs.

In Futschik and Pflug [9], a stochastic program with finite decision space is considered. Confidence sets for
the solution set are derived by estimating the objective for each possible decision and selecting the presumably
best decisions according to some statistical selection procedure. In Morita et al. [24], a certain simple two-
stage stochastic program is analyzed for the case that P = P	 is contained in the parametric family of normal
distributions and that a confidence set of the unknown parameter vector 	 is given. It is suggested to calculate
the worst-case solution with 	 varying in the given confidence region. In Apolloni and Pezzella [2], a stochastic
integer program without first-stage decision is considered. For such problems, optimization can be carried out
scenariowise. To approximate the distribution of the optimal value, a method based on order statistics is suggested
where only a finite number of deterministic programs has to be solved.
In this paper, we analyze statistical behavior of the objective of general linear two-stage stochastic programs

(possibly with integer requirements). We assume that the underlying probability distribution P is unknown and
that we are able to sample from it independently. In §2 we present the framework of our analysis and in §3
our main result, a limit theorem for the objective of the stochastic program, is proven by means of empirical
process theory. Thereby, we are geared to the monographs (van der Vaart [47] and van der Vaart and Wellner
[48]); see Giné [12] for an alternative presentation. In §4, this limit theorem is carried forward to the optimal
value of the stochastic program by means of the functional delta method. These results are used in §5 to derive
a general method for calculating confidence intervals for the optimal value by means of resampling techniques
(bootstrap-like methods). Finally, some numerical examples are presented in §6.

2. Framework. Let �
����� be a arbitrary probability space and let �� �
���→ ��k��k� a measurable
random vector with support  ⊂ �k which is assumed to be polyhedral and bounded, and let P = � � be the
probability distribution of �. We consider the stochastic mixed-integer program

min
{
c′x+

∫

��h���− T ���x�dP���� x ∈X

}
(1)

with X ⊂�m compact, c ∈�m, T � →�r×m, and h� →�r affinely linear. The function �� �r→� contains
the second-stage problem given by

��t� �=min�q′y+ q̄′ȳ� Wy+ �Wȳ = t� y ∈�m+� ȳ ∈��m+� (2)

with q ∈�m, q̄ ∈��m, W ∈�r×m, and �W ∈�r×�m. It is assumed that Equation (1) satisfies
(i) relatively complete recourse:

∀ �x� �� ∈X× ∃y ∈�m+� ȳ ∈��m+� h���− T ���x=Wy+ �Wȳ�

(ii) dual feasibility:
∃u ∈�r � W ′u≤ q� �W ′u≤ q̄�

Under these assumptions, it turns out that � is lower semicontinuous and piecewise polyhedral on dom� (e.g.,
Louveaux and Schultz [22, Proposition 2] and Römisch [35, Lemma 33]).
We define the infimal value mapping

v� ���→ �

Q �→ v�Q� �=min
{
c′x+

∫

��h���− T ���x�dQ���� x ∈X

}
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that maps a probability distribution on  to the optimal value of the stochastic program (Equation 1). We
are interested in the asymptotic behavior of v�P�− v�Pn�, where Pn is the empirical distribution according to
independent samples �1� �2� � � � of the original distribution P , i.e.,

Pn =
1
n

n∑
j=1

!�j
�

Remark 2.1. The lower semicontinuity and the piecewise polyhedral structure of � is also valid if X is
not bounded but closed. However, the results that are derived below need compactness of X, so we impose
it throughout this paper. If X is not bounded, the standard technique in perturbation analysis of optimization
problems consists in localizing the problem, i.e., to replace the unbounded X by X	 = X ∩ cl	 with some
open and bounded set 	⊂�m that contains the solution set of Equation (1) which is assumed to be nonempty
(cf. Robinson [34], Klatte [19], and Römisch [35]). Then, however, the localized infimal value at a perturbed
probability distribution Q (e.g., Pn) does not coincide with v�Q� in general, but represents the (local) infimal
value attained at some locally optimal solution.

3. Limit theorem for the objectives. In this section, we are going to prove a central limit theorem for
the objective function by means of empirical process theory and asymptotic statistics. In order to make the
notation of the previous section fit to the notation that is used in asymptotic statistics, we have to reformulate the
stochastic program (1). For x ∈X we define the function fx� →� as the integrand (objective) of Equation (1):

fx��� �= c′x+��h���− T ���x��

Further, we define the class 
 as the set of all possible integrands of the stochastic program:


 �= �fx� x ∈X��

Thus, we can understand the distributions P�Q ∈���, and Pn ∈���
 (with 
 denoting the randomness of
the sampling procedure) as mappings from 
 to �:

Qf �=
∫

f ���dQ���� Pnf �= 1

n

n∑
j=1

f ��j�

for f ∈
 . With these notations Equation (1) reads
v�Q�=min�Qfx� x ∈X� (3)

or

v�Q�=min�Qf � f ∈
 �� (4)

Due to our assumptions about X and , it turns out that the class 
 is uniformly bounded.

Lemma 3.1. There exists a constant K such that ∀ f ∈
 ∀� ∈� �f ���� ≤K.

Proof. Setting � �= �Wy+ �Wȳ� y ∈�m+� ȳ ∈��m+� we get by Blair and Jeroslow [5, Theorem 2.1] that there
exist real numbers a�b ∈� such that for all t� t̃ ∈� the following estimate holds

���t�−��t̃�� ≤ a�t− t̃� + b� (5)

Since X and  are bounded and h��� and T ��� are affinely linear, also the set � ′ �= �h���− T ���x� � ∈� x ∈X�
is bounded. Furthermore, it holds that � ′ ⊂ � because relatively complete recourse was assumed. Thus, Equa-
tion (5) implies that � is bounded on � ′. Thus,

�fx���� ≤ �c��x�+���h���− T ���x��
≤ �c�max

x̄∈X
�x̄�+ sup

t∈� ′
���t�� =� K

for every f ∈
 , � ∈. �
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For an arbitrary set Y , we introduce the linear normed space '��Y � of all real-valued bounded functions on Y
and the supremum norm, respectively:

'��Y � �=
{
( ∈�Y � sup

y∈Y
�(�y��<�

}
� �(�Y �= sup

y∈Y
�(�y���

Hence, since for Q ∈ ��� the set �Qf � f ∈ 
 � is bounded in �, we can write Q ∈ '��
 �. Analogously,
we have Pn ∈ '��
 �
 with 
 denoting the randomness of the sampling procedure. Our main result now is
a statement about weak convergence of

√
n�Pn − P� in this space '��
 �. Since, however, the mapping Pn�·�

from 
 to '��
 � is not measurable in general, we have to rely on the generalized weak convergence concept
abbreviated by � for sequences of arbitrary maps (e.g., van der Vaart and Wellner [48, Chapter 1], van der
Vaart [47, Chapter 18]).

Theorem 3.1. The class 
 is P -Donsker, i.e., in '��
 � we have the weak convergence
√

n�Pn−P��GP�

where GP ∈ '��
 �
 is a P -Brownian bridge, i.e., GP is measurable, tight, and Gaussian:

GP ∼� �0� �Pfg−PfPg�f �g∈
 ��

Proof. We will utilize properties of mixed-integer two-stage stochastic programs that can be found in
Römisch [35] as well as empirical process theory from van der Vaart and Wellner [48]. The proof consists of
five parts.
(a) First, we show that the function � from Equation (2) and, as a consequence, the functions f ∈ 
 have a

piecewise Lipschitzian structure:
Setting � �= �Wy+ �Wȳ� y ∈ �m+� ȳ ∈��m+�⊂�r we conclude from Römisch [35, Lemma 33] that there exist

L > 0, . ∈ �, and Bj ⊂ �ph.
�� � �j ∈ �� such that � =⋃j∈� Bj and Bi ∩ Bj =� for i �= j and ��Bj

Lipschitz
continuous with uniform Lipschitz constant L. Thereby, we use the notation

�ph.
�� � �=

{
� ∩

.⋂
j=1

Hj �Hj = ��� c′j� ≤ dj� or Hj = ��� c′j� < dj� with cj ∈�r � dj ∈�
}

for intersections of � and at most . open or closed half spaces, i.e., polyhedra with at most . faces where each
face may be included or excluded. Moreover, since � ′ �= �h���−T ���x� � ∈� x ∈X� is bounded and � ′ ⊂�
due to relatively complete recourse, we know from, e.g., Römisch [35, Lemma 33], that finitely many Bj are
sufficient to cover � ′, i.e., it exists 3 ∈ � and B1� � � � �B3 ∈ �ph.

�� ′� such that � ′ =⋃3
j=1Bj and Bi ∩Bj =�

for i �= j and ��Bj
Lipschitz continuous with Lipschitz constant L. Let �j be a Lipschitz extension of ��Bj

from
Bj to � preserving the Lipschitz constant L �i= 1� � � � � 3�. Then, � can be written as

��t�=
3∑

j=1
�j�t�4Bj

�t�

with 4Bj
�t� denoting the indicator function taking value 1 if t ∈ Bj and 0 otherwise. Thus, every fx ∈ 
 can be

written as

fx���= c′x+
3∑

j=1
�j�h���− T ���x�4Bj

�h���− T ���x��

Now, we set x�j �= �� ∈� h���−T ���x ∈ Bj� �x ∈X� j = 1� � � � � 3�. Note that there is a number 5 ∈� such
that x�j ∈ �ph5

�� for all x ∈ X, j = 1� � � � � 3. Furthermore, we set fx� j ��� �= c′x + �j�h���− T ���x� for
x ∈X, j = 1� � � � � 3. Finally, for j = 1� � � � � 3 we define


j �= �fx� j � x ∈X�= �c′x+�j�h���− T ���x�� x ∈X�

j �= �4x� j
� x ∈X�= �4��∈�h���−T ���x∈Bj �

� x ∈X��

(b) Next, it will be shown that each of these 23 classes is uniformly bounded and the criterion that will be
used below to prove the Donsker property for these classes will be formatted:
Clearly, the classes j �j = 1� � � � � 3� are uniformly bounded by one since they contain indicator functions only.
Since � ′ is bounded and �j is Lipschitz continuous with modulus L, we have that �j is bounded on � ′.

Hence, 
j �j = 1� � � � � 3� are uniformly bounded by some constants Kj ≥ 0.
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For the Donsker property (van der Vaart and Wellner [48, Theorem 2.5.2]) will be used, i.e., the following
three conditions have to be verified for � =
j and � =j �j = 1� � � � � 3�, respectively:

(i) Existence of an envelope function:

∃F� ∈�� P ∗�F 2
�� <�� F����≥ �h���� ∀h ∈�� � ∈�

(ii) � is “suitable measurable”:1 There exists a countable collection � ′ ⊂� such that every h ∈� is the
pointwise limit of a sequence hn in � ′.

(iii) Uniform entropy condition: The uniform entropy given by∫ �
0
sup
{√

logN�8�F��Q�2���L2�Q��� Q ∈�d��� 0< QF 2
� <�

}
d8

is finite where �d�� denotes the set of all finitely discrete probability measures on  and N�!���Lp�Q�� is
the covering number 2 of � in the space Lp�Q�.
If � is uniformly bounded by a constant K ≥ 0, then obviously N�!���L2�Q�� = 1 for ! > K, i.e.,
logN�!���L2�Q��= 0. Hence, if one chooses F� ≡K as envelope function, it suffices to verify∫ 1

0
sup
{√
logN�8K���L2�Q��� Q ∈�d��

}
d8 <�

(note that in this case �F��Q�2 = K and QF 2
� = K2 for all Q ∈ �d��). Hence, for � = 
j and � = j �j =

1� � � � � 3� it is sufficient to verify finiteness of the latter integral.
(c) We start with verifying these three conditions for the classes � =
j for arbitrary j ∈ �1� � � � � 3�:
Envelope function. As stated above, 
j is uniformly bounded by a constant Kj ≥ 0, i.e., F
j

≡ Kj is an
envelope function for 
j with P ∗�F
j

�=Kj <�
Measurability. Of course, since X ⊂ �m, there exists a countable dense subset X ′ ⊂ X. Thus, for arbitrary

x0 ∈X, there is a sequence xn in X ′ such that xn→ x0. Hence, since �j is continuous,

c′xn+�j�h���− T ���xn�→ c′x0+�j�h���− T ���x0�

for every � ∈, i.e., fxn�j
→ fx0�j

pointwise. Thus, � ′ �= �fx� j � x ∈X ′� is a suitable countable subset of � .
Uniform entropy condition. In van der Vaart and Wellner [48, Chapter 2.1.1], it is demonstrated that

N�8Kj�
j �L2�Q��≤N9:�28Kj�
j �L2�Q���

where N9:�!���Lp�Q�� denotes the bracketing number3 of the class of functions � in the space Lp�Q�. Further
more, for x� x̄ ∈X, it holds that

�fx� j ���− fx̄� j ���� = �c′�x− x̄�+�j�h���− T ���x�−�j�h���− T ���x̄��
≤ ��c�+L�T ������x− x̄��

i.e., the functions fx� j are Lipschitz in the parameter x. Thus, we get by means of van der Vaart and Wellner
[48, Theorem 2.7.11] that

N9:�28Kj�
j �L2�Q��≤N�8�X� �����
where the right-hand side is the covering number of the set X in �m which does not depend on the measure Q.
Because X is compact, there exists a constant c ≥ 0 such that N�8�X� ����≤ c8−m. Hence,∫ 1

0
sup
{√

logN�8Kj�
j �L2�Q��� Q ∈�d��
}
d8≤

∫ 1

0

√
log c8−m d8 <�;

thus, the third condition holds and 
j is shown to be P -Donsker.
(d) Now we will prove the Donsker property for j . Therefore, we verify the three conditions for the set

�5 = �4B� B ∈ �ph5
��� and note that j ⊂�5 for j = 1� � � � � 3.

1 The measurability condition here is stronger than necessary but easy to verify. In the original version, it is required that the classes

� 2
� �= ��h− g�2� h� g ∈��� �! �= �h− g� h� g ∈�� �h− g�P�2 ≤ !� �! > 0�

are P -measurable, i.e., for every n ∈ � and every e ∈ �−1�1�n the mapping ��1� � � � � �n� �→ suph∈�!
�∑n

i=1 eih��i�� is measurable. See van
der Vaart and Wellner [48, Definition 2.3.3 and Example 2.3.4] and van der Vaart [47, remark to Theorem 19.14].
2 The covering number of � in the space Lp�Q� is defined as the minimum number of open balls in Lp�Q� with radius ! that are needed
to cover � (van der Vaart and Wellner [48, Definition 2.1.5 ]).
3 A !-bracket is a pair of functions l� u ∈ Lp�Q� such that l���≤ u��� ∀� ∈ and �u− l�Q�p < !. The bracketing number N9:�!���Lp�Q��

of a class � in the space Lp�Q� is defined as the minimum number of !-brackets 9l� u: in Lp�Q� that is needed such that every h ∈� lies
between one of these brackets, i.e., l≤ h≤ u (van der Vaart and Wellner [48, Definition 2.1.6]).
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Envelope function. F ≡ 1 does the job.
Measurability. We set � ′5 = �4B� B ∈ �ph5����� with

�ph5���� �=
{
∩

5⋂
j=1

Hj �Hj = ��� c′j� ≤ dj� or Hj = ��� c′j� < dj� with cj ∈�k� dj ∈�
}

the set of intersection of  and polyhedra being described by rational coefficients and having at most 5 faces
where each face may be included or excluded. It is easy to see that for each B ∈ �ph5

�� there is a sequence

Bn in �ph5���� such that 4Bn
→ 4B pointwise for n→� (note that  is a bounded polyhedron).

Uniform entropy condition. We show that �5 is a so-called VC class:
4 For the set of (subgraphs of) indicator

functions of open or closed half spaces �5= 1�, it holds obviously that

V ��1�= V ��sub4B� B ∈ �ph1
����≤ k+ 2<�

because given k+ 2 different points in �k it is never possible to separate linearly each subset of these points
from the rest. Thus, �1 is VC. And because

sub�5 =
{
sub4B� B ∈ �ph5

��
}

= {���� t� ∈×�� t < 4B����� B ∈ �ph5
��
}

=
{ 5⋂

i=1
sub4Bi

� Bi ∈ �ph1
��

}
= sub�1 � � � � � sub�1�

it holds that �5 is also VC due to van der Vaart and Wellner [48, Lemma 2.6.17 (ii)].
Theorem 2.6.7 in van der Vaart and Wellner [48] claims that in this case the following estimate is valid for all
Q ∈�d�� with �F �Q�2 > 0 and for 8 ∈ �0�1�:

N�8�F �Q�2��5�L2�Q��≤ c18
−c2

with some constants c1� c2 ≥ 0 depending on V ��5� only. Note that the right-hand side does not depend on Q.
Thus,

sup
{√

logN�8�F �Q�2��5�L2�Q��� Q ∈�d��� 0< QF 2 <�
}

≤√log c18
−c2 =√log c1+ c2 log8−1 ≤√log c1+

√
c2 log8−1 ≤√log c1+

√
c28

−1�

Since the last term is integrable for 8 ∈ �0�1�, the uniform entropy condition is verified and �5 is shown to be
P -Donsker. Because j ⊂ �5 for j = 1� � � � � 3, each j is P -Donsker since subsets of P -Donsker classes are
again P -Donsker (van der Vaart and Wellner [48, Theorem 2.10.1]).
(e) The Donsker property for 
j and j implies that 
 is P -Donsker:

From van der Vaart and Wellner [48, Theorems 2.10.6 and Examples 2.10.7 and 2.10.8], it follows that the class

3∑
j=1


jj =
{ 3∑

j=1
fjgj � fj ∈
j � gj ∈j �j = 1� � � � � 3�

}

is P -Donsker since both 
j and j are uniformly bounded. Furthermore, because 
 ⊂∑3
j=1
jj , the proof is

complete since every subset of a P -Donsker class is P -Donsker as well (van der Vaart and Wellner [48, Theorem
2.10.1]). �

4 A set of functions 
 is called a VC class (Vapnik-Cervonenkis class) if the corresponding set of subgraphs sub
 �= �sub f � f ∈ 
 � is a
VC class of subsets of ×� with sub f = ��x� t� ∈×�� t < f �x��. A set � of subsets of some set M is called VC class if its VC-index
V ��� is finite, i.e., V ��� <� with

V ���= inf�n ∈� � ∀D⊂M with #D= n ∃AD ⊂D ∀C ∈�� AD �=D∩C��

See van der Vaart and Wellner [48, Chapter 2.6] for further details.
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4. Delta method and limit theorem for the optimal values. In order to get a convergence statement for
the optimal value of Equation (1) in �, i.e., weak convergence of

√
n�v�Pn�−v�P��, we want to apply the delta

method described in, e.g., Römisch [36, Theorem 1 and Proposition 1]. For clarity, we cite these results here
adapted to our framework.
Definition 4.1. Let D and F be linear metric spaces. Then, C� D→ F is called Hadamard directionally

differentiable at D0 ∈D if there exists a mapping C′D0 � D→ F with

lim
n→�

C�D0+ tnhn�−C�D0�

tn
=C′D0�h�

for all h ∈D and all sequences �hn� ∈D� and �tn� ∈�� such that tn ↓ 0 and hn→ h.
The Hadamard directional derivative C′D0 is continuous and positively homogenous. However, note that linear-

ity of C′D0 is not required here. By admitting a directional version of the concept of Hadamard differentiability,
we follow Shapiro [42] and Rubinstein and Shapiro [37, Chapter 6] and deviate from mainstream literature
(see, e.g., Gill [10], Gill and van der Vaart [11], van der Vaart [47], and van der Vaart and Wellner [48]). We
do so because for C we have the infimal value mapping in mind. It will be shown below that it is Hadamard
directionally differentiable in our sense with nonlinear derivative. Moreover, linearity is not required for the
delta method, either.

Theorem 4.1. Let D and F be linear metric spaces, C� D→ F Hadamard directionally differentiable at
D0 ∈D. Let further Z�Dn ∈D
 and

√
n�Dn−D0��Z. Then, we have
√

n�C�Dn�−C�D0���C′D0�Z��

Proof. We refer to Römisch [36, Theorem 1] (set rn =
√

n and F=DC =D, thus TF�D0�=D). �

The second result provides the Hadamard directional differentiability of the infimal value mapping. Its first
part is due to Lachout [21].

Proposition 4.1. Set D �= '��X� and F �=� and define the infimal value mapping

G� '��X�→ �

D �→ inf�D�x�� x ∈X��

and the 8-solution set S�D�8� �= �x ∈X �D�x�≤G�D�+ 8� for 8≥ 0.
Then, G is Hadamard directionally differentiable in every D0 ∈D with

G ′D0 � D→ �

h �→ lim
8↓0

inf�h�x�� x ∈ S�D0� 8��� (6)

Moreover, if D0 ∈ '��X� is lower semicontinuous and h ∈ '��X� is continuous, then it holds that

G ′D0�h�=min�h�x�� x ∈ S�D0�0��� (7)

Proof. Obviously, the minimal value mapping G is concave and, hence, directional differentiable for every
fixed direction h ∈D. Furthermore, �G�D1�−G�D2�� ≤ �D1−D2�� for D1�D2 ∈D, i.e., G is Lipschitz continu-
ous with modulus one. Then, Hadamard directional differentiability follows from Shapiro [42, Proposition 3.5].
Further, Römisch [36, Proposition 1] (again, set F=DG =D= TF�D0�) records the proof of formula (6) from
Lachout [21] even if X were not compact.
Thus, it remains to show Equation (7): Let D0 ∈ '��X� be lower semicontinuous and h ∈ '��X� continu-

ous. Of course, representation (6) holds. For n ∈ �, choose xn ∈ S�D0�1/n� such that h�xn� ≤ inf�h�x�� x ∈
S�D0�1/n��+ 1/n. Then,

inf�h�x�� x ∈ S�D0�1/n��≤ h�xn�≤ inf�h�x�� x ∈ S�D0�1/n��+ 1/n�

thus G ′D0�h�= limn→�h�xn� since inf�h�x�� x∈S�D0�1/n��→G ′D0�h�. Because S�D0�1/�n+1��⊂S�D0�1/n�⊂
X and X is compact, there exists a subsequence xn′ converging to some x0∈X in �m. And because D0�xn′�≤
G�D0�+1/n′ and D0 is lower semicontinuous, it holds that

D0�x0�≤ lim inf
n′→�

D0�xn′�≤G�D0��
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hence x0 ∈ S�D0�0�. Thus, on the one hand

G ′D0�h�= lim
n′→�

h�xn′�= h�x0�≥min�h�x�� x ∈ S�D0�0���

and on the other hand

G ′D0�h�= lim
n′→�

h�xn′� ≤ lim
n′→�

�inf�h�x�� x ∈ S�D0�1/n
′��+ 1/n′�

≤ lim
n′→�

�inf�h�x�� x ∈ S�D0�0��+ 1/n′�
= min�h�x�� x ∈ S�D0�0��� �

At first glance, this framework seems not to fit for our purpose since we have mappings Q on '��
 � rather
than on '��X�. However, if we define for Q ∈���

DQ�x� �=Qfx = c′x+
∫

��h���− T ���x�dQ����

we have DQ ∈ '��X� and v�Q� = G�DQ� for all Q ∈ ���. The convergence
√

n�Pn − P� � GP in '��
 �
means √

n�DPn
−DP��DGP

∼� �0� �Pfxfy −PfxPfy�x� y∈X�

in '��X� with DGP
=GPf� ∈ '��X�
. Hence, the delta method (Theorem 4.1) can be applied for the minimal

value mapping G in '��X�. Inserting G�DP�= v�P� and G�DPn
�= v�Pn� leads to:

Corollary 4.1. For the optimal value of the stochastic program (1), it holds that
√

n�v�Pn�− v�P���G ′DP
�DGP

� (8)

in �.

If we knew the distribution of G ′DP
�DGP

�, we could give asymptotic confidence intervals for the optimal
value v�P� = G�DP� based on the quantiles of G ′DP

�DGP
� since v�Pn� can be calculated by solving a finite

mixed-integer linear program. In general, however, it seems too difficult to calculate the distribution analytically
since G ′DP

from Equation (6) has a rather complicated shape. Hence, the above convergence statement contains,
roughly speaking, two unknowns—the true optimal value v�P� and the limit distribution.
Remark 4.1. Only in special cases the simpler formula (7) can be applied. The condition that for Q ∈���

the elements DQ are lower semicontinuous on X is always satisfied due to the lower semicontinuity of � (see
Römisch [35, Lemma 33]) together with Fatou’s lemma:

lim infQfxn
= c′x0+ lim inf

∫

��h���− T ���xn�dQ���

≥ c′x0+
∫

lim inf ��h���− T ���xn�dQ���

≥ c′x0+
∫

��h���− T ���x0�dQ���=Qfx0

for xn→ x0 in X. However, to apply Equation (7) it would have to be shown, in addition, that the P -Brownian
bridge GP (and accordingly DGP

) has continuous sample paths. Indeed, there is a continuity property for DGP

because GP is tight (see van der Vaart and Wellner [48, Example 1.5.10]): For almost all J ∈
 it holds that
DGP

�J� ∈ '��X� is continuous with respect to the semimetric given by

K�x0� x1� �= �P�fx0
− fx1

�2− �P�fx0
− fx1

��2�1/2�

However, in general, xn→ x0 in X ⊂ �m does not imply continuity with respect to K, hence DGP
�J� is not

necessarily continuous.
The special case that the second stage problem contains no integrality (i.e., m = 0) would be an example

where xn→ x0 in X implies K�xn� x0�→ 0 since in this case � is continuous (see Wets [49]). Another example
would be the case where X consists of isolated points only. For such examples, it holds indeed

G ′DP
�DGP

�= inf�GPf � f ∈
 � Pf = v�P���
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If it is known, in addition, that the solution set S�P� �= �x ∈X� Pfx = v�P�� of the stochastic program (1) is a
singleton, i.e., #S�P�= 1, S�P�= �x∗�, then we get G ′DP

�D�=D�x∗�, i.e., G ′DP
is a linear mapping in this case.

Moreover, due to the definition of the P -Brownian bridge GP , it holds that

G ′DP
�DGP

�=GPfx∗ ∼� �0� Pf 2x∗ − �Pfx∗�
2��

i.e., we know that the limit is normally distributed with zero mean and unknown variance (since both, x∗ and P ,
are unknown).
Since our goal is to make use of Equation (8) not only in special cases, we do not continue this discussion

here. We address ourselves to more general methods for getting information about the unknown distribution
G ′DP

�DGP
�.

5. Bootstrapping. Bootstrapping is a principle to gain information about (the quantiles of) an unknown
limit distribution by resampling �∗1 � �

∗
2 � � � � from some empirical distribution Pn. From these resamples, the

bootstrap empirical measure P ∗n �= �1/n�
∑n

j=1 !�∗j is constructed. For our problem, the unknown distribution is
the limit distribution of

√
n�v�Pn�− v�P��.

It will be shown below that, under certain conditions, it holds that
√

n�P ∗n − Pn� converges in some sense to
the same limit as

√
n�Pn−P�. The mathematical backbone of this method is the independence of the sampling

and the resampling procedure. The convergence of
√

n�P ∗n −Pn� can be carried over to convergence statements
about

√
n�v�P ∗n �− v�Pn�� in several ways. However, a delta method statement like Theorem 4.1 can only be

given for the case that C′D is linear. For the general case, an alternative method is suggested in §5.2.
The bootstrap method was introduced in Efron [7]. Here, we will make use of the consistency results as well

as the delta method for the bootstrap derived in Giné and Zinn [14], van der Vaart [47], and van der Vaart and
Wellner [48]. For further discussion and extensions of the bootstrap method see, e.g., Mammen [23], Hall [15],
and Giné [13]. Note that the extensions there are different from the extension that are developed in §5.2.

5.1. Classical bootstrap. The classical bootstrap method rests upon a statement about convergence of the
bootstrap empirical measure in '��
 � where the samples �1� �2� � � � are considered as fixed. The type of
convergence is conditionally on �1� �2� � � � in distribution, which will be defined below following Giné and Zinn
[14], van der Vaart [47], and van der Vaart and Wellner [48]. To motivate this definition, we first define for a
normed space D, e.g., D= '��
 �, the set of bounded Lipschitz functions

BLL�D� �= �h ∈ 9−1�1:D� �h�z1�−h�z2�� ≤ L�z1− z2� ∀ z1� z2 ∈D��

and we note that for D= '��
 �, weak convergence can be characterized by

Zn �Z0⇔ sup
h∈BL1�'

��
 ��

�E9h�Zn�:−E9h�Z0�:� −→ 0

if Zn ∈ '��
 �
 and Z0 ∈ '��
 �
 are measurable and tight (see Giné and Zinn [14] and van der Vaart [47,
Chapter 23]). From Giné and Zinn [14], we adopt the following definition: The sequence Zn is said to converge
to Z0 conditionally on �1� �2� � � � in distribution if

Zn �∗ Z0⇔ sup
h∈BL1�'

��
 ��

�E9h�Zn� � �1� �2� � � � :−E9h�Z0�:� P∗−→ 0�

where E9· � ·: and P∗−→ denote the conditional expectation and convergence in outer probability, respectively.
This definition is also used in van der Vaart [47] and van der Vaart and Wellner [48]. With this notation, we are
ready to cite results from Giné and Zinn [14].

Theorem 5.1. If 
 is P -Donsker, then
√

n�P ∗n −Pn��∗ G∗P in '��
 �. The limit G∗P is a P -Brownian bridge;
thus, it has the same distribution as the limit GP in Theorem 3.1.

Proof. See Giné and Zinn [14, Theorem 5.1] (and also van der Vaart [47, Theorem 23.7]). �

At this point, one would expect a delta method theorem similar to Theorem 4.1 but for the bootstrap case.
However, for such a statement we need additionally that C′D0 is linear.
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Proposition 5.1. Let D be a normed space, D0∈D and let C� D→� be Hadamard directionally differen-
tiable at D0 with derivative C′D0 being linear. Let further Dn∈D
 and D∗n ∈D
 and Z∈D
 and

√
n�D∗n−Dn��∗Z

and
√

n�Dn−D0��Z. Then: √
n�C�D∗n�−C�Dn���∗ C

′
D0

�Z��

Proof. See, e.g., van der Vaart [47, Theorem 23.9] (set DC =D). �

Similar results had already been obtained in Arcones and Giné [3, §4]. Applied to our problem this proposition
yields:

Corollary 5.1. If G ′DP
is linear, then it holds that

√
n�v�P ∗n �− v�Pn��=

√
n�G�DP∗n �−G�DPn

���∗ G
′
DP

�DG∗P � (9)

in � with G∗P being a P -Brownian bridge in '��
 �.

The limit G ′DP
�DG∗P � is the same as in Corollary 4.1. This fact can be used to approximate the distribution

G ′DP
�DGP

� and to derive confidence intervals for the (unknown) value v�P�=min�Pf � f ∈ 
 �, i.e., the optimal
value of the stochastic program (1).
Given �1��2�� � � ��n, i.e., given Pn, with n fixed sufficiently large, the distribution G ′DP

�DGP
� can be approx-

imated by some empirical distribution of
√

n�v�P ∗n �−v�Pn�� gained from sufficiently many resampled n-tuples
�∗1 ��

∗
2 �� � � ��

∗
n from Pn. This means if O

∗
P�m is a lower P-quantile of an empirical distribution of

√
n�v�P ∗n �−v�Pn��

gained from m (sufficiently large) resamples, then for P1<50% and P2<50%, the interval[
v�Pn�−

1√
n
O∗1−P1�m

� v�Pn�−
1√
n
O∗P2�m

]
(10)

is an asymptotic confidence interval5 at level P1+P2 for the optimal value v�P�, i.e.,

lim inf
n�m→� �

(
v�P� ∈

[
v�Pn�−

1√
n
O∗1−P1�m

� v�Pn�−
1√
n
O∗P2�m

])
≥ 1−P1−P2�

5.2. Extended bootstrap. As seen in the previous sections, the classical empirical delta method for boot-
strapping works only if the Hadamard directional derivative of C at D0 is linear. As discussed in Remark 4.1,
for the infimal value mapping G this is only the case under strong additional assumptions. The question arises
whether there is another method to derive confidence intervals that works without this assumption of linearity.
The answer is yes but, of course, this is more involved and more expensive in terms of computation.
First, we record another proposition that was stated (but not actually proven) within the proof of van der Vaart

[47, Theorem 23.9].

Proposition 5.2. In '��
 �× '��
 �, it holds that

(√
n�Pn−P��

√
n�P ∗n −Pn�

)
� �GP �G

∗
P �

with GP and G∗P being independent P -Brownian bridges.

A proof is given in the appendix. Note that G∗P ∼GP . Note further that this is a convergence statement about
ordinary weak convergence, i.e., unconditional. Of course, in '��X�× '��X� this means

(√
n�DPn

−DP��
√

n�DP∗n −DPn
�
)
� �DGP

�DG∗P ��

Next, we establish a kind of alternative delta method suitable for this framework.

Lemma 5.1. Let C� D→ F be Hadamard directionally differentiable in D0 ∈D and let D∗n �Dn ∈D
 �n ∈��
be given satisfying �

√
n�Dn−D0��

√
n�D∗n −Dn��� �Z�Z∗� with Z�Z∗ ∈D
. Then, it holds that

√
n�C�D∗n�−C�Dn���C′D0�Z

∗ +Z�−C′D0�Z��

5 Note that O∗1−P1�m
≥ O∗P2�m since 1−P1 > 50%> P2, so we have indeed that 9v�Pn�− �1/

√
n�O∗1−P1�m

� v�Pn�− �1/
√

n�O∗P2�m: is an interval.
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The proof is given in the appendix. Note that the latter result does not require linearity of the Hadamard
derivative. Putting the previous two results together leads to:

Corollary 5.2. In �, it holds that

√
n�v�P ∗n �− v�Pn��=

√
n�G�DP∗n �−G�DPn

���G ′DP
�DG∗P +DGP

�−G ′DP
�DGP

�

with GP and G∗P being independent P -Brownian bridges in '��
 �.

This result also shows that if G ′DP
is not linear, one can not expect that the sequence

√
n�G�DP∗n �−G�DPn

��

converges conditionally on �1� �2� � � � in distribution to G ′DP
�DGP

� or G ′DP
�DG∗P �. However, it is possible to define

another sequence containing the unknown value G�DP� that converges to the same limit G ′DP
�DG∗P + DGP

�−
G ′DP

�DGP
�. This idea is developed in the following modified version of Theorem 4.1.

Lemma 5.2. Let C� D→ F be Hadamard directionally differentiable at D0 ∈D and let D̃n, D̄n ∈D
 �n ∈��

be given satisfying �
√

n�D̄n−D0��
√

n�D̃n−D0��� � !Z� "Z� with !Z� "Z ∈D
. Then, it holds that

√
n
(
2C
(
1
2 �D̄n+ D̃n�

)−C�D̃n�−C�D0�
)
�C′D0�

!Z+ "Z�−C′D0�
"Z��

Again, the proof is given in the appendix. Now, if we sample twice from P independently, i.e., given

�̃1� �̄1� �̃2� �̄2� � � �
iid∼ P , then, of course, with P̃n �= �1/n�

∑n
j=1 !�̃j

and !Pn �= �1/n�
∑n

j=1 !�̄j
, it holds that

(√
n�DP̃n

−DP��
√

n�D !Pn
−DP�

)
� �D "GP

�D !GP
�

in '��X�×'��X� with two independent P -Brownian bridges "GP and !GP and DP̃n
∈ '��X�
 defined by DP̃n

�x�=∑n
j=1 fx��̃j � and D !Pn

analogously. Thus,

√
n
(
2G
(
1
2 �D !Pn

+DP̃n
�
)−G�DP̃n

�−G�DP�
)
�G ′DP

�D !GP
+D "GP

�−G ′DP
�D "GP

��

Because both pairs !GP and "GP as well as G∗P and GP are independent, it holds that � !GP� "GP�∼ �G∗P �GP�, hence

G ′DP
�D !GP

+D "GP
�−G ′DP

�D "GP
�∼G ′DP

�DG∗P +DGP
�−G ′DP

�DGP
��

Since we can approximate the distribution of G ′DP
�G∗P +GP�−G ′DP

�GP� by sampling and resampling without
knowing P or G�DP�, we can construct confidence intervals in a similar way as in the previous section: Let O

∗
P

be a lower P-quantile of (an approximation of) G ′DP
�DG∗P +DGP

�−G ′DP
�DGP

�. Then, for P1 < 50%> P2, it holds
that [

2G
(
1
2 �D !Pn

+DP̃n
�
)−G�DP̃n

�− 1√
n
O∗1−P1

�2G
(
1
2 �D !Pn

+DP̃n
�
)−G�DP̃n

�− 1√
n
O∗P2

]
(11)

is an approximate confidence interval at level P1+P2 for the optimal value G�DP�= v�P�.
Remark 5.1. Here, in contrast to classical bootstrapping, the estimation of the optimal value, i.e., the center

of the confidence interval, and the calculation of the empirical quantiles O∗1−P1
and O∗P2 , i.e., the range of the

confidence interval, are carried out independently. The samples �1� �2� � � � � �n are at no time fixed. To get one
sample point for the empirical distribution function of the approximation of the limit distribution, one has to

sample both �1� �2� � � � � �n

iid∼ P and �∗1 � �
∗
2 � � � � � �

∗
n

iid∼ Pn��1� �2� � � � � �n�.
Note that the estimation of the center of the confidence is based on a sample of size 2n rather than n, whereas

the range of the confidence interval is based on samples of size n. This may be appreciated from a practical
point of view since the center can be considered as the more important information, but for the range a high
number of instances of v�Pn� and v�P ∗n � has to be computed. Moreover, since center and range are calculated
independently, one could even use a different (bigger) n for the center than for the quantiles O∗1−P1

and O∗P2 . Note
that the computational effort for calculating v�Pn� is known to depend highly nonlinear on n.
In some practical applications, however, sampling from P might be much more expensive than (re)sampling

from a fixed empirical distribution Pn.
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5.3. Subsampling. Another approach for deriving asymptotically consistent confidence intervals for esti-
mators with limit theorems is called subsampling (Politis and Romano [29], Politis et al. [30]). This method
is also based on sampling and resampling, but resampling is performed without replacement and with a lower
samplesize b = b�n� ∈�, b# n. The subsampling method is more generally applicable than the bootstrapping
methods, because only a basic limit theorem like in our case

√
n�v�Pn�− v�P���G ′DP

�DGP
� is required but no

extra limit theorem like Equation (9) for the resampled measure.
For some sufficiently large n, this method estimates the limit distribution which is in our case G ′DP

�DGP
� by

the empirical approximation based on the optimal values v�P ∗�n1� � � � � nb�� with respect to subsets �n1� � � � � nb�
of �1� � � � � n� with cardinality b. The method is justified by the limit theorem (Politis and Romano [29, Theorem
2.1]) which reads in our framework(

n

b

)−1 ∑
1≤n1<···<nb≤n

!�
√

b�v�P∗�n1� � � � �nb��−v�Pn���
�G ′DP

�DGP
�

for b�n→� and b/n→ 0; see also Politis et al. [30]. Thereby, Pn denotes the empirical measure based on
samples �1� � � � � �n and P ∗�n1� � � � � nb� the empirical measure based on �n1

� � � � � �nb
.

The number of summands in the previous display becomes extremely large as n and b grow. However, the
result remains valid if a number m=m�n� is chosen and the sum over all possible subsets is replaced by the
sum over m randomly chosen subsets of �1� � � � � n� of cardinality b: Let Nn�b

j ⊂ �1� � � � � n� randomly chosen
with #Nn�b

j = b for j = 1� � � � �m. Then,
1
m

m∑
j=1

!�
√

b�v�P∗n �Nn�b
j ��−v�Pn���

�G ′DP
�DGP

� (12)

for b�n�m→� and b/n→ 0 (Politis and Romano [29, Corollary 2.1]). Thereby, P ∗n �N
n�b
j � denotes the empirical

measure based on ��i� i ∈Nn�b
j �.

Similar to what was mentioned in Remark 5.1 for the extended bootstrap, the subsampling method allows
us to compute the estimate for the optimal value, i.e., the center of the confidence interval, on the basis of a
higher number of samples than the samplesize used for the calculation of the quantiles. This flexibility may
be very useful from a computational point of view, because for the quantile calculation a high number of
problem instances has to be solved and the computational effort of one instance depends highly nonlinear on
the samplesize.
On the other hand, it has been noted that in some cases the subsampling method underperforms the bootstrap

with respect to the accuracy of the approximation of the distribution, cf. Politis et al. [31]. This reference also
contains ideas to improve the subsampling method by symmetrization. Such considerations, however, are beyond
the scope of this work; in the numerical example in the next section, the method performed comparably to the
bootstrap method.

6. Examples. To demonstrate the meaning of the results derived in the previous sections, we provide some
numerical evidence.

6.1. Problem (unique solution). We consider the example in Schultz et al. [40, §7]:

min
{
x′
(−1�5
−4

)
+
∫

���− x�dP���� x ∈ �0�1�2�3�4�5�2

}
(13)

with

��t� �=min




y′




−16
−19
−23
−28


� y ∈ �0�1�4�

(
2 3 4 5

6 1 3 2

)
y ≤ t




and � being uniformly distributed on the two-dimensional integer grid between 5 and 15

" �=
{(
5
5

)
�

(
5
6

)
� � � � �

(
5
15

)
�

(
6
5

)
� � � � �

(
15
15

)}
�
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i.e., P��Q�� = 1/121 for Q ∈ ". This example has the form of Equation (1) with k = m = r = 2, h��� = �,
T ���= I2, m= 4, �m= 0, and = conv� "�. The exact solution is x= �0�4� with optimal value v�P�=−62�29
(see Schultz et al. [40]). This solution is unique6 and X consists of isolated points only; thus, the theory derived
in §5.1 holds here (see Remark 4.1).

6.2. Classical bootstrapping. Suppose that we don’t know the distribution P but we are able to sample
from it. Further, suppose we know that the solution is unique. The classical bootstrap procedure for deriving
confidence intervals for the optimal value works as follows:

(i) Fix n ∈ �, sample from P and solve the approximated problem. We used n = 75 and got v�Pn� =
−61�2667.
(ii) Resample from Pn using the same samplesize n and solve the new problem. Repeat this m times to get an

empirical distribution function of
√

n�v�P ∗n �− v�Pn�� conditional to Pn. We worked with m= 500 and obtained

v�P ∗n �
√

n�v�P ∗n �− v�Pn��

−58.64 22�7476
−61.8533 −5�08068
−58.56 23�4404

���
���

−63.9867 −23�5559 .

(iii) Calculate the quantiles at level 1− P1 and P2 (Pj small) of the empirical distribution function of the√
n�v�P ∗n �− v�Pn�� values. We used P1 = P2 = P/2 and got

P (%) [O∗P/2�m� O∗1−P/2�m]

10 9−28�5211�23�7868:
5 9−33�0822�28�7520:
2 9−39�2021�35�4493: .

(iv) Convert these quantiles to quantiles for the optimal value v�P� according to formula (10). In our example,
this leads to

P (%) Confidence interval for v�P�

10 9−64�0133�−57�9733:
5 9−64�5867�−57�4467:
2 9−65�3600�−56�7400: .

(v) This procedure was repeated 200 times in order to validate the level of the confidence intervals empiri-
cally. Counting the number of confidence intervals covering the true optimal value −62�29 leads to

Number Average
P (%) covering intervals Ratio (%) interval length

10 180/200 90 6�01218
5 188/200 94 7�1325
2 197/200 98�5 8�4506 .

Of course, enlarging n leads to smaller confidence intervals. Because
√

n�v�P ∗n �− v�Pn�� has approximately the
same probability distribution as the fixed random element G ′DP

�DGP
�, we can expect a decrease of order 1/

√
n

6 Uniqueness is only required for the first-stage solution x, so we don’t claim that y��� is also unique. We “proved” the uniqueness of x

with CPLEX by calculating the 36 solutions of the problem with x fixed at �0�0�� �0�1�� � � � and, indeed, it turned out that −62�29 is only
reached for x= �0�4�.
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for the size of the confidence intervals of v�P�. For P= 5%, we got

Sample Average
size n interval length Length ∗√n

50 8.5852 60.70
75 7.1325 61.77
150 4.8139 58.95
200 4.3117 60.98
300 3.4112 59.08 .

so, indeed, the decrease is approximately of order 1/
√

n since length times
√

n is almost constant.

6.3. Problem (nonunique solution). We changed problem (13) to

min
{
x′
( −1�5
−3�768595041

)
+
∫

���− x�dP���� x ∈ �0�1�2�3�4�5�2

}
(14)

with �, P , and  as above. Here, the solution is no longer unique. The optimal value −61�363636 is attained
at x= �0�3� and at x= �0�4�. Thus, classical bootstrapping is not theoretically justified here.

6.4. Extended bootstrapping. We applied the extended bootstrap method developed in §5.2 to derive con-
fidence intervals for the optimal value of problem (14). The procedure here is slightly different than that in
§6.2. The main difference is that the approximation of the limit distribution is carried out independently from
the estimation of the center of the confidence interval. The procedure works as follows:

(i) Fix n ∈�. We used n= 75.
(ii) Sample from P and solve the approximate problem. We got v�Pn�=−60�5725. Resample from Pn using

the same samplesize n and solve the resulting problem. We got v�P ∗n �=−59�2439.
(iii) Repeat the previous step (sampling and resampling) m times to obtain an empirical distribution function

of
√

n�v�P ∗n �− v�Pn��. We chose m= 500 and obtained

v�Pn� v�P ∗n �
√

n�v�P ∗n �− v�Pn��

−60�5725 −59�2439 11�506
−62�9277 −63�2391 −2�69685
−57�1905 −57�6172 −3�69504

���
���

���
−65�3144 −65�403 −0�767256 .

(iv) Calculate the quantiles at level 1− P1 and P2 (Pj small) of the empirical distribution function of the√
n�v�P ∗n �− v�Pn�� values. We used P1 = P2 = P/2 and got

P (%) 9O∗P/2�m� O∗1−P/2�m:

10 9−29�4241�23�6338:
5 9−35�0455�29�3868:
2 9−42�5669�32�6578: .

(v) Sample independently from P with samplesize n twice to get P̃n and !Pn. Calculate v�P̃n� and v� 12 �P̃n+ !Pn��.
We got 2v� 12 �P̃n+ !Pn��− v�P̃n�= 63�1277. Using the quantiles from the previous step formula (11) leads to

P (%) Confidence interval for v�P�

10 9−65�8567�−59�7301:
5 9−66�5210�−59�0810:
2 9−66�8987�−58�2125: .
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(vi) We repeated the previous step 200 times in order to validate the level of the confidence intervals empir-
ically. We counted the number of confidence intervals covering the true optimal value −61�363636 and got:

Number Average
P (%) covering intervals Ratio (%) interval length

10 182/200 91 6.1277
5 191/200 95�5 7.4400
2 195/200 97�5 8.6862 .

Note that the quantiles O∗P/2�m and O∗1−P/2�m can remain fixed for P= 10%, 5%, and 2%, respectively, during this
approving procedure.
Of course, enlarging n leads again to a decrease of order 1/

√
n for the size of the confidence intervals

for v�P�.

6.5. Subsampling. We applied the subsampling method from §5.3 to problem (13). Note that this method
could be applied to problem (14) in the same manner since no further assumptions (such as uniqueness of the
solution) need to be satisfied here.

(i) Fix n�b�m ∈�. We used n= 150, b= 75, m= 500.
(ii) Sample from P with samplesize n and solve the approximate problem. We got v�Pn�= 62�16.
(iii) Resample from Pn without replacement with samplesize b < n (subsampling) and solve the smaller

problem. This yields v�Pb�. Repeat this m times.
(iv) Calculate the quantiles O∗P/2� b and O∗1−P/2� b of the v�Pb� values and transform them into quantiles of v�P�

according to formula (12). This yielded

Confidence
P (%) interval for v�P�

10 9−63�7800�−60�2467:
5 9−64�0733�−59�5067:
2 9−64�1800�−58�8333: .

(v) We repeated the procedure (steps (ii) to (iv)) 200 times and counted the number of confidence intervals
covering the true optimal value −62�29. We got:

Number Average
P (%) covering intervals Ratio (%) interval length

10 176/200 88 4.2451
5 192/200 96 5.0630
2 199/200 99�5 6.0207 .

Note that the size of the confidence intervals is of order 1/
√

n rather than order 1/
√

b. This is why the average
length is lower than for the bootstrap methods while the computational effort is comparable.

6.6. Technical details. These results were produced with C++ and ILOG CPLEX 9.1. We used the GNU
C++ compiler gcc version 3.3.5 together with the ILOG Concert Technologie Library 21 on a standard Linux
machine (2 GHz, 1 GB RAM, Suse Linux 9.3). As random number generator, we took the RANLIBC/StatLib
library. In CPLEX, the following accuracy parameters were used: epOpt= epGap= epRHS= 10−6. This means
that the solutions of the approximate problems may be considered as exact.

7. Conclusions. In this paper, mathematical results on empirical approximations (sample average approx-
imations) of two-stage mixed-integer stochastic programs have been derived. Such approximations are gained
by exchanging the original underlying probability measure P by empirical measures Pn. In particular, in §3,
a limit theorem for

√
n�Pn−P� in the space of bounded functionals on the set of all possible integrands of the

stochastic program has been proven by means of empirical process theory and by using the special piecewise
Lipschitzian structure of these integrands. In §4, this result has been carried over to a limit theorem for the opti-
mal values of the stochastic programs by means of the functional delta method. Thereby, we relied on a concept
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of Hadamard directional differentiability in infinite dimensional spaces such that linearity of the derivative is not
required. The limit distribution is nonnormal in general and depends on the (usually unknown) solution set of the
stochastic program. In §5, the applicability of resampling methods (bootstrap, subsampling) for approximating
the limit distribution and deriving confidence intervals for optimal values is analyzed. The bootstrap method can
not be applied straightforward because the nonlinearity of the derivative of the optimal value mapping makes
the situation more involved than in standard applications. However, after some modifications of the procedure,
asymptotic consistency holds. For the subsampling method, asymptotic consistency holds without modifications
since the underlying theory is based on weaker assumptions. The results of the entire paper are confirmed and
illustrated by studying a numerical example in §6.
The central limit theorem (clt) type results of §§3 and 4 extend the existing theory on empirical approximations

of stochastic programs which is, roughly speaking, limited either to noninteger stochastic programs or to law
of large number (lln) type and large deviation type results. The clt type results here may be employed to draw
conclusions about the accuracy of an empirical approximation of a mixed-integer stochastic program. Resampling
methods as suggested in §§5 and 6 are one possible way for making use of these results. Other methods may
be developed in future work.

Appendix: Proofs. For the sake of completeness, we give the remaining proofs.
Proof of Proposition 5.2. For abbreviation, we set Zn �= √n�Pn − P� and Z∗n �= √n�P ∗n − Pn�. Let

�GP �G
∗
P � be a pair of independent P -Brownian bridges. Due to, e.g., van der Vaart and Wellner [48, Theorem

1.5.4] (see also van der Vaart and Wellner [48, Exercise 3, §1.5]), it suffices to show two things: (a) that the
sequence �Zn�Z

∗
n� is asymptotically tight, and (b) that every finite dimensional marginal distribution of �Zn�Z

∗
n�

converges to the respective marginal distribution of �GP �G
∗
P �. See below.

(a) From Theorem 3.1, we know already that Zn �GP . Furthermore, it holds that Z
∗
n �G∗P (unconditionally)

because due to Jensen’s inequality we have

sup
h∈BL1�'

��
 ��

�E9h�Z∗n�:−E9h�G∗P �:� = sup
h∈BL1�'

��
 ��

�E9E9h�Z∗n� � �1� �2� � � � ::−E9h�G∗P �:�

≤ sup
h∈BL1�'

��
 ��

E9�E9h�Z∗n� � �1� �2� � � � :−E9h�G∗P �:�:

≤ E

[
sup

h∈BL1�'
��
 ��

�E9h�Z∗n� � �1� �2� � � � :−E9h�G∗P �:�
]
→ 0

since suph �E9h�Z∗n� � �1� �2� � � � :−E9h�G∗P �:�
P∗−→ 0. Hence, since GP and G∗P are tight, both sequences Zn and

Z∗n are asymptotically tight due to, e.g., van der Vaart and Wellner [48, Lemma 1.3.8]. For this case, van der
Vaart and Wellner [48, Lemma 1.4.3] guarantees asymptotical tightness of the joint sequence �Zn�Z

∗
n�.

(b) Let l�m∈� and f1�� � � �fl�g1�� � � �gm∈
 . It needs to be shown that �Znf1�� � � �Znfl�Z
∗
ng1�� � � �Z

∗
ngm��

�GPf1�� � � �GPfl�G
∗
Pg1�� � � �G

∗
Pgm� in �l+m. We make use of the characterization of weak convergence in finite

dimension by characteristic functions. Since GP and G∗P are independent and Znf3 is S��1�� � � ��n�-measurable,
we can argue as follows:

�E9ei
∑l

3=1 s3Znf3+i
∑m

.=1 t.Z
∗
ng. :−E9ei

∑l
3=1 s3GP f3+i

∑m
.=1 t.G

∗
P g. :�

= �E9ei
∑l

3=1 s3Znf3 ei
∑m

.=1 t.Z
∗
ng. :−E9ei

∑l
3=1 s3GP f3 :E9ei

∑m
.=1 t.G

∗
P g. :�

= �E9ei
∑l

3=1 s3Znf3E9ei
∑m

.=1 t.Z
∗
ng. � �1� �2� � � � ::−E9ei

∑l
3=1 s3GP f3 :E9ei

∑m
.=1 t.G

∗
P g. :�

= �E9ei
∑l

3=1 s3Znf3 �E9ei
∑m

.=1 t.Z
∗
ng. � �1� �2� � � � :−E9ei

∑m
.=1 t.G

∗
P g. :�:

+E9�ei
∑l

3=1 s3Znf3 −E9ei
∑l

3=1 s3GP f3 :�E9ei
∑m

.=1 t.G
∗
P g. ::�

≤ �E9ei
∑l

3=1 s3Znf3 �E9ei
∑m

.=1 t.Z
∗
ng. � �1� �2� � � � :−E9ei

∑m
.=1 t.G

∗
P g. :�:�

+ ��E9ei
∑l

3=1 s3GP f3 :−E9ei
∑l

3=1 s3Znf3 :�E9ei
∑m

.=1 t.G
∗
P g. :�

≤E9�E9ei
∑m

.=1 t.Z
∗
ng. � �1� �2� � � � :−E9ei

∑m
.=1 t.G

∗
P g. :�:+ �E9ei

∑l
3=1 s3GP f3 :−E9ei

∑l
3=1 s3Znf3 :��

Now, both terms in the last line of the previous display tend to zero, the second term because Zn � GP , and

the first term because it holds that �E9ei
∑m

.=1 t.Z
∗
ng. � �1� �2� � � � :−E9ei

∑m
.=1 t.G

∗
P g. :� P∗−→ 0 since Z∗n �∗ G∗P and (the

real part and the imaginary part of) the functional h�Z� �= ei
∑m

.=1 t.Zg. is (are) bounded and Lipschitz. �
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Proof of Lemma 5.1. We define mappings

gn� D×D→ F

�h∗� h� �→ √n

(
C

(
D0+

1√
n
�h∗ +h�

)
−C

(
D0+

1√
n
h

))
�

Then, due to the Hadamard directional differentiability of C, it holds that

gn�h
∗
n� hn� =

√
n

(
C

(
D0+

1√
n
�h∗n+hn�

)
−C�D0�

)
−√n

(
C

(
D0+

1√
n
hn

)
−C�D0�

)
→ C′D0�h

∗
0+h0�−C′D0�h0�

for �h∗n� hn�→ �h∗0� h0�. Hence, the continuous mapping theorem (van der Vaart [47, Theorem 18.11]) applies
and we get

gn�
√

n�D∗n −Dn��
√

n�Dn−D0��=
√

n�C�D∗n�−C�Dn���C′D0�Z
∗ +Z�−C′D0�Z�� �

Proof of Lemma 5.2. Again, we define mappings

gn� D×D→ F

�h̄� h̃� �→ √n

(
2C
(
D0+

1

2
√

n
�h̄+ h̃�

)
−C

(
D0+

1√
n
h̃

)
−C�D0�

)
�

Then, due to the Hadamard directional differentiability of C, it holds that

gn�h̄n� h̃n� = 2
√

n

(
C

(
D0+

1

2
√

n
�h̄n+ h̃n�

)
−C�D0�

)
−√n

(
C

(
D0+

1√
n
h̃n

)
−C�D0�

)

→ C′D0�h̄0+ h̃0�−C′D0�h̃0�

for �h̄n� h̃n�→ �h̄0� h̃0�. Hence, the continuous mapping theorem (van der Vaart [47, Theorem 18.11]) applies
again and we obtain

gn

(√
n�D̄n−D0��

√
n�D̃n−D0�

) = √n
(
2C
(
1
2 �D̄n+ D̃n�

)−C�D̃n�−C�D0�
)

� C′D0�
!Z+ "Z�−C′D0�

"Z�� �
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