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Introduction

Differential and integral equations with random coefficients and
random right-hand sides are now within reach of efficient compu-
tational methods.

The latter require a combination of discretization and sampling
techniques and a specific theoretical justification.

New sampling methods based on randomized lattice rules (specific
Quasi-Monte Carlo methods) are available, which led to a break-
through in high-dimensional numerical integration and to lifting the
curse of dimension.

(recent work of Sloan/Kuo/Joe and Dick/Pillichshammer)

A general approximation theory for random operator equations is
already available since about 25 years and has been developed by
Heinz Engl and his collaborators.
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Recent work on random partial differential equations

Simultaneous stochastic Galerkin and FE methods

Elliptic partial differential equation with random coefficients

—V(a(§, 2(w))Va(§,w)) = f(§) (€ € D), x(§,w) =0(§ € D).

where D C R™, z = (2;)en is uniformly distributed in [0, 1]%,

a(§,z) = EL({)—FZ 2;10;(€) (€ € D) (Karhunen-Loeve expansion).
j=1

Variational formulation:

X = Hi(D) C H = Lo(D) CX*= H'(D), Jollx = [Vollx
/D a(€, 2(w))(Va(€), Vo(€))de = /D FEwE)de (Yo € X).

s-term N-sample QMC scheme: a(¢, zy) = a(&) + 25, z1;(§)
FE method: Replace X by a finite element subspace Xj,.

(Kuo/Schwab/Sloan: SIAM J. Num. Anal. 2012)
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Random operator equations: Existence

Let (X, d) be a separable complete metric space, Y and Z separable
metric spaces and 0 € Y fixed. All metric spaces are endowed with
their Borel o-fields. Consider the random operator equation

T(z,2(w)) =0 (we Q)
where T': X X Z — Y is a mapping and z is a Z-valued random
variable given on a probability space (2, F,P).
Question: (Existence of a random solution (Hanz 56))
Does there exist a measurable map x : {2 — X such that
T(x(w), z(w)) = 0, P-almost surely

if the equation T'(z, z(w)) = 0 is solvable for all w € Q 7

Note that measurability of T'(z,-) with respect to z (Vo € X)
together with IP -a.s. solvability of T'(x, z(w)) = 0 is not sufficient!
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Theorem: (Engl 78, Nowak 78)
Assume that S(w) ={x € X : T(z,2(w)) =0} #D P -as.
If T(-,2(-))~1(0) € F x B(X), there exists a random solution.

Proof:
There is A € F such that P(A) =1 and S(w) # 0, Yw € A.

GrS = {(w,2): 2 € SW)} =T 2()"0)N{ANB: B e F} x B(X)

Apply measurable selection theorems for set-valued maps with measurable
graph on the completion of {A NB:B e Jr} (Saint-Beuve, Leese, Himmelberg

74/75) and modify a measurable selection on a set of measure 0. (]

The condition T'(+, z(-))(0) € F x B(X) is implied by (a) or (b):
(a) T is Borel measurable.

(b) T is a Carathéodory mapping, i.e., T'(-, z) is continuous for all
z € Z and T'(z,-) is measurable for all x € X.

Extensions due to Engl:

(i) Stochastic domains, i.e., T(+, 2(w)) : C(w) = Y, where
C : {2 = X is a closed-valued measurable multifunction.
(i) Set-valued operators T',ie., T: X x Z 3 Y.
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NONLINEAR EQUATIONS IN ABSTRACT SPACES

RANDOM FIXED POINT THEOREMS

Heinz W. Engl* .
Johannes-Kepler-Universitat

I. INTRODUCTION

The study of random operator equations was initiated by the
Prague school of probabilists around gpaéek and Hans in the
1950's. As it seems to be a current trend to use stochastic
models rather than deterministic ones iF is not surprising that
the interest in random operator equations has been revived in the
last years. The basic questions one might ask about random oper-
ator equations contain of course all problems which are interest-
ing for deterministic operator equations, such as existence,
uniqueness, stability and approximation of solutions. But the
randomization leads to several new questions such as the measur-
ability of solutions and their statistical properties. In this
paper we deal with the question of measurability of fixed points
of single- and multivalued random operators on randomly varying
domains of definition. A complete survey about the "state of the
art" in this area up to late 1976 can be found in [1].

Let throughout this paper (unless stated otherwise) X be a
real separable Banach space, (Q,A,u) a o-finite measure space.
We will use the words "stochastic" and "random' interchangeably
also if U is not a probability measure. B denotes the

o-algebra on X generated by the open sets. By ZX we denote



A Borel probability measure p1x € P(X) is called weak solution of
the random operator equation

T(x,2(w)) =0 (we)
iff there exists € P(X X Z) such that

pT™ =6, px=ppy, Lz)=pp;,

where L(z) =P z!: B(Z) — [0, 1] is the probability distribution
(or law) of z, px and py are the projections from X x Z to X and
Z, respectively, and dy € P(Y) denotes the Dirac measure placing
unit mass at 0 € Y.

Remark:

If x : 2 — X is a random solution, £(x) is a weak solution (by
putting u = L(z, 2)).

A weak solution of a random operator equation is a random solution
on some probability space.
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PACIFIC JOURNAL OF MATHEMATICS
Vol. 120, No. 1, 1985

APPROXIMATE SOLUTIONS OF
NONLINEAR RANDOM OPERATOR EQUATIONS:
CONVERGENCE IN DISTRIBUTION

HEINZ W. ENGL AND WERNER ROMISCH

For nonli di P ions where the distributions of -
the stochastic inputs are approximated by sequences of random variables
converging in distribution and where the underlying deterministic equa-
tions are simultaneously appr d, we prove a result about tightness
and convergence in distribution of the approximate solutions, We apply
our result to a random differential equation under Peano conditions and
to a random H in i l equation and its d ap-
proximations.

1. Introduction. In [15], we developed a theory of convergence of
approximate solutions of random operator equations using concepts like
consistency, stability, and compactness in sets of measurable functions.
The results of that paper are valid for rather general notions of conver-
gence including almost-sure convergence and convergence in probability,
but excluding convergence in distribution. Of course, all the results in [15]
that guarantee e.g. almost-sure convergence of approximate solutions
imply their convergence in distribution. However, an adequate theory for
convergence in distribution should also use weaker assumptions on the
way the “stochastic inputs” (operator, right-hand side) are approximated
that do not imply e.g. almost-sure convergénce of the “stochastic outputs”
(approximate solutions). It is shown in the concluding remarks of [15] that
it is not possible to carry over the theory developed there to the case of
convergence in distribution in a straightforward way.

In this paper, we prove a result about convergence in distribution of
approximate solutions of random operator equations in fixed-point form;
the conditions needed are such that they do not imply stronger modes of
convergence for the approximate solutions: The stochastic quantities
entering into the equation are approximated with respect to convergence
in distribution only. Note that convergence in distribution is often suffi-
cient for approximating statistical characteristics of the solution, since if
(x,) converges to x in distribution, then (E(f(x,))) = E(f(x)) for all
bounded continuous real functions 7, where E denotes the expected value
(see [6, p. 23)).
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Random operator equations: Approximations

Let X, Y and Z be complete separable metric (Polish) spaces,
T : X x Z — Y be Borel measurable, z be a Z-valued random
variable (on (2, F,IP)) and 0 € Y be fixed. We consider

T(x,z(w)) =0 (weN).
In addition, we consider the approximate random operator equations
Tz, zp(w) =0 (w e Q;neN),
where foreachn e N, X, c X, Z, Cc Z, T, : X, X Z, —- Y

be Borel measurable and z, be a Z,-valued random variable (on
(L, P P)).

Let (z,,) be a sequence of random solutions to the approximate
random operator equations.

Motivation: Approximation procedures for solving random equa-
tions require a 'discretization' of T and an approximation ('sam-
pling’, "estimation’) of z.
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Weak convergence in P(X): (u,) converges weakly to p iff

hm/f Vit (d) = /f u(dz) V€ Cy(X,R).

n—0o0

The topology of weak convergence is metrizable if X is separable.
Weak compactness is characterized by uniform tightness due to
Prokhorov's theorem.

Problem: Find conditions on (7},) and T that imply weak conver-
gence of (L(x,)) if (£(2,)) converges weakly to L(z).

A sequence (7},) converges discretely to 7" iff

(i) d(z, X,) = infyex, dx(z,y) =0 (Vo € X),
d(z, Z,) = infyez dz(z,v) = 0 (Vz € Z).

(i) For all (z, z) € X x Z and sequences (x,, z,) € X, X Z, such
that x,, - 2z in X and z, — z in Z it holds

T(xn, 2zn) = T(x,z) (inY).

(Stummel, Reinhardt, Vainikko)
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Theorem:
Let the following conditions be satisfied:

(a) U,enlTn(s, 20)] 1K) N B is relatively compact in X for each
Zn € Zn, n € N, bounded B C X and compact K C Y.

(b) {T.(z,) : * € BN X,,n € N} is equicontinuous on K for
each bounded B C X and compact K C Z.

(c) (T},) converges discretely to T
(d) (L£(z,)) converges weakly to L(z).

(e) The set {L(x,) : n € N} is stochastically bounded, i.e., for
each € > 0 there exists a bounded Borel set B. C X such that
inf L(z,)(B:) >1—¢.
neN
Then the set {L(x,,) : n € N} is relatively compact with respect to

the weak topology and each weak limit of a subsequence is a weak
solution of the random operator equation 7'(x, 2(w)) =0 (w € ).
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Elliptic PDEs with random coefficients

We consider the random elliptic PDE

—V(a(§, 2(§,w))Vz(£)) = f(§) (€ € D), x(€) =0 (§ € ID).

where D C R is a bounded polyhedron, z a Z-valued random
variable, where Z is a bounded subset of L. (D), X = Hj(D)
and Y = H (D) = X*.

Variational formulation:

X = Hy(D) C H = Ly(D) CX*= HY(D), |lzl|x = ||Val|zp

/D a(€, 2)(V (&), Vo(€))de = /D FEwO)dE (v e X).

Let a be continuous, Cpin < a(§, 2) < Chax, V(£,2) € D X Z.
Let X, be a finite element subspace of X such that d(z, X,,) — 0
Vo € X. Assume (L(z,)) converges weakly to L(z).

Then the sequence (L£(z,,)) converges weakly to a weak solution.
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WEAK CONVERGENCE OF APPROXIMATE SOLUTIONS OF STOCHASTIC
EQUATIONS WITH APPLICATIONS TO RANDOM DIFFERENTIAL AND
INTEGRAL EQUATIONS*

Heinz W. Engl

Institut f£ir Mathematik
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and
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A.T.Bharucha-Reid

ABSTRACT:

In this paper, we considerably extend our earlier result about
convergence in distribution of approximate solutions: of random operator
equations, where the stochastic inputs and the underlying deterministic
equation are simultaneously approximated. As a by-product, we obtain
convergence results for approximate solutions of equations between
spaces of probability measures. We apply our results to random

Fredholm integral equations of the second kind and to a random fon-
linear elliptic boundary value problem.

* Research supported by the Scientific Exchange Treaty between Austria
and the GDR ’



Approximate the integral

I(G(2)) = /ZG(z)dz = lim /[01]3 G(z1, .-, 260,...)dz1 - - dzg

S—00

by a lattice rule Qs n(4\, ) with random shift A in [0,1]° and N
points in s dimensions, and for each shifted lattice point solve the
approximate elliptic problem

/D a(€, () (Vzn(€), Vo(E)) dé = /D FEE)dE (Yo € X).

in a finite element subspace X}, (on D C R™) with M), = O(h™™")
degrees of freedom with linear cost O(M},).

Theorem: (Kuo/Schwab/Sloan 12)
The convergence rate of the scheme is

(E[IT(G(2)) = Qon(2; G(an))])

where 0 <7 =t+t <2, Nis prime, § € (0,3], f € H (D),
GeH (D), p= % and ZjeN ijHpoo(D) < 00.

DO —

<C(s"+ N 4R,
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Conclusions and thanks

Home Page I
e Recently the numerical analysis of random differential equa-
tions became a very active field of research. In particular, com- rite Poge_|

binations of generalized Wiener or Karhunen-Loéve expansions
with multi-level Monte Carlo and Quasi-Monte Carlo methods e

became popular. « | »

e There is a pre-history of existence and approximation results
for random operator equations. ]

e Heinz Engl contributed basic results to both existence and ap- poge 150115 |
proximation approaches of random equations.
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Congratulations Heinz to your 60th birthday !

Thank you for your attention !
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