
Home Page

Title Page

Contents

JJ II

J I

Page 1 of 18

Go Back

Full Screen

Close

Quit

Random operator equations and their approximation

- Heinz Engl’s nonrandom contributions -

W. Römisch

Humboldt-University Berlin
Institute of Mathematics

www.math.hu-berlin.de/~romisch

Workshop Heinz W. Engl 60,
Johannes Kepler Universität Linz, 28. März 2013



Home Page

Title Page

Contents

JJ II

J I

Page 2 of 18

Go Back

Full Screen

Close

Quit

Introduction

Differential and integral equations with random coefficients and

random right-hand sides are now within reach of efficient compu-

tational methods.

The latter require a combination of discretization and sampling

techniques and a specific theoretical justification.

New sampling methods based on randomized lattice rules (specific

Quasi-Monte Carlo methods) are available, which led to a break-

through in high-dimensional numerical integration and to lifting the

curse of dimension.

(recent work of Sloan/Kuo/Joe and Dick/Pillichshammer)

A general approximation theory for random operator equations is

already available since about 25 years and has been developed by

Heinz Engl and his collaborators.
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Recent work on random partial differential equations

Simultaneous stochastic Galerkin and FE methods

Elliptic partial differential equation with random coefficients

−∇(a(ξ, z(ω))∇x(ξ, ω)) = f (ξ) (ξ ∈ D), x(ξ, ω) = 0 (ξ ∈ ∂D).

where D ⊂ Rm, z = (zj)j∈N is uniformly distributed in [0, 1]N,

a(ξ, z) = ā(ξ)+

∞∑
j=1

zjψj(ξ) (ξ ∈ D) (Karhunen-Loeve expansion).

Variational formulation:

X = H1
0(D) ⊂ H = L2(D) ⊂X∗= H−1(D), ‖v‖X = ‖∇v‖H∫

D

a(ξ, z(ω))〈∇x(ξ),∇v(ξ)〉dξ =

∫
D

f (ξ)v(ξ)dξ (∀v ∈ X).

s-term N -sample QMC scheme: a(ξ, zsN) = ā(ξ) +
∑s

j=1 zjψj(ξ)

FE method: Replace X by a finite element subspace Xh.

(Kuo/Schwab/Sloan: SIAM J. Num. Anal. 2012)
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Random operator equations: Existence

Let (X, d) be a separable complete metric space, Y and Z separable

metric spaces and 0 ∈ Y fixed. All metric spaces are endowed with

their Borel σ-fields. Consider the random operator equation

T (x, z(ω)) = 0 (ω ∈ Ω),

where T : X × Z → Y is a mapping and z is a Z-valued random

variable given on a probability space (Ω,F ,P).

Question: (Existence of a random solution (Hanš 56))

Does there exist a measurable map x : Ω→ X such that

T (x(ω), z(ω)) = 0, P-almost surely

if the equation T (x, z(ω)) = 0 is solvable for all ω ∈ Ω ?

Note that measurability of T (x, ·) with respect to z (∀x ∈ X)

together with P -a.s. solvability of T (x, z(ω)) = 0 is not sufficient!
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Theorem: (Engl 78, Nowak 78)

Assume that S(ω) = {x ∈ X : T (x, z(ω)) = 0} 6= ∅ P -a.s.
If T (·, z(·))−1(0) ∈ F × B(X), there exists a random solution.
Proof:
There is A ∈ F such that P(A) = 1 and S(ω) 6= ∅, ∀ω ∈ A.

GrS = {(ω, x) : x ∈ S(ω)} = T (·, z(·))−1(0) ∩ {A ∩B : B ∈ F} × B(X)

Apply measurable selection theorems for set-valued maps with measurable

graph on the completion of {A ∩ B : B ∈ F} (Saint-Beuve, Leese, Himmelberg

74/75) and modify a measurable selection on a set of measure 0. �

The condition T (·, z(·))−1(0) ∈ F ×B(X) is implied by (a) or (b):

(a) T is Borel measurable.

(b) T is a Carathéodory mapping, i.e., T (·, z) is continuous for all

z ∈ Z and T (x, ·) is measurable for all x ∈ X .

Extensions due to Engl:
(i) Stochastic domains, i.e., T (·, z(ω)) : C(ω)→ Y , where

C : Ω ⇒ X is a closed-valued measurable multifunction.

(ii) Set-valued operators T , i.e., T : X × Z ⇒ Y .
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A Borel probability measure µX ∈ P(X) is called weak solution of

the random operator equation

T (x, z(ω)) = 0 (ω ∈ Ω)

iff there exists µ ∈ P(X × Z) such that

µT−1 = δ0 , µX = µ p−1X , L(z) = µ p−1Z ,

where L(z) = P z−1 : B(Z)→ [0, 1] is the probability distribution

(or law) of z, pX and pZ are the projections from X×Z to X and

Z, respectively, and δ0 ∈ P(Y ) denotes the Dirac measure placing

unit mass at 0 ∈ Y .

Remark:
If x : Ω → X is a random solution, L(x) is a weak solution (by

putting µ = L(x, z)).

A weak solution of a random operator equation is a random solution

on some probability space.



Home Page

Title Page

Contents

JJ II

J I

Page 8 of 18

Go Back

Full Screen

Close

Quit



Home Page

Title Page

Contents

JJ II

J I

Page 9 of 18

Go Back

Full Screen

Close

Quit

Random operator equations: Approximations

Let X , Y and Z be complete separable metric (Polish) spaces,

T : X × Z → Y be Borel measurable, z be a Z-valued random

variable (on (Ω,F ,P)) and 0 ∈ Y be fixed. We consider

T (x, z(ω)) = 0 (ω ∈ Ω).

In addition, we consider the approximate random operator equations

Tn(x, zn(ω)) = 0 (ω ∈ Ωn;n ∈ N),

where for each n ∈ N, Xn ⊂ X , Zn ⊂ Z, Tn : Xn × Zn → Y

be Borel measurable and zn be a Zn-valued random variable (on

(Ωn,Fn,Pn)).

Let (xn) be a sequence of random solutions to the approximate

random operator equations.

Motivation: Approximation procedures for solving random equa-

tions require a ’discretization’ of T and an approximation (’sam-

pling’, ’estimation’) of z.
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Weak convergence in P(X): (µn) converges weakly to µ iff

lim
n→∞

∫
X

f (x)µn(dx) =

∫
X

f (x)µ(dx) ∀f ∈ Cb(X,R).

The topology of weak convergence is metrizable if X is separable.

Weak compactness is characterized by uniform tightness due to

Prokhorov’s theorem.

Problem: Find conditions on (Tn) and T that imply weak conver-

gence of (L(xn)) if (L(zn)) converges weakly to L(z).

A sequence (Tn) converges discretely to T iff

(i) d(x,Xn) = infy∈Xn dX(x, y)→ 0 (∀x ∈ X),

d(z, Zn) = infv∈Zn dZ(z, v)→ 0 (∀z ∈ Z).

(ii) For all (x, z) ∈ X×Z and sequences (xn, zn) ∈ Xn×Zn such

that xn → x in X and zn → z in Z it holds

T (xn, zn)→ T (x, z) (in Y ).

(Stummel, Reinhardt, Vainikko)
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Theorem:
Let the following conditions be satisfied:

(a)
⋃
n∈N[Tn(·, zn)]−1(K)∩B is relatively compact in X for each

zn ∈ Zn, n ∈ N, bounded B ⊂ X and compact K ⊂ Y .

(b) {Tn(x, ·) : x ∈ B ∩ Xn, n ∈ N} is equicontinuous on K for

each bounded B ⊂ X and compact K ⊂ Z.

(c) (Tn) converges discretely to T .

(d) (L(zn)) converges weakly to L(z).

(e) The set {L(xn) : n ∈ N} is stochastically bounded, i.e., for

each ε > 0 there exists a bounded Borel set Bε ⊂ X such that

inf
n∈N
L(xn)(Bε) ≥ 1− ε .

Then the set {L(xn) : n ∈ N} is relatively compact with respect to

the weak topology and each weak limit of a subsequence is a weak

solution of the random operator equation T (x, z(ω)) = 0 (ω ∈ Ω).
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Elliptic PDEs with random coefficients

We consider the random elliptic PDE

−∇(a(ξ, z(ξ, ω))∇x(ξ)) = f (ξ) (ξ ∈ D), x(ξ) = 0 (ξ ∈ ∂D).

where D ⊂ Rm is a bounded polyhedron, z a Z-valued random

variable, where Z is a bounded subset of L∞(D), X = H1
0(D)

and Y = H−1(D) = X∗.

Variational formulation:

X = H1
0(D) ⊂ H = L2(D) ⊂X∗= H−1(D), ‖x‖X = ‖∇x‖Lm2∫

D

a(ξ, z)〈∇x(ξ),∇v(ξ)〉dξ =

∫
D

f (ξ)v(ξ)dξ (∀v ∈ X).

Let a be continuous, Cmin ≤ a(ξ, z) ≤ Cmax, ∀(ξ, z) ∈ D × Z.

Let Xn be a finite element subspace of X such that d(x,Xn)→ 0

∀x ∈ X . Assume (L(zn)) converges weakly to L(z).

Then the sequence (L(xn)) converges weakly to a weak solution.
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Approximate the integral

I(G(z)) =

∫
Z

G(z)dz = lim
s→∞

∫
[0,1]s

G(z1, . . . , zs, 0, . . .)dz1 · · · dzs

by a lattice rule Qs,N(4, ·) with random shift 4 in [0, 1]s and N

points in s dimensions, and for each shifted lattice point solve the

approximate elliptic problem∫
D

a(ξ, z(ω))〈∇xh(ξ),∇v(ξ)〉dξ =

∫
D

f (ξ)v(ξ)dξ (∀v ∈ Xh).

in a finite element subspace Xh (on D ⊂ Rm) with Mh = O(h−m)

degrees of freedom with linear cost O(Mh).

Theorem: (Kuo/Schwab/Sloan 12)

The convergence rate of the scheme is(
E
[
|I(G(z))−Qs,N(4;G(xh))|2

])1
2 ≤ C

(
s−1 + N−1+δ + hτ

)
,

where 0 ≤ τ = t + t′ ≤ 2, N is prime, δ ∈ (0, 12], f ∈ H−1+t(D),

G ∈ H−1+t′(D), p = 2
3 and

∑
j∈N ‖ψj‖

p
L∞(D) <∞.
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Conclusions and thanks

• Recently the numerical analysis of random differential equa-

tions became a very active field of research. In particular, com-

binations of generalized Wiener or Karhunen-Loéve expansions

with multi-level Monte Carlo and Quasi-Monte Carlo methods

became popular.

• There is a pre-history of existence and approximation results

for random operator equations.

• Heinz Engl contributed basic results to both existence and ap-

proximation approaches of random equations.

• Many thanks Heinz for several years of valuable collaboration.

• Many thanks Heinz for all your support and for the lovely

visits to Austria.
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Congratulations Heinz to your 60th birthday !

Thank you for your attention !
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