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Abstract 

The economic dispa.tch of electric power with uncertain dema.nd is modeled 
as stochastic program with simple recourse. We a.na.lyze qua.ntita.tive sta.bil
ity properties of the power dispa.tch model with respect to the L1-dista.nce 
of the ma.rgina.l distribution functions of the dema.nd vector. These sta.bil
ity results a.re used to derive asymptotic properties of the model if the (true) 
ma.rginal distributions a.re replaced by smooth nonpa.rametric estima.tes based 
on the kernel method. Finally, we discuss how smooth estima.tes ca.n be used 
efficiently for the numerical trea.tment of simple recourse models by using non
linea.r programming techniques. Numerica.l results a.re reported for Da.ntzig's 
Aircra.ft Alloca.tion Problem. 

1 Introd uction 

A model for the optimal dispatch of electric power to the units of an 
energy production system is considered that takes explicit account 
of the uncertainty of the electric power demand. This is done by 
introducing so-called expected recourse costs for under- and over
dispatching (similar to [5]) and leads to a large-scale convex stochas
tic program with simple recourse. For the uncertain demand, we 
suppose that a set of empirical data is given for the whole operating 
cycle. This motivates investigations in two directions: 
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(1) the stability analysis of stochastic programs with simple re
course to treat the situat.ion of incomplete lluormation (see Sec
tion 3), and 

(2) the choice of appropriate estimators for the distribution func
tions of the random demand at each time interval. 

The stability analysis is carried out by applying general results taken 
from [24], [25]. We also refer to [9] for a survey of stability results in 
stochastic programming, to [10], [16], [28]' [31] for relevant statisti
cal stability results and to [4] where the possibility of using density 
estimates in stochastic programming is outlined. 

For our application, we motivate the use of nonparametric estima
tors for the distribution functions of the random demand. Nonpara
metric estimators based on the kernel method (see e.g. [7], [21]) are 
apparently favourable in our context, since they lead to stochastic 
programs having the property that the objective flIDction is continu
ously differentiable and that function (gradient) values can be com
puted efficiently without numerical integration (d. Section 5). Addi
tionally, asymptotic properties of kernel-type estimators for distribu
tion functions are comparable to those of the empirical distribution 
(see Section 4). In Section 4, we also outline how these asymptotic 
properties together with stability results of Section 3 lead to con
vergence rates for optimal solution sets of the power dispatch model 
if the sample size of observations for the demand tends to infinity. 
In Section 5, we discuss the numerical treatment of simple recourse 
models involving kernel-type estimators (for the unknown distribu
tion) via standard nonlinear programming techniques. We report on 
the development of a program system and on numerical results for 
(a modified version of) Dantzig's Aircraft Allocation Problem. 
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2 A model for optimal power dispatch with un
certain demand 

The problem of optimal power dispatch consists in allocating 
amounts of electric power to the generation units of an energy pro
duction system such that the total generation costs are minimal while 
the actual power demand is met and certain operational constraints 
(of the system) are satisfied. The system we shall consider comprises 
thermal power stations (tps), pumped hydro storage plants (psp) and 
an energy contract with connected systems. 

The peculiarities of the system and the power dispatch model (cr. 
also [26]) are the following: 

(a) tps and psp serve as base- and peak-load plants, respectively, 

(b) the model is designed for a daily operating cycle and assumes 
that a unit commitment stage has been carried out before, 

(c) the reserve levels and transmission losses are modeled by means 
of adjusted portions of the demand, 

(d) the cost functions of the thermal plants are taken to be strictly 
convex and quadratic, 

( e) the model takes explicit account of the uncertainty of the electric 
power demand by introducing an expected recourse action which 
is associated with the mismatch between scheduled generation 
and actual demand. 

To give a more detailed description of the model, let K and M 
denote the number of tps and psp, respectively. Assume that the 
scheduling time-horizon consists of N intervals Tr (r = 1, ... , N). 
Let Ir C {I, 2, ... , K} denote the index set of available online tps 
within the time interval Tr (r = 1, ... , N). The (unknown) outputs 
of the tps and psp at the interval Tr are Ylr (1 = 1, ... , K) and S jr 

(generation mode of the psp jE{I, ... ,M}), respectively. By Wjr we 
denote the input of the psp jE{I, ... , M} during the pumping mode 
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and by er the level of electric power which corresponds to the energy 
contract at time interval Tr • Denoting x := (y, s, w, e)T ERm with 
m := N(K + 2M + 1) the model of optimal power dispatch reads 

min {g(x) : xEC,Ax = z} (2.1) 

Here, the total generation cost function 9 is convex quadratic on Rm 
and has the form 

g(x) := t (L C,r(Y'r) + drer) 
r=l lfl, 

where C,r (·) are strictly convex quadratic cost functions for the 
tp s l within Tr and dr is the cost according to the contract at Tr (l = 
1, ... ,Kjr = 1, ... ,N). 

The set C C Rm in (2.1) is a nonempty bounded convex poly
hedron formed by the operational constraints of the system, e.g. 
bounds for the power output of the plants, balances between gener
ation and pumping in the psp, balances for the psp over the whole 
time-horizon, fuel quotas of the tps. 

The equation Ax = z in (2.1) reads component wise (r = 1, ... , N) 

M 
[Ax]r := LYlr + L(Sjr - Wjr) + er = Zr 

ld, j=l 

and says that the total generated output meets the demand z 
(Zl"'" ZN)T at each time interval Tr • We consider the demand Z 

as a random vector and denote by fJ- its probability distribution on 
R N and by Fr the dis tribution function of Zr (r = 1, ... , N). Follow
ing [5] we introduce a penalty cost for the deviation of the scheduled 
output from the actual demand for under- and over-dispatching, re
spectively. To be more precise, we define 

(2.2) 

where q: and q; are the recourse costs for the under- and over
dispatching at time interval Tr (r = 1, ... , N), respectively. For a 
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discussion of the interpretation and choice of the recourse costs q: 
and q; we refer to [5, pp. 181, 184]. 

Adding the expected recourse costs E [Q(z - Ax)] to the deter
ministic cost function 9 we arrive at the following stochastic power 
dispatch model : 

nUn {g(X) + ft~,(t - [Ax],) dF,(t) : X<C} (2.3) 

Similar power dispatch models are considered in [3] and [5]. More 
information on various aspects of power dispatch can be found in the 
volume [32] and in several papers of [11], Part IV. It is well-known 
that (2.3) is a particular stochastic program with simple recourse 
(see [13]). (2.3) is a large scale convex nonlinear program having lin
ear constraints. If all distribution functions Fr (r = 1, ... ,N) have 
densities, the objective function of (2.3) is continuously differentiable 
(cf. [13]' p.56 ff.). To give an idea how large (2.3) is for real-life ap
plications, we mention that for the energy production system of East 
Germany typically K := 26, M := 5 which leads together with (say) 
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N := 24 to m := 888. For the uncertain demand, a set of empirical 
data (in practice, a medium - sized sample) is given (see also Section 
4). It is suggested in [3] and [5] that the distribution of the random 
demand (at each time interval) can be chosen as (trimmed) normal. 
However, our tests with the available empirical data did not justify 
this hypothesis (especially for all time-intervals in the day-time). As 
an example, Figure 2.1 shows an estimate for the density of the cen
tered demand during the how' 1 p.m. - 2 p.m. (of a day of normal 
category). The estimate is obtained according to formula (4.1) and 
by using the triangular kernel (with bn = 30 and n = 436). Finally, 
we preferred the use of nonparametric estimators for the (unknown) 
distribution functions. This is described in more detail in Section 4 
and 5. 

3 Stability analysis 

Consider the following (convex) stochastic program with simple re
course and random right-hand side 

min {g(x) + QJ1(Ax) : XEC} (3.1 ) 

where 

ks Q(z - X) p,(dz) 

min {qT y: (1, -I)y = t, Y E R~} 
(3.2) 

We assume that 9 is a real-valued convex function on Rm, C is a 
nonempty, closed, convex subset of Rm, A is a s X m matrix, qER2S 

and p, is a (Borel) probability measure on RS. 
Under the basic assumptions 

(AI) q+ + q- ER~ , where q = (::) 

(A2) J Ilzll p,(dz) < +00 (II, II denoting the Euclidean norm on RS), 
RS 
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Q has the representation (2.2) and Qp. is a real-valued separable 
convex function on R S having the shape 

(3.3) 

where Fr (r = 1, ... , s) are the one-dimensional marginal distri
bution functions of J.l. and jlr (r = 1, ... , s) their mean values (cf. 
e.g.[13]). 

This section deals with the stability of problem (3.1), when the 
underlying probability measure J.l. is subjected to (small) perturba
tions. Here, stability means that the optimal value cp(J.1.) and the 
optimal solution set '!f;(J.l.) of problem (3.1) enjoy certain continuity 
properties with respect to variations of J.l. in a (properly selected) sub
set of probability measures on RS equipped with a suitable distance 
(" probability metric"). 

To select a set of probability measures and a metric, we notice 
that, due to the separability structure of Qp. (see (3.3)), problem 
(3.1) only depends on the marginal distributions J.l.r (r = 1, ... , s) of 
J.l.. Hence, we may assume that J.l. has independent one-dimensional 
marginal distributions. 

Therefore we consider the following metric space (M(RS), d) 
where M(RS) := {v : v is a probability measure on RS hav
ing independent one-dimensional marginals Vr (r = 1, ... , s) and 
J It I vr(dt) < 00 (r = 1, ... , s)} and 
R 

S 

d(VI' V2) := L J IFIr(t) - F2r(t) I dt, 
r=l R 

(3.4) 

FIr and F2r (r = 1, ... , s) denoting the one-dimensional marginal 
distribution functions of VI, V2 E M(RS). 

The first stability result asserts upper semi continuity of the opti
mal set mapping '!f;(.) and a local Lipschitz property of the optimal 
value function cp(.) of (3.1) at J.l. E M(Rs). 
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Theorem 3.1 
Fix I-L E M(RS), suppose (AI) and let 'Ij;(I-L) be nonempty and 

bounded. 
Then there exist constants L > 0, 8 > ° such that 

and 'Ij;(v) is nonempty whenever v E M(RS), d(l-L,v) < 8. The set
valued mapping 'Ij;(.) from (M(RS), d) into Rm is upper semicontinu
ous at I-L, i.e. for each open set U containing 'Ij;(I-L) there exists 80 > ° 
such that 'lj;(v) C U whenever v € M(RS), d(J.L, v) < 80 • 

Proof 
We apply Theorem 2.4 and Remark 2.5 of [25] and obtain the 

assertion by using the Wasserstein metric WI (cf. Section 2 of [25]) 
instead of the metric d. It remains to notice that WI coincides with d 
on M(RS) if RS is equipped with the norm IIzllt := 2::=1 Izd (z E RS) 
(see Remark 2.11 in [25]) .• 

The following example shows that, under the assumptions of the 
above Theorem, 'Ij; is in general not lower semicontinuous at I-L even if 
I-L has a density. Recall that lower semicontinuity of 'l/J at I-L E M(RS) 
means that for each open set U satisfying U n 'Ij;(I-L) i= 0 there 
exists 80 > ° such that U n 'Ij;(v) i= 0 whenever d(l-L, v) < 80 • 

Example 3.2 
In (3.1), let m = s = 1, g(x) = 0, C := R, q := (1, l)T, A := 1. 

Consider the family ve , c E [0,1] of probability measures on R given 
by their densities 

[

1- c 

0 e(t):= C 
l-c 

° 
Then Q(t) = It I (t E R), (AI) is satisfied and Ve E M(RS) for all 

e E [0,1]. We obtain from (3.3) that 
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'if; ( V e ) {o} for all e E (0,1], 

'if; ( vo) 
1 1 

[-2' 2] and 

cp(ve ) 
3 e 

for e E· [0, 1]. -- -
4 2 

Furthermore, we have d(ve, Yo) < e. Hence, we conclude that 'if; is 
not lower sernicontinuous at fJ. := Yo. 

Under a certain positivity condition for the one-dimensional 
marginal densities of fJ., we now show that (at least) the sets of 
optimal tenders behave locally Holder contmuous at fJ.. 

Theorem 3.3 
Fix fJ. € M(RS), suppose q: + q; > 0 (r = 1, ... , s) and let 

'if;(fJ.) be nonempty and bounded. Assume, in addition, that the one
dimensional marginal densities 0 r (r = 1, ... , s) of fJ. exist and that 
there exist real numbers ar , br , e > 0 (r = 1, ... , s) such that the 
conditions A('if;(fJ.)) C x:=l(ar, br) and 0 r(t) > er for all t € (ar, br) 
and r = 1, ... , s hold. 

Then the set {Ax : x € 'if;(fJ.)} is a singleton and there exist con
stants L1 > 0 and 51 > 0 such that for all v € M(RS) with d(fJ., v) < 51 
we have 

where 

Proof 

sup IIAx - x",11 < L 1d(fJ., v)1/2 
:mp(lI) 

{x"'} = {Ax: x € 'if;(fJ.)} 

We want to apply Theorem 4.3 in [24]. To this end we have to 
show that Q p is strongly convex on V := X :=1 (ar , br ). Let >. € [0,1] 
and X,X be chosen such that Xr, Xr € (ar, br) for all r = 1, ... , s. Then 
we obtain from (3.3) 

Qp(>'X + (1 - >')X) = >.Qp(X) + (1 - >.)Qp(X) - G(X, x; >'), 
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where 
s 

E (q: + q;){A[hr(AXr + (1 - A)Xr; Xr) - hr(Xr; Xr)] 
r=1 

+(1 - A)[hr{AXr + (1 - A)Xr;Xr) - hr{Xr;Xr)]} 

and hr{u, v) := f~oo(t - v)E>r{t) dt ,u., V € R, T = 1, ... , s. Now, 
let T€{l, ... , s} and assume without loss of ,generality that Xr < Xr. 
Then we have, setting Xr{A) := AXr + (1 - A)Xr, 

Analogously, we get the inequality 

hr(Xr(A); Xr) - hr{;~r; Xr) > ~ A2 (Xr - Xr)2 . 

Altogether, we obtain 

Qp{AX + (I - A)X) < AQp{X) + (1 - A)Qp{X) 

-~ f./ q; + q;)erA{l - A) (Xr - Xr)2 

< AQp(X) + (I - A)Qp{X) 

- ~ A{l - A)lIx - xII2 
2 

where ~ := minr=l, ... ,s(q: + q;)er > 0 and Qp is strongly convex 
on V. Setting A = !, this together with the convexity of 9 implies in 
particular 

g{x) + Qp(Ax) > cp(p.) + : !lAx - Ax",112 

for all x € C and x", € 'ljJ(p.). This proves that the set {Ax: x € 'ljJ{p.)} 
is a singleton. The assertion now follows from Theorem 4.3 in [24] 
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with the same argument concerning the metrics as in the proof of 
Theorem 3.1. • 

Remark 3.4 
Example 4.5 in [24] shows that the exponent 1/2 on the right-hand 

side in the assertion of Theorem 3.3 is optimal, and our Example 3.2 
shows that the assertion of Theorem 3.3 is not true if A( 'lj; (J-L)) is not 
contained in the support of J-L. 

Theorem 3.5 
Let, in addition to the assumptions of Theorem 3.3, 9 be convex 

quadratic and C be polyhedral. 
Then there exist constants L2 > 0 and 02 > 0 such that 

whenever v E M(R3), d(J-L, v) < 02. (Here, dH denotes the Hausdorff 
distance on subsets of R m . ) 

Proof 
The result follows from Theorem 2.7 in [25] by repeating the 

strong-convexity and metric arguments in the proof of Theorem 3.3 . 

• 
Remark 3.6 

The discussion in Remark 2.9 in [25] shows that Theorem 3.5 
does not remain true for a general convex constraint set C and for 
a general convex (deterministic) objective function g. Fortunately, 
the above results cover the situation of the power dispatch model in 
Section 2, if the marginal densities of J-L fulfil the positivity condition 
imposed in Theorem 3.3. 

Extensions of our stability results to more general recourse models 
may be found in [24], [25] and in the papers [14], [23], where qual
itative stability results for general recourse problems are obtained 
with respect to the topology of weak convergence on the set of all 
probability measures (cf. [2]). 
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4 Smooth nonparametric distribution estimates 
and asymptotic analysis 

In this section, we consider nonparametric estimates for univariate 
distribution functions and analyze their rates of convergence. In 
particular, we study smooth estimates which are obtained by inte
grating a density estimator of the kernel type. This is motivated by 
the stochastic power dispatch model (2.3), since there the distribu
tion functions of the uncertain electric power demand at each time 
interval have to be estimated and since smooth estimates lead to a 
smooth nonlinear programming problem. 

Let (Xdi ~ N be a sequence of independent and identically dis
tributed real-valued random variables with common distribution 
function F. By Tn we denote the empirical distribution function 
for sample size n EN, i.e. 

n 
Tn(x) := n- 1 L Io(x - Xd (x E R) 

i=1 

where 10 is the indicator function of the interval [0, +00 ). A nonneg
ative function k having the property fR k(x) dx = 1 is called kernel. 
Suppose (b n ) is a sequence of positive numbers ("smoothing param
eters") tending to zero. Then 

~ n 
fn(x) := (nbn)-l L k ((x - Xi)b~1) (x E R) (4.1) 

i=1 

is a kernel estimate for the density f := F' and the corresponding 
kernel estimate of F is 

where K(x) := f:'oo k(t) dt. Tn may be interpreted as a smoothed 
version of the empirical distribution function Tn. For more infor
mation and background on kernel-type estimators it is referred to 
[7],[21] and [30]. 
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In the following, a kernel k is called class s kernel for some sEN 

if 

kXik(X)dx O,i=l, ... ,s-l, 

k IxISk(x) dx < 00. 

If, in addition, the kernel k is symmetric (about 0), we need only 
consider even values of s. In that case, it is known that class 4 
kernels of compact support do not exist (see [7, p.100], [30, p.66]). 
For a discussion of class s kernels which are possibly negative-valued 
see [7, Chapter 7.2]. 

Some kernels, which are, in fact, all symmetric class 2 kernels and 
will be considered in Section 5, and their cumulative distribution 
functions K are now listed. 
Epanechnikov 

k( t) 

K(t) 

Biweight 

k( t) 

K(t) 

Triangular 

k(t) 

{ 4~(1 0 t' /5) (It I < vis) 
otherwise 

1 
o (t < -vis) 

(-vis < t < vis) 
(t > vis) 

{ ::(1 ~ t')' (It I < 1) 
otherwise 

1 
o 

1. + ~t - ~t3 + ~t5 
2 16 8 16 

1 

(It I < 1) 

(t < -1) 
(-l<t<l) 
(t > 1) 

otherwise 
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o 
1. + t + 1.t2 
2 2 

t - t + tt2 

1 

(t < -1) 
(-l<t<O) 
(O<t<l) 
(t > 1) 

Let Ct := Ct(R) denote the class of s-times continuously differ
entiable functions F such that F(s) is bounded on R. The following 
auxiliary result gives an estimate for the distance 

IIFn - Flloo := sup IFn(x) - F(x)1 
uR 

where Fn is the kernel type estimate (4.2) for a sufficiently smooth 
distribution function F. Its proof follows essentially the ideas devel
oped in [34]. 

Lemma 4.1 
Let sEN and assume that F E Ct and k is a class s kernel. Then 

(n EN) 

where 

Proof 

From [34], Lemma 2.3 we have the estimate 

II Fn - Flloo < llYn - Flloo + sup I EFn(x) - F(x)1 
.uR 

where E denotes the mean value with respect to the sample prob
ability space. It remains to derive an estimate for the second term on 
the right-hand side. For each x E R we obtain by Taylor's expansion 
and using that k is a class s kernel 

fa K((x - t)b~l) dF(t) - F(x) 

fa [F{x - tbn) - F(x)] k(t) dt 

h (_tbn)sF(S){x ~ fJtbn) k(t) dt 
R s. 
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with some e E (0,1) depending possibly on x, t and n. This finally 
yields the desired estimate.e 

Another, but similar, technique for estimating 

can be found in [29]' Chapt. 23.2. The next result now asserts rates 

for the almost sure and mean convergence of (.IIFn - Flloo) . 
n fN 

Proposition 4.2 
Let sEN, assume that F E Ct and k is a class S kernel. Suppose 

that (bn ) is chosen such that 
1 

limsup b~n2 < 00. 
n-+oo 

(a) The following law of the iterated logarithm (LIL) holds 
1 A 

limsup (2n/loglogn)21IFn - Flloo < 1 
n-+oo 

almost surely. 

(b) 
1 A 

lim sup n:l E(lIFn - Flloo < 00. n-+oo 

Proof 
Part (a) of the assertion follows from Lemma 4.1 and the Smirnov
Chung LIL for empirical distribution functions (see [12, Chapt.6.8], 
[29]; d. also the proof of Theorem 3.2 in [34] which in fact is the 
particular case of our result for s = 2). 

To establish (b), we again use Lemma 4.1. It remains to apply 
the following known result for empirical distribution functions (cf. 
[12, Chapt.3.3]): 

E [IIFn - Flloo] < 2 E [sup [Fn( t) - F( t)]] = O(n -~) e 
tfR 

Less seems to be known for the convergence of (Fn) to F in terms 
of the Ll-distance. Next we give a speed-of-convergence result in this 
direction for the case that the kernel k has compact support. 
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Proposition 4.3 
In addition to the hypotheses of Proposition 4.2, let the kernel k 

have compact support and assume that the p-th absolute moment 
Mp := JR ItlP dF(t) be finite for some p > 1. Then 

limsup nHl-~) E ([ IFn(t) - F(t)1 dt) < 00. n-too lR 

Proof 
1 

Let cn := n-~, Cn := c;;" for each n E N. Then we obtain 

nHl-~) E (fR IFn(t) - F(t)1 dt) < ~-1 E(L-~n(Fn(t) + F(t)) dt 

+ 2cnllFn - Flloo 

+ 1~((1- Fn(t)) + (1 - F(t))) dt) 

~-1 [1~ (F( -t) + (1 - F(t))) dt 

+ l~(EFn(-t) + (1- EFn(t)))dt] 

+ 2c;;-1 E(IIFn - Flloo). 

In view of Proposition 4.2(b) we need to study only the first two 
terms in the last row. By Markov's inequality we have 

F( -t) + (1 - F(t)) < 2Mpt-P for all t > a . 

Hence, for the first integral we obtain the estimate 

~-l [00 (F( -t) + (1 _ F(t))) dt < ~-12Mp [00 t-P dt = 2Mp. 
lCn lCn p - 1 

It remains to estimate the second integral. To this end, let I denote 
the compact support of k and let no E N be such that Cn > 1 and 
bnI C [-~,~] for all n > no. 

Let n > no and x > 1. We obtain by Markov's inequality 

EFn(-x) - fR F( -x - tbn)k(t) dt = /rF( -(x + tbn))k(t) dt 

< h Mp(x + tbn)-Pk(t) dt < Mp( x - ~) -p < Mp(;) -Po 
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Analogously, we have the estimate 

The last two inequalities yield 

100 ~ ~ roo 2P+1 M 
~-1 (EFn(-t)+(l-Fn(t))) dt < 2p+IMp~-1 lc t-P dt = 1P • 

Cn Cn p-

This completes the proof .• 

Remark 4.4 
It is clear from the proof of Proposition 4.3 that stronger moment 

conditions for F lead to more comfortable rates of convergence for 

E (fa IFn(t) - F(t)1 dt) as n ~ 00. 

It is not known whether the rate 0 (n-~) as n ~ 00 can be attained 
as in Proposition 4.2(b). 

IT F is the uniform distribution on [0,1] and Fn the corresponding 
empirical distribution function, then it is shown in [8, Chapter 6] that 
there exists a constant C > 0 such that 

Remark 4.5 
The convergence results show that the speed of convergence of per

turbed (or smoothed) empirical distribution function Fn (obtained 
by the kernel method) to the (unknown) distribution function F is 
essentially the same as for Fn if the sequence (bn) of smoothing pa
rameters is chosen appropriately. IT F € Ct and if a class s kernel 
is used, then bn := n-a with a > is is an appropriate choice. For 
a thorough discussion of the choice of smoothing parameters (e.g. 
also for small sample sizes) we refer to [1] and [30] (see also Section 
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5). Let us consider a stochastic program (3.1) with simple recourse 
and random right-hand side and suppose that for all components 
of the random vector a sample of n observations is given. We sup
pose that all marginal distribution functions are estimated by the 
kernel method( (4.2)) which leads to an estimated distribution /1n. 
Then the stability results of Section 3 together with Propositions 4.2 
and 4.3 yield asymptotic properties for the almost sure and mean 
convergence of the sequences 

(lcp(J1) - CP(/1n)l)n (N, 

(dH (1fJ(J1), 1fJ(/1n)))n ( N· 

For example, convergence rates for E(dH (1fJ(J1),1fJ(/1n))) (n EN) can 
be obtained following the ideas of Corollary 2.12 in [25]. For the 
power dispatch model of Section 2 we get, in particular, 
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since the support of the random demand is compact and the pos
itivity condition for the marginal densities (see Theorem 3.3) in a 
neighbourhood of the optimal tender is (certainly) satisfied. This 
asymptotic argument also provides a certain justification for our nu
merical approach to the treatment of the economic dispatch in the 
energy production system in East Germany. The available empiri
cal data is the difference of actual and predicted demand (so-called 
residuum) over several years. The data has been analyzed and clas
sified (in particular, into data belonging to days with comparable 
demand curves) (for details see [20]). After performing the data 
analysis and adding the predicted demand, the sample (for the de
mand) may be viewed as independent. The following pictures show 
kernel estimates for the marginal distribution function of the demand 
during the hour 1 p.m.- 2 p.m. (of a day of normal category). In 
both cases the triangular kernel has been used with a sample size 
n := 436 and smoothing parameters bn = 30 (Fig. 4.1) and bn = 50 
(Fig. 4.2). 
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5 Numerical treatment, implementation and 
test example 

In this section, we deal with the numerical treatment of stochastic 
programs with simple recourse and random right-hand side 

min {g(x) + Q~(X) : XfC, Ax = X} (5.1) 
where 9 is convex and continuously differentiable, C c Rm is a 

convex polyhedron, A an s x m - matrix, Qp. is defined by (3.2) 
and has the special feature that only a sample of n observations 
(with common distribution J.L) is available. Since Q ~ only depends 
on the marginal distribution functions Fr , T = 1, ... , s (cf. (3.3)), 
we may assume that n real observations Xrl, ... ,Xrn with common 
distribution function Fr (T = 1, ... , s) are given. Our approach is 
the following: For each T = 1, ... , s, Fr is estimated by a smooth 
nonparametric estimator Fr based on the kernel k (see Section 4) and 
Fr in (3.3) is replaced by Fr. This leads to the following (convex) 
nonlinear program having continuously differentiable objective and 
linear constraints: 

(5.2) 

.. s 1 n 

Q(X):= 2: [q:ULr - Xr) - (q: +q;)- E{(Xri - Xr) Kl((Xr - Xri)b-1) 
r=l n i=l 

+b K2((Xr - Xri)b- 1)}] 

where [J.r := * I:i=:l X ri , Kl(U) := f~oo k(t) dt, K2(U) := f~oo tk(t) dt 
and b is the smoothing parameter. 

We note that for many kernels k (especially those mentioned in 
Section 4) the functions Kl and K2 can be computed explicitly. 
Hence, no numerical integration has to be performed when Q and 
their partial derivatives 

88
Q := -q: + (q: + q;).!. t K1((Xr - Xri)b-1) 
Xr ni=l 
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are evaluated. Hence, the nonlinear program (5.2) can be solved 
efficiently by using standard nonlinear progra.mming systems, like 
e.g. the MIN OS-system (see [17]). 

The essential difference of our approach to those developed in 
several papers (e.g. [3], [5], [18], [19], [22], [33]) is that we do not 
consider Fr as discrete distribution functions but replace Fr by a 
smooth estimate Fr (r = 1, ... , s). This is certainly justified if (at 
least) medium - sized samples for Fr are given (as in our applications 
to power dispatch, see Section 2). We also refer to [11] as general 
reference for numerical methods in stochastic programming and to 
[18] and [27] for the description of program systems designed for 
simple recourse problems. 

A program system STOCHOPT according to the above mentioned 
approach has been developed for IBM/PC AT computers. The pro
grams are written in FORTRAN 77 and Turbo Pascal (user inter
face). 

The system consists of the following main parts: 

(i) User interface: it realizes an interactive facility for problem spec
ification, the construction of samples (if not available a priorily), 
choice of smoothing parameters, graphical representation of the 
optimal solution. 

(ii) Nonlinear progra.rnming part for solving (5.2). 

In (ii) the alternative use of Epanechnikov, biweigth or triangu
lar kernels is possible. Since these kernels have compact support, 
an appropriate ordering of the samples accelerates the evaluation of 
Q and its gradient considerably. The nonlinear progra.rnming part 
of STOCHOPT has been tested successfully on both modifications 
of problems taken from [15] and the model for optimal power dis
patch. The latter model has been solved for a real-life situation 
(with m = 888). Numerical results will be reported elsewhere. Now, 
we report the solution of the classical Aircraft Allocation Problem 
due to Dantzig ([6]). 
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Fig. 5.1 Dependence of the optimal value on the sample size 
(with smoothing parameter bopt ) 

An airline wishes to allocate airplanes of various types among 
its routes to satisfy an uncertain passenger demand, while operating 
costs plus the lost revenue from passengers turned away are minimal. 

The stochastic program with simple recourse is as follows 

min{cP'x + Q(X): Tx = e,Ax = X} (5.3) 
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dE 1117, e E 114: 

C 
0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 

1] A= ~ 
15 0 0 0 10 0 0 0 5 0 0 0 11 0 0 
0 28 0 0 0 14 0 0 0 0 0 0 0 22 0 
0 0 23 0 0 0 15 0 0 7 0 0 0 0 17 
0 0 0 81 0 0 0 57 0 0 29 0 0 0 0 

(1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
o 0) 

T= 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 o 0 
o 0 0 0 0 0 0 0 0 1 1 1 0 0 0 o 0 
o 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

d = (18 21 18 16 10 15 16 14 9 10 9 6 17 16 17 15 10)T 

e = (10 19 25 15)T. 

The revenue lost per passengers turned away on the r-th route 
(r = 1, ... , 5) is 

q+ = (13 13 7 7 l)T 
q = (0 0 0 0 O)T 

Dantzig solved the program (5.3) with discretely distributed pas
senger demand z for each of the routes. We assume the passenger 
demand to have a continuous distribution: 

Zl rv U[200, 300] 
Z2 rv U[50, 150] 
Z3 rv U[140, 220] (5.4) 

Z4 rv U[10, 340] 
Z5 rv U[580, 620] 

(U[a, b] denotes the uniform distribution on [a,b]). The optimal so
lution set is listed below: 



134 

600 

600 

400 

300 

200 

100 

0 
200 400 600 800 1000 

xl 223.4 223,6 223.4 223,4 223.4 
x2 104.4 104.7 104.7 104.4 104,4 
x3 175.1 174.9 176.1 176.1 176,1 

x4 164.8 164.3 164.3 164,7 164,6 
x6 684.3 584,1 584.7 584,6 686 

.xl .x2 I'/;;:,l x3 ax4 _x6 

Fig. 5.2 Optimal tenders for various sample sizes 

exact 

223,9 
106.9 
173,8 
162,4 
685.8 

(with smoothing parameter bopt ) and the exact result 

Aircraittype-+ 1 2 3 4 Tenders 
1 Route 
1 Xl = 10 Xl3 = 7.1 Xl = 224 
2 X2 = 0 X6 = 8.2 XlO = 4.8 X14 = 0 X2 = 106 
3 X3 = 0 X7 = 0 Xl5 = 7.9 X3 = 174 
4 X4 = 0 Xs = 10.8 Xu = 0 Xl6 = 0 X4 = 162 
5 X6 = 0 Xg = 0 Xl2 = 20.2 X17 = 0 X5 = 586 

The optimal value of (5.3) is 1824.7. 

In order to test oUI numerical approach, a pseudo-random num
ber generator has been used to simulate samples from the distribu
tions (5.4). The problem (5.2) (as approximation for (5.3)) has been 
solved for different sample sizes n and smoothing parameters b, re-
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Fig. 5.3 Dependence of the optimal value on the choice of 
smoothing parameter (b = bopt ) for a fixed sample 
of 400 observations 

spectively. According to the suggestion in [1], the special smoothing 
parameter bopt := 0.5(7n-~ ((7 being the standard deviation of the un
known distribution) was used when varying the sample size n. We 
note that for this choice of bn the asymptotic properties of Section 
4 are valid (see Remark 4.5). The numerical results are summarized 
in the figures 5.1-5.3. 

The results show that even for small sample sizes good approxi
mations are obtained for optimal values and optimal tenders, respec
tively. Fig. 5.3 indicates that the optimal value behaves insensitive 
on the choice of smoothing parameters (of a relatively large band
width), but that a choice of smaller smoothing parameters (than that 
suggested in [1]) might be favourable. 
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