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Abstract. A two-stage stochastic programming model for the short- or mid-term cost-optimal electric power
production planning is developed. We consider the power generation in a hydro-thermal generation system under
uncertainty in demand (or load) and prices for fuel and delivery contracts. The model involves a large number of
mixed-integer (stochastic) decision variables and constraints linking time periods and operating power units. A
stochastic Lagrangian relaxation scheme is designed by assigning (stochastic) multipliers to all constraints that
couple power units. It is assumed that the stochastic load and price processes are given (or approximated) by a
finite number of realizations (scenarios). Solving the dual by a bundle subgradient method leads to a successive
decomposition into stochastic single unit subproblems. The stochastic thermal and hydro subproblems are solved
by a stochastic dynamic programming technique and by a specific descent algorithm, respectively. A Lagrangian
heuristics that provides approximate solutions for the primal problem is developed. Numerical results are presented
for realistic data from a German power utility and for numbers of scenarios ranging from 5 to 100 and a time
horizon of 168 hours. The sizes of the corresponding optimization problems go up to 400.000 binary and 650.000
continuous variables, and more than 1.300.000 constraints.
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1. Introduction

The optimal management of electric power generation systems requires operational and
planning models. Operational optimization models provide schedules for the actual opera-
tion of power units and of electricity trading while planning models are needed to support
mid- or long-term decisions (e.g. by estimating the yearly sales trend or fuel consumption).
Both types of optimization models are often large-scale, mixed-integer and stochastic. The
latter aspect mostly concerns uncertainties of electrical load forecasts, of generator failures,
of flows to hydro reservoirs or plants, and of fuel or electricity prices.

In the present paper we develop a stochastic planning model for a thermal or thermally
dominated generation system that allows the computation of realistic production costs
for a short- or mid-term time horizon. Realistic production schedules of a power system
typically consist of a composition of piecewise (optimal) schedules for parts of the whole
time interval. Such a composition of schedule pieces is due to system re-optimizations after
data (e.g. load) changes or further unforeseeable events. Moreover, the power system has
to be run such that it is always able to satisfy all system constraints. This behaviour is
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356 NÜRNBERG AND RÖMISCH

modelled in Section 2 by introducing a two-stage stochastic programming model, where
the first-stage decision corresponds to the above composite schedule and the stochastic
second-stage decision reflects possible scenarios of the optimal system schedule that refer
to future recourse actions of each unit in response to the environment created by the first-
stage decision and by the data scenarios. Earlier attempts of developing such two-stage
models appear in Carøe and Schultz (1998) and Dentcheva and Römisch (1998). While
the model in Dentcheva and Römisch (1998) may be regarded as a starting point of the
present paper, the modelling idea of Carøe and Schultz (1998) is to consider the binary
variables as first-stage decisions and the unit outputs as recourse or second-stage actions.
The modelling novelty of the present paper consists in the introduction of compatibility
constraints for first- and second-stage actions.

More specifically, we consider a model for a generation system comprising thermal units
and pumped hydro storage plants under uncertain electrical load and prices for fuel and
electricity. The relevant mathematical optimization model contains a large number of bi-
nary and continuous variables, constraints and stochasticity appearing in right-hand sides
and cost coefficients. The time horizon ranges from one week up to one year. Compu-
tational results are given for a time period of one week as it is needed for the efficient
weekly production planning of hydro-thermal systems involving weekly load and pump-
ing cycles. Planning results for longer time periods could also be obtained approximately
by solving the model for several selected characteristic weeks. Our model and solution
techniques are validated on the system of the German utility VEAG Vereinigte Energie-
werke AG. Its total capacity is about 13,000 megawatts (MW) including a hydro capacity
of 1,700 MW; the system peak loads are about 8,600 MW. Test runs were performed for
a typical configuration of the VEAG system with 25 thermal units and 7 pumped hydro
plants.

Since our stochastic programming model contains mixed-integer decisions in both stages
and is large-scale, new questions on the design of solution algorithms are raised. Nowa-
days, solution methods are well developed for linear two-stage stochastic programs without
integrality constraints (see Birge, 1997; Ruszczyński, 1997). Most of them are based on
discrete approximations of the stochastic data process. Recently, some algorithmic progress
has also been achieved in mixed-integer stochastic programming models and applications to
operations research and power optimization. The following algorithmic approaches to such
models appear in the literature: (a) Scenario decomposition by splitting methods combined
with suitable heuristics (Takriti and Birge, 2000), (b) scenario decomposition combined
with branch and bound (Carøe and Schultz, 1998, 1999), (c) stochastic (augmented) La-
grangian relaxation of coupling constraints (Carpentier et al., 1996; Dentcheva and Römisch,
1998; Gröwe-Kuska et al., 2002; Nowak, 2000; Takriti et al., 2000). The approaches in (a)
and (b) are based on a successive decomposition of the stochastic program into finitely
many deterministic (or scenario) programs that may be solved by available conventional
techniques. The approach of (c) hinges on a successive decomposition into finitely many
smaller stochastic subproblems for which (efficient) solution techniques must be developed
eventually. Due to the nonconvexity of the underlying stochastic program, the successive
decompositions in (a)–(c) have to be combined with certain global optimization techniques
(branch-and-bound, heuristics, etc.).
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Recently, a number of new applications of integer stochastic programming models ap-
peared in different areas. We mention here the multi-period investment model for capacity
expansion in an uncertain environment (Ahmed et al., 2002), a two-stage simultaneous
power production and day-ahead trading at a power exchange under price and load un-
certainty (Nowak et al., 2002) and a capacity planning model for a semiconductor manu-
facturing process under demand uncertainty (Swaminathan, 2000). The numerical solution
techniques proposed in these papers are based on LP relaxation and branch-and-bound, on
the method (b) above and on classical non-probabilistic Lagrangian relaxation, respectively.

The algorithmic approach followed in the present paper consists in a stochastic version
of the classical Lagrangian relaxation idea (Lemaréchal, 1992), which is very popular in
power optimization (cf. Bertsekas et al., 1983; Feltenmark and Kiwiel, 2000; Gollmer et
al., 1999; Lemaréchal and Renaud, 2001; Sheble and Fahd, 1994; Zhuang and Galiana,
1988). Since the corresponding coupling constraints contain random variables, stochastic
multipliers are needed for the dualization, and the dual problem represents a nondifferen-
tiable stochastic program. Subsequently, the approach is based on the same, but stochastic,
ingredients as in the classical case: a solver for the nondifferentiable dual, subproblem
solvers, and a Lagrangian heuristics. It turns out that, due to the availability of a state-of-
the-art bundle method for solving the dual, efficient stochastic subproblem solvers based on
a specific descent algorithm and stochastic dynamic programming, respectively, and a spe-
cific Lagrangian heuristics for determining a nearly optimal primal solution, this stochastic
Lagrangian relaxation algorithm becomes efficient.

The paper is organized as follows. In Section 2 a detailed description of the hydro-
thermal generation system is given and the stochastic programming model is developed.
Section 3 describes the stochastic Lagrangian relaxation approach together with its compo-
nents. Finally, numerical results for the stochastic Lagrangian relaxation based algorithm
are reported in Section 4 for realistic data of the VEAG system.

2. Model

We consider a power generation system comprising (coal-fired and gas-burning) thermal
units, pumped hydro storage plants and delivery contracts. We describe a model for its
mid-term cost-optimal power production planning under uncertainty on the electrical load
and on the electricity and fuel prices. Let T denote the number of time intervals obtained
from a uniform discretization of the operation horizon. Let I and J denote the number of
thermal and pumped hydro storage units in the system, respectively. Delivery contracts are
regarded as particular thermal units.

The decision variables in the model comprise the outputs of all units, i.e., the electric
power generated or consumed by each unit of the system. They are denoted by uit , pit , i =
1, . . . , I, and s jt , w j t , j = 1, . . . , J, t = 1, . . . , T, where uit ∈ {0, 1} is the on/off decision
and pit is the production level of the thermal unit i during the time period t . Thus, uit = 0
and uit = 1 mean that the unit i is off-line and on-line during period t , respectively. The
generation and pumping levels of the pumped hydro storage plant j during period t are
specified by s jt and w j t . Further, we denote the storage level (or volume) in the upper
reservoir of plant j at the end of the interval t by � j t .
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All variables mentioned above have finite upper and lower bounds representing unit limits
and reservoir capacities of the generation system:

pmin
i t uit ≤ pit ≤ pmax

i t uit , uit ∈ {0, 1}, t = 1, . . . , T, i = 1, . . . , I, (1a)

0 ≤ s jt ≤ smax
j t , 0 ≤ w j t ≤ wmax

j t , 0 ≤ � j t ≤ �max
j t ,

t = 1, . . . , T, j = 1, . . . , J. (1b)

The constants pmin
i t , pmax

i t , smax
j t , wmax

j t and �max
j t denote the minimal and maximal outputs of

the units and the maximal storage levels in the upper reservoirs, respectively. The dynamics
of the storage level, which is measured in electrical energy, is modelled by the equations:

� j t = � j,t−1 − s jt + η jw j t , t = 1, . . . , T,
(2)

� j0 = �in
j , � jT = �end

j , j = 1, . . . , J.

Here, �in
j and �end

j denote the initial and final levels in the upper reservoir, respectively,
and η j is the cycle (or pumping) efficiency of plant j. The cycle efficiency is defined as
the quotient of the generated and the pumped energy that correspond to the same amount
of water. Together with the upper and lower bounds for � j t the Eq. (2) mean that certain
reservoir constraints have to be maintained for all storage plants during the whole time
horizon. Moreover, they show that there occur no in- or outflows in the upper reservoirs,
and, hence, that the storage plants of the system operate with a constant amount of water.
Further single-unit constraints are minimum up- and down-times and possible must-on/off
constraints for each thermal unit. Minimum up- and down-time constraints are imposed to
prevent thermal stress and high maintenance costs due to excessive unit cycling. Denoting
the minimum up- and down-times of unit i by σi and τi , respectively, the corresponding
constraints are described by the inequalities:

uit − ui,t−1 ≤ uiσ , σ = t + 1, . . . , min{t + σi − 1, T }, (3a)

ui, t−1 − uit ≤ 1 − uiτ , τ = t + 1, . . . , min{t + τi − 1, T },
t = 1, . . . , T − 1, i = 1, . . . , I. (3b)

The next constraints are coupling across the units: the load and reserve constraints. The
first constraints are essential for the operation of the power system and express that the
sum of the output powers is greater than or equal to the load demand in each time period.
Denoting by dt the electrical load during period t, the load constraints are described by the
inequalities:

I∑
i=1

pit +
J∑

j=1

(s jt − w j t ) ≥ dt , t = 1, . . . , T . (4)

In order to compensate unexpected events (e.g. sudden load increases or decreases, outages
of units) within a specified short time period, a spinning reserve describing the total amount
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of generation available from all thermal units synchronized on the system minus the present
load is prescribed. The corresponding constraints are given by the following inequalities:

I∑
i=1

(
pmax

i t uit − pit
) ≥ rt , t = 1, . . . , T, (5)

where rt > 0 is the spinning reserve in period t .
The objective function is given by the total costs of operating all the units. Since the

operating costs of hydro plants are usually negligible, the total system costs are given by
the sum of the startup and operating costs of all thermal units over the whole scheduling
horizon, i.e.:

I∑
i=1

T∑
t=1

[Cit (pit , uit ) + Sit (ui )], (6)

where Cit are the costs for the operation of the thermal unit i during period t and Sit are the
startup costs for getting the unit on-line in this period. We assume that each Cit is piecewise
linear convex, strictly monotonically increasing and of the form

Cit (p, u) = max
l=1,...,l̄

{αilt p + βilt u}, (7)

where αilt and βilt are fixed cost coefficients. The startup costs of unit i depend on its
downtime. They can vary from a maximum cold-start value to a smaller value when the unit
is still relatively close to the operating temperature. Here we will neglect this dependence
and assume constant costs γi t for starting up unit i at time t . This simplification could be
removed at the expense of higher model complexity. In particular, memory requirements for
dynamic structures, which will be introduced in Section 3.2, would grow considerably. This
would lead to a severe limitation of the performance of the developed algorithm. Hence,
the description of the startup costs is given by

Sit (ui ) := γi t max{uit − ui,t−1, 0}, (8)

where ui := (uit )
T
t=0 and ui0 ∈ {0, 1} is a given initial value.

Altogether minimizing the objective function (6) subject to the constraints (1)–(5) leads
to a cost-optimal schedule for all units of the power system during the specified time
horizon. It is worth mentioning that a cost-optimal schedule has the following two interesting
properties, both of which are a consequence of the strict monotonicity of the cost functions.
If a schedule (u, p, s, w) is optimal, then the load constraints (4) are typically satisfied with
equality and we have s jtw j t = 0 for all j = 1, . . . , J, t = 1, . . . , T , i.e., generation and
pumping do not occur simultaneously (cf. Gröwe et al., 1995).

The minimization problem (1)–(6) represents a mixed-integer program with linear con-
straints and IT binary and (I + 2J )T continuous decision variables. For a configuration of
the VEAG system with I = 25, J = 7 and T = 168 (i.e., 7 days with hourly discretization),
this amounts to 4200 binary and 6552 continuous variables. Figure 1 shows a typical load
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Figure 1. Load curve and hydro-thermal schedule.

curve of a peak load week and a corresponding cost-optimal hydro-thermal schedule. The
load curve in the figure exhibits two overlapping cycles: a daily and a weekly cycle. Pumped
hydro plants are designed to exploit these two cycles by transporting electrical energy in
time. They help to save fuel costs through pumping during off-peak periods (e.g. nights and
weekends) in order to refill the reservoir on the one hand, and serving with hydro-energy
during peak-load periods on the other hand. The hydro schedule in figure 1 reflects this
typical operation of pumped hydro storage plants. The remainder of the demand, i.e., the
difference between the original system load and the hydro schedule, shows a more uniform
structure than the original load. This portion of the load is covered by the total output of
the thermal units.

The model elaborated so far covers the case where we are faced with deterministic data
and thus with deterministic decision variables only. In power production planning this
approach soon becomes futile when one considers time periods lying far in the future. In
order to derive solutions that hedge against uncertainty it is necessary to incorporate the
randomness of the data into the model. So far this has mainly been done for operational
models (cf. Dentcheva and Römisch (1998) and Gröwe-Kuska et al. (2002) and references
therein).

In electric utilities schedulers forecast the electrical load for the required time span. For
this purpose they make use of historical data, meteorological parameters, experience and
statistical methods. Since we regard future planning periods (e.g. next week or year), we
assume that the quality of available information on the load uncertainty does not depend
on time, i.e., the uncertainty does not increase with the length of the planning horizon.
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Furthermore, the load and the prices are stochastic right from the beginning of the considered
time period. The stochastic behaviour of the load dt , the spinning reserve rt and the price
for fuel and electricity—characterized by its coefficients at , bt and ct —is represented by a
discrete-time stochastic process

{ξt := (dt , rt , at , bt , ct )}T
t=1

on some probability space (�,A, P). By ξω we denote the realizations of the stochastic
process for all scenarios ω ∈ �. For any stochastic variable x we will use xω accordingly,
i.e., in order to denote its realization under scenario ω. Please note that throughout the paper
we will use bold characters to emphasize stochastic elements.

Now, the decision process consists of two stages where the first-stage decisions cor-
respond to the here-and-now schedules for all power generation units. The second-stage
decisions, on the other hand, correspond to future compensation or recourse actions of each
unit in each time period. The latter naturally depend on the environment created by the
chosen first-stage decisions and the load and price realization in that specific time period.
Hence, the aim of such a two-stage planning model can be formulated as follows. Find an
optimal schedule for the whole power system and planning horizon such that the uncertain
demand can be compensated by the system, all system constraints are satisfied and the sum
of the total generation costs and the expected recourse costs is minimal.

In order to give a mathematical formulation of the two-stage model, let (u, p, s, w) denote
the first-stage scheduling decisions as before. Furthermore, let (u, p, s, w) be the stochas-
tic second-stage decisions having the components ui t , pi t , si t , w j t , i = 1, . . . , I, j =
1, . . . , J, t = 1, . . . , T , which correspond to the recourse actions of each unit at time
period t . In addition to the (non-stochastic) constraints for (u, p, s, w), i.e., the capacity
limits (1), the storage dynamics (2) and the minimum up- and down-times (3), we have to
require that the recourse actions also satisfy the system constraints. These are the operating
ranges of all units, the minimum up/down-time requirements for the thermal units and the
reservoir capacity bounds:

pmin
i t ui t ≤ pi t ≤ pmax

i t ui t , ui t ∈ {0, 1}, (9a)

ui t − ui,t−1 ≤ uiσ , σ = t + 1, . . . , min{t + σi − 1, T },
ui,t−1 − ui t ≤ 1 − uiτ , τ = t + 1, . . . , min{t + τi − 1, T }, (9b)

t = 1, . . . , T − 1, i = 1, . . . , I, P—a.s.

0 ≤ s j t ≤ smax
j t , 0 ≤ w j t ≤ wmax

j t , 0 ≤ � j t ≤ �max
j t ,

t = 1, . . . , T, j = 1, . . . , J, P—a.s. (9c)

� j t = � j,t−1 − s j t + η j w j t , t = 1, . . . , T,

� j0 = �in
j , � jT = �end

j , j = 1, . . . , j, P—a.s. (9d)

Here some remarks concerning the interplay of the two stages are due. The first-stage
solutions act as a basis for the recourse actions, which have to satisfy the second-stage
constraints in a cost-optimal way. To this end we have to guarantee that the transition from
the first to the second stage is feasible. While the static constraints (9a) and (9c) need no
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further consideration, we neglect the possible impact of the constraints (9d). Since we are
confronted with purely thermal to thermally dominated power generation systems, this sim-
plification is justified. More general systems could be incorporated into the model, making
it more complex, though. The minimum up- and down-times constraints (9b) for the thermal
units, on the other hand, need some refinement. In order to enforce compatibility between
the first- and second-stage decisions, we introduce constraints that relate the scheduling
behaviours of the two stages to each other. This means that we prevent a thermal unit from
being switched on or off in the second stage if the scheduling history in the first stage
prohibits that. The same canonical dependence is required in the other direction as well,
i.e., we restrict switching in the first stage subject to the constraints set by the second-
stage scheduling. To allow for more generality we further introduce probability quantiles
πi t ∈ (0, 1], i = 1, . . . , I, t = 1, . . . , T, that give the probability with which unit i has to
fulfil the described restrictions at time t. Thus we have the constraints:

uit − ui,t−1 ≤ 1 − (
uω

i,σ−1 − uω
iσ

)
, σ = t, . . . , min{t + σi − 1, T }, (10a)

ui,t−1 − uit ≤ 1 − (
uω

iτ − uω
i,τ−1

)
, τ = t, . . . , min{t + τi − 1, T }, (10b)

uω
i t − uω

i,t−1 ≤ 1 − (ui,σ−1 − uiσ ), σ = t, . . . , min{t + σi − 1, T }, (10c)

uω
i,t−1 − uω

i t ≤ 1 − (uiτ − ui,τ−1), τ = t, . . . , min{t + τi − 1, T }, (10d)

∀ω ∈ Ait , Ait ∈ A, P(Ait ) ≥ πi t , i = 1, . . . , I, t = 1, . . . , T − 1.

Observe the consequences of the compatibility constraints (10). The inequality (10b), for
instance, represents a constraint for the second stage if and only if unit i is switched off in
the first stage at time t . In this case it enforces that the thermal unit will not be switched
on in the second stage as long as the unit is cooling for its minimum down-time in the first
stage. The remaining inequalities have similar effects.

Furthermore, we introduce a subdivision of the set I := {1, . . . , I } of all thermal units
into two subsets I1 and I2 such that I1 ∪ I2 = I and the conditions

uit = ui t , i ∈ I2, t = 1, . . . , T, P—a.s.,

are satisfied. This means that only some of the available thermal units may change their
on/off state when compensating the uncertain data. From a modelling point of view this
approach leads to a reduction of the number of binary variables corresponding to a unit
i ∈ I2. Moreover, the case I2 = I conforms with the view taken in Carøe and Schultz
(1998). There, all on/off decisions of the thermal units are regarded as long-term decisions
and thus belong to the first stage only. This is a somewhat pessimistic attitude since it does not
allow for any recourse action that includes switching-on or -off decisions. Therefore, the best
objective value for this case is in general greater than the one for the original model, i.e., for
the case I2 = ∅ (see Section 4 for details). Observe that (10) is clearly satisfied for all i ∈ I2.

The loading constraints (5) have to be adapted to the new situation. Here we distinguish
between the two stages. As mentioned before we are looking for a solution to the here-and-
now decisions that satisfies the uncertain demand with a certain probability and, moreover,
allows an optimal scheduling in each of the scenarios. That is why the first-stage power
outputs of all generation units have to meet at least the expected load, while the second-stage



TWO-STAGE PLANNING MODEL FOR HYDRO-THERMAL SYSTEM 363

power outputs are required to satisfy the load dt with probability one. Hence, the (modified)
loading constraints are given by the following inequalities:

I∑
i=1

pit +
J∑

j=1

(s jt − w j t ) ≥ E(dt ), t = 1, . . . , T, (11a)

I∑
i=1

pi t +
J∑

j=1

(s j t − w j t ) ≥ dt , t = 1, . . . , T, P—a.s. (11b)

A variant of (11a) arises when the term E(dt ) is replaced by a probability quantile like
F−1

dt
(π̄t ), where Fdt is the distribution function of dt and π̄t ∈ (0, 1) is a given probability.

In both cases the constraint (11) means that the sum of the first-stage output power satisfies
a certain predicted or approximated load and the second-stage decisions take care of satis-
fying the stochastic load with probability one. The reserve constraints (6) are modified in
the same way:

I∑
i=1

(
pmax

i t uit − pit
) ≥ E(rt ), t = 1, . . . , T, (12a)

I∑
i=1

(
pmax

i t ui t − pi t
) ≥ rt , t = 1, . . . , T, P—a.s. (12b)

Again the second-stage decisions cover the specified amount with probability one, while
the first-stage spinning reserve meets at least the expected reserve.

Finally we incorporate the stochastic fuel and electricity prices into the model. To this
end we define the random functions Ci t , which describe the costs for operating the thermal
unit i in the second-stage during time period t , in the following way:

Ci t (p, u) := max
l=1,...,l̄

{ailt p + bilt u}, (13)

where ailt , bilt are components of the random variable ξt . They represent stochastic cost
coefficients such that Ci t (·, 1) is P-almost surely convex and increasing on R+. We define
the cost functions Cit for the first stage accordingly, taking the expected values of the price
coefficients, i.e.,

Cit (p, u) := max
l=1,...,l̄

{E(ailt )p + E(bilt )u}. (14)

Observe that (14) corresponds to αilt = E(ailt ), βilt = E(bilt ) in (7). The effect of stochastic
prices on the startup costs is modelled in a similar way. More precisely, taking γi t = E(ci t )

in (8), we have

Si t (ui ) := ci t max{ui t − ui,t−1, 0}, (15a)

Sit (ui ) := E(ci t ) max{uit − ui,t−1, 0}, (15b)
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where ci t are stochastic startup cost coefficients and ui := (ui t )
T
t=0, ui0 = ui0 P—a.s.,

i = 1, . . . , I .
In consistency with common two-stage stochastic programming the objective function

corresponds to the total operating costs of the generation system in the first stage plus the
expected costs in the second stage, i.e.,

I∑
i=1

T∑
t=1

[Cit (pit , uit ) + Sit (ui )] + E

I∑
i=1

T∑
t=1

[Ci t (pi t , ui t ) + Si t (ui )]. (16)

Then the stochastic power production planning model consists in minimizing the ob-
jective function over all deterministic decisions (u, p, w, s) and all stochastic decisions
(u, p, s, w) ∈ L∞(�,A, P; R

2T (I+J )) satisfying the constraints (1)–(3), (9)–(12). The
model represents a two-stage stochastic mixed-integer program with relatively complete
recourse involving 2(I + J )T deterministic and 2(I + J )T stochastic decision variables.

Remark 1. Note that the original model (I2 = ∅) decomposes into independent single
scenario problems if we do not enforce the compatibility constraints (10), or any constraint
similar to (10). Note furthermore, that if we had introduced

uit − ui,t−1 ≤ uiσ , σ = t + 1, . . . , min{t + σi − 1, T }, (17a)

ui,t−1 − uit ≤ 1 − uiτ , τ = t + 1, . . . , min{t + τi − 1, T }, (17b)

ui t − ui,t−1 ≤ uiσ , σ = t + 1, . . . , min{t + σi − 1, T }, (17c)

ui,t−1 − ui t ≤ 1 − uiτ , τ = t + 1, . . . , min{t + τi − 1, T }, (17d)

∀ω ∈ Ait , Ait ∈ A, P(Ait ) ≥ πi t , i = 1, . . . , I, t = 1, . . . , T − 1

instead of (10), that is, if we had simply enforced the minimum up- and down-times across
the stages, then this would have implied that the scheduling decisions in the two stages are
almost identical. In particular, this model would have not allowed for recourse actions that
include switching-on or -off decisions. Insofar it corresponds to the case I2 = I.

3. Stochastic Lagrangian relaxation

The stochastic program elaborated in the previous section is almost separable with respect
to the units since only the constraints (11) and (12) couple different units. This structure
allows us to apply a stochastic version of the Lagrangian relaxation by associating stochastic
Lagrange multipliers with the coupling constraints. We restate the relevant inequalities in
order to illustrate some modifications:

I∑
i=1

pit +
J∑

j=1

(s jt − w j t ) ≥ E(dt ), t = 1, . . . , T, (18a)

I∑
i=1

pi t +
J∑

j=1

(s j t − w j t ) ≥ dt , t = 1, . . . , T, P—a.s., (18b)
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I∑
i=1

uit pmax
i t +

J∑
j=1

(s jt − w j t ) ≥ E(dt + rt ), t = 1, . . . , T, (18c)

I∑
i=1

ui t pmax
i t +

J∑
j=1

(s j t − w j t ) ≥ dt + rt , t = 1, . . . , T, P—a.s. (18d)

This formulation of the reserve constraints is equivalent to the one in Section 2 in the sense
that—due to the monotonicity of the objective function—a solution that satisfies (18) can
be improved to a better solution that satisfies (11), (12). More importantly, it will enable
a stochastic Lagrangian heuristics (see Section 3.4) similar to the deterministic heuristics
described in Gollmer et al. (1999) and Zhuang and Galiana (1988).

We relax the coupling constraints (18) by introducing Lagrange multipliersλ := (λ1, λ2,

λ3,λ4), where λ1, λ2 ∈ R
T
+ and λ3,λ4 ∈ L1(�,A, P, R

T
+). For convex two-stage stochas-

tic programs this approach is justified by the general duality theory developed in
Rockafellar and Wets (1976). Hence, suppose for the moment that the integrality con-
straints in (1a) and (9a) are relaxed to uit , ui t ∈ [0, 1] so that the program in Section 2
becomes convex. Then, setting x := (u, p, s, w) and x := (u, p, s, w), the Lagrangian
takes the form:

L(x, x;λ) :=
T∑

t=1

{
I∑

i=1

[Cit (pit , uit ) + Sit (ui )] + E

I∑
i=1

[Ci t (pi t , ui t ) + Si t (ui )]

+ λ1
t

[
E(dt ) −

I∑
i=1

pit −
J∑

j=1

(s jt − w j t )

]

+ λ2
t

[
E(dt + rt ) −

I∑
i=1

uit pmax
i t −

J∑
j=1

(s jt − w j t )

]

+ E

(
λ3

t

[
dt −

I∑
i=1

pi t −
J∑

j=1

(s j t − w j t )

])

+ E

(
λ4

t

[
dt + rt −

I∑
i=1

ui t pmax
i t −

J∑
j=1

(s j t − w j t )

])}
. (19)

Hence, with the dual function

D(λ) := min
(x,x)

L(x, x;λ) s.t. constraints (1)–(3), (9)–(10) (20)

the dual problem reads

max{D(λ) : λ ∈ R
2T
+ × L1(�,A, P; R

2T
+ )}. (21)

This means in particular that the stochastic multiplier processes λ3 and λ4 are nonnegative
P-almost surely. Due to the presence of integrality constraints in (1a) and (9a) in the general
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case, the primal problem is nonconvex. That is why the optimal value of the dual problem
(21) provides only a lower bound for the primal optimal costs.

The minimization in (20) decomposes into stochastic single unit subproblems. Specifi-
cally the dual function

D(λ) =
I∑

i=1

Di (λ) +
J∑

j=1

D̂ j (λ)

+
T∑

t=1

[
λ1

t E(dt ) + λ2
t E(dt + rt ) + E

(
λ3

t dt + λ4
t (dt + rt )

)]
(22)

may be evaluated by solving the thermal subproblems Di (λ):

min
(ui ,ui )

T∑
t=1

[
min

pit

{
Cit (pit , uit ) − λ1

t pit
} − λ2

t uit pmax
i t + Sit (ui )

+ E

{
min

pi t

{
Ci t (pi t , ui t ) − λ3

t pi t
} − λ4

t ui t pmax
i t + Si t (ui )

}]
(23)

s.t. (1a), (3), (9a), (9b), (10)

and the hydro subproblems D̂ j (λ):

min
(w j ;s j ,w j ,s j )

T∑
t=1

[(
λ1

t + λ2
t

)
(w j t − s jt ) + E

(
λ3

t + λ4
t

)
(w j t − s j t )

]
s.t. (1b)–(2), (9c)–(9d).

(24)

The two kinds of subproblems represent two-stage stochastic programming models for
the operation of a single unit. While the thermal subproblem (23) is a mixed-integer
two-stage stochastic program that reduces to a combinatorial two-stage stochastic prob-
lem, the hydro subproblem (24) is a linear two-stage model with stochastic costs and
stochastic right-hand sides. It is worth noting that problem (23) simplifies essentially for
the case that i ∈ I2 since then the compensation program does not contain any binary
decisions.

Extending Lagrangian relaxation approaches for deterministic power management mod-
els, our method for solving the model in Section 2 consists of the following ingredients:

(a) Generating scenarios ξ̂n, n = 1, . . . , N , for the stochastic process ξ and replacing it
with this discrete approximation;

(b) Solving the dual problem (21) by a proximal bundle method using function and sub-
gradient information (note that (21) has dimension 2T (N + 1));

(c) Solving the single unit subproblems with stochastic dynamic programming for (23) and
a special descent algorithm for (24);

(d) Applying a Lagrangian heuristics for determining a primal feasible solution;
(e) Employing an economic dispatch for determining a nearly optimal solution.
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Figure 2. Structure of the solution method.

The interaction of these components is illustrated in figure 2. In the remaining part of this
section we provide a description of the components (b)–(e). The scenario generation will
be covered briefly in Section 4.

3.1. Proximal bundle method

We consider the maximization of the dual concave function D on the set R
L
+, where L :=

2T (N +1). Function values D(λ) are evaluated according to (22) and a corresponding sub-
gradient g(λ) ∈ ∂ D(λ) is given by (g0(λ), h0(λ), g1(λ), . . . , gN (λ), h1(λ), . . . , hN (λ)),
where gn(λ) for n = 1, . . . , N is equal to the realization of the stochastic process{

dt −
I∑

i=1

pi t (λ) −
J∑

j=1

(s j t (λ) − w j t (λ))

}T

t=1

in scenario ξ̂n and hn(λ) for n = 1, . . . , N is equal to{
dt + rt −

I∑
i=1

ui t (λ)pmax
i t −

J∑
j=1

(s j t (λ) − w j t (λ))

}T

t=1

in scenario ξ̂n . Similarly, g0(λ) and h0(λ) correspond to the violations of the deterministic
first-stage load and reserve constraints in x(λ). Here x(λ) and x(λ) = (u(λ), p(λ), s(λ),

w(λ)) are Lagrangian solutions, i.e., they belong to arg min(x,x) L(x, x;λ). We assume
that the set of dual maximizers is nonempty, which is guaranteed if the primal problem
is feasible. Hence the proximal bundle method (Kiwiel, 1990) may be used for solving
the dual problem. This method generates a sequence {λk

c}∞k=1 ⊂ R
L
+ converging to some

maximizer λ∗, and trial points λk ∈ R
L
+ for evaluating subgradients gk := g(λk) starting

with an arbitrary point λ1
c − λ1 ∈ R

L
+. Iteration k uses the linearizations.

D̃l(·) := D(λl) + 〈· − λl , gl〉 ≥ D(·)

of D and its polyhedral upper approximation

D̃k(·) := min
l∈Lk

D̃l(·) with k ∈ Lk ⊂ {1, . . . , k}, (25)
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for finding the next trial point

λk+1 ∈ arg max

{
D̃k(λ) − 1

2
uk

∥∥λ − λk
c

∥∥2
: λ ∈ R

L
+

}
, (26)

where the proximity weight uk > 0 and the penalty term ‖ · ‖2 should keep λk+1 close to
the prox-center λk

c . An ascent step to λk+1
c = λk+1 occurs if λk+1 is significantly better

than λk
c as measured by

D(λk+1) ≥ D
(
λk

c

) + κδk,

where κ ∈ (0, 1) is a fixed parameter and δk = D̃k(λ
k+1) − D(λk

c) ≥ 0 is the predicted
ascent. If δk = 0, thenλk

c is optimal and the method may stop. If a significant improvement of
the objective value, on the other hand, cannot be achieved, a null stepλk+1

c = λk
c takes place.

This will improve the next polyhedral function D̃k+1. Strategies for updating uk and choosing
Lk+1 are discussed in Kiwiel (1990). For the choice of Lk+1 both subgradient selection and
subgradient aggregation can be employed. In the first case, since D is polyhedral, finite
convergence is guaranteed. But since subgradient selection may require too much storage,
alternatively one may use subgradient aggregation, in which groups of past linearizations
are replaced by their convex combinations so that at most NGRAD ≥ 2 linearizations are
stored. Here finite convergence need not occur, but λk

c → λ∗ and δk → 0 so that for
any optimality tolerance opt.tol > 0 the method eventually meets the stopping criterion
δk ≥ opt.tol (1 + |D(λk

c |).

3.2. Stochastic dynamic programming

In order to solve the thermal subproblem (23) for unit i by dynamic programming we
consider a graph of nodes, where each node q corresponds to the recent history of unit i .
In particular, any node q represents an (N + 1) tuple of states that comprises the recent
scheduling behaviour of unit i in the first stage and in all scenarios ξ̂n, n = 1, . . . , N ,

of the second stage. Hence, the minimum up/down-time constraints and the compatibility
constraints can be expressed as feasible transitions in the state graph. In the scope of deter-
ministic unit commitment similar graph representations are well known (see e.g. Gollmer
et al., 1999; Takriti et al., 2000; Zhuang and Galiana, 1988). A part of such a (deterministic)
transition graph is shown in figure 3, where we chose minimum up- and down-times of 2
and 3 hours, respectively, in order to constrain the complexity of the figure. In our case of
two-stage stochastic programming the dynamic programming graph looks far more com-
plicated, though. We present a corresponding part of it in figure 3 for the instance N = 1.

The figure shows possible state transitions for an arbitrary time t , where the arrows refer to
feasible transitions. Here each node represents a pair of states (τ, τ̄ ), where τ denotes the
state of the unit in the first stage and is represented in the figure by a capital number, while
τ̄ refers to the state in the only scenario of the second stage and is shown by a small number.
The dashed lines indicate the border between on-line and off-line states in the respective
stages. Apart from the minimum up/down-time constraints the feasible state transitions now
also incorporate the compatibility constraints. We illustrate this fact with the help of node
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Figure 3. Transition graph for 2 time periods in the deterministic case (left) and in the stochastic case with N = 1
(right).

(1on, 2on) (s. figure 3). The only feasible state transition leads to node (2on, 2on). When only
the minimum up/down-time constraints in both stages were taken into account, however,
there would be another feasible state transition to node (2on, 1off). But this would corre-
spond to a switching off of the unit in the second stage while the unit satisfies the minimum
up-time constraint in the first stage. This would clearly violate the compatibility constraint
(10a) and is thus no feasible state transition.

Observe that the size of the graph grows exponentially with the number of scenarios N .
Let ϕi t (q) denote the node weight at time t for node q and ϑi t (q, q̃) the arc weight for the

arc from node q to node q̃ at time t in the state transition graph. The node weights ϕi t (q)

are equal to 0 for nodes q that represent off-line states in both the first and P-almost surely
in the second stage. In general the following holds for all nodes:

ϕi t (q) = min
pmin

i t ≤p≤pmax
i t

{
Cit (p, 1) − λ1

t p − λ2
t pmax

i t

}
χ{ûq

i =1}

+ E

[
min

pmin
i t ≤p≤pmax

i t

{
Ci t (p, 1) − λ3

t p − λ4
t pmax

i t

}
χ{ûq

i =1}

]
, (27)

where χ is the indicator function on the set Q of all nodes and ûq
i and ûq

i indicate whether
node q represents an on-line or off-line state in the first stage and second stage, respectively.
The arc weights ϑi t (q, q̃) describe start-up costs for the thermal unit. They are independent
of λ and are non-zero only for arcs leading from off-line states to on-line states. The
cost-to-go functions are given by

ψi t (q) := ϕi t (q) + min
q̃

{ϑi t (q, q̃) + ψi,t+1(q̃)}, (28)
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where ψiT(q) := ϕiT(q). Solving the combinatorial problem (23) is now equivalent to finding
a shortest path from the set of source nodes Q1 ⊂ Q (i.e., all nodes at time t = 1) to the set
of destination nodes QT in the state transition graph.

The dynamic programming algorithm works as follows. First, the cost-to-go functions are
computed for all nodes q via the backward recursion (28). Then the optimal decisions are
obtained from the shortest path by a forward computation starting at q1 ∈ arg min{ψi1(q) :
q ∈ Q1}. It is worth mentioning that the algorithm described above gets computationally
expensive with a growing number of scenarios. However, since the thermal subproblems
have to be solved many times in the course of the dual maximization, efficiency is of utmost
importance. For the improvement of the algorithm the following fact is beneficial. In most
of the cases during the dual maximization the optimal solution to (23) does not depend
on whether we enforce the compatibility constraints or not. Furthermore, problem (23)
decomposes into single scenario subproblems once we relax the constraints (10). These can
be solved by a deterministic dynamic programming algorithm, which is far more efficient
due to the relative simplicity of the involved dynamic programming graph (cf. figure 3).
Hence, the algorithm for solving (23) incorporates the following steps. First, neglecting the
compatibility constraints, N +1 deterministic single scenario subproblems are solved. Note
that solving the relaxed problem for the first-stage decisions is equivalent to the program for
one of the single scenarios. If the compatibility constraints are not violated by the determined
optimal solution, the algorithm terminates. Otherwise the compatibility constraints have to
be enforced and stochastic dynamic programming is employed in order to obtain the optimal
solution.

3.3. Hydro subproblems

Considering the hydro subproblem (24) we observe that it can be decomposed into linear
single scenario subproblems. These are solved with a specialized descent method that creates
a finite sequence of hydro decisions with decreasing objective values. For our purposes we
implemented a deterministic version of the descent algorithm that is described in Nowak
(2000).

3.4. Lagrangian heuristics

When the bundle method delivers an optimal multiplier λ∗, the optimal value D(λ∗) pro-
vides a lower bound for the optimal cost of the primal mode. In general, however, the “dual
optimal” scheduling decisions (x(λ∗), x(λ∗)) violate the load and reserve constraints (11)
and (12). In the following, we describe Lagrangian heuristics that determine a nearly opti-
mal primal decision starting from the optimal multiplier λ∗. We will distinguish between
the general case and the instance I2 = I. Our first heuristics aims at treating all scenarios
ξ̂n, n = 1, . . . , N , separately. That is, we try to find a nearly optimal allocation for the deci-
sion variables in each of the scenarios independently of all the others. The procedure starts
with the first stage (treating it like one of the scenarios) followed by the scenarios in de-
creasing order of their probabilities. We describe the procedure for an arbitrary scenario ξ̂n .
The heuristics iteratively employs two steps that interact with each other. In the first step
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the hydro decisions s j and w j are rescheduled in order to meet the reserve constraints
(18d):

I∑
i=1

ui t pmax
i t +

J∑
j=1

(s j t − w j t ) ≥ dt + rt

as best as possible. To this end our procedure reduces the value

dt + rt +
J∑

j=1

(w j t − s j t ) (29)

by modifying the hydro schedules at those times t where the constraint is violated and the
value (29) is largest in a certain set of neighbouring time periods. This local rescheduling
procedure is repeated several times (see also Gollmer et al., 1999). In a second step the
hydro variables are fixed and, following Zhuang and Galiana (1988), we search for binary
variables ui that further reduce the violation of (18d). More precisely, we are looking for
a unit i that causes lowest costs when being switched on at the period t∗ where (18d) is
violated most. To this end we consider all thermal units that are scheduled off-line at time t∗.
With the aid of dynamic programming—in addition with single must-on constraints—we
calculate the minimal increase �λt∗ that is necessary to switch on one of the respective
units at time t∗. Here we try to restrict ourselves to those units for which we need not
emply the stochastic version of the dynamic programming algorithm (cf. Section 3.2). In
this way we save computation time without running the risk of loosing near optimality,
since scheduling decisions that put restrictions on the first or second stage, respectively,
are likely to produce extra costs in the objective function. Having increased λt∗ by the
computed amount and having solved the thermal subproblems (23) for the new λ, the
procedure returns to the first step. This is repeated until the reserve constraint is satisfied in
all time periods. Since the described technique does not distinguish between identical units
that appear quite often in real-life power systems, the startup costs of such units are slightly
modified.

Our strategy for the case of I2 = I differs in some respects from the general approach.
As indicated above we treat the two stages and all scenarios at the same time. This strategy
is made necessary by the fact that all thermal units exhibit the same scheduling behaviour
in the two stages, i.e., we have ui = ui , P—a.s., i ∈ I. Again we iteratively make use of
two steps. These are a water rescheduling procedure like before, followed by a selective
switching on of a thermal unit. However, this time the regarded period t∗, in which a unit is
going to be switched on, will be chosen differently. Particularly we will consider the mean
value of the reserve constraint violation, i.e., we define

v(t) := E[dt − rt ] +
J∑

j=1

(w j t − s jt ) −
I∑

i=1

uit pmax
i t

+ E

[
dt + rt +

J∑
j=1

(w j t − s j t ) −
I∑

i=1

ui t pmax
i t

]
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and take t∗ ∈ arg max{v(t) : t = 1, . . . , T }. Then we calculate the necessary increase �λt∗

of the Lagrange multiplier in order to switch on one thermal unit at time t∗. As in the general
case the two steps will be employed repeatedly until the reserve constraint is satisfied in the
time periods.

3.5. Economic dispatch

The Lagrangian heuristics terminates with a binary schedule (ui , ui ) for each thermal unit
i ∈ I, such that a primal feasible solution (x, x) with these binary components exists. Now
the objective value can still be improved by changing the not yet optimal values of the
continuous variables. This task amounts to an economic dispatch problem. Since the binary
decisions are kept fixed, this problem can be decomposed into single scenario subproblems.
In particular, we can determine cost-optimal schedules for each scenario independently of
all the others. To this end we employ a deterministic version of the economic dispatch
algorithm presented in Nowak (2000).

4. Numerical results

The stochastic Lagrangian relaxation algorithm was implemented in C++ except for the
proximal bundle method, for which the FORTRAN-package NOA 3.0 (Kiwiel, 1993) was
used as a callable library. For testing the implementation a number of load scenarios was
simulated from the following SARIMA (7, 0, 9) × (0, 1, 0)168 time series model for the
load process (see Gröwe-Kuska et al., 2002):

dt = φ̂1dt−1 + · · · + φ̂7dt−7 − dt−168 − φ̂1dt−169 − · · · − φ̂7dt−175

+ Zt + θ̂1Zt−1 + · · · + θ̂9Zt−9, t ∈ Z,

where the model coefficients φ̂i and θ̂ j are given and Zt , t ∈ Z, are independent, identically
normal distributed random variables with given mean and standard deviation.

Furthermore, the stochastic prices have been simulated by a discretized geometric
Brownian motion. More precisely, we have simulated a solution to the stochastic differ-
ential equation

dXt = Xt (σdWt + m dt), (30)

where W is a standard Brownian motion and σ, m are the volatility and drift of X, respec-
tively. A solution to (30) with initial value X0 is given by

Xt = X0 exp

(
σWt +

(
m − 1

2
σ 2

)
t

)

and can be easily sampled from. For our purposes we let X0 be normally distributed with
N(1, σ 2) independent of W, and m > 1

2σ 2. All our computational results have been obtained
with a choice of the price volatility of σ = 0.01 and with m = 5.2 × 10−5. An example of
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Figure 4. 10 trajectories from the discretized geometric Brownian motion.

generated price scenarios is shown in figure 4. In order to describe the cost functions Ci t

and Si t (cf. Section 2), we finally set

ailt = āiltXt , bilt = b̄iltXt , ci t = c̄i t Xt ,

where āilt, b̄ilt, c̄it are characteristic mean values of the price coefficients.
Test runs have been carried out for the weekly production planning (i.e., T = 168) of a

configuration of the VEAG system comprising 25 thermal units and 7 pumped storage plants
and for a number of scenarios ranging from 5 to 100. The dimensions of the correspond-
ing primal optimization problems are shown in Table 1. Furthermore, the compatibility

Table 1. Dimension of the primal optimization problem.

Variables

Scenarios Binary Continuous Constraints Nonzeros

1 8400 13104 26882 39314

5 25200 39312 80646 117942

10 46200 72072 147851 216227

20 88200 137592 282261 412797

50 214200 334152 685491 1002507

100 424200 661752 1357541 1985357
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Table 2. Computing times and gaps.

Opt.tol: 10−3 Opt.tol: 10−4

Time (min) Time (min)

Scenarios I2 NOA All Gap (%) NOA All Gap (%) obj.val (×108)

5 ∅ 0:16 1:00 0.61 0:41 1:45 0.21 1.15511

5 ∅ 0:18 0:35 0.25 0:45 1:18 0.17 1.49352

10 ∅ 0:57 2:50 0.45 1:55 5:08 0.30 1.15563

10 ∅ 0:44 2:04 0.31 1:32 3:53 0.13 1.42486

5 I 0:10 0:28 0.90 0:26 0:43 0.70 1.50801

10 I 0:27 0:59 1.25 1:14 1:43 0.87 1.44497

50 I 9:00 12:04 1.83 12:36 16:07 1.36 1.41429

100 I 30:17 35:31 1.99 35:37 42:48 1.70 1.43047

(NOA 3.0: NGRAD = 20).

constraints have been enforced P−almost surely, i.e., we chose πit = 1, t = 1, . . . , T, i =
1, . . . , I . The test runs have been performed on an HP 9000 (780/J280) Compute-Server
with 180 MHz frequency and 768 MByte main memory under HP-UX 10.20. Table 2 shows
computing times and gaps for different choices of the optimality tolerance for the proximal
bundle method. The results show that a smaller optimality tolerance leads to smaller gaps at
the expense of higher computing times. Here the gap refers to the relative difference of the
cost for the scheduling decision (x, x) and the optimal value D(λ∗) of the dual problem.
Figure 5 provides a sample output of the algorithm for the general case. The performance
of the algorithm in this situation (i.e., I2 = ∅) is closely related to the efficiency of the
thermal subproblem solver. In particular, it depends on how often the stochastic dynamic
programming algorithm is used during the dual maximization. In fact, the complexity of
the involved dynamic memory structures increases very fast (cf. Section 3.2 and figure 3
therein), so that problem instances with more than 10 scenarios cannot be handled so far.
However, computing times can be improved if one takes into account a typical feature of
real-life power generation systems. Often those systems comprise so-called base load units,
which due to their specifications are usually scheduled on-line over the whole time horizon.
Thus it makes sense to include them a priori in the set I2. For the considered VEAG-owned
generation system we have identified six base load units. Our computational experience
shows that this approach has almost no effect on the objective value, while the computing
times improve. Details can be seen in Table 3. It is worth mentioning that the computing
times increase with growing values for the price volatility σ . This is due to the fact that the
respective scenarios become less and less compatible, since they favour different schedul-
ings for the thermal units, which then leads to potential violations of the compatibility
constraints.

Furthermore, we studied the relation between our original model (i.e., the general case
of I2 = ∅) and the case that I2 = I. To this end we created test instances that were
successively solved for the two cases. Typical solutions for the general case exhibit both
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Figure 5. Solution for 10 scenarios and I2 = ∅.

switching on and off decisions at the transition from the first to the second stage. On the
other hand, this scheduling behaviour is prevented for any unit i ∈ I2. Thus, a solution
for the general case usually yields a better objective function value than the solution to the
corresponding problem, where the index set I2 consists of all thermal units. Computational
examples are shown in Table 4. Figure 6 gives a sample output for the instance that I2 = I.
It shows that there is little variance in the thermal output of the whole system compared to
the general case, as can be seen in figure 5 for example.

Remark 2. We would like to note that in place of (16) one can also consider a weighted
average of the costs in the two respective stages. More precisely, one could introduce a

Table 3. Effect of including base load units in I2.

w/o base units w base units

Scenarios Time obj.val [×108] Time obj.val [×108] Change (%)

5 1:23 1.38973 1:14 1.39177 0.147

5 1:21 1.34035 1:11 1.34138 0.077

10 4:47 1.42597 3:50 1.42589 −0.006

10 4:21 1.38813 3:55 1.38695 −0.085

10 4:18 1.38833 4:02 1.38863 0.022

(NOA 3.0: opt.tol = 10−4, NGRAD = 20).
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Table 4. Comparison between I2 = I and I2 = ∅.

Objective value [×108]

Scenarios I2 = I I2 = ∅ Improvement (%)

5 1.16399 1.15511 0.76

5 1.50801 1.49352 0.96

10 1.17607 1.16349 1.07

10 1.44497 1.42486 1.39

(NOA 3.0: opt.tol = 10−4, NGRAD = 20).

Figure 6. Solution for 10 scenarios and I2 = I .

weight coefficient θ ∈ [0, 1] and consider the convex combination

(1 − θ)

I∑
i=1

T∑
t=1

[Cit (pit , uit ) + Sit (ui )] + θE

I∑
i=1

T∑
t=1

[Ci t (pi t , ui t ) + Si t (ui )]

(31)

as the objective function. The changes necessary to adapt the algorithm to (31) are
minimal. The results presented in this section would then correspond to the case
θ = 1

2 .
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