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Abstract. The paper deals with the minimization of an integral func-
tional over an Lp space subject to various types of constraints. For
such optimization problems, new necessary optimality conditions are
derived, based on several concepts of nonsmooth analysis. In particu-
lar, we employ the generalized differential calculus of Mordukhovich
and the fuzzy calculus of proximal subgradients. The results are spe-
cialized to nonsmooth two-stage and multistage stochastic programs.
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1. Introduction

In Ref. 1, Chapter 14, the authors propose an effective treatment of a
class of optimization problems with integral objectives. Let (�,S,µ) be a
positive complete measure space with µ(�)<∞. The approach of Ref. 1
can well be applied, under some assumptions, to the minimization of cer-
tain integral functionals subject to the constraints

x(s)∈�(s), for a.e. s ∈�, (1a)

x ∈Lp(�;Rn), (1b)
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where �[� ⇒ Rn] is a given multifunction. The key idea consists in
the interchange of minimization and integration by which one converts
the original infinite-dimensional problem to a family of standard finite-
dimensional programs, parametrized by s ∈�.

Concerning the optimality conditions, these finite-dimensional pro-
grams can be treated in different ways. In Section 3, we apply to this
purpose the tools of the generalized differential calculus of Mordukho-
vich (Refs. 2–6) and obtain in this way sharp optimality conditions for the
original problem. We study also a specific structure of � and the proper-
ties of the respective Karush–Kuhn–Tucker (KKT) mappings (measurabil-
ity, integrability).

In the second part of Section 3, we apply the same technique to a
two-stage stochastic program. This leads to substantially sharper optimal-
ity conditions by comparison with Refs. 7–8, where the conditions have
been derived on the basis of the generalized differential calculus of Clarke
(Ref. 9).

Unfortunately, the situation changes substantially whenever our opti-
mization problem contains, besides the constraints (1), also a nonpoint-
wise constraint. The interchange of minimization and integration is then
generally not possible and so the derivation of convenient pointwise opti-
mality conditions becomes substantially more difficult. Such conditions
have been derived in Ref. 10 in terms of the Clarke generalized differen-
tial calculus under some additional assumptions imposed on the nonpoint-
wise constraint. Trying to weaken these additional assumptions as much as
possible, we have confined ourselves to the Hilbert space L2(�;Rn) and
employed the so-called fuzzy calculus of proximal subdifferentials. This
approach leads to fuzzy optimality conditions without any constraint qual-
ifications coupling the pointwise and nonpointwise constraints. The satis-
faction of such constraint qualifications happens to be the most serious
hurdle on the way to the classical KKT conditions, at least in reflexive Lp

spaces. The obtained fuzzy optimality conditions have the desired point-
wise nature and are in a certain sense the sharpest possible. In the second
part of Section 4, we specialize these conditions to nonsmooth multistage
stochastic programs.

The Appendix (Section 5) contains three statements from the general-
ized differential calculus of Mordukhovich which play an essential role in
the developments of Section 3. For further useful results of this kind, the
interested reader is referred to the cited works of this author.

The following notation is employed: cl A is the closure of a set A

and B(a;ρ) is the closed ball with the center at a and radius ρ. If a = 0
and ρ = 1, we write simply B. R̄ is the extended real line. For a func-
tion f [X → R̄], epi f denotes its epigraph and ∂̄f (x) denotes the Clarke
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subdifferential of f at x. If F maps Rn into Rm, then ∂̄F (x) is the Clarke
generalized Jacobian of F at x. Analogously, N̄A(x) denotes the Clarke
normal cone to A at x. For a multifunction �[X ⇒Y ],

gph �={(x, y)|y ∈�(x)}.
δC(·) denotes the indicator functional of a set C and dist(x|C) is the dis-
tance from x to C. | · | is a norm in Rn, whereas ‖ · ‖ is the norm in a
considered function space. o(t) indicates a term with the property that

o(t)/t →0, as t →0, t �=0.

2. Problem Formulation and Preliminaries

Consider a function f mapping � × Rn into R̄. Following Ref. 1, f

is called a normal integrand provided its epigraphical mapping,

Ef (s) := epif (s, ·)={
(y, α)∈Rn ×R|f (s, y)≤α

}
,

is closed-valued and measurable. We recall that a multifunction �[�⇒Rn]
is measurable if, for every closed set O ⊂ Rn, the set �−1(O) is measur-
able, i.e., �−1(O)∈S (see Ref. 11). In particular, the set dom �=�−1(Rn)

must be measurable. For a comprehensive treatment of measurable multi-
functions, we refer the reader e.g. to Ref. 1 or Ref. 12. In what follows, we
adopt the notation of Ref. 1, where

∫
�

f (s, x(s))µ(ds) is denoted by If [x].
The next section concerns essentially optimization problems of the form

min If [x], (2a)

s.t. x(s)∈�(s), for a.e. s ∈�, (2b)

x ∈Lp(�;Rn), (2c)

where f is a normal integrand, � is a closed-valued and measurable mul-
tifunction, and where 1 ≤p ≤∞. In Section 4, we add to the constraints
of (2) another one, namely

x ∈C,

where C is a closed subset of L2(�;Rn), not expressible in the pointwise
form.

For the reader convenience, we give now the definitions of those basic
concepts from nonsmooth analysis which will be used frequently through-
out the subsequent two sections.

Consider an arbitrary set 	⊂Rp.
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Definition 2.1. Let a ∈ cl 	. The cone

N̂	(a) :=




x∗ ∈Rp

∣∣∣∣∣∣
lim sup

x
	→a

〈x∗, x −a〉/|x −a|≤0






is called the Fréchet normal cone to 	 at a. The limiting normal cone (or
Mordukhovich normal cone) to 	 at a is defined by

N	(a)= lim sup
a′ cl	→ a

N̂	(a′). (3)

The lim sup in (3) is the upper limit of multifunctions in the sense of
Kuratowski-Painlevé. Generally, N	(a) is a nonconvex cone, but the cone-
valued multifunction N	(·) is upper semicontinuous at each point of cl 	
(with respect to cl 	). This is essential in the calculus of Mordukhovich
subdifferentials and coderivatives introduced below.

Definition 2.2. Let ϕ[Rp → R̄] be an arbitrary extended real-valued
function and let a ∈dom ϕ. The sets

∂ϕ(a) :={a∗ ∈Rp|(a∗,−1)∈Nepiϕ(a, ϕ(a))},
∂∞ϕ(a) :={a∗ ∈Rp|(a∗,0)∈Nepiϕ(a, ϕ(a))}

are called the limiting (Mordukhovich) subdifferential and the singular
subdifferential of ϕ at a.

It was shown in Ref. 2 that

∂̄ϕ(a)= cl conv (∂ϕ(a)+ ∂∞ϕ(a));
for ϕ Lipschitz near a, ∂∞ϕ(a)={0} and the closure operation is superfluous.

Definition 2.3. Let �[Rp ⇒Rq ] be a multifunction and b∈�(a). The
multifunction D∗�(a, b)[Rq ⇒Rp], defined by

D∗�(a, b)(b∗) :={
a∗ ∈Rp|(a∗,−b∗)∈Ngph�(a, b)

}
, b∗ ∈Rq,

is called the coderivative of � at (a, b). If � is single-valued, one uses the
notation D∗�(a)(b∗).

In Hilbert spaces, a useful concept of normality is provided by the
following construction. Consider a Hilbert space H and its arbitrary sub-
set, denoted again by 	.
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Definition 2.4. See Refs. 13–14. Let a ∈ cl	. The vector x∗ ∈ H is
called a proximal normal direction to 	 at a provided there exists k =
k(x∗, a)≥0 such that

〈x∗, x −a〉≤k‖x −a‖2, for all x ∈	.

The set of all proximal normal directions to 	 at a is termed the proximal
normal cone to 	 at a and is denoted by NP

	(a).

It is easy to see that, for H = Rn, one has NP
	(a) ⊂ N̂	(a). How-

ever, as explained e.g. in Ref. 1, the limiting normal cone has been origi-
nally defined via the proximal normal cone and (3) holds true with N̂	(a′)
replaced by NP

	(a′).
On the basis of the proximal cone, one can introduce the proximal

subdifferential in the standard way.

Definition 2.5. See Ref. 13. Let ϕ[H → R̄] be lower semicontinuous
(lsc) at a ∈dom ϕ. The set

∂P ϕ(a) :=
{
a∗ ∈H

∣∣∣(a∗,−1)∈N
p

epi ϕ(a, ϕ(a))
}

is called the proximal subdifferential of ϕ at a.

Differently from the limiting subdifferential, ∂P ϕ(a) is convex, but not
necessarily closed. It can well be empty, even for ϕ being Lipschitz near a.
The advantage of ∂P ϕ(a) over some similar constructions like the Fréchet
or Dini subdifferentials consist above all in handling integral functionals.
For example, in L2(�;Rn), one has the implication

v ∈ ∂P If [x]⇒v(s)∈ ∂P f (s, x(s)), for a.e. s ∈�, (4)

where the subdifferential of f is computed in the second argument only
(cf. Refs. 14–15).

3. Pointwise Constraints

This section is devoted to optimization problems over Lp spaces in
which one has to do solely with various pointwise constraints. Our work-
horse is the interchange of minimization and integration as stated e.g. in
Ref. 1, Theorem 14.60. So, we start with the optimization problem (2)
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under the assumptions posed in Section 2 and introduce the essential in-
tegrand f̃ [�×Rn → R̄] by

f̃ (s, x) :=f (s, x)+ δ�(s)(x). (5)

In this way, (2) amounts to the minimization of I
f̃

over Lp(�;Rn).

Theorem 3.1. Let I
f̃

be proper on Lp(�;Rn), i.e., I
f̃

[x]>−∞ for all
x ∈Lp(�;Rn) and I

f̃
[x0]<∞ for some x0 ∈Lp(�;Rn). Then, the following

statements are equivalent:

(i) x̂ ∈argminx∈Lp(�;Rn) If̃
[x];

(ii) x̂(s)∈argminy∈Rn f̃ (s, y), for a.e. s ∈�.

Proof. The assumptions posed on f and � imply that f̃ is a normal
integrand. Indeed, for the epigraphical mapping E

f̃
, one has

E
f̃
(s)= epi f̃ (s, ·)

= epi f (s, ·)∩ (�(s)×R+).

Since intersections and products preserve measurability (Ref. 1, Proposi-
tion 14.11), the normality of f̃ is implied by the normality of f and the
closed-valuedness and measurability of �. The Lp spaces are decompos-
able (Ref. 1, Definition 14.59) and so the mentioned Theorem 14.60 from
Ref. 1 can be specialized to the above form.

Remark 3.1. In most cases, f is Carathéodory integrand [i.e., f (s, y)

is measurable in s for each y and continuous in y for each s] and all
problem constraints are comprised in �. However, the considered struc-
ture enables to distinguish between implicit constraints expressed via f

and explicit constraints modeled by �.

3.1. Optimality Conditions. Theorem 3.1 enables us to invoke Theo-
rem 5.1 and formulate immediately the optimality conditions for (2).

Theorem 3.2. Let x̂ be a (local) solution of (2) and let the assump-
tions of Theorem 3.1 be fulfilled. Then, for a.e. s ∈�, there exist a vector
v̂∗
s and a real λs ≥0, not both simultaneously equal to zero, such that

(v̂∗
s −λs)∈Nepif (s,·)(x̂, f (s, x̂(s))), −v̂∗

s ∈N�(s)(x̂(s)). (6)
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If the constraint qualification

∂∞f (s, x̂(s))∩ (−N�(s)(x̂(s)))={0}, for a.e. s ∈�, (7)

is fulfilled, then for a.e. s ∈�, one has λs >0 and

0∈ ∂f (s, x̂(s))+N�(s)(x̂(s)). (8)

The subdifferentials in (7), (8) concern the function f (s, ·). The form
of the above conditions is illustrated by the following simple academic
example.

Example 3.1. Consider the optimization problem with the constraint
set having the shape similar to the “Mercedes star”,

min
∫ 1

0
(|x1(s)|+ |x2(s)|)ds, (9a)

s.t. x(s)∈
{
y ∈R2|k(s)−|y1|−y2 =0

}
∪

{
y ∈R2|y1 =0, y2 ≥k(s)

}
,

a.e. in [0,1], (9b)

x ∈L2(0,1;R2), (9c)

where k ∈L2(0,1;R2) is a given function. We note that

x̂(·)= (0,max{0, k(·)})

is a solution of (9). It is not difficult to check that the all the assumptions
of Theorem 3.1 are fulfiled.

Further, in this simple situation, the constraint qualification (7) is
fulfilled and the normal cones N�(s)(x̂(s)) as well as the subdifferentials
∂f (s, x̂(s)) can be computed easily:

if k(s)≥0, then N�(s)(x̂(s))=
{

λ

[−1
1

]∣∣∣∣λ∈R

}
∪

{
λ

[
1
1

]∣∣∣∣λ∈R

}

∪
{

λ

[
1
0

]∣∣∣∣λ∈R

}
, a.e.;

if k(s)<0, then N�(s)(x̂(s))=
{

λ

[
1
0

]∣∣∣∣λ∈R

}
, a.e.
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Furthermore,

if k(s)>0, then ∂f (x̂(s))=
[

[−1,1]
1

]
, a.e.,

if k(s)≤0, then ∂f (x̂(s))=
[

[−1,1]
[−1,1]

]
, a.e.

The optimality condition (8) is thus evidently fulfilled, because e.g.
the function v̂∗[[0,1]→R2] defined by

v̂∗(s)=
〈

[−1
1

]
, if k(s)≥0, a.e. on [0,1],

[
1
0

]
, if k(s)<0, a.e. on [0,1],

fulfills the relation

v̂∗(s)∈ ∂f (x̂(s))∩ (−N�(s)(x̂(s))), for a.e. s ∈ [0,1].

In what follows, we examine three particular situations in which the state-
ment of Theorem 3.2 can be strengthened or specialized.

Corollary 3.1. Let x̂ be a solution of (2) and let the assumptions of
Theorem 3.1 be fulfilled. Further, assume that p<∞ and that there exists
a function k ∈Lq(�), (1/p +1/q =1), such that, for all s ∈�,

|f (s, y1)−f (s, y2)|≤k(s)|y1 −y2|, for all y1, y2 in Rn. (10)

Then, there exists a function v̂∗ ∈Lq(�;Rn) such that

v̂∗(s)∈ ∂f (s, x̂(s))∩ (−N�(s)(x̂(s))), for a.e. s ∈�. (11)

Proof. We start with the observation that, due to (10), f (s, ·) is
Lipschitz on Rn, for a.e. s ∈�, and consequently

∂∞f (s, x̂(s))={0}, for a.e. s ∈�.

This implies that the constraint qualification (7) is fulfilled. Further, by
virtue of (10), for all s ∈� one has

∂f (s, x̂(s))⊂ ∂̄f (s, x̂(s))⊂k(s)B,

so that each measurable selection of ∂f (s, x̂(s)), a.e. on �, belongs to
Lq(�;Rn). Thus, it remains to show that there is a measurable function
v̂∗[� → Rn] satisfying condition (11). However, this follows immediately
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from Ref. 1, Proposition 14.11 (measurability of intersections) and Ref. 1,
Theorems 14.26 and 14.56, dealing with the measurability of the multi-
functions N�(·)(x̂(·)) and ∂f (·, x̂(·)), respectively. The proof is complete.

Let us now specify the above optimality conditions for the case where

�(s)={y ∈�(s)|G(s, y)∈�(s)}, (12)

G[� × Rn → Rm] being a Carathéodory map and the multifunctions
�[�⇒ Rn],�[�⇒ Rm] being closed-valued and measurable. As shown in
Ref. 12, Theorem 8.2.9, under these conditions, � is also closed-valued
and measurable.

Corollary 3.2. Let x̂ be a solution of (2), where � is given in the
form (12). Further, suppose that the assumptions of Theorem 3.1 are ful-
filled, f (s, ·) for a.e. s ∈� is Lipschitz around x̂(s), and the following qual-
ification conditions hold true:

D∗G(s, x̂(s))◦N�(s)(G(s, x̂(s)))∩ (−N�(s)(x̂(s)))={0}, (13a)

N�(s)(G(s, x̂(s)))∩Ker D∗G(s, x̂(S))={0}. (13b)

Then, for a.e. s ∈�, there is a vector ŷ∗
s ∈N�(s)(G(s, x̂(s))) such that

0∈ ∂f (s, x̂(s))+D∗G(s, x̂(s))(ŷ∗
s )+N�(s)(x̂(s)). (14)

Remark 3.2. Analogously to Theorem 3.2, the coderivatives in (13),
(14) concern the map G(s, ·).

Proof of Corollary 3.2. Under the qualification conditions (13), The-
orem 5.2 provides us with an upper approximation of N�(s)(x̂(s)) in the
form

N�(s)(x̂(s))⊂{
v∗ ∈D∗G(s, x̂(s))(ξ)+N�(s)(x̂(s))|ξ ∈N�(s)(G(s, x̂(s)))

}
,

for a.e. s ∈�. The result thus follows directly from Theorem 3.2.

The mapping which assigns the vector ŷ∗
s to a.e. s ∈� can be viewed

as the Karush–Kuhn–Tucker (KKT) function of the program (2) with �

given by (12). In this connection, a natural question arises: Under what
assumptions there exists a measurable KKT function? This question is
answered in the next statement.
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Corollary 3.3. In addition to the assumptions of Corollary 3.2, sup-
pose that p <∞ and that condition (10) holds true. Then, there exist an
element v̂∗ ∈ Lq(�;Rn) and a measurable KKT function s �→ ŷ∗(s) such
that

ŷ∗(s)∈N�(s)(G(s, x̂(s))), (15a)

v̂∗(s)∈ ∂f (s, x̂(s))∩ [−D∗G(s, x̂(s))(ŷ∗(s))−N�(s)(x̂(s))], (15b)

for a.e. s ∈�.

Proof. The statement of Corollary 3.3 can be reformulated in the
following form: There exist mappings v̂∗[�→Rn], ŵ∗[�→Rn], ŷ∗[�→Rm]
such that

v̂∗(s)∈ ∂f (s, x̂(s)), (16a)

−v̂∗(s)− ŵ∗(s)∈N�(s)(x̂(s)), (16b)

ŷ∗(s)∈N�(s)(G(s, x̂(s))), (16c)

(ŵ∗(s),−ŷ∗(s))∈NgphG(s,·)(x̂(s),G(s, x̂(s))), (16d)

for a.e. s ∈�. In the above relations, gph G(s, ·) denotes the set {(y, z)∈
Rn × Rm|z =G(s, y)}. Using the argumentation of Corollary 3.1, we infer
easily that v̂∗ ∈ Lq(�;Rn) provided it is measurable. Thus, it suffices to
prove the existence of measurable functions v̂∗, ŵ∗, ŷ∗ satisfying (16). To
this purpose, we introduce the function q[Rn ×Rn ×Rm →Rn ×Rn ×Rm ×
Rn ×Rm] defined by

q(a, b, c) :=






−a

a +b

−c

−b

+c






,

and the multifunction Q[�⇒Rn ×Rn ×Rm ×Rn ×Rm] defined by

Q(s) := ∂f (s, x̂(s))×N�(s) ×N�(s)(G(s, x̂(s)))

×NgphG(s,·)(x̂(s),G(s, x̂(s))). (17)

The functions v̂∗, ŵ∗, ŷ∗ are thus selections of the multifunction H , given
by

H(s) :={
(a, b, c)∈Rn ×Rn ×Rm|0∈q(a, b, c)+Q(s)

}
.

Clearly, q is a Carathéodory function. Further, since G is Carathéodory
function and x̂ is in Lp(�;Rn), we observe that the function G(·, x̂(·))
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and (x̂(·),G(·, x̂(·))) are measurable. The first three multifunctions in the
Carthesian product (17) are measurable due to the results from Ref. 1
mentioned in the proof of Corollary 3.1. To see the measurability of the
4th multifunction, note first that

gph G(s, ·)={(y, z)∈Rn ×Rm|z−G(s, y)∈{0}}.
Hence, Theorem 8.2.9 from Ref. 12 applies and yields the measurability of
gph G(s, ·). The measurability of NgphG(s,·)(x̂(s),G(s, x̂(s))) follows then
from Ref. 1, Theorem 14.26. The product multifunction Q is thus also
measurable [Ref. 1, Proposition 14.11(d)] and we can apply Ref. 12, The-
orem 8.2.9 once more, this time to the multifunction H . In this way, we
have proved the measurability of H and our statement follows from the
measurable selection theorem.

Remark 3.3. If G(s, ·) is Lipschitz near x̂(s) for some s ∈�, then one
has

D∗G(s, x̂(s))(ŷ∗(s))= ∂〈ŷ∗(s),G(s, ·)〉(x̂(s))⊂{C(s)Tŷ∗(s)|C(s)

∈ ∂̄G(s, x̂(s))}; (18)

see Ref. 2. The 2nd or the 3rd set in (18) can sometimes be computed
more easily than the coderivative D∗G(s, x̂(s))(ŷ∗(s)).

Let us comment on the optimality conditions (11), (15). The limiting
subdifferential and the limiting normal cone N�(s)(x̂(s)) are in nonconvex
situations usually much smaller than the corresponding objects of Clarke
for which an analogous condition has been proved in Ref. 10. This is illus-
trated strikingly in Example 3.1, where the Clarke normal cone to �(s) at
x̂(s) is the whole space R2 provided k(s) ≥ 0. Hence, our conditions are
sharper. In Corollary 3.2.3, we have specified conditions under which there
exists a measurable KKT function. It is tempting to try to ensure also the
existence of an integrable KKT function. Before we formulate the respec-
tive statement, let us recall that a multifunction �[Rp ⇒ Rq ] is pseudo-
Lipschitz around (a, b)∈gph �, provided there exists neighborhoods U of
a and V of b and a modulus �≥0 such that

�(a1)∩V ⊂�(a2)+�|a1 −a2|B, for all a1, a2 ∈U .

Let G(s, ·) be Lipschitz near x̂(s) for a.e. s ∈ �. From Theorem 5.3, the
following constraint qualification:

0∈D∗G(s, x̂(s))(ξ)+N�(s)(x̂(s)), ξ ∈N�(s)(G(s, x̂(s))), imply ξ =0 (19)
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ensures the pseudo-Lipschitz continuity of the multifunction �(s, ·), defined
by

�(s, u) :={y ∈�(s)|u+G(s, y)∈�(s)},
around (0, x̂(s)) for a.e. s ∈�. This multifunction is employed in the next
statement.

Theorem 3.3. Let x̂ be a solution of (2), where � is given in the form
(12) with G(s, ·) Lipschitz near x̂(s) for a.e. s ∈�. Let p<∞ and let con-
dition (10) be fulfilled. Further assume that, for a.e. s ∈�, the constraint
qualification (19) holds true and that the function ρ(·), assigning s ∈� the
modulus of pseudo-Lipschitz continuity of � around (0, x̂(s)), belongs to
Lp(�). Then, there exists a KKT function û∗ ∈L1(�;Rm) such that

û∗(s)∈N�(s)(G(s, x̂(s))), (20a)

0∈ ∂f (s, x̂(s))+D∗G(s, x̂(s))(û∗(s))+N�(s)(x̂(s)), (20b)

for a.e. s ∈�.

Proof. Under the assumptions, for a.e. s ∈ �, the pair (0, x̂(s)) is a
(local) solution of the optimization problem [in the variables (u, v)]

min f (s, v)+R(s)|u|, (21a)

s.t. (u, v)∈gph �(s, ·), (21b)

see Ref. 16, Lemma 3.1, provided the penalty parameter R(s) is sufficiently
large. Writing down the optimality conditions for (21), we obtain the exis-
tence of a pair (û∗(s),−v̂∗(s))∈Ngph�(s,·)(0, x̂(s)) such that

0∈ ∂f (s, x̂(s))− v̂∗(s),

for a.e. s ∈�. Thus,

û∗(s)∈D∗�(s,0, x̂(s))(v̂∗(s))

and, by invoking (40), we infer that

û∗(s)∈N�(s)(G(s, x̂(s))),

−v̂∗(s)∈D∗G(s, x̂(s))(û∗(s))+N�(s)(x̂(s)).

It follows that û∗ is a KKT function and v̂∗ ∈ Lq(�;Rn). Moreover,
by virtue of Ref. 5, Theorem 3.2, for a.e. s ∈� one has

sup
{|a| ∣∣a ∈D∗�(s,0, x̂(s))(b)

}≤ρ(s)|b|,
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due to the assumed pseudo-Lipschitz continuity of � around (0, x̂(s)).
Therefore, by the Hölder inequality,

∫

�

|û∗(s)|µ(ds)≤
∫

�

ρ(s)|v̂∗(s)|µ(ds)≤‖ρ‖Lp‖v̂∗‖Lq ,

and we are done.

However, to ensure the required properties of the modulus ρ in terms
of the original problem data is not an easy task.

3.2. Reduced Optimization. In Ref. 1, Example 14.62, the authors
consider an optimization problem in two variables in which one of them
can be eliminated by considering the respective value function as an inte-
grand. Such a situation arises typically in a class of two-stage nonconvex
stochastic programs and so, using again the interchange of minimization
and integration together with some results of the Mordukhovich calculus,
we can strengthen the optimality conditions of Ref. 7. Correspondingly, in
this subsection we will be dealing with the optimization problem

min h(z)+ Ig[z, x], (22a)

s.t. z∈D ⊂Rm, (22b)

x(s)∈�(s, z), for a.e. s ∈�, (22c)

x ∈Lp(�;Rn), (22d)

where h[Rm → R] is locally Lipschitz, D is nonempty and closed, and
�(·, z) is closed-valued and measurable for all z∈D. Further, for the sake
of simplicity, we assume that g maps �×Rm ×Rn into R, g(s, z, y) is mea-
surable in s for each pair (z, y) and locally Lipschitz in (z, y) for each s.
This implies in particular that g is a Carathéodory integrand.

In this situation, the statement from Ref. 1, Example 14.62 attains the
following form.

Theorem 3.4. Consider problem (22) and suppose, in addition to the
posed assumptions, that for a.e. s ∈� the essential integrand

g̃(s, z, y)=g(s, z, y)+ δ�(s,z)(y)

is level bounded in y locally uniformly in z. Furthermore, with

f (s, z) := inf
y∈Rn

g̃(s, z, y)= inf
y∈�(s,z)

g(s, z, y),

let h+ If be proper. Then, the following two statements are equivalent:
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(i) (ẑ, x̂)∈D ×Lp(�;Rn) is a (local) solution of (22);
(ii) ẑ is a (local) solution of the optimization problem

min h(z)+
∫

�

f (s, z)µ(ds), (23a)

s.t. z∈D, (23b)

and

x̂(s)∈argminy∈�(s,z) g(s, z, y), for a.e. s ∈�.

Since z ∈ Rm, it is clear that, in Theorem 3.4, it suffices to assume
the level-boundedness of g̃ in y uniformly only with respect to z from a
neighborhood of ẑ. On the basis of Theorem 3.4, we can now derive the
optimality conditions for problem (22), i.e., the counterpart of Ref. 7, The-
orem 5. In the first step, we invoke Ref. 3, Theorem 4.1 and observe that,
under the posed assumptions, for all s ∈� one has

∂∞f (s, ẑ)⊂
⋃

y0∈argminy∈Rn g̃(s,ẑ,y)

D∗�(s, ẑ, y0)(0). (24)

Therefore, whenever the set on the right-hand side of the inclusion (24)
contains only the zero vector, the value function f (s, ·) is Lipschitz near
ẑ with a Lipschitz modulus k(s), s ∈�.

Theorem 3.5. Let ẑ ∈ D be a (locally) optimal value of the variable
z in (22) and let all assumptions of Theorem 3.4 be fulfilled. Further,
assume that D∗�(s, ẑ, y0)(0) = {0}, for all y0 ∈ argminy∈Rn g̃(s, ẑ, y), s ∈ �,
and that the Lipschitz modulus k is integrable. Then, there exists an inte-
grable mapping z∗[�→Rm] such that

0∈ ∂h(ẑ)+
∫

�

z∗(s)µ(ds)+ND(ẑ) (25)

and, for a.e. s ∈�,

z∗(s)∈D∗�(s, ẑ, x0
s )(x∗)+�(s),

with

�(s)=
{
v∗ ∈Rm

∣∣∣(v∗, x∗)∈ ∂g(s, ẑ, x0
s )

}
, x0

s ∈argminy∈Rn g̃(s, ẑ, y).
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Proof. By Theorem 3.4, it suffices to derive optimality conditions for
the finite-dimensional problem (23), where the only difficult part represents
the special integral functional

J (z) :=
∫

�

f (s, z)µ(ds).

For all z1, z2 sufficiently close to ẑ, one has

|J (z1)−J (z2)|≤
∫

�

|f (s, z1)−f (s, z2)|µ(ds)

≤|z1 − z2|
∫

�

k(s)µ(ds);

i.e., J is Lipschitz near ẑ by the assumed integrability of Lipschitz mod-
ulus k. By virtue of Ref. 9, Theorem 2.7.2, to each ξ ∈ ∂̄J (z), there exists
an integrable mapping z̃∗[�→Rm] such that

ξ =
∫

�

z̃∗(s)µ(ds)

and

z̃∗(s)∈ ∂̄f (s, ẑ), for a.e. s ∈�.

In our situation, the map ∂f (·, ẑ) is integrably bounded and

∂̄f (s, ẑ)= conv ∂f (s, ẑ), for all s ∈�.

Now, the Lyapunov–Aumann theorem implies the existence of an integra-
ble selection z∗ such that

z∗(s)∈ ∂f (s, ẑ), for a.e. s ∈�,

and relation (25) is fulfilled. It remains to recall from Ref. 3, Theorem 4.1,
that, under our assumptions,

∂f (s, ẑ)⊂
⋃

x0
s ∈argminy∈Rn g̃(s,ẑ,y)

{
z∗

1 + z∗
2

∣∣∣z∗
1 ∈D∗�(s, ẑ, x0

s )(x∗), (z∗
2, x

∗)

∈ ∂g(s, ẑ, x0
s )

}

and we are done.
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Under our assumptions, the multifunction

P : (s, z)⇒argminy∈Rn g̃(s, z, y)

is closed-valued and measurable (Ref. 1, Theorem 14.37). Of course, this
does not imply the measurability of the map s �→x0

s in Theorem 3.5. Nev-
ertheless, if P possesses a measurable selection ȳ such that ȳ(s, ·) is con-
tinuous at ẑ for a.e. s ∈�, then one can set

x0
s = ȳ(s, ẑ), for a.e. s ∈�.

This idea comes from Ref. 17 and follows in our context from the follow-
ing observations. Let s ∈� be fixed and ξ ∈∂f (s, ẑ). Then, as explained e.g.
in Refs. 1–2, there are sequences zi → ẑ and ξi →ξ such that, for all i, the
element ξi is a regular subgradient of f at (s, zi); i.e., for all z∈Rm,

f (s, z)−f (s, zi)≥〈ξi, z− zi〉−o(‖z− zi‖).

Definitely, for all z∈Rm and y ∈Rn,

f (s, z)−f (s, zi)≤ g̃(s, z, y)− g̃(s, zi, ȳ(s, zi)).

This implies that (ξi,0) is a regular subgradient of g̃ at (s, zi, ȳ(s, zi)).
Moreover, since zi → ẑ, ȳ(s, zi)→ ȳ(s, ẑ) and ξi → ξ , it follows that (ξ,0)∈
∂g̃(s, ẑ, ȳ(s, ẑ)). It remains to apply the sum rule for limiting subdifferen-
tials which yields the decomposition

ξ = z∗
1 + z∗

2,

with

z∗
1 ∈D∗�(s, ẑ, ȳ(s, ẑ))(x∗) and (z∗

2, x
∗)∈ ∂g(s, ẑ, ȳ(s, ẑ)).

Theorem 3.5 together with the above discussion represents a sharper var-
iant of Ref. 7, Theorem 5. Indeed, the Clarke subdifferential of g is
replaced by the limiting subdifferential and the Clarke normal cones to
D and gph �(s) are replaced by the limiting normal cones. Further, one
could assume as in Ref. 7 that �(s, ·) is given by parameter-dependent
inequalities and derive readily the counterpart of Ref. 7, Theorem 7.
Unfortunately this approach, leading to an improvement in the case of
two-stage stochastic programs, could not be applied in the case of multi-
stage stochastic programs as we will see in Section 4.
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4. Nonpointwise Constraints

4.1. Fuzzy Optimality Conditions. This section deals with the opti-
mization problem

min If [x], (26a)

s.t. x(s)∈�(s), for a.e. s ∈�, (26b)

x ∈C, (26c)

where f and � fulfill the assumptions posed in connection with problem
(2) and C is a nonempty and closed subset of L2(�;Rn). As pointed out
in the introduction, C cannot be expressed in pointwise form; therefore,
the approach of Section 3 is not applicable. Clearly, (26) amounts to the
problem

min I
f̃

[x], (27a)

s.t. x ∈C, (27b)

where f̃ is the essential integrand introduced in (5). Since the sum I
f̃

+δC

is lsc, from the definition of the proximal subdifferential it follows that

0∈ ∂P (I
f̃

+ δC)(x̂), (28)

whenever x̂ is a (local) minimum in (26) and If [x̂]∈R. To express the rela-
tion (28) in terms of the problem data, we invoke the proximal variant of
the weak fuzzy sum rule from Ref. 18. For the sake of simplicity, we for-
mulate this result only for the sum of two functions, whereas the original
statement concerns an arbitrary finite number of summands.

Theorem 4.1. Let X be a Hilbert space and let f1, f2[X → R̄] be lsc.
Assume that x∗ ∈ ∂P (f1 + f2)(x). Then, for each ε > 0 and each weak
neighborhood V of 0 in X, there exist x1, x2 ∈ B(x; ε), x∗

1 ∈ ∂P f (x1), x
∗
2 ∈

∂P f (x2) such that

|fn(xn)−fn(x)|<ε, n=1,2,

‖x1 −x2‖max{‖x∗
1‖,‖x∗

2‖}<ε,

and

x∗ ∈x∗
1 +x∗

2 +V.
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In the proof one needs just to combine the ideas from the proof of
Ref. 18, Theorem 2.7, with the strong proximal fuzzy sum rule in Ref. 15.
On the basis of Theorem 4.1, we obtain the following weak fuzzy optimal-
ity conditions for problem (26).

Theorem 4.2. Let x̂ be a (local) solution of problem (26). In addi-
tion to the posed assumptions, suppose that either (A) or (A)′ below is
satisfied:

(A) there exist a function k ∈L2(�;R) such that, for all s ∈�,

|f (s, y1)−f (s, y2)|≤k(s)|y1 −y2|, for all y1, y2 ∈Rn;

(A)′ for all s ∈ �, the function f (s, ·) is Lipschitz (of some rank)
near each point of Rn and there exists a scalar c>0 such that

ξ ∈ ∂f (s, y)⇒|ξ |≤ c(1+|y|), for all s ∈�,y ∈Rn.

Then, to each ε>0 and to each weak neighborhood V of 0 in L2(�;Rn),
there exist functions x1, x2, x3, x

∗
1 , x∗

2 , x∗
3 ∈L2(�;Rn) such that

|If [x1]− If [x̂]|<ε, x2(s)∈�(s), for a.e. s ∈�, x3 ∈C, (29a)

‖x1 − x̂‖≤ ε, ‖x2 − x̂‖≤ ε, ‖x3 − x̂‖≤ ε, (29b)

x∗
1 (s)∈ ∂P f (s, x1(s)), for a.e. s ∈�, (29c)

x∗
2 (s)∈NP

�(s)(x2(s)), for a.e. s ∈�, (29d)

x∗
3 ∈NP

C (x3), (29e)

0∈x∗
1 +x∗

2 +x∗
3 +V. (29f)

Before, we prove this statement, we note that, under (A), If is defined
and (globally) Lipschitz on L2(�;Rn); under (A)′, If is Lipschitz only on
bounded subsets of L2(�;Rn); see Ref. 9, Theorem 2.7.5.

Proof of Theorem 4.2. Since both functions I
f̃

and δC are lsc, we
are entitled to apply Theorem 4.1 to (28). This yields the existence of func-
tions x̃, x3 ∈B(x̂; ε/2), x̃∗ ∈ ∂P I

f̃
[x̃], x∗

3 ∈NP
C (x3) such that

|If [x̃]− If [x̂]|<ε/2, (30a)

x̃(s)∈�(s), for a.e. s ∈�, (30b)

x3 ∈C, (30c)

0∈ x̃∗ +x∗
3 +U, (30d)



JOTA: VOL. 126, NO. 2, AUGUST 2005 429

where U is a weak neighborhood of 0 in L2(�;Rn) satisfying the inclusion

U +B(0; ε/2)⊂V.

The first two relations in (30) follow from the inequality

|I
f̃

[x̃]− I
f̃

[x̂]|<ε/2.

Now, we apply the strong proximal sum rule (Ref. 15, Theorem 2) to
the relation x̃∗ ∈ ∂P (If + Iδ� )[x̃]. This is possible, because If is Lipschitz
on a neighborhood of x̂ so that the uniform lower semicontinuity prop-
erty is satisfied. It follows that there exist functions x1, x2 ∈B(x̃; ε/2), x∗

1 ∈
∂P If [x1], x∗

2 ∈ ∂P Iδ� [x2] such that

|If [x1]− If [x̃]|<ε/2 (31a)

x2(s)∈�(s), for a.e. s ∈�, (31b)

x̃∗ ∈x∗
1 +x∗

2 +B(0, ε/2). (31c)

It remains to put relations (30), (31) together and take into account the
implication (4).

Since V is a weak neighborhood, it is not possible to get a limiting
version of (29) by letting ε → 0. On the other hand, in Theorem 4.2, we
do not have to consider any constraint qualification arising usually in opti-
mality conditions of the KKT type, and the subdifferentials and normal
cone in (29) are in a certain sense the smallest possible.

Let � be a subset of an Asplund space Z. The Fréchet normal cone
is defined in Z in exactly the same way as in Rp (Definition 2.1). The lim-
iting normal cone to � at z̄ is then the set

N�(z̄) := lim sup
z→z̄

N̂�(z)

=
{
z∗ ∈Z∗|∃ sequences zk → z̄ and z∗

k

w∗
→ z∗, with

z∗
k ∈ N̂�(zk),∀k ∈N

}
.

We say that � is sequentially normally compact at z̄∈�, provided any
sequence {(zk, z

∗
k)} satisfying

z∗
k ∈ N̂�(zk), zk → z̄, z∗

k

w∗
→0,
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contains a subsequence {(zk′ , z∗
k′)} with ‖z∗

k′ ‖→0. To derive the optimality
conditions for problem (26) in a standard KKT form, we need to ensure
the inclusion

NC∩D(x̂)⊂NC(x̂)+ND(x̂), (32)

where

D :={x ∈L2(�;Rn)|x(s)∈�(s), for a.e. s ∈�}.

Following Ref. 19, this can be done by requiring that either C or D is
sequentially normally compact at x̂ and

NC(x̂)∩−ND(x̂)={0}.

Unfortunately, we are not able to prove the sequential normal com-
pactness of any from the sets C,D in the applications that we have
in mind, in particular in multistage stochastic programs. Additionally, a
pointwise description of ND(x̂) in terms of � is generally not available to
our knowledge. To summarize, for problem (26), we dispose with the fuzzy
optimality conditions stated in Theorem 4.2, which are valid under very
weak conditions imposed on the problem data. However, if these data ful-
fill some more restrictive assumptions, optimality conditions in the classi-
cal KKT form can be derived. In the next statement, we require among
others the regularity of �(s) at x̂(s) for a.e. s ∈� [i.e., N�(s)(x̂(s)) equals
the negative polar of the Bouligand (contingent) cone to �(s) at x̂(s)].
Other regularity notions and their relations are studied in Ref. 20.

Theorem 4.3. Let x̂ be a (local) solution of (26), where C is sequen-
tially normally compact at x̂ and �(s) is regular at x̂(s) for a.e. s ∈
�. Further, suppose that either assumption (A) or assumption (A′) from
Theorem 4.2 are fulfilled and that the constraint qualification

NC(x̂)∩{x∗ ∈L2(�;Rn)|−x∗(s)∈N�(s)(x̂(s)), a.e. in �}={0} (33)

holds true. Then, there exist functions x∗
1 , x∗

2 , x∗
3 ∈L2(�;Rn) such that

x∗
1 (s)∈ ∂̄f (s, x̂(s)), for a.e. s ∈�,

x∗
2 (s)∈N�(s)(x̂(s)), for a.e. s ∈�,

x∗
3 (s)∈NC(x̂),

0=x∗
1 +x∗

2 +x∗
3 .
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Proof. Due to the regularity of �(s) at x̂(s), for a.e. s ∈�, one can
invoke Ref. 12, Corollary 8.5.2, according to which

ND(x̂)={x∗ ∈L2(�;Rn)|x∗(s)∈N�(s)(x̂(s)),a.e. in �}.
Since C is sequentially normally compact at x̂, the constraint qualifi-
cation (33) ensures by virtue of Ref. 19, Proposition 2.2, the inclusion
(32). Under assumption (A) or (A′) the objective is Lipschitz around x̂.
Therefore,

0∈ ∂If [x̂]+NC(x̂)+ND(x̂).

It remain to observe that

∂If [x̂]⊂ ∂̄If [x̂]⊂{ξ ∈L2(�;Rn)|ξ(s)∈ ∂̄f (s, x̂(s)),a.e. in �},
and we are done.

In Ref. 21, one can find useful conditions ensuring the sequen-
tial normal compactness of C for sets with various frequently appearing
structures.

A favorable situation for the construction of the classical KKT opti-
mality conditions for (26) arises if C is a decomposable subspace of
L2(�;Rn) or even Lp(�;Rn),1≤p ≤∞. It is shown in Ref. 22, Theorem
3.1, that a nonempty closed subset C of Lp(�;Rn),1 ≤p <∞, is decom-
posable iff there exists a closed-valued measurable multifunction � from
� to Rn such that C coincides with the set of all functions in Lp(�;Rn)

that are measurable selections of �, a.e. in �. In such a case, the approach
via extended Lipschitz integrands from Ref. 10 can be used and it is not
necessary to assume either the sequential normal compactness of C or any
constraint qualification of the type (33). In the rest of this section, we
examine the form of conditions (29) in the case of a multistage stochas-
tic program.

4.2. Nonsmooth Multistage Stochastic Programs. We consider a finite-
horizon sequential decision process under uncertainty, in which a decision
made at stage k is defined on a probability space (�,S,µ) and is based
on only information that is available at k and becomes more refined with
growing k,1 ≤ k ≤ K. More precisely, we assume that the information at
k is given by a σ -algebra Sk and that the stochastic decision xk at stage
k varying in Rnk is measurable with respect to Sk. The latter property is
called nonanticipativity. Furthermore, we assume that

S1 ={∅,�}⊆ · · ·⊆Sk ⊆Sk+1 ⊆S, k =1, . . . ,K −1;
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i.e., x1 is deterministic and, with no loss of generality, we may assume that
SK = S. We take up the classical approach of Refs. 23–24 and formulate
the sequential decision model as a mathematical program in a space of
integrable functions [here, the space L2(�;Rn), with n := ∑K

k=1 nk]. The
objective is given by an integral functional If [x], where f is a normal inte-
grand from �×Rn to R̄ and the constraints consist of two groups: point-
wise constraints

ϕ(s, x(s))≤0, for a.e. s ∈�,

and functional (nonpointwise) constraints

xk ∈L2(�;Rnk ) and xk =E[xk|Sk], k =1, . . . ,K,

describing integrability and nonanticipativity of the decision x. Here, ϕ =
(ϕ1, . . . , ϕm) is mapping from �×Rn to some Euclidean space and E[·|Sk]
denotes the conditional expectation with respect to the σ -algebra Sk, k =
1, . . . ,K. This leads to the following K-stage stochastic programming
model:

min If [x]=
∫

�

f (s, x(s))µ(ds), (34a)

s.t. ϕ(s, x(s))≤0, for a.e. s ∈�, (34b)

x ∈C := {x ∈L2(�;Rn)|xk =E[xk|Sk], k =1, . . . ,K}. (34c)

In general, the set C forms a closed linear subspace of L2(�;Rn) and has
the specific structure Rn1 ×L2(�;Rn2) in the two-stage situation (i.e., K =
2). While the latter structure allows one to reduce the model (34) to the
model (22), the situation for K >2 becomes quite different, since C is not
decomposable in general.

Theorem 4.4. Let x̂ ∈L2(�;Rn) be a (local) solution of problem (34).
Suppose that ϕ(s, ·) is locally Lipschitz on Rn for each s ∈ � and that
either assumption (A) or assumption (A)′ of Theorem 4.2 is fulfilled. Fur-
ther, assume that, for all x ∈L2(�;Rn) such that x(s)∈�(s), for a.e. s ∈�,
one has

0 /∈





∑

i∈I (s,x(s))

λiξi |ξi ∈ ∂ϕi(s, x(s)), λi ≥0,
∑

i∈I (s,x(s))

λi =1





,

for a.e. s ∈�, (35)
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where

I (s, x(s)) :={i ∈{1, . . . ,m} :ϕi(s, x(s))=0}.

Then, to each ε>0 and to each weak neighborhood V of 0 in L2(�;Rn),
there exist functions x1, x2, x3, x

∗
1 , x∗

2 , x∗
3 ∈L2(�;Rn) such that:

(i) |If [x1] − If [x̂]| < ε,ϕ(s, x2(s)) ≤ 0, for a.e. s ∈ �, and x3 =
(x31, x32, . . . , x3K), where x3k is Sk-measurable for k =1, . . . ,K;

(ii) ‖x1 − x̂‖≤ ε, ‖x2 − x̂‖≤ ε, ‖x3 − x̂‖≤ ε;
(iii) for a.e. s ∈�, one has x∗

1 (s)∈ ∂P f (s, x1(s)) and there exist multi-
pliers λs ∈Rm+, depending measurably on s, such that

x∗
2 (s)∈

m∑

i=1

λi
s∂ϕi(s, x2(s)) and λi

sϕ
i(s, x2(s))=0, i =1, . . . ,m;

(iv) for x∗
3 = (x∗

31, x
∗
32, . . . , x

∗
3K

), it holds that E[x∗
3k

|Sk] = 0, a.e. for k =
1, . . . ,K;

(v) 0∈x∗
1 +x∗

2 +x∗
3 +V .

Proof. It suffices to express the cones NP
�(s)(x2(s)), for a.e. s ∈�, and

NP
C (x3) from Theorem 4.2 in terms of the data of the problem (34). To

this purpose, we invoke Ref. 2, Corollary 4.4.2, according to which the
inclusion

NP
�(s)(x2(s))⊆N�(s)(x2(s))

⊆
⋃

{
m∑

i=1

λi∂ϕi(s, x2(s))|λi ≥0, λiϕi(s, x2(s))=0

}

(36)

holds, whenever the constraint qualification (35) is fulfilled. Since the sub-
gradient mappings s �→ ∂ϕi(s, x2(s)) are closed-valued and measurable by
Ref. 1, Theorem 14.56, for i = 1, . . . ,m, the set-valued mapping, which
assigns s the set �(s) on the right-hand side of (36), is closed-valued and
measurable, too; see Ref. 1, Exercise 14.12. By appealing to the implicit
measurable functions theorem (see Ref. 1, Theorem 14.16), there exist
measurable functions s �→λi

s from � to Rm+ such that λi
sϕ

i(s, x2(s))=0, i =
1, . . . ,m, and the measurable selection x∗

2 of � is a.e. contained in the set

m∑

i=1

λi
s∂ϕi(s, x2(s)).
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The cone NP
C (x3) coincides with the normal cone of convex analysis to the

closed linear subspace C of L2(�;Rn) at x3, i.e., with the orthogonal sub-
space C⊥ to C. Due to the orthogonal projection property of the condi-
tional expectation, it holds that

C⊥ ={x∗ ∈L2(�;Rn)|E[x∗
k |Sk]=0, a.e., k =1, . . . ,K},

completing the proof.

The usage of limiting subdifferentials in the upper approximation of
NP

�(s)(x2(s)) makes possible to evaluate all needed subdifferentials ∂ϕi, i ∈
{1,2, . . . ,m}, at the points x2(s), s ∈ �. However, one could apply a rele-
vant rule from the fuzzy calculus also to this purpose. This leads to the
following statement.

Theorem 4.5. Let the assumptions of Theorem 4.4 be satisfied, except
condition (35) which has to be replaced by

lim inf
y→x(s)

dist (0|∂P ϕi(s, y))>0, for a.e. s ∈�, i =1,2, . . . ,m. (37)

Then, to each ε>0 and to each weak neighborhood V of 0 in L2(�;Rn),
there exist functions x1, x2, x3, x

∗
1 , x∗

2 , x∗
3 ∈ L2(�;Rn) such that the asser-

tions (i), (ii), (iv), (v) of Theorem 4.4 hold true and assertion (iii) is
replaced by (iii)′ below.

(iii)′ For a.e. s ∈�, one has

x∗
1 (s)∈ ∂P f (s, x1(s)),

and there exist vectors yis ∈ B(x2(s); ε), i = 1,2, . . . ,m, a multi-
plier λs ∈ int Rm+, and proximal subgradients ξis ∈∂P ϕi(s, yis), i =
1,2, . . . ,m, such that

|ϕi(s, yis)−ϕi(s, x2(s))|<ε and

∣∣∣∣∣
x∗

2 (s)−
m∑

i=1

λi
sξis

∣∣∣∣∣
≤ ε.

In the proof, it suffices to express the proximal normal cones to the
corresponding sets {y ∈ Rn|ϕi(s, y)≤ 0} at y = x2(s), s ∈�, on the basis of
Ref. 18, Theorem 3.6, which is possible by virtue of the qualification con-
dition (37). Then, one applies the proximal variant of the weak fuzzy sum
rule (Ref. 18, Theorem 2.7) and arrives at the above result.

In the description of NP
�(s)(x2(s)), one works now with smaller sub-

differentials (proximal instead of limiting), but they are not evaluated
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at x2(s), s ∈ �. On the other hand, the qualification condition (37) con-
cerns the single functions ϕi, i = 1,2, . . . ,m, separately and not jointly as
condition (35).

5. Appendix

Consider first an abstract mathematical program of the form

min ϕ(x), (38a)

s.t. x ∈	, (38b)

where ϕ maps Rp into R̄ and 	 is a closed subset of Rp. In Ref. 2
the 1st-order necessary optimality conditions for problem (38) have been
proved in the following form.

Theorem 5.1. Let x̂ be a local solution of (38) and let ϕ be lower
semicontinuous in a neighborhood of x̂. Then, there exist an element x̂∗ ∈
Rp and a real λ≥0, not both equal to zero, such that

(x̂∗,−λ)∈Nepi ϕ(x̂, ϕ(x̂)) and − x̂∗ ∈N	(x̂).

Under the additional condition

∂∞ϕ(x̂)∩ (−N	(x̂))={0},

one has λ �=0 and

0∈ ∂ϕ(x̂)+N	(x̂).

The generalized differential calculus of Mordukhovich is rather rich
and enables one to compute generalized normal cones or their upper
approximations to a large number of sets with different structure. The next
statement can be proved easily on the basis of Ref. 2, Theorem 1.2, and
Ref. 4, Corollary 5.5 and Theorem 6.10.

Theorem 5.2. Consider the set

A :={x ∈C|F(x)∈D}

and the associated multifunction Q, defined by

Q(y) :={x ∈C|y +F(x)∈D},
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where F [Rn → Rm] is continuous and C,D are closed subset of Rn,Rm,
respectively. Let x̄ ∈A and, for y∗ ∈ND(F(x̄)), let

D∗F(x̄)(y∗)∩ (−NC(x̄))={0}. (39)

Then, for all x∗ ∈Rn, one has

D∗Q(0, x̄)(x∗)⊂{
y∗ ∈ND(F(x̄))

∣∣0∈x∗ +D∗F(x̄)(y∗)+NC(x̄)
}
. (40)

Furthermore, under the condition

ND(F(x̄))∩Ker D∗F(x̄)={0}, (41)

the inclusion

NA(x̄)⊂{x∗ ∈Rn|x∗ ∈D∗F(x̄)(ξ)+NC(x̄), ξ ∈ND(F(x̄))}
holds true.

By combining (40) and Ref. 5, Theorem 3.2, we obtain the following
criterion of pseudo-Lipschitz continuity of Q around (0, x̄).

Theorem 5.3. Consider the map Q from Theorem 5.2 with F Lipschitz
near x̄ and assume that the following constraint qualification is fulfilled:

0∈D∗F(x̄)(ξ)+NC(x̄), ξ ∈ND(F(x̄)) imply ξ =0. (42)

Then, conditions (39), (41) hold true and Q is pseudo-Lipschitz around
(0, x̄).

The above statement shows a well-known connection between the
pseudo-Lipschitz continuity of Q and the possibility to express (an upper
approximation of) NA(x̄) in terms of the constraint data.
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