
Stohasti DAEs in Ciruit SimulationWerner R�omish and Renate WinklerAbstrat. Stohasti di�erential-algebrai equations (SDAEs) arise as a math-ematial model for eletrial network equations that are inuened by addi-tional soures of Gaussian white noise. We sketh the underlying analytialtheory for the existene and uniqueness of strong solutions, provided that thesystems have noise-free onstraints and are uniformly of DAE-index 1. In themain part we analyze disretization methods. Due to the di�erential-algebraistruture, impliit methods will be neessary. We start with a general p-thmean stability result for drift-impliit one-step methods applied to stohastidi�erential equations (SDEs). We disuss its appliation to drift-impliit Eu-ler, trapezoidal and Milstein shemes and show how drift-impliit shemes forSDEs an be adapted to beome diretly appliable to stohasti DAEs. Testresults of a drift-impliit Euler sheme with a mean-square step size ontrolare presented for an osillator iruit.
1. IntrodutionEletrial noise limits the performane of eletroni iruits and, hene, requiresthe analysis or simulation of its e�ets. Due to dereasing signal to noise ratios inspeial appliations linear noise analysis around the deterministi solution is nolonger satisfatory. The noise inuenes suh systems in an essentially nonlinearway. We deal with two soures of eletrial noise, namely, thermal noise of resistorsand shot noise of pn-juntions. They are modelled as external Gaussian white noisesoures in parallel to the original element (see Figures 1 and 2). Nyquist's theorem(see e.g. [2, 4, 22℄) states that the urrent through an arbitrary linear resistorhaving a resistane R, maintained in thermal equilibrium at a temperature T , anbe desribed as the sum of the noiseless, deterministi urrent and a urrent dueto a Gaussian white noise proess with spetral density Sth := 2kTR , where k isBoltzmann's onstant. Hene, the additional urrent is modelled asIth = �th � �(t) =q 2kTR � �(t);Reeived by the editors Marh 27, 2003.This researh has been supported by the BMBF-projekt 03-ROM3B3.



2 Werner R�omish and Renate Winklerwhere �(t) is a standard Gaussian white noise proess. In [21, 22℄ a thermo-dynamial foundation to apply this model to mildly nonlinear resistors and re-iproal networks is given.
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thermalnoiseof aresistorFigure 1 Ig(u)
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shotnoiseof apn-juntionFigure 2Shot noise of pn-juntions, aused by the disrete nature of urrent due to theelementary harge, is also modelled by a Gaussian white noise proess, wherethe spetral density is proportional to the urrent I through the pn-juntion:Sshot := qjI j, where q is the elementary harge. If the urrent through the pn-juntion is desribed by a harateristi I = g(u), where u is some voltage, theadditional urrent is modelled byIshot = �shot(u) � �(t) =pqjg(u)j � �(t);where �(t) is a standard Gaussian white noise proess. For a disussion of themodel assumptions we refer to [2, 4, 21, 22℄.The harge-oriented Modi�ed Nodal Analysis (MNA) represents a standardtool in iruit simulation. The equations are generated automatially by ombiningthe network topology, Kirhho�'s Current Law, and the harateristi equationsdesribing the physial behaviour of the network elements. This results in largesystems of DAEs, whose speial struture was analyzed in a number of papers, e.g.[6, 8, 20℄. We represent the topology of a network by means of the inidene ma-trix (AC ; AR; AL; AV ; AI ; AN), with indies referring to branhes of apaitanes,resistanes, indutanes, possibly ontrolled voltage and urrent soures, and nNadditional noise soures, respetively. Then the harge-oriented MNA system hasthe following struture (see [6, 8℄ for the deterministi ase):ACq0 + f1(e; jL; jV ; t) +ANdiag (�(ATNe; t))�(t) = 0(1.1) �0 �ATL e = 0(1.2) ATV e� vs(e; jL; t) = 0(1.3) q � qC(ATC e; t) = 0(1.4) �� �L(jL; t) = 0;(1.5)where f1(e; jL; jV ; t) := ARg(ATRe; t) +ALjL +AV jV +AIis(e; jL; jI ; t), andqC ; g; �L; vs; is; � are given, noiseless funtions. The vetor of unknowns desrib-ing the system behaviour onsists of all node potentials e, the branh urrentsof urrent-ontrolled elements (indutanes and voltage soures) jL; jV , and the



Stohasti DAEs in Ciruit Simulation 3harges q of apaitanes, and the uxes � of indutanes. � denotes an nN-dimensional vetor of independent standard Gaussian white noise proesses. Inindustry-relevant appliations one has to deal with a large number of unknownsand noise soures. The �rst blok of equations (1.1) means a stohasti integralequation :ACq(s)���tt0 + Z tt0 f1(x(s); s)ds + Z tt0 ANdiag (�)(x(s); s)dw(s) = 0;where the seond integral is an Itô integral, and w denotes an nN-dimensionalWiener proess (or Brownian motion) given on the probability spae (
;F ; P )with a �ltration (Ft)t�t0 (see e.g. [3, 9℄ for the stohasti bakground). A solutionx = x(t; !) is a stohasti proess depending on the time t and the hane element! 2 
. The parameter ! is omitted in the notations above. The solution x(t) =x(t; �) for �xed time t is a vetor-valued random variable in Lp(
), p � 1, arealization x(�; !) is alled a path.The equations (1.1)-(1.5) form a speially strutured Stohasti Di�erentialAlgebrai Equation (SDAE) of the type(1.6) Ax(s)���tt0 + Z tt0 f(x(s); s)ds+ Z tt0 G(x(s); s)dw(s) = 0;where A is a onstant singular matrix, t varies over a ompat interval J . Theshort-hand notation(1.7) Ax0(t) + f(x(t); t) +G(x(t); t)�(t) = 0emphasizes the relations of (1.6) to its deterministi ounterpart but may be mis-leading for readers who are less familiar with the stohasti bakground. Thoughthe notation x0(t) is used in (1.7), a typial realization x(�; !) of the solution isnowhere di�erentiable. A proess x(�) = (x(t))t2J is alled a strong solution of(1.6) if it is adapted to the �ltration (i.e., it does not depend on future informa-tion), and if, with probability 1, its sample paths are ontinuous, the integrals in(1.6) exist and (1.6) is satis�ed.In Setion 2 we disuss some basis of an existene and uniqueness theory ofstrong solutions for SDAEs where we restrit to DAE-systems that have uniformlyindex 1 and noise-free onstraints. In partiular, we introdue the notion of aninherent regular SDE. The latter motivates to study disretization shemes �rstfor SDEs. Hene, we provide in Setion 3 a short introdution to p-th mean stabilityand onvergene of general drift-impliit shemes. For the onveniene of the readerthe proof of the main stability result is shifted to the Appendix. In Setion 4 wedisuss several variants of drift-impliit shemes for SDAEs, namely, the drift-impliit Euler, trapezoidal and Milstein shemes. Speial attention is paid to theironvergene properties and to implementation issues. Finally, we report in Setion5 on numerial experiene with the drift-impliit Euler sheme applied to thetransient noise simulation in a ring-osillator model.



4 Werner R�omish and Renate Winkler2. Index 1 SDAEsDue to the singularity of the matrix A the deterministi part of (1.6)(2.1) Ax0(t) + f(x(t); t) = 0;where the solution x is now a deterministi funtion of t, forms a DAE. Solutionshave to ful�l the onstraints of the equation. The solution omponents belongingto kerA (we all them the algebrai omponents) do not our under the di�er-ential operator d=dt, and the inherent dynamis live only in a lower-dimensionalsubspae. The DAE (2.1) is haraterized as an index 1 DAE i� the onstraintsare loally solvable for the algebrai omponents. Solving an index 1 DAE involvesa oupling of an integration task and a nonlinear equation solving task. If a DAEis of higher index, the onstraints are not loally solvable for the algebrai ompo-nents, and there exist solution omponents that are determined only by a hiddendi�erentiation step, whih may ause serious diÆulties in the numerial solutionof suh problems (see e.g. [1, 11℄).We assume here that the deterministi part (2.1) is globally an index 1 DAEin the sense that the onstraints are regularly and globally uniquely solvable for thealgebrai variables. The globally unique solvability is stronger than the determinis-ti index 1 ondition, whih requires only the non-singularity of the orrespondingJaobian and guarantees only loal solvability of the onstraints for the algebraivariables. The globally unique solvability holds for the MNA-system (1.1)-(1.5) if(see[23℄) there are no loops of apaitanes and voltage soures and no ut-sets ofindutanes or urrent soures, if the apaity, ondutane, and indutane ma-tries are symmetri and uniformly positive de�nite, and if the ontrolled souressatisfy ertain onditions desribed in [6℄ (see [6, 23℄).In [17, 18℄ it is shown that speial onditions are needed to ensure solutionproesses that are not diretly a�eted by white noise. Then the SDAEs are alledSDAEs without diret noise, otherwise with diret noise. To avoid diret noise wehave to assume that the noise soures do not appear in the onstraints. This meansthat imG(x; t) � imA 8(x; t) 2 IRn �J :This is true for (1.7) if and only if there are always apaitanes in parallel to anoise soure. This is quite restritive in the atual noise modelling (see also theexample in Setion 4). Nevertheless, one an also handle many situations wherethis ondition is violated. Often noisy onstraints are only needed for the determi-nation of algebrai solution omponents that do not interat with the dynamialones. Future work should be direted to a lassi�ation of suh situations.Under these onditions the onstraints of the SDAE an be desribed by the de-terministi equation Rf(x(t); t) = 0;where R is a projetor along imA, i.e., R2 = R; kerR = im A. Solving theonstraints for the algebrai omponentsRf(u+ v; t) = 0; Av = 0() v = v̂(u; t);



Stohasti DAEs in Ciruit Simulation 5inserting the result into the di�erential equations, and saling the system by apseudo-inverse A� (with AA� = I � R;A�A a projetor along kerA) leads to aso-alled inherent regular SDE in the di�erential omponents u:(2.2) u0 +A�f(u+ v̂(u; t); t) +A�G(u+ v(u; t); t)�(t) = 0It an be shown that (2.2), together with x(t) = u(t) + v̂(u(t); t), is equivalentto (1.6). Based on this, the following theorem on the existene and uniqueness ofstrong solutions of (1.6) is proved in [23℄:Theorem 2.1. Let the above onditions be satis�ed for (1.6), and assume that fand G are globally Lipshitz ontinuous with respet to x, ontinuous with respetto t, and that Ax0 is Ft0 -measurable, independent of the Wiener proess w, andhas �nite p-th mean for some p � 1.Then there exists a strong solution x(�) of the initial value problem(2.3) Ax(t) �Ax0 + Z tt0 f(x(s); s)ds + Z tt0 G(x(s); s)dw(s) = 0;whih is pathwise unique. Moreover, the solution x(�) has �nite p-th mean.Similarly, onvergene properties of suitable drift-impliit disretization she-mes for SDEs arry over to SDAEs. In the next setion we therefore give somebasi results for the disretization of SDEs.3. Time disretization of stohasti di�erential equationsWe onsider the initial value problem for the SDE(3.1) x(s)���tt0 + Z tt0 f(x(s); s)ds + Z tt0 G(x(s); s)dw(s) = 0; t 2 J ; x(t0) = x0;where J = [t0; T ℄, f : IRn�J ! IRn, G : IRn�J ! IRn�m, w is anm-dimensionalWiener proess on a given probability spae (
;F ; P ) with a �ltration (Ft)t2J ,and x0 is a given Ft0-measurable initial value, whih is independent of the Wienerproess w. We assume that there exists a pathwise unique strong solution x(�).Let us onsider a generally drift-impliit disretization sheme of the form(3.2) x` = x`�1 + '(x`�1; x`; t`�1; h`) +  (x`�1; t`�1; h`; It`�1;h`); ` = 1; : : : ; N;on the deterministi grid t0 < t1 < : : : < tN = T with stepsizes h` := t` � t`�1,` = 1; : : : ; N . Here, ' and  are funtions de�ned on IRn�IRn�T and IRn�T �IRMwith T := f(t; h) : t; t + h 2 J ; h 2 IR+g, respetively, and mapping to IRn. ByIt;h we denote a vetor of M multiple stohasti integrals having the formIi1;:::;ik;t;h = Z t+ht Z s1t � � � Z sk�1t dwi1 (s1)dwi2 (s2) � � � dwik (sk)where the indies i1; : : : ; ik are in f0; 1; : : : ;mg, k is bounded by ertain �nite orderkmax and dw0(s) orresponds to ds.



6 Werner R�omish and Renate WinklerFor example, for the family of drift-impliit Euler shemesx` := x`�1+h`(�f(x`; t`)+(1��)f(x`�1; t`�1))+G(x`�1; t`�1)�w`; ` = 1; : : : ; N;where � 2 [0; 1℄, and �w` := (w(t`)�w(t`�1)) = (Ii;t`�1 ;h`)mi=1, one has kmax = 1,M = m, and'(z; x; t; h) := h(�f(x; t+ h) + (1� �)f(z; t)); (z; t; h; It;h) := G(z; t)(w(t + h)� w(t)) = mXi=1 gi(z; t) Z t+ht dwi(s);where gi(z; t), i = 1; : : : ;m, are the olumns of the matrix G(z; t).The family of drift-impliit Milstein shemes di�ers from the Euler shemes byan additional orretion term for the stohasti part. The Milstein shemes aredesribed by the same funtion ', and kmax = 2, M = m+m2, and (z; t; h; It;h) := G(z; t)�wt;h + mXj=1(gjxG)(z; t)I(j);t;h;where �wt;h := w(t + h)� w(t) = (Ii;t;h)mi=1, and I(j);t;h := (Ij;i;t;h)mi=1.In [23℄, a result on numerial stability of drift-impliit shemes (3.2) in themean-square sense has been derived whih allows to study the behaviour of (3.2)under perturbations. Next we present a variant of suh a stability result whihsupplements and extends Theorem 5 in [23℄.Theorem 3.1. Let p � 1 and x0 have �nite p-th mean. Assume that the sheme(3.2) satis�es the following properties:� for all z; ~z; x; ~x 2 IRn, (t; h) 2 T , h � h1 we have(A1) j'(z; x; t; h)� '(~z; ~x; t; h)j � h(L1jz � ~zj+ L2jx� ~xj)for some positive onstants h1; L1; L2.� for all (t; h) 2 T , h � h1, and Ft-measurable random vetors y, ~y we have(A2) IE( (y; t; h; It;h)�  (~y; t; h; It;h)jFt) = 0,(A3) IE(j (y; t; h; It;h)�  (~y; t; h; It;h)jpjFt) � h p2Lp3jy � ~yjp,(A4) IEj (0; t; h; It;h)jp <1,for some onstant L3 > 0.Then there exists onstants a � 1, h0 > 0 and a stability onstant S > 0 suhthat the following holds true for eah grid ft0; t1; : : : ; tNg having the property h :=max`=1;:::;N h` � h0 and h �N � a � (T � t0):For all Ft0-measurable random vetors x�0, ~x0 having �nite p-th mean, for all` 2 f1; : : : ; Ng and Ft`-measurable perturbations d�̀, ~d` having �nite p-th meanthe perturbed disrete system(3.3) ~x` = ~x`�1 + '(~x`�1; ~x`; t`�1; h`) +  (~x`�1; t`�1; h`; It`�1;h`) + ~d`;



Stohasti DAEs in Ciruit Simulation 7` = 1; : : : ; N , has a unique solution f~x`gǸ=0, and the following estimates are validfor any two solutions fx�̀gǸ=1 and f~x`gǸ=0 of the perturbed disrete systems withperturbations fd�̀gǸ=1 and f ~d`gǸ=1:(3.4) IE max`=1;:::;N jx�̀�~x`jp � Sp�IEjx�0�~x0jp+ max`=1;:::;N IEjs`jph p2 + IE max`=1;:::;N jr`jphp �;(3.5) max`=1;:::;N IEjx�̀� ~x`jp � Sp�IEjx�0� ~x0jp+ max`=1;:::;N IEjs`jph p2 + max`=1;:::;N IEjr`jphp �;where d` := d�̀ � ~d` is splitted suh that d` = r` + s` with IE(s`jFt`�1) = 0.The proof of Theorem 3.1 is given in the appendix.Theorem 3.1 applies immediately to well-known shemes for SDEs. Here,we hek the assumptions of Theorem 3.1 for the families of drift-impliit Eulerand Milstein shemes. Condition (A1) follows from the Lipshitz ontinuity of thedrift oeÆient f , (A2) holds due to the expliit, non-antiipative disretization ofthe di�usion term, and the tehnial ondition (A4) is satis�ed sine the funtionG(0; �) (and the funtions gjxG(0; �)) are bounded on the ompat interval J .Condition (A3) is a onsequene of standard properties of moments of stohastiintegrals and the Lipshitz ontinuity of the di�usion oeÆient G (and in aseof the Milstein sheme of the funtions gjxG). For example, for the drift-impliitEuler sheme we obtain for any pair (t; h) 2 T and any Ft-measurable y, ~yIE(j (y; t; h; It;h)�  (~y; t; h; It;h)jpjFt) = jG(y; t)�G(~y; t)jpIE(j�wt;hjpjFt)� LpGjy � ~yjpCph p2where LG is a Lipshitz onstant of G and Cp a universal onstant.In the speial ase x�̀ = x(t`), the perturbations d�̀ form the loal disretiza-tion errors. We split them intod�̀ = (d�̀ � �d�̀) + �d�̀; where �d�̀ := IE(d�̀jFt`�1);and obtain, in omparison with the exat solution of the numerial sheme x`,k max`=1;:::;N jx(t`)� x`j kLp � Sp� max`=1;:::;N kd�̀ � �d�̀kLp=h 12 + k max`=1;:::;N j �d�̀j kLp=h�;max`=1;:::;N kx(t`)� x`kLp � Sp� max`=1;:::;N kd�̀ � �d�̀kLp=h 12 + max`=1;:::;N k �d�̀kLp=h�;where kxkLp := (IEjxjp)1=p. If, by onsisteny arguments, the loal error terms onthe right-hand side are of order O(h), we have global onvergene of order .4. Disretization Shemes for Index 1 SDAEsNowadays, a wide spetrum of disretization shemes for SDEs is available (f.[3, 9, 12, 15℄). However, SDAEs require speial shemes. First deoupling the SDAEnumerially and then applying a sheme to the resulting inherent SDE would be



8 Werner R�omish and Renate Winkleran ineÆient proedure in general. We aim at numerial methods for SDAEs thatwork diretly on the given impliit struture, as in the ase of deterministi DAEs.Only little previous work has been done in this diretion. In [17, 18℄ linear SDAEsare analyzed and the onvergene of the drift-impliit Euler sheme is proved. In[14℄ a sheme with strong order 1 is developed for the speially strutured SDAEsthat arise in transient noise simulation for eletroni iruits. Later we will pointout its relation to the drift-impliit Milstein sheme.Our approah also applies to nonlinear SDAEs. We present adaptations ofknown shemes for SDEs that are impliit in the deterministi and expliit in thestohasti part to the SDAE (1.6). Designing the methods suh that the iteratesx` have to satisfy the onstraints of the SDAE at the urrent time-point t`Rf(x`; t`) = 0;is the key idea to adapt known methods for SDEs to (1.6).The noise densities given in Setion 1 ontain small parameters. To exploitthis in the analysis of the disretization errors we express the di�usion oeÆientin the form(4.1) G(x; t) := � ~G(x; t); �� 1:4.1. Drift-Impliit Euler ShemeOn the deterministi grid 0 = t0 < t1 < : : : < tN = T the drift-impliit Eulersheme for (1.6) is given by(4.2) Ax` � x`�1h` + f(x`; t`) +G(x`�1; t`�1) 1h`�w` = 0;where h` = t`�t`�1, �w` = w(t`)� w(t`�1). Realizations of �w` an be simulatedas N(0; h`I)-distributed random variables. The Jaobian of 4.2 is the same as inthe deterministi setting.The sheme (4.2) for the SDAE (1.6) possesses the same onvergene prop-erties as the drift-impliit Euler sheme for SDEs. In general, its order of strongonvergene is 1=2, i.e.,kx(t`)� x`kLp = (Ejx(t`)� x`jp)1=p �  � h1=2; h := max`=1;:::;N h`;holds for the p-th mean norm of the global errors for p � 1. For additive noise,i.e., G(x; t) = G(t), the order of strong onvergene is 1. For small noise, i.e.,G(x; t) = � ~G(x; t), the error is bounded by O(h+�2h1=2) (see [16℄, or [13℄ for relatedresults).The smallness of the noise also allows speial estimates of loal error terms,whih an be used to ontrol the stepsize. The loal error for the Euler shemeapplied to SDEs with small noise is analyzed in [16℄. As long as stepsizes withh` � �2



Stohasti DAEs in Ciruit Simulation 9are used, the dominating loal error term of (4.2) isk �d�̀kLp=h` = O(h`) = 12kA��f(x`; t`)� f(x`�1; t`�1)�kLp +O(�h1=2` )=: �` +O(�h1=2` );where A� denotes a suitable pseudo-inverse of A. For � ! 0 it approahes theknown error estimate in the deterministi setting. If an ensemble of solution pathsis omputed simultaneously, the estimate �` an be omputed approximately andmay be used to ontrol the loal error orresponding to a given tolerane. Thisresults in an adaptive stepsize sequene that is uniform for all solution paths.4.2. Drift-Impliit Milstein ShemeWe intend to design this method in suh a way that it realizes the drift-impliitMilstein sheme for the inherent SDE u0 + f̂(u; t) + Ĝ(u; t)�(t) = 0, i.e.,u` � u`�1h` + f̂(u`; t`) + Ĝ(u`�1; t`�1) 1h`�w` � mXj=1(ĝjuĜ)(u`�1; t`�1) 1h` Ij̀ = 0;where Ij̀ = (Ij̀;i)mi=1, Ij̀;i = R t`t`�1 R st` dwi(�)dwj(s), Ĝ = (ĝ1; : : : ; ĝm) andf̂(u; t) := A�f(u+ v̂(u; t); t), Ĝ(u; t) := A�G(u+ v̂(u; t); t).The Milstein sheme is strongly onvergent of order  = 1. It di�ers from the Eulersheme by an additional orretion term for the stohasti part, whih inludesdouble stohasti integrals. For additive noise the additional term vanishes andboth shemes oinide.The Milstein sheme for the inherent SDE is realized byAx`�x`�1h` + f(x`; t`) +G(x`�1; t`�1)�w`h` � mXj=1(gjxxuA�G)(x`�1; t`�1) Ij̀h` = 0;where G = (g1; : : : ; gm), whih we all the drift-impliit Milstein sheme for (1.6).We point out the expliit use of the inner derivative xu = I + v̂u and thesaling A� in the last term. The inner derivative an be expressed asxu = I+ v̂u = I� (A+�Rfx)�1�Rfx = I� I+(A+�Rfx)�1A = (A+�Rfx)�1Awith a free parameter � 6= 0. Choosing � = h, it may be approximated viaxu = (A+ hRfx)�1A = (A+ hfx)�1A +O(h)xuA� = (A+ hRfx)�1(I�R) = (A+ hfx)�1(I�R) +O(h)by means of the Jaobian of Newton's method. Hene, the term xuA� an besubstituted by (A + hRfx)�1(I�R) without hanging the order of the sheme.Penski's approah [14℄ results in a similar approximation to the Milstein shemein a more speialized setting.The higher order 1 of strong onvergene of these shemes has to be paid forwith the use of a large number of double stohasti integrals and the use of the



10 Werner R�omish and Renate Winklerderivatives of the di�usion oeÆients. In an appliation with a large number ofsmall noise soures one has to pay muh for a mostly theoretial gain in auray.4.3. Trapezoidal RuleThe trapezoidal rule is widely used to integrate osillatory solutions of ODEs. Itis A-stable and onvergent of order 2. It is also applied to index 1 DAEs of theform(4.3) Ax0(t) + f(x(t); t) = 0via the sheme(4.4) y` := �y`�1 + 2x` � x`�1h ; A(�y`�1 + 2x` � x`�1h ) + f(x`; t`) = 0that impliitly realizes the trapezoidal rule for the inherent regular ODE. Thisbeomes lear by the following onsiderations: On the one hand (4.4) impliesRf(x`; t`) = 0, suh that the iterates are fored to satisfy the onstraints. On theother hand (4.4) implies Ay` + f(x`; t`) = 0, suh that A(�y`�1) = f(x`�1; t`�1).Implementing the sheme (4.4) requires only residuals.A stohasti ounterpart of the trapezoidal rule for the integration of SDEs(3.1) is given by(4.5) x`�x`�1h` = 12ff(x`; t`) + f(x`�1; t`�1)g+G(x`�1; t`�1) 1h`�w`:It is strongly onvergent of order  = 1=2 like the other Euler shemes. For smallnoise the error is bounded by O(h2 + �h + �2h1=2) (see [16℄, or [13℄ for relatedresults).An adaptation of this sheme to SDAEs, analogously to (4.4) in the deter-ministi ase, would lead to an impliit disretization of the di�usion term. Anappropriate impliit realization of (4.5) for the inherent SDE requires some moreavailable information onerning the struture of the SDAE. Given the projetorR and a separate evaluation of the drift term, one an use the sheme(4.6) Ax`�x`�1h` + 12�f(x`; t`)+(I�R)f(x`�1; t`�1)�+G(x`�1; t`�1) 1h`�w` = 0;whih impliitly realizes (4.5) for the inherent SDE (f. [10℄ for the deterministiase). Sine the di�erential equations and the onstraints are now treated di�er-ently, it is possible to use a di�erent saling for both parts, whih leads to a betteronditioned system:A(x`�x`�1) + h2̀ (I �R)�f(x`; t`) + f(x`�1; t`�1)�+G(x`�1; t`�1)�w`+Rf(x`; t`) = 0;(4.7)After reating expliit onstraints via saling by a suitable non-singular matrix ~Dwith~DA = � ~D1A~D2A� = � ~A10 � ; rank ~A1 = rankA; ~Df =: � ~f1~f2� ; ~DG =: � ~G1~G2� ;



Stohasti DAEs in Ciruit Simulation 11the suggested sheme (4.7) orresponds to~A1x` � x`�1 + h2̀ f ~f1(x`; t`) + ~f1(x`�1; t`�1)g+ ~G1(x`�1; t`�1)�w` = 0~f2(x`; t`) = 0:The iterates satisfy the onstraints at the urrent time-point, and the trapezoidalrule for the inherent SDE is realized. The Jaobian with respet to the new iterateis  ~A1 + h` ~f10x(x; t)=2~f20x(x; t) ! :It is non-singular for suÆiently small stepsizes and its ondition number is boun-ded independently of the stepsizes.5. Numerial ResultsThe drift-impliit Euler sheme has been used to simulate a ring-osillator builtof three oupled inverter steps with simple mosfet-models. Suh an osillator wasalso used for test runs in [14℄. Thermal noise in the mosfets and in the resistors aremodelled by multipliative and additive white noise soures. The iruit diagramis given in Fig. 3. The orresponding noise-free iruit is a free running osillator.
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Figure 3: Thermal noise soures in a mosfet ring-osillator modelThe unknowns in the MNA system are the harges for the six apaities, the fournodal potentials and the urrent through the voltage soure. The system is of in-dex 1, but, formally, has diret noise. The three thermal resistane noise souresdiretly a�et the urrent through the voltage soure. However, the diret noiseourring in this urrent does not inuene other variables. Omitting the orre-sponding variable together with the nodal equation for node 4 would lead to asystem without diret noise. The di�usion oeÆients have been saled (by a fa-tor 103) to make the noise e�ets more visible.In Fig. 4 we present numerial results obtained with the drift-impliit Euler sheme.A mean-square estimate of the dominating loal error term was used to ontrol thestepsize aording to the relative tolerane 10�4. Realizations of the Wiener inre-ments �w` were simulated by a normal random number generator of the RANLIBlibrary (of Fortran routines for random number generation). Fig. 4 shows the nodal



12 Werner R�omish and Renate Winklerpotential at node 1: the dark solid lines orrespond to two di�erent paths of thestohasti potential and the dashed line to the noise-free potential. The solid greylines give the mean funtion � of 100 sample paths and the boundaries of theinterval [� � 3�; � + 3�℄, where � denotes the standard deviation. The paths ex-hibit a highly visible phase noise and, hene, an hardly be onsidered as smallperturbations of the deterministi potential. The mean funtion appears dampedand di�ers onsiderably from the noise-free potential.
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Figure 4: 2 sample paths of the voltage in node 1 (e1), the mean over 100 samplepaths (E e1), the 3� range (�3�), and the noiseless voltage (det e1)AppendixFor the proof of Theorem 3.1 we need a disrete analogue of Gronwall's inequality.Lemma: Let a`, ` = 1; : : : ; N , and C1, C2 be nonnegative real numbers and assumethat the inequalities a` � C1 + C2 1N `�1Xi=1 ai; ` = 1; : : : ; N;are valid. Then we have max`=1;:::;N a` � C1 exp(C2).Proof: (of Theorem 3.1)Let ~d` be Ft`-measurable having a p-th order moment for eah ` = 1; : : : ; N . If thefuntion ' does not depend on the variable x, the disretization sheme is expliitand the new iterate ~x` is given by~x` = ~x`�1 + '(~x`�1; t`�1; h`) +  (~x`�1; t`�1; h`; It`�1;h`) + ~d`for ` = 1; : : : ; N . Otherwise, the sheme is impliit and the new iterate ~x` isgiven by the impliit equation (3.3). We assume that h0 > 0 is hosen suh that



Stohasti DAEs in Ciruit Simulation 13h0L2 < 1. Due to the global Lipshitz ondition (A1), the equationx = ~x`�1 + '(~x`�1; x; t`�1; h`) + b`is uniquely solvable by the ontration priniple sine h`L2 � h0L2 < 1. Moreover,the solution ~x` depends on ~x`�1 and on b` in a Lipshitz ontinuous way (with aonstant L4 > 0). Sine b` :=  (~x`�1; t`�1; h`; It`�1;h`) + ~d` is a Ft`-measurablerandom variable, ~x` is also Ft`-measurable. Furthermore, ~x` has a p-th order mo-ment. The latter fat is a onsequene of the estimates(IEj~x`jp) 1p � (IEj~x` � x0̀jp) 1p + jx0̀j� L4f(IEj~x`�1jp) 1p + (IEjb`jp) 1p g+ jx0̀j;where x0̀ is the unique solution of the equation x = '(0; x; t`�1; h`), and(IEjb`jp) 1p � (IEj (~x`�1; t`�1; h`; It`�1;h`)jp) 1p + (IEj ~d`jp) 1p� h 12L3f(IEj~x`�1jp) 1p + (IEj (0; t`�1; h`; It`�1;h`)jp) 1p g+ (IEj ~d`jp) 1pand of ondition (A4).Next we derive the stability estimate (3.4). The estimate (3.5) was shown in [23℄for p = 2, but its proof arries over to the more general situation p � 1.Let d�̀ and ~d` for ` = 1; : : : ; N be perturbations of the disrete system and letx�̀ and ~x`, ` = 1; : : : ; N , be their unique solutions. We introdue the followingnotations for i = 1; : : : ; Nei := x�i � ~xi; 4'i := '(x�i�1; x�i ; ti�1; hi)� '(~xi�1; ~xi; ti�1; hi);di := d�i � ~di; 4 i :=  (x�i�1; ti�1; hi; Iti�1;hi)�  (~xi�1; ti�1; hi; Iti�1;hi);and obtain from (3.3) and H�older's inequality thatei = ei�1 +4'i +4 i + di = e0 + iXk=14'k + iXk=14 k + iXk=1 dk;a` := IE( maxi=1;:::;` jeijp) � 4p�1nIE(je0jp) + IE� maxi=1;:::;` j iXk=14'kjp�+IE� maxi=1;:::;` j iXk=14 kjp�+ IE� maxi=1;:::;` j iXk=1 dkjp�oholds for eah i; ` = 1; : : : ; N . For the seond summand in the right-hand side ofthe latter estimate we ontinue by using (A1) and ih � a(T � t0)j iXk=14'kjp � ip�1 iXk=1 j4'kjp � (2i)p�1hp iXk=1fLp1jek�1jp+Lp2jekjpg � L̂2 1N iXk=0 jekjp:where L̂2 := 2p(a(T � t0))pmaxfLp1; Lp2g. Hene, we obtain the estimateIE� maxi=1;:::;` j iXk=14'kjp� � L̂2 1N IE�X̀k=0 jekjp� � L̂2 1N � `�1Xk=0 ak + a`�:



14 Werner R�omish and Renate WinklerFor estimating the third summand we observe that the disrete parameter proessfMi := iPk=14 k;Fti�1gNi=1 is a martingale due to (A2) and has �nite p-th ordermoments. Then Burkholder's and Davis's inequalities [19, Chapter VII.3℄ yield theestimate IE� maxi=1;:::;` j iXk=14 kjp� � BpIE�X̀k=1 j4 kj2�p2for eah ` = 1; : : : ; N with some universal onstant Bp > 0. For instane, Bp :=18p 52(p�1) 32 is suh a onstant if p > 1. Hene, we obtainIE� maxi=1;:::;` j iXk=14 kjp� � Bp` p2�1 X̀k=1 IEj4 kjp � Bp` p2�1 `�1Xk=0 h p2k Lp3IEjekjp� BpLp3` p2�1h p2 X̀k=1 IEjekjp� BpLp3(a(T � t0)) p2 1N `�1Xk=0 ak:for ` = 1; : : : ; N by using H�older's inequality and ondition (A3). Setting L̂3 :=BpLp3(a(T � t0)) p2 we arrive, altogether, at the estimatea` � 4p�1nIEje0jp + L̂2 1N � `�1Xk=0 ak + a`�+ L̂3 1N `�1Xk=0 ak + IE� maxi=1;:::;` j iXk=1 dkjp�ofor ` = 1; : : : ; N . If neessary, we hoose h0 smaller suh that 4p�1L̂2 1N � 34 holdsif h < h0. We onlude thata` � 4pnIE(je0jp) + (L̂2 + L̂3) 1N `�1Xk=0 ak + IE� maxi=1;:::;` j iXk=1 dkjp�oholds for ` = 1; : : : ; N . By applying the lemma this leads to the semi�nal estimatemax`=1;:::;N a` = IE( maxi=1;:::;N jeijp) � 4pexp(4p(L̂2+L̂3))nIEje0jp+IE maxi=1;:::;N j iXk=1 dkjpo:It remains to deompose the perturbation di�erene dk into dk = rk + sk withIE(skjFtk�1) = 0 for k = 1; : : : ; N . Then f iPk=1 sk;Fti�1gNi=1 is a martingale having
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