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Introduction

Practical optimization models often contain uncertain parameters

or stochastic processes. In many cases it is not appropriate to re-

place the uncertain parameters by their mean values or some other

statistical estimate. Alternatives are robust/worst case optimiza-

tion models or, if statistical data is available, modeling the relevant

stochastic process by a finite number of scenarios with given prob-

abilities and incorporating them into the optimization model. This

leads to stochastic optimization models having the advantages:

• Solutions are robust with respect to uncertain changes of the

data.

• The risk of decisions can be measured and managed.

• Simulation studies show that “stochastic solutions” may be

advantageous compared to deterministic ones.
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The presentation will focus on

• Modeling stochastic programs (two- or multi-stage, or proba-

bilistic (chance) constraints ?

• Chance constraints: State-of-the-art

• Two-stage stochastic programs: Theory, approximations and

algorithms are (almost) complete.

• Mixed-integer two-stage stochastic programs: State-of-the-art

• Approximations and scenario trees for multi-stage stochastic

programs.

• Decomposition methods for (multi-stage) stochastic programs.

• Stochastic optimization models for electricity portfolio man-

agement and their solution by Lagrangian relaxation.

• Measuring and managing risk, in particular, in electricity port-

folio management models.
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Modeling

Assumptions: Information on the underlying probability distribu-

tion is available (e.g., statistical data) and the distribution does not

depend on decisions.

Modeling questions: Are recourse actions available if uncertainty

influences decisions ? Is the decision process based on recursive

observations of the uncertainty ?

• No recourse actions available: Chance constraints.

• Recourse actions available, but no recursive observations:

Two-stage stochastic programs (possibly multi-period).

• Recursive observation and decision process:

Multi-stage stochastic programs.

Integer variables should be incorporated if they are model-important.
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Chance constraints

Let us consider the (linear) chance constrained model

min{〈c, x〉 : x ∈ X, P ({ξ ∈ Ξ : T (ξ)x ≥ h(ξ)}) ≥ p},

where c ∈ Rm, X and Ξ are polyhedra in Rm and Rs, respectively,

p ∈ (0, 1), P is a probability measure on Ξ, i.e., P ∈ P(Ξ), and the

right-hand side h(ξ) ∈ Rd and the (d,m)-matrix T (ξ) are affine

functions of ξ.

Challenges:
Although the sets H(x) = {ξ ∈ Ξ : T (ξ)x ≥ h(ξ)} are (convex)

polyhedral subsets of Ξ, the function

x → P (H(x))

is, in general, non-concave and non-differentiable on Rm, hence,

the optimization model is nonconvex.

Approximations by discrete probability measures lead to mixed-

integer linear programs.
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Theory and Algorithms:

Convexity results for probability distributions satisfying certain con-

cavity properties (e.g., normal distributions), bounds for chance

constraints, Monte-Carlo type methods inside nonlinear program-

ming algorithms (Prekopa 95), well-developed stability analysis

(Römisch 03, Henrion-Römisch 04).

More recently: Convex approximations (Nemirovski-Shapiro 06), extension

of convexity results (Henrion-Strugarek 06).

Recent motivation: Optimization of Value-at-Risk objectives, where

V aRα(z) := inf{x ∈ R : P(z ≤ x) ≥ α}.

Challenge: Dimension of ξ !
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Two-stage stochastic programs

min

{
〈c, x〉 +

∫
Ξ

Φ(ξ, x)P (dξ) : x ∈ X

}
,

where

Φ(ξ, x) := inf{〈q(ξ), y〉 : y ∈ Y,W (ξ)y = h(ξ)− T (ξ)x}

P := Pξ−1 ∈ P2(Ξ) is the probability distribution of the random

vector ξ, c ∈ Rm, X ⊆ Rm is a bounded polyhedron, q(ξ) ∈ Rm,

Y ∈ Rm is a polyhedral cone, W (ξ) a r × m-matrix, h(ξ) ∈ Rr

and T (ξ) a r ×m-matrix. We assume that q(ξ), h(ξ), W (ξ) and

T (ξ) are affine functions of ξ.

Theory and Algorithms: The function Φ : Ξ × X → R is well

understood for fixed recourse (i.e., W (ξ) ≡ W ) (Walkup-Wets 69).

Convexity, optimality and duality results, decomposition methods,

Monte-Carlo type methods (Wets 74, Kall 76, Ruszczyński-Shapiro 03), scenario

reduction (Heitsch-Römisch 07) and stability analysis (Rachev-Römisch 02, Römisch-

Wets 07) are well developed.
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Mixed-integer two-stage stochastic programs

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X

}
,

where Φ is given by

Φ(u, t) := inf
{
〈u1, y〉 + 〈u2, ȳ〉 : Wy + W̄ ȳ ≤ t, y ∈ Zm̂, ȳ ∈ Rm̄

}
for all pairs (u, t) ∈ Rm̂+m̄ × Rr, and c ∈ Rm, X is a closed

subset of Rm, Ξ a polyhedron in Rs, W and W̄ are (r, m̂)- and

(r, m̄)-matrices, respectively, q(ξ) ∈ Rm̂+m̄, h(ξ) ∈ Rr, and the

(r, m)-matrix T (ξ) are affine functions of ξ, and P ∈ P2(Ξ).

Theory and Algorithms: The function Φ is well understood (Blair-

Jeroslow 77, Bank-Mandel 88), nonconvex optimization models, structural

analysis (Schultz 95, van der Vlerk 95), scenario decomposition (Carøe-Schultz 99),

decomposition methods (surveys: Schultz 03, Sen 05), sampling methods

(Shapiro 03, Eichhorn-Römisch 07), stability analysis (Schultz 95, 96, Römisch-Vigerske

07), scenario reduction (Henrion-Küchler-Römisch 07).
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Multistage stochastic programs

Let {ξt}T
t=1 be a discrete-time stochastic data process defined on

some probability space (Ω,F , P) and with ξ1 deterministic. The

stochastic decision xt at period t is assumed to be measurable with

respect to Ft(ξ) := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic optimization model:

min

{
E

[
T∑

t=1

〈bt(ξt), xt〉

]∣∣∣∣xt ∈ Xt, xt is Ft(ξ)-measurable, t = 1, .., T

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, .., T

}
where Xt, t = 1, . . . , T , are polyhedral, the vectors bt(·), ht(·) and

At,1(·) are affine functions of ξt, where ξ varies in a polyhedral set Ξ.

If the process {ξt}T
t=1 has a finite number of scenarios, they exhibit

a scenario tree structure.



Home Page

Title Page

Contents

JJ II

J I

Page 10 of 32

Go Back

Full Screen

Close

Quit

Data process approximation by scenario trees

The process {ξt}T
t=1 is approximated by a process forming a scenario

tree being based on a finite set N ⊂ N of nodes.
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Scenario tree with T = 5, N = 22 and 11 leaves

n = 1 root node, n− unique predecessor of node n, path(n) =

{1, . . . , n−, n}, t(n) := |path(n)|, N+(n) set of successors to n,

NT := {n ∈ N : N+(n) = ∅} set of leaves, path(n), n ∈ NT ,

scenario with (given) probability πn, πn :=
∑

ν∈N+(n) π
ν probability

of node n, ξn realization of ξt(n).
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Tree representation of the optimization model

min

{∑
n∈N

πn〈bt(n)(ξ
n), xn〉

∣∣∣∣xn ∈ Xt(n), n ∈ N
At(n),0x

n + At(n),1x
n− =ht(n)(ξ

n), n ∈ N

}

How to solve the optimization model ?

- Standard software (e.g., X-PRESS, CPLEX)

- Decomposition methods for (very) large scale models (Ruszczyński 03)

Open questions:
- Which decomposition scheme should be used ?

- How to generate scenario trees for multi-stage models ?

- How to model and incorporate risk ?



Home Page

Title Page

Contents

JJ II

J I

Page 12 of 32

Go Back

Full Screen

Close

Quit

Decomposition of (convex) stochastic programs

Direct or primal decomposition approaches:
- starting point: Benders decomposition based on both feasibility

and objective cuts;

- variants: regularization to avoid an explosion of the number of

cuts; nesting when applied to solve the dynamic programming equa-

tions on subtrees recursively; stochastic cuts.

Dual decomposition approaches:
(i) Scenario decomposition by Lagrangian relaxation of nonanticipa-

tivity constraints (solving the dual by bundle subgradient methods,

augmented Lagrangian decomposition, splitting methods);

(ii) nodal decomposition by Lagrangian relaxation of dynamic con-

straints (same variants as in (i));

(iii) geographical decomposition by Lagrangian relaxation of cou-

pling constraints (same variants as in (i)).

Mostly used for convex models: nested Benders decomposi-

tion, stochastic dual dynamic programming, stochastic decomposi-

tion and scenario decomposition.
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Geographical decomposition

In electricity optimization the tree representation of the multistage

stochastic program often has block separable structure

min


∑
n∈N

πn
k∑

i=1

〈bi
t(n)(ξ

n), xn
i 〉

∣∣∣∣∣∣∣∣∣
xn

i ∈ X i
t(n)∑k

i=1 Bi
t(n)(ξ

n)xn
i ≥ gt(n)(ξ

n)

Ai
t(n),0x

n
i + Ai

t(n),1x
n−
i =hi

t(n)(ξ
n)

i = 1, . . . , k, n ∈ N


Lagrange relaxation of coupling constraints: L(x, λ) =

∑
n∈N

πn(

k∑
i=1

〈bi
t(n)(ξ

n), xn
i 〉 + 〈λn, (gt(n)(ξ

n)−
k∑

i=1

Bi
t(n)(ξ

n)xn
i )〉)

The dual problem

max
λ≥0

inf
x

L(x, λ)

decomposes into k geograhical subproblems and is solved by bundle

subgradient methods. For nonconvex models the duality gap is

typically small allowing for Lagrangian heuristics.
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Stability and approximations

To have the model well defined, we assume x ∈ Lr′(Ω,F , P; Rm)

and ξ ∈ Lr(Ω,F , P; Rs), where r ≥ 1 and

r′ :=


r

r−1 , if only costs are random

r , if only right-hand sides are random

2 , if costs and right-hand sides are random

∞ , if all technology matrices are random and r = T.

Then nonanticipativity may be expressed as

x ∈ Nr′(ξ)

Nr′(ξ) =
{
x ∈ ×T

t=1Lr′(Ω,F , P; Rmt) : xt = E[xt|Ft(ξ)] , ∀t
}
,

i.e., as a subspace constraint, by using the conditional expectation

E[ · |Ft(ξ)] with respect to the σ-algebra Ft(ξ).

For T = 2 we have Nr′(ξ) = Rm1 × Lr′(Ω,F , P; Rm2).

→ infinite-dimensional optimization problem
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Let F denote the objective function defined on Lr(Ω,A, P; Rs)×
Lr′(Ω,A, P; Rm) → R by F (ξ, x) := E[

∑T
t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt : At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) := {x ∈ Lr′(Ω,F , P; Rm) : x1 ∈ X1, xt ∈ Xt(xt−1; ξt)}

the set of feasible elements with input ξ.

Then the multi-stage stochastic program may be rewritten as

min{F (ξ, x) : x ∈ X (ξ) ∩Nr′(ξ)}.

Let v(ξ) denote its optimal value and, for any α ≥ 0,

Sα(ξ) := {x ∈ X (ξ) ∩Nr′(ξ) : F (ξ, x) ≤ v(ξ) + α}
S(ξ) := S0(ξ)

denote the α-approximate solution set and the solution set of the

stochastic program with input ξ.
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Assumptions:
(A1) E[|ξ|r] < ∞,

(A2) The optimization model has relatively complete recourse,

(A3) The objective function is level-bounded locally uniformly at ξ.

Theorem: (Heitsch-Römisch-Strugarek 06)

Let (A1) – (A3) be satisfied and X1 be bounded.

Then there exist positive constants L and δ such that

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + df,T−1(ξ, ξ̃))

holds for all ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.

If 1 < r′ < ∞ and (ξ(n)) converges to ξ in Lr and with respect

to df,T , then any sequence xn ∈ S(ξ(n)), n ∈ N, contains a subse-

quence converging weakly in Lr′ to some element of S(ξ).

Here, df,τ (ξ, ξ̃) denotes the filtration distance of ξ and ξ̃ defined by

df,τ (ξ, ξ̃) := sup
‖x‖r′≤1

τ∑
t=2

‖E[xt|Ft(ξ)]− E[xt|Ft(ξ̃)]‖r′.
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Consequences for designing scenario trees

• If ξtr is a scenario tree process approximating ξ, one has to take

care that ‖ξ− ξtr‖r and df,T (ξ, ξtr) are small. This is achieved

for the generation of scenario trees by recursive scenario reduc-

tion (Heitsch-Römisch 05).

 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5

<Start Animation>

• Specific approximations ξ̃ of ξ are characterized such that an

estimate of the form |v(ξ)−v(ξ̃)| ≤ L‖ξ−ξ̃‖r is valid (Küchler 07).

Approximation schemes developed by Kuhn 05, Pennanen 05, Hochreiter-

Pflug 07, Mirkov-Pflug 07 are based on approximating conditional dis-

tributions and also avoid filtration distances.

file:C:/anim05/animation.html
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Risk functionals

Let Z denote a linear space of real random variables on some prob-

ability space (Ω,F , P), e.g., Z = Lr(Ω,F , P), 1 ≤ r ≤ +∞.

A functional A : Z → R is called a acceptability functional if it

satisfies the following conditions for all z, z̃ ∈ Z :

(i) Monotonicity: A(z) ≤ A(z̃) if z ≤ z̃ P-a.s.

(ii) Equivariance: A(z + r) = A(z) + r for every r ∈ R.

(iii) Concavity of A on Z .

An acceptability functional is called coherent if it is positively ho-

mogeneous, i.e., ρ(λz) = λρ(z) for all λ ≥ 0 and z ∈ Z .

Functionals ρ := −A and D = E−A are called capital and devi-

ation risk functionals, if A is an acceptability functional.

Example: Average Value-at-Risk Rockafellar-Uryasev 02

AV aRα(z)=
1

α

∫ α

0

V aRx(z)dx=max

{
x− 1

α
E([z − x]−) :x ∈ R

}
(Artzner-Delbaen-Eber-Heath 99, Föllmer-Schied 02, Pflug-Römisch 07)
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Multiperiod (polyhedral) risk functionals

When a stochastic process z = {zt}T
t=1 in Z = ×T

t=1Lr(Ω,Ft, P),

1 ≤ r ≤ +∞, is considered that evolves over time and unveils

the available information with the passing of time, it may become

necessary to use multiperiod risk functionals. Then we need to con-

sider the filtration of σ-fields adapted to z, i.e., Ft = σ{z1, . . . , zt},
t = 1, ..., T , where F1 = {∅, Ω}.
A functional A : Z → R is called multi-period acceptability func-

tional if for all z, z̃ ∈ Z
(i) Monotonicity: A(z) ≤ A(z̃) if z ≤ z̃ P-a.s.

(ii) Equivariance:A(z1, . . . , zt+ct, . . . , zT )=A(z1, . . . , zT )+E(ct)

for every Ft−1-measurable ct, t = 2, . . . , T .

(iii) Concavity of A on Z .

Example: Multi-period Average Value-at-Risk

mAV aRα,γ(z) =

T∑
t=2

γtE(AV aRαt(zt|Ft−1))
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Definition: A multi-period acceptability functional A on Z is

called polyhedral if there are kt ∈ N, ct ∈ Rkt, wtτ ∈ Rkt−τ ,

τ = 0, ..., t−1, and polyhedral cones Vt ⊂ Rkt, t = 1, . . . , T , such

that

A(z) = sup

{
E

[
T∑

t=1

〈ct, vt〉

]∣∣∣∣ vt ∈ Lp(Ω,Ft, P; Rkt), vt ∈ Vt∑t−1
τ=0〈wt,τ , vt−τ〉 = zt, t = 1, . . . , T

}
.

Remark: A convex combination of expectation and a multi-period

polyhedral acceptability functional is again a multi-period polyhe-

dral risk functional.

Polyhedral acceptability functionals preserve linearity and decom-

position structures of optimization models.

(Eichhorn-Römisch 05, Pflug-Römisch 07)

Example: (Multi-period acceptability functional)

The following functional is polyhedral, satisfies (i) and (iii), but a

weaker equivariance property.

A2(z) = sup
x∈R

{
x−

T∑
t=2

1

αt
E[(zt − x)−]

}
.
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Electricity Portfolio Management

We consider the electricity portfolio management of an electric

power company. Its portfolio consists of the following positions:

• power production (based on company-owned thermal units),

• bilateral contracts,

• (physical) (day-ahead) spot market trading (e.g., EEX) and

• (financial) trading of derivatives (here, futures).

The time horizon is discretized into hourly intervals. The underly-

ing stochasticity consists in a multivariate stochastic load and price

process that is approximately represented by a finite number of sce-

narios. The objective is to maximize the total expected revenue.

The portfolio management model is a large scale mixed-integer mul-

tistage stochastic program.

Objective: Maximizing the expected revenue and/or the acceptabil-

ity of its production and trading decisions.



Home Page

Title Page

Contents

JJ II

J I

Page 22 of 32

Go Back

Full Screen

Close

Quit

Electricity portfolio management

Stochastic process: {ξt = (dt, γt, αt, βt, ζt)}T
t=1

(electrical load, inflows, (fuel or electricity) prices) given as a (mul-
tivariate) scenario tree.
Mixed-integer programming problem:

min
∑
n∈N

πn
I∑

i=1

[Cn
i (pn

i , un
i ) + Sn

i (ui)] s.t.

pmin
it(n)u

n
i ≤ pn

i ≤ pmax
it(n)u

n
i , un

i ∈ {0, 1}, n ∈ N , i = 1, . . . , I,

u
n−τ

i − u
n−(τ+1)

i ≤ un
i , τ = 1, . . . , τ̄i − 1, n ∈ N , i = 1, . . . , I,

u
n−(τ+1)

i − u
n−τ

i ≤ 1− un
i , τ = 1, . . . , τ i − 1, n ∈ N , i = 1, . . . , I,

0 ≤ vn
j ≤ vmax

jt(n), 0 ≤ wn
j ≤ wmax

jt(n), 0 ≤ lnj ≤ lmax
jt(n), n ∈ N , j = 1, . . . , J,

lnj = l
n−
j − vn

j + ηjw
n
j + γn

j , n ∈ N , j = 1, . . . , J,

l0j = linj , lnj = lend
j , n ∈ NT , j = 1, . . . , J,

I∑
i=1

pn
i +

J∑
j=1

(vn
j − wn

j ) ≥ dn, n ∈ N ,

I∑
i=1

(un
i pmax

it(n) − pn
i ) ≥ rn, n ∈ N .

Here Cn
i are fuel or trading costs and Sn

i start-up costs of unit i at node n ∈ N :

Cn
i (pn

i , un
i ) := max

l=1,...,l̄
{αn

ilp
n
i + βn

ilu
n
i } Sn

i (ui) := max
τ=0,...,τc

i

ζn
iτ (u

n
i −

τ∑
κ=1

u
n−κ

i )
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Electricity portfolio management: statistical models and
scenario trees (Eichhorn-Römisch-Wegner 05)

For the stochastic input data of the optimization model here (yearly

electricity and heat demand, and electricity spot prices), a statisti-

cal model is employed. It is adapted to historical data as follows:

- cluster classification for the intra-day (demand and price) profiles

- 3-dimensional time series model for the daily average values (de-

terministic trend functions, a trivariate ARMA model for the (sta-

tionary) residual time series)

- simulation of an arbitrary number of three dimensional sample

paths (scenarios) by sampling the white noise processes for the

ARMA model and by adding on the trend functions and matched

intra-day profiles from the clusters afterwards.

- generation of scenario trees as in Heitsch-Römisch 05.
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Electricity portfolio management: Results

Test runs were performed on real-life data of the utility DREWAG

Stadtwerke Dresden GmbH leading to a linear program containing

T = 365 · 24 = 8760 time steps, a scenario tree with 40 demand-

price scenarios and about N = 150.000 nodes. The objective func-

tion is of the form

Maximize γA(z) + (1− γ)E(zT )

with a (multiperiod) acceptability functional A and coefficient γ ∈
[0, 1] (γ = 0 corresponds to no risk). E(zT ) denotes the overall

expected revenue.

The model is implemented and solved with ILOG CPLEX 9.1 on a 2 GHz Linux PC with 1 GB
memory.
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Some further developments and challenges

• Decomposition of multistage stochastic programs with recom-

bining scenario trees (within a non-Markovian framework) (Küchler-

Vigerske 07).

• Stochastic dominance constraints as alternatives of risk func-

tionals in stochastic programs (Dentcheva-Ruszczyński 03, Gollmer-Neise-

Schultz 07).

• Structural properties, stability and scenario trees for mixed-

integer multi-stage stochastic programs.
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Dupačová, J., Consigli, G., Wallace, S. W.: Scenarios for multistage stochastic programs. Annals
Operations Research 100 (2000), 25–53.

Eichhorn, A., Römisch, W.: Polyhedral risk measures in stochastic programming, SIAM Journal on
Optimization 16 (2005), 69–95.

Eichhorn, A., Römisch, W.: Stochastic integer programming: Limit theorems and confidence inter-
vals, Mathematics of Operations Research 32 (2007), 118–135.

Eichhorn, A., Römisch, W., Wegner, I.: Mean-risk optimization of electricity portfolios using mul-
tiperiod polyhedral risk measures, IEEE St. Petersburg Power Tech 2005.
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