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Introduction and contents

The use of stochastic orderings as a modeling tool has become stan-
dard in theory and applications of stochastic optimization. Much of
the theory is developed and many successful applications are known.

Research topics:

- Multivariate concepts and analysis,

- scenario generation and approximation schemes,
- analysis of (Quasi-) Monte Carlo approximations,
- numerical methods and decomposition schemes.

Contents of the talk:

(1) Introduction, stochastic dominance
(2) Quantitative stability results

(3) Sensitivity of optimal values
(4)

4) Limit theorems for empirical approximations
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Optimization models with stochastic dominance constraints
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where £ € N, D is a nonempty convex closed subset of R™, =

We consider the optimization model

min {f(z):z € D, G(z,§) =u) Y},

a convex closed subset of R*, f : R™ — R is convex, £ is a L« w ]
random vector with support = and Y a real random variable on
some probability space both having finite moments of order k — 1, L]
and G : R™ x R®* — R is continuous, concave with respect to the

first argument and satisfies the linear growth condition Pagesor2s |
|G(z,8)| < C(B)max{L, [£]|} (z € B,£e€d) aEa]

for every bounded subset B C R™ and some constant C'(B) (de-

Full Screen

pending on B). The random variable Y plays the role of a bench- =
mark outcome. T
T

D. Dentcheva, A. Ruszczynski: Optimization with stochastic dominance constraints, SIAM :
J. Optim. 14 (2003), 548-566. Qut



Stochastic dominance relation =,
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where X and Y are real random variables belonging to £;_1(2, F,P)
with norm || - ||x_1 for some probability space (2, F,P). By L, we p—
denote consistently the space of all scalar random variables.

Let Py denote the probability distribution of X and ) — Fx its [a@i»

distribution function, i.e.,

FPm) =X <np) = [ Pelde) (e ® S
and _peiors |

N n _e\k
F}fH) (n) = / F)((k)(g)d(g) — / (n—¢) Py (d€) 6o gack |

—00 K

1 Full Screen
= illmax{0,n - X} (v e ), HEE=

where . Cose |
IXlx = (B(X]")F (YK > 1).
Quit I

A. Miiller and D. Stoyan: Comparison Methods for Stochastic Models and Risks, Wiley, Chichester,
2002.



The original problem is equivalent to its split variable formulation

min{ f(z) : 2 € D, G(z,6) > X, FP(n) < F(n), ¥n € I}

by introducing a new real random variable X and the constraint
G(z,&) > X P-almost surely.

This formulation motivates the need of two different metrics for
handling the two constraints of different nature:

The almost sure constraint G(z,£) > X (P-a.s.) and the func-
tional constraint Féfk)() < Fi(/k)() respectively.

D. Dentcheva, A. Ruszczynski: Optimality and duality theory for stochastic optimization
problems with nonlinear dominance constraints, Math. Progr. 99 (2004), 329-350.
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Properties:
(i) Equivalent characterization of > 9):
XrzpY & EuX)]=E[wY)

for each nondecreasing concave utility  : R — R such that
the expectations are finite.

(i) The function F)((]€> : R — R is nondecreasing for £k > 1 and
convex for k > 2.

(iii) For every k € N the SD relation = introduces a partial
ordering in Ly_1(€2, F,IP) which is not generated by a convex
cone if Y is not deterministic.

Extensions: By imposing appropriate assumptions all results re-
main valid for the following two extended situations:

(a) finite number of kth order stochastic dominance constraints,

(b) the objective f is replaced by an expectation function of the

form E[g(-,&)] where g is a real-valued function defined on
R™ x R®.
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The case of discrete distributions:

Let £;, X; and Y the scenarios of £, X and Y with probabilities
pj, J = 1,...,n. Then the second order dominance constraints
(i.e. k= 2) in the split variable formulation can be expressed as

ij[ﬁ — X+ < ij[ﬁ - Y+ (Wnel).
j=1 j=1
The latter condition can be shown to be equivalent to

ij[Yk — X))+ < ij[Yk -Yl+ (Vk=1,...,n).
J=1 j=1

if Yeel, k=1,...,n. Here, [-], = max{0, - }.
Hence, the second order dominance constraints may be reformu-
lated as linear constraints for the X;, j =1,...,n, in

G(.flf,fj)ZXj (]Il,,’n)

D. Dentcheva, A. Ruszczynski: Optimality and duality theory for stochastic optimization
problems with nonlinear dominance constraints, Math. Progr. 99 (2004), 329-350.

J. Luedtke: New formulations for optimization under stochastic dominance constraints, SIAM
J. Optim. 19 (2008), 1433-1450.
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Metrics associated to =,
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) 1 Title Page |
p
(f FO () — R n>\pdn) 1<p<oo

Su F F(k) , =0
| m -Rm] P S

Rachev metrics on £j_:

Dy (X, Y) = <

Proposition: It holds for any X, Y € £;_; "I
]Dk:,p(X7 Y) Ckp(X Y = Sup /f PX daj /f PY dx Page 8 of 25 I
fGka

ifE(X)=EY"),i=1,...,k—1.
Here, D;., denotes the set of continuous functions f : R — R that Fall screen_|
have measurable kth order derivatives f(*) on R such that

[ |
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2)[Flde <1 (p>1) or esssup|fP(a) <1 (p=1).
z€R Quit |



Note that the condition E(X") = E(Y"), i = 1,...,k — 1, is
implied by the finiteness of ;. ,(X,Y"), since Dy, contains all poly-
nomials of degree k — 1. Conversely, if X and Y belong to £;
and E(X') = E(Y"), i = 1,...,k — 1, holds, then the distance
Dy (X, Y) is finite.

Proposition:
There exists ¢, > 0 (only depending on k) such that
1
oo (X, Y) < Coo(X,Y) < oo X, Y)E (VXY € L),

Ci.0o is the Kolmogorov metric and (;; the first order Fourier-
Mourier or Wasserstein metric.

S. T. Rachev: Probability Metrics and the Stability of Stochastic Models, Wiley, 1991.
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Structure and stability

We consider the kth order SD constrained optimization model

min{ f(z) : = € D, Fy, () < B (n), ¥n € R}

as semi-infinite program.
Relaxation: Replace R by some compact inverval I = |a, b].

Proposition:
Under the general assumptions the feasible set

k k
x(&Y)={eeD: Fy < FPm), v eI}
is closed and convex in R™.

kth order uniform dominance condition (kudc) at (£,Y):
There exists € D such that

min (5 (n) — B, () > 0.

nel
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Metrics on L] | X Lj_1:

dk((£7 Y)7 (é? f/)) — gk—l(f) é) + Dk,oo(ya Y/))
where k € N, k£ > 2 is the degree of the SD constraint and /;._1 is
the Lj;_i-minimal distance or (k — 1)th order Wasserstein distance

defined by
1

&4(5,5) = inf{/: _Hx_fuk_ln(dilf,dij)}k_l,

X =
— —

where the infimum is taken w.r.t. all probability measures 1 on
= x = with marginal P: and P, respectively.
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Proposition:
Let D be compact and assume that the function G satisfies

|G(z,u) = G(z,u)| < Lallu — df

for all x € D, u,u € = and some constant Lg > 0. Assume that
the kth order uniform dominance condition is satisfied at (£,Y").

Then there exist constants L(k) > 0 and § > 0 such that

da(X(€,Y), X(£,Y)) < L(k) di((§,Y ), (£, Y)),

whenever the pair (£, Y) is chosen such that d;.((£,Y), (£,Y)) < 6.
Here, dy denotes the Pompeiu-Hausdorff distance on bounded closed
subsets of R".

Note that L(k) gets smaller with increasing k € N if ||£||x_1 grows at most exponentially
with k. Hence, higher order stochastic dominance constraints may have improved stability
properties.
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Let v(&,Y) denote the optimal value and S(£,Y") the solution set
of
min {f(z):z € D,z € X({,Y)}.

We consider the growth function

Viey)(T 1nf{f )—v(&Y): (x,S(f,Y))ZT,IUEX<f,Y>}

and
Uiey)(0) =0+ 1@(_5,11/)(2‘9) (0 € Ry),
where we set w(_g}y) (t) = sup{T € Ry : Y yy(7) < t}.

Note that \If(&y) is increasing, lower semicontinuous and vanishes
at 8 = 0.



Main stability result

Theorem:
Let D be compact and assume that the function G satisfies

G (2, u) — G(z,0)] < Lo|lu —al
for all z € D, u,u € = and some constant Lgs > 0. Assume that

the kth order uniform dominance condition is satisfied at (£,Y).

Then there exist positive constants L(k) and d such that

[0(6,Y) —v(E,Y)| < ( Jdk((€,Y), (6Y))
sup d(z,5(8,Y)) < Wy (L(k) dr((€,Y), (€, Y)))

zeS(E)Y)

whenever di.((£,Y), (£,Y)) <

(Klatte 94, Rockafelar-Wets 98)
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Proof: Let the pair (£,Y) € £2_, be such that 0 := di((&,Y), (£,Y)) < 6, where § > 0
is the corresponding constant from the Proposition. Now, let = € S(£,Y) and # € S(€,Y).
Then there exists & € X' (£,Y) such that
I% — 2|l < Lo,
where Ly is the Lipschitz constant of the feasible set mapping. We obtain
vE,Y) —o(EY) = f(x) - f(@)
< fl2) = f(@) + f(&) - £(2) < f(2) - f(2)
< Lyll# — || < LyLud,

where Ly is the Lipschitz modulus of the function f on the compact set D. Analogously, we
obtain the same estimate for v(£,Y) — v(&,Y). Hence, we may set L := Ly Ly.
To derive the second estimate, let the pair (£,Y) € L7 | be selected as above and let

i € S(€,Y). Then there exists 2 € X(£,Y) such that || — z|| < Lgd. According to the
definition of the growth function (¢ y) we have

f(@) =v(&Y) = ey (d(z, 5, Y))).

Furthermore, we obtain the following chain of estimates

2L6 > Lyl — ol + L 2 f(2) = f(&) +0(§,¥) — (&, Y)

= f(@) =v(&Y) 2 dex(d(z,5(,Y))),
Finally, we conclude
d(#,S(£,Y)) < Lud+d(z,S(Y))

Lyd + gy (2L0)
W ¢ vy (max{ Ly, L}0).

IAINA

IA

This completes the proof.
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Dual multipliers and utilities

Let YV = C(I) and YV* its dual which is isometrically isomorph to
the space rca([) of regular countably additive measures 1 on [
having finite total variation |u|(I). The dual pairing is given by

(1, y) = /Iy(n)u(dn) (Vy € Y, pu € rea(l)).
We consider the closed convex cone
K={yeY:yn =0,vnel}
and its polar cone K~
K™ ={perca(l): (u,y) <0,Vy € K}.
The semi-infinite constraint may be written as

G(z; P, Py) = FY) — FY)

e €18

and the semi-infinite program is

min { f(z) : x € D, G(z; P, Py) € K }.
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Lemma: (Dentcheva-Ruszczynski 03)
Let k > 2, [ = [a,b], p € —K . There exists u € Uj,_1 such that

(1, Oy = / FO (mu(dn) = —Efu(X)

holds for every X € L;_1. Here, U;_1 denotes the set of all
functions u € C*1(R), for which there exists a nonnegative, non-
increasing, left-continuous, bounded function ¢ : I — R such that

w D) = (=1)fp(t) |, p-ae. t € [a,b],

u V() = (—Dkpla) ,t<a,
u(b) =0 i=1,... k=2,

—

where the symbol u(") denotes the ith derivative of u. In particular,

the utilities u € U},_1 are nondecreasing and concave on R.

Proof: Let 1 € rca(l), > 0. Then pu is extended to B(IR) by assigning measure 0 to Borel
sets not intersecting I. The function u € Uy_; is then defined by putting u(t) = 0, t > b,
uF V() = (=DFu([t, b)), p-ae. t < b uD(b)=0,=1,....k—2.

One obtains by repeated integration by parts for any X € £;

(1, FO) = (~1)" / FP(n)duD(t) = - / u(t)dFx (t) = ~Efu(X)]

—00
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Optimality and duality
Define the Lagrange-like function £ : R™ x U1 — R as

L(x,u; Pe, Py) = f(x) — /u(G(x,z))Pg(dz) +/u(t)Py(dt).

—_
—
—

Theorem:

Let £ > 2 and I = [a, b]. Assume the kth order uniform dominance
condition at (&,Y). If a feasible point € DD is an optimal solution,
then a function u € Uj._; exists so that

S(CIAT, ?l; Pg, Py> — mllr)l 2(33, 7:L, Pg, Py)
HAS

/:ﬁ(G(:E,z))Pg(dz) — /Ra(t)py(dt)

If x satisfies the dominance constraint and the above conditions
for some © € Uj,_1, then z is an optimal solution. Furthermore,
the dual problem is

inf [f(2) +E [w(G(z;€))] — B [u(Y)]]

max [ i|
zeD

uGUk_l

and the duality relation holds.
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Proof: The Lagrangian A associated with the primal program can be formulated as follows:

fx) 4+ (u,G(x; P, Py)) if xeD,pe K,
A(.CU,,LL,P&Py): —00 if QZED,,LL%K_,
+00 if ©¢&D.

The optimality conditions for the primal problem state that if a feasible point Z is an optimal
solution, then a measure i € K~ exists, so that

A(j7ﬂa P§7PY) = mlnA(xalaa P§7PY)

zeD

<ﬂa g(jv P§7PY)> = 0.

The dual problem has the form (Rockafellar 74)
max { inf {/(x) + (4, G(w; Pe, Py))} 1 € K |,

Using the Lemma, we associate a function u € U1 with the measure i and reformulate the
Lagrangian A to the following form:

Az, i Pr, Py) = 8(z, @ P, Py) = f(z) + /

&(G(z, 2))Pe(dz) — / a(t) Py (d)

R

whenever © € D. The optimality conditions and the dual problem are reformulated using «
and the new Lagrangian has the desired form. The duality relation holds due to the convexity
of the problem and the uniform dominance condition.
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Sensitivity of the optimal value function

Let the infimal function v : C(D) — R be given by

U(g) = infzep g(:U)
If D is compact, v is finite and concave on C'(D), and Lipschitz

continuous with respect to the supremum norm || - || on C(D).
Hence, it is Hadamard directionally differentiable on C'(D) and

v'(g;d) = min {d(z) : z € arg le”éilljl g(z)}.

Let U/ | denote the solution set of the dual problem. Any u € U},
is called shadow utility. For some shadow utility @ and ¢; =
L£(-, u; Pe, Py), the duality theorem implies v(g;) = v(FP, Py).

Corollary: Let D be compact and the assumptions of the duality
theorem be satisfied. Then the optimal value function v(F%, Py) is
Hadamard directionally differentiable on C'(D) and the directional
derivative into any direction d € C(D) is

v'(g9a;d) = V'(Pe, Py;d)) = min {d(z) : z € S(P, Py)}.
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Limit theorems for empirical approximations

Home Page I

Let (&,,Y,), n € N, be a sequence of i.i.d. (independent, and
identically distributed) random vectors on some probability space. _ Terue |
Let Pgm and Pi(/n) denote the corresponding empirical measures.

Contents I
Empirical approximation: .
. k
mm{f()xEDZn G:E&Jr SZn Y+,77€[} <
1=1 i=1
Optimal value: E=ZTEN
v(Pe, Py) = ;glf) L(x, u; Pe, Py) Gopack |
= inf E[f(z) +a(G(z,£)) — a(Y)] i |
— inf P(f() +a(G(a, 2)) - alt),
x Close I

where @ is a shadow utility and P := P x Py.
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Proposition:
Let the assumptions of the main stability theorem be satisfied. Let
D and the supports = = supp(F:) and T = supp(Fy) be compact.

Then I'y is a Donsker class, i.e., the empirical process &,,g indexed
by g € I';

&9 = v Zg@, E(9(¢,Y))) = Glg) (9 €Ty)

converges in distribution to a Gaussian limit process G on the space
(>°(T'y,) (of bounded functions on I'y) equipped with supremum
norm, where
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To={g : gu(2,t) = f(2)+a(G(x, 2))—u(t), (z,t) € ExT,z € D). ==

The Gaussian process G has zero mean and covariances

E|G(x) G(z)|] = Eplg.9:] — Ep|g.]Ep|gz] for x,Z € D.

[ is a parametric family of functions having a uniform Lipschitz modulus with bracketing
number < Ce™™ and, hence, a Donsker class.
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Proposition: (functional delta method)

Let By and By be Banach spaces equipped with their Borel o-
fields and B; be separable. Let (X)) be random elements of Bj,
h : By — By be a mapping and (7;,) be a sequence of positive
numbers tending to infinity as n — oo. If

(X — 0) -5 X

for some 8 € B; and some random element X of B; and h is
Hadamard directionally differentiable at 6, it holds

Tu(h(X,) — h(8)) —% H(6; X),

d e
where — means convergence in distribution.

Application:
By = C(D), B, =R, h(g) = inf,ep g(x), h is concave and Lip-

schitzw.r.t. |||, and A'(g; d) = min{d(y) : y € argmin,cp g(x)}.
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Theorem:

Let the assumptions of the Donsker class Proposition be satisfied.
Then the optimal values U(Pé"),Py)), n € N, satisfy the limit
theorem

V(B PY) = (P Py)) = min{G(a) -z € S(Pe Py}

where G is a Gaussian process with zero mean and covariances
E[G(x) G(2)| = Ep|g.9:] — Eplg.]Ep|gz] for z,2 € S(P:, Py).
If S(Pe, Py) is a singleton, i.e., S(FP, Py) = {z}, the limit G(z)
is normal with zero mean and variance Ep[g2] — (Ep[gz])?.

The result allows the application of resampling techniques to deter-
mine asymptotic confidence intervals for the optimal value v( P, Py ),
in particular, bootstrapping if S(P:, Py) is a singleton and subsam-
pling in the general case.

A. Eichhorn and W. Romisch: Stochastic integer programming: Limit theorems and confi-
dence intervals, Math. Oper. Res. 32 (2007), 118-135.
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Conclusions

Home Page I

e Quantitative continuity properties for optimal values and solu-
tion sets in terms of a suitable distance of probability distribu- _ Terue |

tions have been obtained.
Contents I

e A limit theorem for empirical optimal values is proved which

allows to derive confidence intervals. Ll ]

e Extensions to multivariate dominance constraints are desir- B
able, e.g., for the concept

X =Y ff 07X =Y, WweV, e

where V) is convex in R and X, Y € L] ,. GoBsck |

For example, V = {v € R"" : ||v||; = 1} is studied in (Dentcheva-
Ruszczynski 09) and V C {’U e R : HUHl < 1} In (Hu/Homem-de-
Mello/Mehrotra 11).
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