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QUANTITATIVE STABILITY IN STOCHASTIC PROGRAMMING:
THE METHOD OF PROBABILITY METRICS

SVETLOZAR T. RACHEV and WERNER RÖMISCH

Quantitative stability of optimal values and solution sets to stochastic programming problems
is studied when the underlying probability distribution varies in some metric space of probability
measures. We give conditions that imply that a stochastic program behaves stable with respect to a
minimal information (m.i.) probability metric that is naturally associated with the data of the pro-
gram. Canonical metrics bounding the m.i. metric are derived for specific models, namely for linear
two-stage, mixed-integer two-stage and chance-constrained models. The corresponding quantitative
stability results as well as some consequences for asymptotic properties of empirical approximations
extend earlier results in this direction. In particular, rates of convergence in probability are derived
under metric entropy conditions. Finally, we study stability properties of stable investment portfo-
lios having minimal risk with respect to the spectral measure and stability index of the underlying
stable probability distribution.

1. Introduction. Stochastic programming is concerned with models for optimization
problems under (stochastic) uncertainty which requires a decision on the basis of given
probabilistic information on random data. Typically, deterministic equivalents of such mod-
els represent finite-dimensional nonlinear programs. These programs and their solutions
depend on the probability distribution of the random data via certain expectation functions
in the objective and/or in the constraints. Such deterministic equivalents, as well as many
statistical decision problems, take the following form:

min
{∫

�
f0��� x���d��
 x ∈ X�

∫
�

fj��� x���d�� ≤ 0 � j = 1�    � d

}
�(1)

where the (nonempty) set X ⊆ �m of deterministic constraints is closed, � is a closed
subset of �s , the functions fj from �×�m to the extended reals �� are normal integrands
for j = 0�    � d, and � is a Borel probability measure on �. Here, the set X is used
to describe all constraints not depending on �, and the set � contains the supports of
the relevant measures and provides some flexibility for formulating the models and the
corresponding assumptions. Recall that fj is a normal integrand if its epigraphical mapping
� �→ epi fj��� ·� 
= ��x� r� ∈�m ×� 
 fj��� x� ≤ r� is closed-valued and measurable, which
implies, in particular, that fj��� ·� is lower semicontinuous for each � ∈ � and fj�·� x� is
measurable for each x ∈ �m (see, e.g., Rockafellar and Wets 1997).
In what follows, we denote the set of all Borel probability measures on � by ����, the

feasible set of (1) by M���, and the optimal value and the solution set of (1) by v��� and
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S���, respectively, i.e.,

M��� =
{

x ∈ X

∫

�
fj��� x���d�� ≤ 0 � j = 1�    � d

}
�

v��� = inf
{∫

�
f0��� x���d�� 
 x ∈ M���

}
�

S��� =
{

x ∈ M���

∫

�
f0��� x���d�� = v���

}
�

Since the underlying probability distribution � is often incompletely known in applied
models, the stability behaviour of the stochastic program (1) when changing (perturbing,
estimating, approximating) � is important. In this paper, stability refers to quantitative
continuity properties of the optimal value function v�·� and the solution-set mapping S�·� at
�, where both v�·� and S�·� are regarded as mappings given on a certain set of probability
measures.
We illustrate the abstract problem by two examples. The first is described in §5, namely,

the classical problem of finding a portfolio with minimal risk in case the asset returns are
modeled by a multivariate stable probability distribution. The risk depends on the (normal-
ized) spectral measure of the underlying stable distribution and is incompletely known or
even unknown in practical situations. Hence, it is desirable that the optimal portfolio does
not change too much if one works with an approximation of the spectral measure instead of
the true one. The second example is a variant of the classical newsboy problem (see, e.g.,
Artstein and Wets 1994, Dupačová 1994), and is described next.
Example 1.1. A newsboy must place a daily order for a number x of copies of a

newspaper. He has to pay r dollars for each copy and sells a copy at c dollars, where
0 < r < c. The daily demand � is random with (discrete) probability distribution � ∈����
and the remaining copies y��� = max�0� x−�� have to be removed. The newsboy wishes
to minimize his expected costs, i.e., he minimizes∫

�
f0��� x���d�� 
=

∫
�
��r − c�x+ cmax�0� x−�����d��

= �r − c�x+ c
∑
k∈�

�k max�0� x−k��

= rx− cx
∑
k∈�
k≥x

�k −
∑
k∈�
k<x

�kk�

where �k is the probability of demand k ∈ �. In order to maintain convexity of the model,
we consider decisions x in �+. The infimum is attained at x̄ being the largest x ∈�+, such
that ���� ≥ x�� =∑

k∈��k≥x �k ≤ r/c. However, the newsboy does not know the probability
distribution � and he has to use some approximation instead. For instance, his decision
might be based on n independent identically distributed observations �i, i = 1�    � n, of
the demand, i.e., on approximating � by the empirical measure �n (cf., §4) and on solving
the approximate problem,

min
x∈�+

{
�r − c�x+ c

n

n∑
i=1

max�0� x−�i�

}
�(2)

Of course, this approach is only justified if some optimal solutions xn of the approximate
problems are close to x̄ for sufficiently large n. The newsboy problem is a specific two-stage
stochastic program. Its discussion will be continued in Examples 2.10 and 4.6.
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In order to study continuity of v�·� and S�·� at the original distribution �, the choice of a
proper distance for probability distributions becomes important. Fortunately, there exists a
diversity of probability metrics addressing different goals and based on various constructions
(see, e.g., Rachev 1991). For the perturbation analysis of Model (1), a distance which
compares expectations of a variety of nonlinear functions seems to be a natural choice.
More precisely, distances having the form

d� ���!� = sup
f∈�

∣∣∣∣∫
�

f �����d��−
∫

�
f ���!�d��

∣∣∣∣�(3)

where � denotes a class of measurable functions from � to �� and �, ! belongs to �� , will
be suitable in our stability framework. Such a distance (3) is called Zolotarev’s pseudometric
or a distance having "-structure (see, Zolotarev 1983, Rachev 1991). Clearly, d� satisfies
all properties of a pseudometric on �� , where d� is finite, and it is a metric if the class �
is rich enough to preserve that d� ���!� = 0 implies � = !.
Our approach to analyzing the stability behaviour of stochastic programming models

consists of a number of steps that are intrinsically connected with and inspired by the method
of probability metrics, i.e., by adapting a suitable probability metric to the optimization
model and/or to its perturbations.
In a first step, we show that a probability metric of the form (3) with the class �

given by �fj�·� x�
 x ∈ X ∩ cl�� j = 0�    � d�, where � is a properly chosen open subset
of �m, forms a minimal information (m.i.) metric for quantitative stability of (1). The
corresponding results (Theorems 2.3 and 2.4) work under quite weak assumptions on the
underlying data of (1). In particular, differentiability or even continuity assumptions on
the functions x �→ ∫

�
fj��� x���d�� are avoided if possible for the sake of generality. Our

approach is inspired by the perturbation analysis in Attouch and Wets (1993), Rockafellar
and Wets (1997), and Klatte (1987, 1994).
Since the m.i. metrics are often rather involved and difficult to handle, we look, in a sec-

ond step, for another metric with "-structure by enlarging the class � , and hence, bounding
the m.i. metric from above. We propose controlling this enlargement procedure in such a
way that each function in the enlarged class �c shares the essential analytical properties with
some function fj�·� x� appearing in (1). More precisely, we consider normalized enlarged
classes such that the functions fj�·� x� are proportional to some function in �c and that the
corresponding probability metric dc = d�c

enjoys pleasant properties (e.g., a duality and
convergence theory). In particular, it has to be avoided that the classes �c become too rich,
and hence, are not specifically adjusted to the model (as, e.g., � = L1�����). Although it
appears somewhat vague here, such properly enlarged classes �c will be called canonical
classes, and the corresponding "-distance dc an ideal or canonical metric. In §3, we show
for three types of stochastic programs how such canonical metrics come to light in a natural
way by revealing the analytical properties of the relevant integrands fj�·� x�. At the same
time, we obtain quantitative stability results for all models, thereby extending earlier work.
An important example of a probability metric with the potential of serving as a canonical

metric for stochastic programs with locally Lipschitz continuous integrands is the pth order
Fortet-Mourier metric "p (p ≥ 1) defined on �p��� by

"p���!� 
= sup
f∈�p���

∣∣∣∣ ∫
�

f �����−!��d��

∣∣∣∣(4)

for ��! ∈ �p��� 
= �! ∈ ����

∫

�
���p !�d�� < �� (see, Fortet and Mourier 1953 and

Rachev 1991). Here,

�p��� 
= {
f 
 � �−→ � 
 �f ���−f ��̃��
≤max�1����p−1���̃�p−1���− �̃��∀�� �̃ ∈ �

}
�
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It is known that a sequence of measures in �p��� converges with respect to "p iff it con-
verges weakly and the corresponding sequence of pth absolute moments converges as well
(Theorem 6.2.1 in Rachev 1991). Later on, such Fortet-Mourier metrics appear as canonical
metrics in case of integrands fj�·� x� with local Lipschitz constants growing polynomially.
In particular, they are canonical for two-stage models without integrality requirements (see
§3.1). For two-stage models containing integer variables and for chance constrained mod-
els, the relevant integrands are discontinuous and their canonical classes contain products
of (locally) Lipschitzian functions and of characteristic functions of sets describing regions
of continuity (see §§3.2 and 3.3).
When using stability results for designing or analyzing approximation schemes or estima-

tion procedures, further properties of metrics or function classes have to be derived some-
times. This issue is addressed in a third step. In §4, for example, we derive entropy numbers
of certain function classes and new rates of convergence for empirical approximations of
stochastic programs using m.i. metrics.
Earlier work on stability analysis of stochastic programs was mostly directed to condi-

tions implying continuity properties of optimal values and solution sets with respect to the
topology of weak convergence of probability measures and distances metrizing the weak
topology, respectively. We refer to the corresponding qualitative studies in Kall (1987),
Robinson and Wets (1987), Wets (1989), and Artstein and Wets (1994) and to the work on
quantitative stability in Römisch and Wakolbinger (1987), Römisch and Schultz (1991), and
Artstein (1994) (see also the overviews Dupačová 1990 and Schultz 2000). First attempts
at finding suitable probability metrics for specific models were undertaken in Römisch and
Schultz (1991) and Schultz (1996). In the present paper, we take up this question and come
to different conclusions for two-stage models.
In parallel to this development, much work was directed to the study of convergence

properties of random approximations or statistical estimation procedures in stochastic pro-
gramming (see, e.g., Dupačová and Wets 1988, King and Wets 1991, Vogel 1994, Artstein
and Wets 1995, Robinson 1996, and Pflug 1998 for qualitative results, and Kaňková 1994,
King and Rockafellar 1993, Kaniovski et al. 1995, Shapiro 1996, Gröwe 1997, and Shapiro
and Homen-de-Mello 2000 for rates of convergence, large deviation results and central limit
theorems). In the present paper, we take up the idea of using bounds for empirical processes
(raised in Henrion and Römisch 1999 and Pflug 1999) and extend some of the earlier work.
Our paper is organized as follows. Section 2 contains the general perturbation results

for (1) together with a discussion of how to associate canonical metrics with more specific
stochastic programs. In §3, we discuss linear two-stage, mixed-integer two-stage, and lin-
ear chance-constrained stochastic programs and present perturbation results for these mod-
els with respect to the corresponding canonical probability metric. The application of the
general perturbation analysis to empirical approximations as specific “perturbations” is dis-
cussed in §4, together with applications to the models in §3. In §5, we finally apply our
analysis to a specific stochastic optimization problem, namely, the choice of stable portfo-
lios with minimal risk.

2. Quantitative stability. Together with the original stochastic programming problem
(1), we consider a perturbation ! ∈���� of the probability distribution � and the perturbed
model

min
{∫

�
f0��� x� !�d��
 x ∈ X�

∫
�

fj��� x� !�d�� ≤ 0� j = 1�    � d

}
�(5)

We assume throughout this section that the sets X and � are closed and that the functions
fj (j = 0�    � d) are normal integrands. For any nonempty open set �⊆ �m, we consider
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the following sets of functions, elements, and probability measures:

�� 
= �fj�·� x� 
 x ∈ X∩ cl�� j = 0� ���� d��

M��!� 
=
{

x ∈ X∩ cl�

∫

�
fj��� x� !�d�� ≤ 0� j = 1�    � d

}
�! ∈�� �������

�� ����� 
=
{

! ∈���� 
 −� <
∫

�
inf
x∈X

�x�≤r

fj��� x� !�d�� for each r > 0 and

sup
x∈X∩cl�

∫
�

fj��� x� !�d�� < � for each j = 0�    � d

}
�

and the probability pseudometric on �� �� 
=�� �����


d� �����!� 
= sup
f∈��

∣∣∣∣ ∫
�

f �����−!� �d��

∣∣∣∣
= sup

x∈X∩cl�
max

j=0�    �d

∣∣∣∣ ∫
�

fj��� x���−!� �d��

∣∣∣∣�
Our general assumptions and the Fatou Lemma imply that the objective function of (5) is
lower semicontinuous on X and the constraint set of (5) is closed for each ! ∈ �� �����.
Our first results compile some further basic properties of the model (5).

Proposition 2.1. Let � be a nonempty open subset of �m. Then the mapping �x� !� �→∫
�

fj��� x� !�d�� from �X ∩ cl��× ��� ���d� ��� to �� is lower semicontinuous for each
j = 0�    � d.

Proof. Let j = 0�    � d, x ∈ X ∩ cl�, ! ∈ �� ��, �xn� be a sequence in X ∩ cl� such
that xn → x and let �!n� be a sequence converging to ! in ��� ���d� ���. Then the lower
semicontinuity of fj��� ·� for each � ∈ � and the Fatou Lemma imply that∫

�
fj��� x� !�d�� ≤ lim inf

n→�

∫
�

fj��� xn� !�d��

≤ lim inf
n→�

{
d� ���!� !n�+

∫
�

fj��� xn� !n�d��

}
= lim inf

n→�

∫
�

fj��� xn� !n�d���

completing the proof. �

Proposition 2.2. Let � be a nonempty open subset of �m. Then the graph of the set-
valued mapping ! �→ M��!� from ��� ���d� ��� into �m is closed.

Proof. Let �!n� be a sequence converging to ! in ��� ���d� ��� and let �xn� be a
sequence converging to x in �m such that xn ∈ M��!n� for each n ∈ �. Clearly, we have
x ∈ X∩ cl�. For j ∈ �1�    � d�, we obtain from Proposition 2.1 that∫

�
fj��� x� !�d�� ≤ lim inf

n→�

∫
�

fj��� xn� !n�d�� ≤ 0�

and hence, x ∈ M��!�. �

To obtain quantitative stability results for (1), a stability property of the constraint set
M��� when perturbing the probabilistic constraints is needed. Consistently with the general
definition of metric regularity for multifunctions (see, e.g., Rockafellar and Wets 1997 and
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Henrion and Römisch 1999), we consider the set-valued mapping y �→ My��� from �d to
�m, where

My��� =
{

x ∈ X

∫

�
fj��� x���d�� ≤ yj� j = 1�    � d

}
�

and say that its inverse x �→ M−1
x ��� = �y ∈ �d
 x ∈ My���� is metrically regular at some

pair �x̄�0� ∈ �m ×�d with x̄ ∈ M��� = M0��� if there are constants a ≥ 0 and ' > 0 such
that it holds for all x ∈ X∩��x̄� '� and y ∈ �d with maxj=1�    �d �yj � ≤ ':

d�x�My���� ≤ a max
j=1�    �d

max
{
0�
∫

�
fj��� x���d��−yj

}
�

In order to state our general stability results, we will also need localized versions of optimal
values and solution sets, and we follow the concept of local stability analysis proposed in
Robinson (1987) and Klatte (1987). For any nonempty set �⊆ �m and any ! ∈ �� ��, we
set

v��!� = inf
{∫

�
f0��� x� !�d��
 x ∈ M��!�

}
�

S��!� =
{

x ∈ M��!�

∫

�
f0��� x� !�d�� = v��!�

}
�

A nonempty set � ⊆�m is called a complete local minimizing (CLM) set of (5) with respect
to � if �⊆ �m is open and � = S��!� ⊂�. Clearly, CLM sets are local minimizing sets,
and the global minimizing set S�!� is a CLM set with S�!� = S��!� if S�!� ⊂�. Now, we
are ready to state our first main stability result. Although its proof partly parallels arguments
in the proof of Theorem 1 of Klatte (1987), we include it here since our model assumptions
are slightly more general compared to those in Klatte (1987, 1994).

Theorem 2.3. Let � ∈�� �� and assume that
(i) S��� is nonempty and �⊆ �m is an open bounded neighbourhood of S���.
(ii) If d ≥ 1, the function x �→ ∫

�
f0��� x���d�� is Lipschitz continuous on X∩ cl�;

(iii) The mapping x �→ M−1
x ��� is metrically regular at each pair �x̄�0� with x̄ ∈ S���.

Then the multifunction S� from ��� ���d� ��� to �m is (Berge) upper semicontinuous at
� and there exist constants L > 0 and ( > 0 such that

�v���−v��!�� ≤ Ld� �����!�(6)

holds and S��!� is a CLM set of (5) w.r.t. � whenever ! ∈ �� �� and d� �����!� < (. In
case d = 0, the estimate (6) is valid with L = 1 and for all ! ∈�� ��.

Proof. We consider the (localized) parametric optimization problem

min
{

g�x� !� =
∫

�
f0��� x� !�d��
 x ∈ M��!�

}
�

where the probability measure ! is regarded as a parameter varying in the pseudometric
space �� ��. Proposition 2.2 says that the graph of the multifunction M� from �� �� to
�m is closed. Hence, M� is (Berge) upper semicontinuous on �� ��, since cl� is compact.
Furthermore, we know by Proposition 2.1 that the function g from �X∩ cl��×�� �� to ��
is lower semicontinuous and finite. Let us first consider the case of d = 0. Since g�·� !� is
lower semicontinuous, S��!� is nonempty for each ! ∈�� ��. Let x∗ ∈ S���, ! ∈�� �� and
x̃ ∈ S��!�. Then the estimate

�v���−v��!�� ≤max
{∫

�
f0��� x∗��!−�� �d���

∫
�

f0��� x̃���−!� �d��

}
≤ d� �����!�
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holds and Berge’s classical stability analysis (see Bank et al. 1982, Theorem 4.2.1(3))
implies that the multifunction S� from ��� ���d� ��� to �m is (Berge) upper semicontinu-
ous at �. In case d ≥ 1, Condition (ii) implies that the function g is even continuous on
�X∩ cl��×�� ��. Then we may conclude from Theorem 4.2.1 in Bank et al. (1982) that
S� is (Berge) upper semicontinuous at � if M� satisfies the following (lower semicontinu-
ity) property at some pair �x̄��� with x̄ ∈ S���:

M����∩B�x̄� '̄� ⊆ M��!�+ad� �����!��� whenever d� �����!� < '̄�(7)

where � denotes the closed unit ball in �m, a ≥ 0 is the corresponding constant in Condi-
tion (iii), and '̄ > 0 is sufficiently small. To establish property (7), let x̄ ∈ S���, and a =
a�x̄� ≥ 0, ' = '�x̄� > 0 be the metric regularity constants from (iii). First, we observe that
the estimate

∫
�

fj��� x��!−�� �d��≤ d� �����!� holds for any x ∈X∩cl�, j ∈ �1�    � d�

and ! ∈�� ��. Next, we choose '̄= '̄�x̄� such that 0< '̄ < ' and ��x̄� �a+1�'̄�⊆�. Hence,
we have ��x�a'̄� ⊆ � for any x ∈ B�x̄� '̄�. Let ! ∈ �� �� be such that d� �����!� < '̄.
Putting yj = −d� �����!�, j = 1�    � d, the above estimate implies that My���∩ cl� ⊆
M��!�. Because of the choice of '̄, we have d�x�My���∩ cl�� = d�x�My���� for any
x ∈ M���� ∩ B�x̄� '̄�, and hence, we obtain from the metric regularity condition (iii),
the estimate

d�x�M��!�� ≤ d�x�My���∩ cl�� = d�x�My����

≤ a max
j=1�    � d

max
{
0�
∫

�
fj��� x���d��+d� �����!�

}
≤ ad� �����!��

which is equivalent to the property (7). Hence, S� is (Berge) upper semicontinuous at � and
there exists a constant (̂ > 0, such that S��!� ⊂� for any ! ∈ �� �� with d� �����!� < (̂.
Thus, S��!� is a CLM set of (5) w.r.t. � for each such !.
Moreover, we obtain from (iii), for any x ∈ M��!�∩��x̄� '̄�, the estimate

d�x�M����� = d�x�M0���∩ cl�� = d�x�M0����

≤ a max
j=1�    � d

max
{
0�
∫

�
fj��� x���d��

}
≤ a max

j=1�    � d
max

{
0�
∫

�
fj��� x���d��−

∫
�

fj��� x� !�d��

}
≤ ad� �����!��

which is equivalent to the inclusion

M��!�∩B�x̄� '̄� ⊆ M����+ad� �����!���

Since S��� is compact, we may continue as in the proof of Theorem 1 of Klatte (1987)
by exploiting a finite covering argument and arriving at two analogues of both inclusions,
where a neighbourhood � of S��� appears in their left-hand sides instead of the balls
��x̄� '̄� and a uniform constant â appears instead of a in their right-hand sides. Moreover,
there exists a uniform constant '̂ > 0 such that the (new) inclusions are valid whenever
d� �����!� < '̂. Now, we choose ( > 0 such that ( ≤min�(̂� '̂� and S��!� ⊂ � whenever
d� �����!� < (. Let ! ∈ �� �� and x̃ ∈ S��!� ⊆ M��!�∩� . Then there exists an element
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x̄ ∈ M��!� satisfying �x̃− x̄� ≤ âd� �����!�. For d ≥ 1, we continue

v��� ≤ g�x̄��� ≤ g�x̃� !�+�g�x̄���−g�x̃� !��
≤ v��!�+�g�x̄���−g�x̃����+ �g�x̃���−g�x̃� !��
≤ v��!�+Lg�x̄− x̃�+d� �����!�

≤ v��!�+ �Lgâ+1�d� �����!��

where Lg ≥ 0 denotes a Lipschitz constant of g�·��� on X ∩ cl�. Exchanging the role of
� and !, we arrive at the desired continuity property of v� by putting L = Lgâ+ 1. To
complete the proof, it remains to note that in case of d = 0, we may choose x̄ = x̃ ∈ X and
â = 0. �

The previous result asserts that the multifunction S� is nonempty near � and (Berge)
upper semicontinuous at �. In order to quantify this upper semicontinuity property, a growth
condition on the objective function in a neighbourhood of the solution set to the original
problem (1) is needed (e.g., Attouch and Wets 1993 and Klatte 1994). Instead of imposing
a specific growth condition (as, e.g., quadratic growth), we consider the growth function,

+��,� 
=min
{∫

�
f0��� x���d��−v���
 d�x�S���� ≥ ,� x ∈ M����

}
�, ∈ �+��(8)

of Problem (1) on cl�, i.e., near its solution set S���, and the associated function,

-��.� 
= .++−1
� �2.� �. ∈ �+��(9)

where we set +−1
� �t� 
= sup�, ∈ �+
 +��,� ≤ t�. Both functions +� and -� depend on the

data of (1), and in particular, on �. They are lower semicontinuous on �+; +� is nondecreas-
ing, -� increasing, and both vanish at 0 (cf., Rockafellar and Wets 1997, Theorem 7.64).
Our second main stability result establishes a quantitative upper semicontinuity property
of (localized) solution sets and identifies the function -� as modulus of semicontinuity.
Parts of its proof are similar to arguments in the proof of Theorem 7.64 in Rockafellar and
Wets (1997).

Theorem 2.4. Let the assumptions of Theorem 2.3 be satisfied and � ∈ �� ��. Then
there exists a constant L̂ ≥ 1, such that it holds for any ! ∈�� �� that

� �= S��!� ⊆ S���+-��L̂d� �����!����(10)

where � is the closed unit ball in �m and -� is given by (9). In case d = 0, the estimate
(10) is valid with L̂ = 1.

Proof. Let L > 0 be the constant in Theorem 2.3, and let ! ∈ �� �� and x̃ ∈ S��!�.
As argued in the proof of Theorem 2.3, there exists an element x̄ ∈ M���� such that
�x̃− x̄�≤ â(, where ( 
= d� �����!�. Let L� ≥ 0 denote a Lipschitz constant of the function
x �→ ∫

�
f0��� x���d�� on X∩ cl�. Then the definition of + and Theorem 2.3 imply that

(�1+L�â+L� ≥ (�1+L�â�+v��!�−v���

= (�1+L�â�+
∫

�
f0��� x̃� !�d��−v���

≥ (L�â+
∫

�
f0��� x̃���d��−v���

≥
∫

�
f0��� x̄���d��−v��� ≥ +��d�x̄� S�����

≥ inf
y∈��x̃� â(�

+��d�y�S����� = +��d�x̃� S���+ â(����
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Hence, we obtain

d�x̃� S���� ≤ â(+d�x̃� S���+ â(��

≤ â(++−1
� �(�1+L�â+L��

≤ L̂(++−1
� �2L̂(� = -��L̂(��

where L̂ 
=max�â� 1
2 �1+L�â+L�� ≥ 1. In case d = 0 we may choose x̂ = x̃, â = 1, L = 1

and L� = 0. This completes the proof. �

Next, we briefly comment on some aspects of the general stability theorems, namely, spe-
cific growth conditions, verification of Condition (iii), localization issues and an extension
of Theorem 2.4 in case d = 0.
Remark 2.5. Problem (1) is said to have kth order growth at the solution set for some

k ≥ 1 if +��,� ≥ 0,k for each small , ∈ �+ and some 0 > 0, i.e.,∫
�

f0��� x���d��−v��� ≥ 0d�x�S����k for each feasible x close to S����

Then -��.� ≤ . + �2./0�1/k ≤ C.1/k for some constant C > 0 and sufficiently small
. ∈ �+. In this case, Theorem 2.4 provides Hölder continuity of S� at � with rate 1/k.
Important particular cases are linear and quadratic growth for k = 1 and k = 2, respectively.
Remark 2.6. Criteria for the metric regularity of multifunctions are given, e.g., in §9G

of Rockafellar and Wets (1997) and in Mordukhovich (1994). Here, we do not intend to
provide a specific sufficient condition for Assumption (iii) of Theorem 2.3, but note that the
constraint functions

∫
�

fj��� ·���d�� (j = 1�    � d) are often nondifferentiable in stochastic
programming and refer to the general results in Mordukhovich (1994) and to Henrion and
Römisch (1999), where metric regularity in case of chance constrained stochastic programs
is discussed.
Remark 2.7. In Theorems 2.3 and 2.4, the localized optimal values v��!� and solution

sets S��!� of the (perturbed) model (5) may be replaced by their global versions v and S if
there exists a constant (0 > 0 such that for each ! ∈ �� �� with d� �����!� < (0, either of
the following conditions is satisfied: (a) The model (5) is convex and S��!� is a CLM set,
(b) the constraint set of (5) is contained in some bounded set 	 ⊂ �m not depending on !
and it holds that 	 ⊆�.
Remark 2.8. Let d = 0, S��� be nonempty and assume that the objective satisfies a

quadratic growth condition on X ∩ �, where � is a convex open neighbourhood of S���
(i.e., +��,� ≥ 0,2 for small , ∈ �+). Then the estimate,

sup
x∈S��!�

d�x�S����(11)

≤ 1
0
sup

{
�x∗�
 x∗ ∈ 2

(∫
�

f0��� ·��!−�� �d��

)
�x�� x ∈ X∩ cl �

}
�

holds, provided that the function
∫

�
f0��� ·��! −�� �d�� is locally Lipschitz continuous

on X. Here, “2” denotes the Mordukhovich subdifferential (cf., Mordukhovich 1994 and
Rockafellar and Wets 1997).
Compared to the estimate in Theorem 2.4 based on function values, the above bound

(11) uses subdifferentials. While Theorem 2.4 is valid in rather general situations, the
assumptions implying (11) are more restrictive. However, (11) may lead to Lipschitz-type
results in case of quadratic growth (see the conclusions for two-stage stochastic programs in
Shapiro 1994, Römisch and Schultz 1996, and Dentcheva and Römisch 2000). For a proof
of (11), the reader is referred to Bonnans and Shapiro (2000) and Shapiro (1994).
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The two stability theorems illuminate the role of the distance d� �� as a minimal infor-
mation (m.i.) probability pseudometric for stability, i.e., as a pseudometric processing the
minimal information of Problem (1), implying quantitative stability of its optimal values
and solution sets. Furthermore, notice that both results remain valid when bounding d� ��

from above by another distance and when reducing the set �� �� to a subset on which this
distance is defined and finite.
A distance dc bounding d� �� from above will be called an ideal or canonical probability

metric associated with (1) if it has "-structure (3) generated by some class of functions
� = �c from � to �� such that �c contains the functions Cfj�·� x� for each x ∈ X ∩ cl �,
j = 0�    � d, and some normalizing constant C > 0, and such that any function in �c shares
typical analytical properties with some function fj�·� x�.
In our applications, we clarify such typical analytical properties. Here, we only men-

tion that typical integrands in stochastic programming are nondifferentiable, but piecewise
Lipschitz continuous with discontinuities at boundaries of polyhedral sets.
To form an idea of how to associate a canonical metric, we consider the pth order Fortet-

Mourier metric introduced in §1. Then the following result is an immediate consequence of
the general theorems. It was already announced in §1.4 of Rachev and Rüschendorf (1998)
in a slightly more general formulation.

Corollary 2.9. Let d = 0 and assume that
(i) S��� is nonempty and � is an open, bounded neighbourhood of S���.
(ii) X is convex and f0��� ·� is convex on �m for each � ∈ �.
(iii) There exist constants L > 0, p≥ 1, such that �1/L�f0�·� x�∈�p for each x ∈X∩cl�.
Then there exists a constant ( > 0 such that

�v���−v�!�� ≤ L"p���!� and

� �= S�!� ⊆ S���+-��L"p���!���

whenever ! ∈�p��� and "p���!� < (. Here, the function -� is given by (9).

Proof. The assumptions of Theorem 2.3 are satisfied. Hence, the result is a consequence
of the Theorems 2.3 and 2.4 and the fact that (iii) is equivalent to

�f0��� x�−f0��̃� x�� ≤ Lmax�1����p−1���̃�p−1���− �̃�
for each �� �̃ ∈ � and x ∈ X ∩ cl�, and hence, it implies d� �����!� ≤ L"p���!� for all
��! ∈ �p���. Furthermore, the localized optimal values v� and solution sets S� may be
replaced by v and S, respectively, because of the convexity assumption (ii) if ! is close
to � (see Remark 2.7). �

Example 2.10 (Example 1.1 Continued). In this case, the set �� is a specific class of
piecewise linear functions and has the form ��r −c�x+cmax�0� x−·�
 x ∈ X∩cl��. Fur-
thermore,

∫
�

f0��� x���d�� is also piecewise linear and Corollary 2.9 applies with L 
= c,
p 
= 1 and a linear function -�. Hence, the solution set S behaves upper Lipschitzian at �
with respect to "1.

3. Stability of linear two-stage and chance-constrained models.

3.1. Linear two-stage models. We consider the linear two-stage stochastic program
with fixed recourse

min
{

cx+
∫

�
q���y�����d��
 Wy��� = h���−T���x� y��� ≥ 0� x ∈ X

}
�(12)
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where c ∈ �m, X ⊆ �m is a polyhedron, � is a polyhedron in �s , W is an �r� m̄�-matrix,
� ∈����, and the vectors q��� ∈�m̄, h��� ∈�r and the �r�m�-matrix T��� depend affine
linearly on � ∈ �.
In (12), x is the here-and-now or first-stage decision and y�·� the (stochastic) recourse or

second-stage action, which is needed to compensate a violation of the constraint T���x =
h���. For given x, the recourse action y��� is chosen such that it meets the constraints and
is optimal for the (stochastic) recourse costs q���. Denoting by 7�q����h���−T���x� the
value of the optimal second stage decision, Problem (12) may be rewritten equivalently as
a minimization problem with respect to the first-stage decision x. Defining the integrand
f0
 �×�m →�� by

f0��� x� =
{

cx+7�q����h���−T���x�� h���−T���x ∈ pos W�q��� ∈ D�
+�� otherwise�

where posW = �Wy
 y ∈ �m̄
+�, D = �u ∈ �m̄
 �z ∈ �r 
 W ′z ≤ u� �= �� and 7�u� t� =

inf�uy
 Wy = t� y ≥ 0� ��u� t� ∈ �m̄ ×�r �, the equivalent minimization problem takes the
form

min
{∫

�
f0��� x���d��
 x ∈ X

}
�(13)

In order to utilize the general stability results of §2, we first recall some well-known prop-
erties of the function 7, which are derived in Walkup and Wets (1969) (see also Nožička
et al. 1974).

Lemma 3.1. The function 7 is finite and continuous on the �m̄+r�-dimensional polyhe-
dral cone posW ×D and there exist �r� m̄�-matrices Cj and �m̄+r�-dimensional polyhedral
cones 
j , j = 1�    �N , such that

N⋃
j=1


j = posW ×D� int 
i ∩ int 
j =�� i �= j�

7�u� t� = Cju · t� for each �u� t� ∈
j � j = 1�    �N �

Moreover, 7�u� ·� is convex on posW , for each u ∈D, and 7�·� t� is concave on D for each
t ∈ posW .

In order to have Problem (13) well defined, we introduce the following assumptions:
(A1) For each pair ��� x� ∈ �×X, it holds that h���−T���x ∈ posW and q��� ∈ D.
(A2) � ∈�2���, i.e.,

∫
�
���2 ��d�� < �.

Condition (A1) combines the two usual conditions: relatively complete recourse and dual
feasibility. It implies that �×X ⊆ domf0.

Proposition 3.2. Let (A1) be satisfied. Then f0 is a normal convex integrand. Further-
more, there exist constants L > 0, L̂ > 0 and K > 0 such that the following holds for all
�� �̃ ∈ � and x� x̃ ∈ X with �x� ≤ r:

�f0��� x�−f0��̃� x�� ≤ Lr max�1�������̃����− �̃��
�f0��� x�−f0��� x̃�� ≤ L̂max�1����2��x− x̃��

�f0��� x�� ≤ Kr max�1����2��
Proof. From Lemma 3.1 and (A1), we conclude that f0 is continuous on dom f0, and

hence, on �×�m. This implies that f0 is a normal integrand (cf., Rockafellar and Wets
1997, Example 14.31). It is also a convex integrand since the properties of 7 in Lemma 3.1
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imply that f0��� ·� is convex for each � ∈ �. In order to verify the Lipschitz property of f0,
let x ∈ X with �x� ≤ r and consider for each j = 1�    �N and � ∈ �j the function

gj��� 
= f0��� x� = 7�q����h���−T���x� = Cjq��� · �h���−T���x��

where �j 
= �� ∈ �
 �q����h���−T���x� ∈
j� are polyhedral subsets of �, and Cj and

j are the matrices and the polyhedral cones from Lemma 3.1, respectively. Since q�·�,
h�·� and T�·� depend affine linearly on �, the function gj depends quadratically on � and
linearly on x. Hence, there exists a constant Lj > 0 such that gj satisfies the following
Lipschitz property:

�gj���−gj��̃�� ≤ Ljr max�1�������̃����− �̃� for all �� �̃ ∈ �j�

Now, let �, �̃ ∈�, assume that � ∈�i and �̃ ∈�k for some i, k∈ �1�    �N � and consider the
line segment ��� �̃�= ���=�= �1−=��+=�̃
 =∈ �0�1��. Since ��� �̃�⊆�, there exist indices
ij , j = 1�    � l such that i1 = i, il = k, ��� �̃�∩�ij

�= � for each j = 1�    � l and ��� �̃� ⊆⋃l
j=1 �ij

. Furthermore, there exist increasing numbers =ij
∈ �0�1� for j = 0�    � l−1 such

that ��=i0
� = ��0� = �, ��=ij

� ∈ �ij
∩�ij+1

and ��=� �∈ �ij
if =ij

< = ≤ 1. Then we obtain

�f0��� x�−f0��̃� x�� = �gi1
���−gil

��̃��

≤
l−1∑
j=0

�gij+1
���=ij

��−gij+1
���=ij+1

���

≤
l−1∑
j=0

Lij+1
r max�1����=ij

������=ij+1
������=ij

�−��=ij+1
��

≤ max
j=1�    �N

Ljr max�1�������̃��
l−1∑
j=0

���=ij
�−��=ij+1

��

≤ max
j=1�    �N

Ljr max�1�������̃����− �̃��

where we have used for the last two estimates that ���=�� ≤ max�������̃�� for each
= ∈ �0�1� and that �=− =̃���− �̃� = ���=�−��=̃�� holds for all =� =̃ ∈ �0�1�.
Lipschitz continuity of f0 with respect to x is shown in Theorem 10 of Kall (1976) and

in Theorem 7.7 of Wets (1974). The second estimate of the proposition, in particular, is a
consequence of those results. Furthermore, from Lemma 3.1, we conclude the estimate

�f0��� x�� ≤ sup
�x�≤r

{
�cx�+ max

j=1�    �N
�Cjq��� · �h���−T���x��

}
≤ �c�r +

(
max

j=1�    �N
�Cj�

)
�q������h����+�T����r�

for any pair ��� x� ∈ �×X with �x� ≤ r . Then the third estimate follows again from the
fact that q�·�, h�·� and T�·� depend affine linearly on �. �

The estimate in Proposition 3.2 implies that, for any r > 0, any nonempty bounded
�⊆ �m and some ? > 0, it holds that∫

�
inf
x∈X
�x�≤r

f0��� x� !�d�� ≥−Kr

(
1+

∫
�
���2 !�d��

)
> −��

sup
x∈X∩�

∣∣∣∣∣ ∫�
f0��� x� !�d��

∣∣∣≤ K?

(
1+

∫
�
���2 !�d��

)
< ��
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if ! ∈���� has a finite, second-order moment. Hence, for any nonempty bounded �⊆�m,
the set of probability measures �� �� contains the set of measures on � having finite second-
order moments, i.e.,

�� �� ⊇
{

! ∈���� 

∫

�
���2 !�d�� < �

}
=�2����

The following stability result for optimal values and solution sets of the two-stage problem
(13) is now a direct consequence of Corollary 2.9 and Proposition 3.2.

Theorem 3.3. Let (A1) and (A2) be satisfied and let S��� be nonempty and let � be
an open, bounded neighbourhood of S���.

Then there exist constants L > 0 and ( > 0 such that

�v���−v�!�� ≤ L"2���!� and

� �= S�!� ⊆ S���+-��L"2���!���

whenever ! ∈�2��� and "2���!� < (, where -� is given by (9).

Proof. The result is a consequence of Corollary 2.9 with p = 2. The assumptions (ii)
and (iii) of Corollary 2.9 are verified in Proposition 3.2. �

The theorem establishes quantitative stability of v�·� and S�·� with respect to "2 in the
two-stage case for fairly general situations. Hence, "2 is the canonical metric for two-stage
models with fixed recourse.
In Römisch and Schultz (1991), stability of two-stage models with complete recourse

(i.e., posW =�r ) was studied with respect to the L2-minimal or L2-Wasserstein metric W2,
defined by

W2���!� 
=
(
inf

{∫
�×�

��− �̃�2.�d��d�̃�
 . ∈��� × �� with marginals � and !

})1/2

for all �, ! ∈�2���. Because of the estimate,

"2���!� ≤
(∫

�
max�1����2���+!� �d��

)1/2

W2���!��

which is essentially a consequence of Schwarz’s inequality, and the fact that convergence
with respect to W2 implies convergence of second-order moments, "2 may be bounded
above by W2. Hence, Theorem 3.3 remains valid if "2 is replaced by W2 (with possibly
different constants) and, thus, Theorem 3.3 extends Theorem 2.4 in Römisch and Schultz
(1991). This extension is strict, since the following example shows that "2 and W2 may have
different asymptotic properties.
Example 3.4. Let � 
= �+, � 
= (0 and �n 
= �1−1/n�(0+ �1/n�(�n

for each n ∈ �,
where ��n� is an unbounded nondecreasing sequence in �+ such that ��1/

√
n��n� tends to

zero. Here, (� denotes the measure on � placing unit mass at � ∈ �. Then ��n� converges
weakly to � and the second-order moments converge too. Hence, ��n� converges to � with
respect to "2 and W2. However, the speed of convergence of ��n� is different since it holds
for each n ∈ � with �n ≥ 1:

"2����n� =
∫ �

0
max�1� ���F����−F�n

����d� = 1
n
+
∫ �n

1

�

n
d� = 1

2n
��2

n +1��

W2����n� =
(∫ 1

0
�F−1

� �t�−F−1
�n

�t��2dt

)1/2

=
(∫ 1

1− 1
n

�2
n dt

)1/2

= 1√
n

�n�
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Here we have used the explicit representations of "2 and W2 in case of probability measures
on (subsets of) � (see Rachev 1991, Chapters 5.4 and 13.1), where F� and F�n

are the
probability distribution functions of � and �n, respectively, and the (generalized) inverse
function of a distribution function F is defined by F−1�t� 
= sup�� ∈ �
 F ��� ≤ t� (t ∈
�0�1�).
Concluding this section, we mention that in case the recourse costs q�·� are nonstochastic

or the technology matrix T�·� and the right-hand side h�·� are nonstochastic, then Assump-
tion (A2) may be weakened to (A2)∗ � ∈�1���, and Theorem 3.3 holds true with the met-
ric "1 instead of "2. In case of random right-hand sides only, Lipschitz stability results can
be obtained in case of quadratic growth at S��� by exploiting the estimate in Remark 2.8
(see Shapiro 1994, Römisch and Schultz 1996, and Dentcheva and Römisch 2000). On the
other hand, strong convexity properties of the objective function (cf., Schultz 1994) provide
sufficient conditions for quadratic growth.

3.2. Mixed-integer two-stage models. Next, we allow for mixed-integer decisions in
both stages and consider the program,

min
{

cx+
∫

�
7�h���−T���x���d��
 x ∈ X

}
�(14)

where

7�t� 
=min
{

qy+ q̄ȳ
 Wy+ �Wȳ = t� y ∈ �m̂
+� ȳ ∈ �m̄

+

}
�t ∈ �r ��(15)

c ∈ �m, X is a closed subset of �m, � a polyhedron in �s , q ∈ �m̂, q̄ ∈ �m̄, W , and �W are
�r� m̂�- and �r� m̄�-matrices, respectively, h��� ∈ �r and the �r�m�-matrix T��� are affine
linear functions of � ∈ �s , and � ∈����.
Similarly as for the two-stage models without integrality requirements in the previous

section, we need some conditions to have the model (14) well defined:
(B1) The matrices W and �W have only rational elements.
(B2) For each pair ��� x� ∈ �×X, it holds that h���−T���x ∈ � , where

� 
= {
t ∈ �r 
 t = Wy+ �Wȳ� y ∈ �m̂

+� ȳ ∈ �m̄
+
}
�

(B3) There exists an element u ∈ �r such that W
′
u ≤ q and �W ′

u ≤ q̄.
The conditions (B2) and (B3) mean relatively complete recourse and dual feasibility,

respectively. We note that Condition (B3) is equivalent to 7�0� = 0, and that (B2) and (B3)
imply that 7�t� is finite for all t ∈� . In the context of this section, the following properties
of the value function 7 of (15) on � are important.

Lemma 3.5. Assume (B1)–(B3). Then there exists a countable partition of � into Borel
subsets i, i.e., � =⋃

i∈�i such that
(i) Each of the sets has a representation i = �bi + pos�W� \⋃N0

j=1�bij + pos�W�, where
bi� bij ∈�r for i ∈� and j = 1�    �N0. Moreover, there exists an N1 ∈�, such that for any
t ∈ � the ball ��t�1� in �r is intersected by at most N1 different subsets i.

(ii) The restriction 7�i
of 7 to i is Lipschitz continuous with a constant L7 > 0 that

does not depend on i.
Furthermore, the function 7 is lower semicontinuous and piecewise polyhedral on � and

there exist constants B > 0 and C > 0 such that it holds for all t, t̃ ∈ � :

�7�t�−7�t̃�� ≤ B�t− t̃�+C�
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Part (i) of the lemma is proved in §5.6 of Bank et al. (1982) and in Lemma 2.5 of Schultz
(1996), (ii) is derived as Lemma 2.3 in Schultz (1996) and the remaining properties of 7
are established in Blair and Jeroslow (1977). Compared to Lemma 3.1 for optimal value
functions of linear programs without integrality requirements, the representation of 7 is
now given on countably many (unbounded) Borel sets. This requires to take into account
the tail behaviour of �.
In order to state the stability results for Model (14), we consider the following probability

metric with "-structure on �1��� for any k ∈ �:

"1� phk
���!� 
= sup

{∣∣∣ ∫
P

f �����−!� �d��
∣∣∣
 f ∈ �1����P ∈phk

���

}
(16)

= sup
{∣∣∣ ∫

�
f ���EP�����−!� �d��

∣∣∣
 f ∈ �1����P ∈phk
���

}
�

Here, phk
��� denotes the set of all polyhedra which are contained in � and have at most

k faces, EP the characteristic function of P and �1��� is defined in §1.

Theorem 3.6. Let the conditions (B1)–(B3) be satisfied, let � ∈�p��� for some p > 1,
S��� be nonempty, and �⊆ �m be an open bounded neighbourhood of S���.

Then there exist constants L > 0, ( > 0, and k ∈ � such that

�v���−v��!�� ≤ L"1� phk
���!��1/�1+�r/�p−1����

� �= S��!� ⊆ S���+-��L"1� phk
���!��1/�1+�r/�p−1������

(17)

and S��!� is a CLM set for (14) w.r.t. � whenever ! ∈�1��� and "1� phk
���!� < (.

Here, the function -� is given by (9).

Proof. For each pair ��� x� ∈ �×X, we set f0��� x� 
= cx+7�h���−T���x�. Then
f0 is lower semicontinuous on �×X, and hence, a normal integrand (see Rockafellar and
Wets 1997, Example 14.31). Using Lemma 3.5 we obtain the estimate

�f0��� x�� ≤ �c��x�+B��h����+�T�����x��+C

for each pair ��� x� ∈ �×X. Since h��� and T��� depend affine linearly on �, there
exists a constant C1 > 0 such that �f0��� x�� ≤ C1 max�1����� holds for each pair ��� x� ∈
�× �X ∩ cl��. Hence, �� ����� ⊇ �1��� and Theorem 2.3 applies with d = 0 and the
distance d� �� on �1���. It remains to show that the estimate

d� �����!� = sup
x∈X∩cl�

∣∣∣∣ ∫
�

f0��� x���−!� �d��

∣∣∣∣≤ C"1�phk
��� !��1/�1+�r/�p−1����(18)

is valid for some constant C > 0 and sufficiently small "1� phk
���!�. To this end, let �R 
=

� ∩���0�R� for any R > 0, where �� refers to a closed ball in �r equipped with the norm
� · ��. Now, we proceed similarly as in the proof of Proposition 3.1 in Schultz (1996) and
partition the ball ���0�R� into disjoint Borel sets whose closures are ��-balls with radius
1, where possible gaps are filled with maximal balls of radius less than 1. Then the number
of elements in this partition of ���0�R� is bounded above by �2R�r . From Lemma 3.5(i),
we know that each element of this partition is intersected by at most N1 subsets i (for
some N1 ∈ �). Another consequence of Lemma 3.5(i) is that each i splits into disjoint
Borel subsets whose closures are polyhedra. Moreover, the number of such subsets can be
bounded from above by a constant not depending on i (cf., Schultz 1996, page 1143). Hence,
there exist a number N ∈ � and disjoint Borel subsets �Bj
 j = 1�    �N � such that their
closures are polyhedra, their union contains �R, and N is bounded above by GRr , where
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the constant G > 0 is independent on R. Now, let x ∈ X ∩ cl� and consider the following
disjoint Borel subsets of � :

�R
j�x 
= �� ∈ �
 h���−T���x ∈ Bj� �j = 1�    �N ��

�R
0�x 
= �\

N⋃
j=1

�R
j�x ⊆ �� ∈ �
 �h���−T���x�� > R��

From Lemma 3.5, we conclude that there exists a constant L1 > 0 (which does not depend
on x ∈X∩cl�, j = 1�    �N and R > 0) such that each function f R

j�x�·� 
= cx+7�Bj
�h�·�−

T�·�x� is Lipschitz continuous on �R
j�x with constant L1. We extend each function f R

j�x�·�
to the whole of � by preserving the Lipschitz constant L1.
For each ! ∈�1���, we may continue:∣∣∣∣∫

�
f0��� x���−!� �d��

∣∣∣∣ =
∣∣∣∣ N∑
j=0

∫
�R

j�x

f0��� x���−!� �d��

∣∣∣∣(19)

≤
N∑

j=1

∣∣∣∣∫
�R

j�x

f R
j�x�����−!� �d��

∣∣∣∣+ IR
x ���!�

≤ NL1 sup
f∈�1���� j=1�    �N

∣∣∣∣∫
�

f ���E�R
j�x

��−!� �d��

∣∣∣∣
+ IR

x ���!��

where IR
x ���!� 
= � ∫

�R
0� x

f0��� x���−!� �d���.
For each j = 1�    �N the closures of the sets Bj are polyhedra with a number of faces

which is bounded above by some number not depending on j, N , and R. Hence, the same
is true for the closures of the sets �R

j�x, i.e., for cl�
R
j�x = �� ∈ �
 h���−T���x ∈ clBj�,

where the corresponding number k ∈ � does not, in addition, depend on x ∈ X ∩ cl�.
For each such �R

j�x, we now consider a sequence of closed polyhedra PR
j�x, which are

contained in �R
j�x and have at most k faces, such that their characteristic functions EPR

j�x

converge pointwise to the characteristic function E�R
j�x
. Then the sequence consisting of the

elements � ∫
�

f ���EPR
j�x

�����− !� �d��� converges to � ∫
�

f ���E�R
j�x

�����− !� �d��� while
each element is bounded by "1� phk

���!�. Hence, the estimate (19) may be continued to∣∣∣∣∫
�

f0��� x���−!� �d��

∣∣∣∣≤ GL1R
r"1� phk

���!�+ IR
x ���!��(20)

Since there exists a constant C2 > 0 such that �h���−T���x�� ≤ C2 max�1������ holds
for each pair ��� x� ∈ �× �X ∩ cl��, the following upper bound for IR

x ���!� holds for
sufficiently large R > 0:

IR
x ���!� ≤ C1

∫
��∈�
����≥R/C2�

�����+!� �d���

Clearly, the set �� ∈ �
 ���� ≥ R/C2� is contained in the union of a finite number, say M ,
of Borel sets whose closures are polyhedra. Using the same arguments as for deriving the
estimate (20), we obtain for sufficiently large k,∫

��∈�
����≥R/C2�
���! �d�� ≤ M"1� phk

���!�+
∫

��∈�
����≥R/C2�
�����d���
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Hence, we get from (20) and the previous estimate that

d� �����!� ≤ G�L1R
r +MC1�"1� phk

���!�+2C1

∫
��∈�
����≥R/C2�

�����d��(21)

≤ G�L1R
r +MC1�"1� phk

���!�+CR1−p
∫

�
���p � �d��(22)

for some constant C > 0. Inserting R 
= "1� phk
���!�−1/�p−1+r� for sufficiently small

"1� phk
���!� into (21), (22) implies the desired estimate (18). �

In case that the underlying distribution � and their perturbations ! have their supports in
some bounded subset of �s , the stability result improves slightly.

Corollary 3.7. Let the conditions (B1)–(B3) be satisfied, � be bounded, and
� ∈����. Assume that S��� is nonempty and �⊆�m is an open bounded neighbourhood
of S���. Then there exist constants L > 0, ( > 0, and k ∈ � such that

�v���−v��!�� ≤ L"1� phk
���!��

� �= S��!� ⊆ S���+-��L"1� ph�k���!����

and S��!� is a CLM set of (14) w.r.t. � whenever ! ∈���� and "1� phk
���!� < (.

Proof. Since � is bounded, it holds that �1��� = ����. Moreover, the term IR
x ���!�

in the previous proof vanishes for each x ∈ X∩cl�, ! ∈���� and sufficiently large R > 0.
Hence, (20) and Theorem 3.6 imply the assertion. �

Hence, the probability metric "1� phk
is a canonical metric for (general) linear mixed-

integer two-stage stochastic programs.
Remark 3.8. Since � ∈phk

��� for sufficiently large k ∈ �, we obtain from (16) by
choosing P 
= � and f ≡ 1, respectively,

max�"1���!��Bphk
���!�� ≤ "1� phk

���!�(23)

for large k and all ��! ∈�1���. Here, Bphk
denotes the polyhedral discrepancy,

Bphk
���!� 
= sup����P�−!�P�� 
 P ∈phk

�����(24)

Hence, convergence with respect to "1� phk
implies weak convergence, convergence of first-

order absolute moments, and convergence with respect to the polyhedral discrepancy Bphk
.

Using the technology of the proof of Proposition 3.1 in Schultz (1996), it can be shown that

"1� phk
���!� ≤ Bphk

���!�1/�s+1�(25)

holds for all ��! ∈ ���� if � ⊂ �s is bounded. This illuminates the relation between the
stability results stated in this section and those in Schultz (1996) for T�·� ≡ T , � =�s and
in terms of some polyhedral discrepancy with exponents bounded by 1/�s+1�. In view of
(23) and (25), the metric "1� phk

is stronger than Bphk
in general, but in case of bounded

� they metrize the same topology on ����. However, our analysis may lead to improved
rates of convergence (e.g., for empirical approximations in Example 4.5).

3.3. Linear chance constrained models. In this section, we study consequences of the
general stability analysis of §2 to linear chance-constrained stochastic programs of the form

min�cx
 x ∈ X� ���� ∈ �
 T���x ≥ h����� ≥ p��(26)

where c ∈ �m, X is a polyhedron in �m, � a polyhedron in �s , p ∈ �0�1�, � ∈ ����, and
h��� ∈ �r and the �r�m�-matrix T��� depend affine linearly on � ∈ �.
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Setting d = 1, f0��� x� = cx, f1�x� �� = p−EH�x����, where H�x� = �� ∈ �
 T���x ≥
h����, we observe that the program (26) is a particular case of the general stochastic
program (1). In order to see that the general assumptions of §2 are satisfied, it remains
to note that the mapping �x� �� �→ EH�x���� from �×�m to � is upper semicontinuous
since the graph of H is closed. This implies that f1 is lower semicontinuous on �×�m,
and hence, a normal integrand (Rockafellar and Wets 1997, Example 14.31). Moreover,
p − 1 ≤ f1�x� �� ≤ p holds and, for any nonempty open and bounded subset � of �m,
we obtain by specifying the general class of probability measures and the m.i. probability
metric in §2:

�� ����� =
{

! ∈����
 sup
x∈X∩cl �

max
j=0�1

∣∣∣∫
�

fj��� x� !�d��
∣∣∣ < �

}
=�����

d� �����!� = sup
x∈X∩cl �

max
j=0�1

∣∣∣∣∫
�

fj��� x���−!� �d��

∣∣∣∣
= sup

x∈X∩cl �
���H�x��−!�H�x��� ��� ! ∈������

Such pseudometrics were already used in the stability analysis of Römisch and Schultz
(1991a, b). Since the sets H�x� are polyhedra with a uniformly bounded number of faces,
the polyhedral discrepancy Bphk

on ���� (see (24)) for some k ∈ � is a natural candidate
for a canonical metric of linear chance-constrained stochastic programs. Furthermore, the
following is an immediate conclusion of our general results.

Proposition 3.9. Let � ∈���� and assume that
(i) S��� is nonempty and �⊆ �m is an open-bounded neighbourhood of S���.
(ii) The mapping x �→ �y ∈ �
 ���� ∈ �
 T���x ≥ h����� ≥ p−y� is metrically regular

at each pair �x̄�0� with x̄ ∈ S���.
Then there exist constants L > 0, ( > 0 and k ∈ � such that

�v���−v��!�� ≤ LBphk
���!��

� �= S��!� ⊆ S���+-��LBphk
���!���

and S��!� is a CLM set for (26) w.r.t. � whenever ! ∈ ���� and Bphk
���!� < (. Here,

the function -� is given by (9).

Proof. Clearly, all assumptions of Theorem 2.3 are satisfied for the special situation
considered in this section. Hence, the result follows from the Theorems 2.3 and 2.4 by
taking into account the estimate d� �����!� ≤ Bphk

���!�. �

Remark 3.10. Let the function g�x� 
= ���� ∈ �
 T���x ≥ h����� be locally Lipschitz
continuous on X. Then Condition (ii) of Proposition 3.9 is satisfied if the constraint qual-
ification 2�−g��x̄�∩ �−NX�x̄�� = � holds in case of g�x̄� = p, where “2” denotes the
Mordukhovich subdifferential and NX�x̄� the normal cone to X at x̄ ∈X (cf., Mordukhovich
1994). Similar constraint qualifications were used in Römisch and Schultz (1991b) for a
specific model of the form (26) (with r = 1, s =m+1 and a multivariate normal distribution
�) and in Henrion and Römisch (1999) for models with nonstochastic technology matrix
T�·�. Henrion and Römisch (1999) also provide conditions implying quadratic growth of
the function +� (see (8)).

4. Empirical approximations. In this section, we analyze the approximation of the
stochastic programming model (1) when estimating the underlying probability distribution
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� ∈ ���� by empirical measures. Let �1� �2�    � �n�    be independent identically dis-
tributed �-valued random variables on a probability space �J����� having the joint dis-
tribution �, i.e., � = ��−1

1 . We consider the empirical measures

�n�K� 
= 1
n

n∑
i=1

(�i�K� �K ∈ JL n ∈ ��

and the empirical approximations of the stochastic program (1), i.e.,

min
{
1
n

n∑
i=1

f0��i�·�� x�
 x ∈ X�
1
n

n∑
i=1

fj��i�·�� x� ≤ 0� j = 1�    � d

}
�(27)

Since the objective and constraint functions of (27) are normal integrands from J×�m

to ��, the constraint set is closed valued and measurable from J to �m, and hence, the
optimal value v��n�·�� of (27) is measurable from J to �� and the solution set S��n�·�� is
a closed-valued measurable multifunction from J to �m (see Rockafellar and Wets 1997,
Chapter 14, and in particular, Theorem 14.37). Of course, the same conclusion is valid for
the corresponding localized concepts v� and S� for any nonempty subset � of �m.
Another measurability question arises when studying uniform convergence properties of

the empirical process, {
��n�·�−��f = 1

n

n∑
i=1

�f ��i�·��−�f�

}
f∈�

�

indexed by some class � of functions that are integrable with respect to �. Here, we set
!f 
= ∫

�
f ���!�d�� for any ! ∈���� and f ∈ � . Uniform convergence properties refer to

the convergence or to rates of convergence of supf∈� ��n�·�f −�f � to 0 in terms of some
stochastic convergence. In van der Vaart and Wellner (1996), concepts were described that
allow for overcoming the possible nonmeasurability of the supremum. To simplify matters
here, we call a class � of measurable functions from � to � permissible for � ∈ ����
if there exists a countable subset �0 of � such that for each function f ∈ � , there exists
a sequence �fn� in �0 converging pointwise to f and such that the sequence ��fn� also
converges to �f (cf., van der Vaart and Wellner 1996, Example 2.3.4). Then it holds that

d� ��n�K���� = sup
f∈�

���n�K�−��f � = d�0
��n�K����

for each n∈� and K∈J, i.e., the analysis is reduced to a countable class and, in particular,
d� ��n�·���� is a measurable function from J to ��. Instances of permissible classes � are
given in Examples 4.3–4.5.
Let � be permissible for � ∈����. Then � is called a �-Glivenko-Cantelli class if the

sequence �d� ��n�·����� of random variables converges to 0 � -almost surely, or equiva-
lently, in probability. Whether a given class � is a �-Glivenko-Cantelli class or whether
even a rate of convergence of �d� ��n�·����� is valid, depends on the size of the class �
measured in terms of covering or bracketing numbers, or the corresponding metric entropy
numbers defined as their logarithms (see Dudley 1984 and van der Vaart and Wellner 1996).
To introduce these concepts, let � be a subset of the normed space Lp����� (for some
p ≥ 1) equipped with the usual norm � ·�p. The covering number N�'�� �Lp������ is the
minimal number of open balls �g ∈ Lp�����
 �g−f�p < '� needed to cover � . Given two
functions f1 and f2 from Lp�����, the set �f1� f2� 
= �f ∈ Lp�����
 f1��� ≤ f ��� ≤ f2���
for �-almost all � ∈�� is called an '-bracket if �f1−f2�p < '. Then the bracketing number
N� ��'�� �Lp������ is the minimal number of '-brackets needed to cover � . Both num-
bers are related by the estimate N�'�� �Lp������ ≤ N� ��2'�� �Lp������, but in general,
there is no converse inequality. It is known that � ⊂ L1����� is a �-Glivenko-Cantelli
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class if N� ��'�� �L1������ < � for each ' > 0 (see Dudley 1984, Theorem 6.1.5). We
also refer to Talagrand (1996) for further criteria of Glivenko-Cantelli classes and to Pflug
et al. (1998) for applications to stochastic programming.
To state our next results, we denote the set of all real-valued random variables on

�J����� by ����, where equality is understood as equality � -almost surely, and introduce
the Ky Fan distance G of two real random variables ��� ∈ ���� by

G����� 
= inf�. ≥ 0
 ����−�� > .� ≤ .��(28)

It is known that the infimum in (28) is attained and that G metrizes convergence in probabil-
ity in ���� (see, e.g., Dudley 1989, §9.2). By means of the Ky Fan metric, the quantitative
stability results of §2 directly translate into estimates for the empirical optimal values and
solution sets.

Proposition 4.1. Assume that the Conditions (i)–(iii) of Theorem 2.3 are satisfied, that
�� is permissible for � and a �-Glivenko-Cantelli class. Then it holds for sufficiently large
n ∈ � that

G�v���� v���n�·��� ≤max�1�L�G�d� ����n�·�����0��

G

(
sup

x∈S���n�·��
d�x�S�����0

)
≤ -��G�d� ����n�·�����0���

where L > 0 is the constant in Theorem 2.3 and -� the associated function (9).
Moreover, for � -almost all K ∈ J the set S���n�K�� is a CLM set of (27) with respect

to � for sufficiently large n ∈ �.

Proof. Let 'n 
= G�d� ����n�·�����0� and let L > 0, ( > 0 be the constants from
Theorem 2.3. Then Theorem 2.3 implies

���v���−v���n�·��� > L'n� ≤ ��d� ����n�·���� > min�(�'n��

≤ ��d� ����n�·���� > 'n� ≤ 'n

for sufficiently large n ∈ �, since �� is a Glivenko-Cantelli class, and thus, the sequence
�'n� tends to 0. Hence, we obtain from (28) that

G�v���� v���n�·��� ≤max�'n�L'n��

Now, let (̂ > 0 be the corresponding constant and -� be the function (9). Then we conclude
from Theorem 2.4 that

�

(
sup

x∈S���n�·��
d�x�S���� > -��'n�

)
≤ ��-��d� ��� ��n�·����� > min�(̂�-��'n���

≤ ��-��d� ����n�·����� > -��'n��

= ��d� ����n�·����� > 'n� ≤ 'n ≤ -��'n�

for sufficiently large n ∈ �, since it holds that -��'n� ≥ 'n (see Theorem 2.3) and since
�-��'n�� tends to 0.
Finally, let K ∈ J. Then S���n�K�� is nonempty, since the objective

∫
�

f0��� ·���d��
is lower semicontinuous on X and the constraint set M���n�K�� is compact because of
Proposition 2.1. Since �� is a �-Glivenko-Cantelli class, there exists a set A ∈ � with
��A� = 0 such that �d� ����n�K����� converges to 0, and hence, S���n�K�� ⊆ � for all
K ∈ J\A and for sufficiently large n ∈ �. This completes the proof. �
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Note that in case of a fixed constraint set (i.e., d = 0) both estimates in Proposition 4.1
are valid for each n ∈� (without assuming that �� forms a �-Glivenko-Cantelli class). For
the specific situation of a uniformly bounded class ��, we show next how these estimates
may be used to derive rates of convergence.

Proposition 4.2. Let the assumptions of Theorem 2.3 be satisfied and assume that ��

is uniformly bounded and permissible for �, and that either of the following conditions
holds for some constants r ≥ 1, R ≥ 1 and all ' > 0:

(i) N�'����L2���!�� ≤ �R/'�r for any discrete ! ∈���� with finite support.
(ii) N� ��'����L2������ ≤ �R/'�r .

Then, with -� given by (9), the following rates of convergence are valid:

G�v���� v���n�·��� = O��logn�1/2n−1/2�

G

(
sup

x∈S���n�·��
d�x�S�����0

)
= O�-���logn�1/2n−1/2���

Proof. In both cases, (i) and (ii), we obtain from Theorem 1.3 in Talagrand (1994) that

��d� ����n�·���� > '� ≤
(

K�R�'

√
n

r

)r

exp�−2n'2�

holds for all ' > 0 and n ∈ �. Replacing ' by �logn�1/2n−1/2 leads to the estimate

��d� ����n�·���� > �logn�1/2n−1/2� = O��logn�r/2n−2��

and hence, to G�d� ����n�·�����0� = O��logn�1/2n−1/2�. Now, the result follows by
appealing to Proposition 4.1. �

Both estimates and convergence rates in Propositions 4.1 and 4.2 could be formulated
alternatively in terms of certain confidence bounds as in Pflug (1999) and in §5 of Henrion
and Römisch (1999). However, such bounds typically contain unknown constants (like the
constant ( appearing in Theorem 2.3 or the entropy constant R). Finally, we discuss appli-
cations of the results to linear two-stage and chance-constrained stochastic programming
models, thereby extending earlier work in Pflug (1999, Example 4.4) and Schultz (1996,
Example 4.5).
Example 4.3. (Linear Chance-Constrained Models). A class  of Borel sets of

�s is called a Vapnik-Červonenkis (VC) class of index r = r�� if r is finite and equal
to the smallest n ∈ � for which no set of cardinality n+ 1 is shattered by .  is said
to shatter a subset ��1�    � �l� of cardinality l in �s if each of its 2l subsets is of the
form B ∩ ��1�    � �l� for some B ∈ . For VC classes , it holds that N�'� �EB
 B ∈
��L2���!�� ≤ K'−2r for each ' > 0 and ! ∈����, and some constant K > 0 depending
only on r (van der Vaart and Wellner 1996, Theorem 2.6.4).
For any polyhedral set, � ⊆ �s and k ∈ �, the class phk

��� is a VC class, since the
class of all closed half spaces is VC and finite intersections of VC classes are again VC.
The corresponding class of characteristic functions is permissible for �, since the set of all
polyhedra in phk

��� having vertices at rational points in �s plays the role of the countable
subset in the definition of permissibility. Since Condition (i) in Proposition 4.2 is satisfied,
it follows as in the proof of 4.2 from Talagrand (1994) that

G�Bphk
��n�·�����0� = O��logn�1/2n−1/2�

holds for each k ∈�. This rate of convergence applies directly to empirical approximations
of the linear chance-constrained model in §3.3 (see Proposition 3.9).
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Example 4.4. (Two-Stage Models Without Integrality). Let f0 be defined as in
§3.1 and let (A1) and (A2) be satisfied. Then, for each nonempty open and bounded sub-
set � of �m, the class �� = �f0�·� x�
 x ∈ X ∩ cl�� is a subset of L1�����. �� is also
permissible for �, since any class �f0�·� x�
 x ∈ Xc� with Xc being a countable and dense
subset of X ∩ cl� may be used as the countable subset of �� in the definition of per-
missibility. Because of the Lipschitz continuity property of f0��� ·� with Lipschitz con-
stant L̂max�1����2� (see Proposition 3.2), the bracketing numbers of �� are bounded
by the covering numbers of X ∩ cl� (see van der Vaart and Wellner 1996, Theorem
2.7.11). In particular, if � has a finite 2pth order moment for some p ≥ 1, it holds with
F��� 
= L̂max�1����2� �� ∈ �� that

N� ��2'�F�p����Lp������ ≤ N�'�X∩ cl���m� ≤ C'−m

for each 0 < ' < 1 and some constant C > 0 depending only on m and the diameter of
X∩ cl�. If, in particular, � is a bounded subset of �s , the class �� is uniformly bounded
and Proposition 4.2 applies, leading to the empirical rates of convergence:

G�v���� v��n�·��� = O��logn�1/2n−1/2�

G

(
sup

x∈S��n�·��
d�x�S�����0

)
= O�-���logn�1/2n−1/2���

If � is unbounded, �� is not uniformly bounded and Proposition 4.2 does not apply.
Example 4.5. (Mixed-Integer Two-Stage Models). Let f0 be defined as in §3.2,

and let (B1)–(B3) be satisfied and � be bounded. Then, for each nonempty open and
bounded subset � of �m, the class

�� =
{

f0�·� x� =
N∑

j=1

�cx+7�h�·�−T�·�x�E�R
j�x

�·�
 x ∈ X∩ cl�

}

is a subset of Lp����� for each p ≥ 1. Here, the sets �R
j�x (j = 1�    �N ) are constructed

in the proof of Theorem 3.6 such that the function 7�h�·�−T�·�x� is Lipschitz continuous
(with a uniform constant L1 > 0) on each of them. Furthermore, for each X ∩ cl�, they
form disjoint Borel sets, their closures are in phk

��� for some k ∈ �, and it holds that⋃N
j=1 �R

j�x =� if R is chosen sufficiently large such that �� ∈�
 �h���−T���x�� > R�=�
for each x ∈ X∩ cl�.
Let f

j
0 �·� x� denote a Lipschitz extension of the function cx +7�h�·�− T�·�x� from

�R
j�x to � by preserving the Lipschitz constant L1 (j = 1�    �N ). Furthermore, let � j

� 
=
�f

j
0 �·� x�
 x ∈ X∩ cl�� and �j

� 
= �E�R
j�x


 x ∈ X∩ cl�� (j = 1�    �N ).
Now, we use a permanence property of the uniform covering numbers (cf., van der Vaart

and Wellner 1996, §2.10.3). Let ! ∈���� be discrete with finite support. Then it holds that

N�'C0����L2���!�� ≤
N∏

j=1

N�'Cj��
j
��L2���!j��N �'Ĉj��

j
��L2��� !̂j���(29)

where C0, Cj > 1, Ĉj , j = 1�    �N , are certain constants and !j , !̂j , j = 1�    �N , certain
discrete measures having finite support. The constants depend on the bounds of the uni-
formly bounded classes � j

� and �j
�, j = 1�    �N . Since the latter classes satisfy Condition

(i) of Proposition 4.2 (see Examples 4.3 and 4.4), (29) implies that �� satisfies (i), too.
Hence, we obtain the same rates of convergence for mixed-integer two-stage models as in
Example 4.4 for two-stage models without integrality requirements.
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Example 4.6. (Example 1.1 and 2.10 Continued). According to Example 2.10, the
class �� has the form �� = �f0�·� x� = �r − c�x+ cmax�0� x−·�
 x ∈ X∩ cl��. Hence, it
is a subset of Lp����� if

∫
�
���p ��d�� =∑

k∈� �kk
p < � (p ≥ 1). As in Example 4.4, we

obtain
N� ��2'r����Lp������ ≤ N�'�X∩ cl���m� ≤ C'−m�

and hence, Proposition 4.2 provides the same rate of convergence of the solution sets
S��n�·�� of (2) as in Example 4.4 with linear -�.

5. Stability of stable portfolios with minimal risk. Stable probability distributions for
modelling asset returns were proposed and discussed in the fundamental work of Mandelbrot
(1963) and in Ziemba (1974) and Mittnik and Rachev (1993), for instance. We also refer to
the recent monograph (Rachev and Mittnik 2000), in which many aspects of non-Gaussian
stable distributions in finance are illuminated. In the following the s-dimensional random
vector O represents the per share returns on all assets in a given investment portfolio. We
assume that O follows an B-stable law with B ∈ �1�2�, i.e., its characteristic function P on
�s is of the form

P�t� = Ɛ exp�i�t�O��
= exp

{
−
∫

Qs
���� t��B

(
1− i sign��� t� tan �B

2

)
R�d��+ i�m0� t�

}
�

where Qs = �� ∈ �s
 ��� �� = 1� is the unit sphere in �s , R is a finite Borel measure on Qs

(spectral measure), B ∈ �1�2� is the stability index, m0 ∈ �s is the shift of the stable law
and �·� ·� denotes the (Euclidean) scalar product in �s .

Denoting by x ∈ �s
+ the proportions of the number of shares in the portfolio, the risk of

the stable portfolio with vector of returns O is defined as the scaled dispersion parameter of
the probability distribution of O, i.e., rB�R �x� 
= ∫

Qs ��x����BR �d��. For a discussion of the
risk of a stable portfolio and related aspects, the reader is referred to Cheng and Rachev
(1995) and to §8.4 of Rachev and Mittnik (2000). The classical problem of the choice of
the efficient portfolio corresponds to the optimization problem,

min

{∫
Qs
��x����BR �d��
 x ∈ �s

+�
s∑

i=1

xi = 1

}
�(30)

which fits into the form of the stochastic programming model (1) by putting m = s, d = 0,
f0��� x� = ��x����B, X to be the standard simplex �x ∈ �s

+ 

∑s

i=1 xi = 1�, � = Qs , and
� = R . Here, we assume w.l.o.g. that R is normalized, i.e., R�Qs� = 1.
Now, our aim is to study the stability of portfolios with minimal risk, i.e., of solution

sets S�B�R� to (30), when changing or estimating the stability index B and the spectral
measure R . We start with some useful properties of the functions f0 and rB�R .

Lemma 5.1. The integrand f0��� ·� is convex on �s for each � ∈�, and for any x� x̃ ∈X
and �� �̃ ∈ � it holds that

�f0��� x�−f0��̃� x̃�� ≤ B���− �̃�+�x− x̃���
The solution set S�B�R� is nonempty and the risk satisfies the growth condition,

1
4

B�B−1�
∫

Qs
��x−x∗� z��2R �dz� ≤ rB�R �x�−v�B�R��

for all x ∈ X and some x∗ ∈ S�B�R�.
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Proof. First, we observe that the function g�t� = �t�B is strongly convex on �−1�1�
with constant 1

2B�B− 1�. Since ��x���� ≤ �x���� = �x� ≤ �
∑s

i=1 xi�
1/2 = 1 holds for all

x ∈ X and � ∈ Qs , the integrand f0��� x� = g��x���� has the property f0��� 1
2x + 1

2 x̃� ≤
1
2f0��� x�+ 1

2f0��� x̃�− 1
8B�1−B���x− x̃� ���2 for all � ∈ Qs and x� x̃ ∈ X.

Hence, the risk rB�R satisfies the convexity property, rB�R � 1
2x + 1

2 x̃� ≤ 1
2 rB�R �x� +

1
2 rB�R �x̃�− 1

8B�1−B�
∫

Qs ��x− x̃� ���2R �d�� for all x� x̃ ∈X. Since rB�R is convex, S�B�R� is
nonempty and the desired growth condition follows from the previous estimate by choosing
x̃ = x∗ ∈ S�B�R�.
Completing the proof, we obtain for all x ∈ X and �� �̃ ∈ � that

�f0��� x�−f0��̃� x�� ≤ Bmax���x����B−1� ��x� �̃��B−1���x���−�x� �̃��
≤ B�x�B��− �̃� ≤ B��− �̃��

and note that the roles of � and x may be exchanged. �

The estimate in Lemma 5.1 shows that
∫

Qs ��x∗ − x∗� ���2R �d�� = 0 holds for any two
elements x∗� x∗ ∈ S�B�R�. This leads to calling a spectral measure R ∈ ��Qs� nonsingular
if the relation

∫
Qs ��x����2R �d�� = 0 implies x = 0. Example 5.3 illustrates that relevant

spectral measures are nonsingular, indeed.

Theorem 5.2. For each �B�R� ∈ �1�2�×��Qs� there exists a constant ( > 0 such that

sup
x∈S�B̃� R̃ �

d�x�S�B�R�� ≤ -R�B"1�R� R̃ �+ exp�−1��B− B̃��

whenever �B̃� R̃ � ∈ �1�2�×��Qs� and "1�R� R̃ �+�B− B̃� < (.
Moreover, if R is nonsingular, (30) has a unique solution and it holds for the associated

function -R (see (9)) that -R�.� ≤ C.1/2 for some C > 0 and sufficiently small . ∈ �+.

Proof. First we show that the mapping �xLB�R� �→ ∫
Qs ��x����BR �d�� satisfies a

Lipschitz property. For all x ∈ X, B� B̃ ∈ �1�2� and R� R̃ ∈��Qs�, we obtain

�rB�R �x�− rB̃� R̃ �x�� =
∣∣∣∣∫

Qs
��x����BR �d��−

∫
Qs
��x����B̃R̃ �d��

∣∣∣∣
≤ B"1�R� R̃ �+

∫
Qs
� ��x����B −��x����B̃�R̃ �d��

≤ B"1�R� R̃ �+ sup
t∈�−1�1�

� �t�B −�t�B̃�

≤ B"1�R� R̃ �+ exp�−1��B− B̃��
Then the first part of the result is an immediate consequence of Lemma 5.1 and Theorem 2.4.
The additional assumption implies that the mapping x �→ �

∫
Qs ��x����2R �d���1/2 from �s

to � is a norm on �s . Hence, there exists a constant c = c�s� R� > 0 such that c�x�2 ≤∫
Qs ��x����2R �d�� holds for all x ∈ �s . We conclude that the risk function rB�R is strongly
convex on X and that (30) has a unique solution x∗ ∈ X. Furthermore, Lemma 5.1 implies
the estimate

1
4

cB�B−1��x−x∗�2 ≤ rB�R �x�−v�B�R�

for each x ∈ X. Hence, the function +R�,� = 1
4cB�B−1�,2 (, ∈ �+) is a growth function

of (30). Referring to Remark 2.5 completes the proof. �

Example 5.3. (Nonsingularity of Discrete Spectral Measures). A spectral mea-
sure R of an B-stable random vector O is concentrated on a finite number of points on the
unit sphere Qs iff O can be expressed as a linear transformation of independent B-stable
real random variables (Samorodnitsky and Taqqu 1994, Proposition 2.3.7).
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Now, let O�k� be d independent B-stable real random variables and A = �ajk� be a
real �s�d�-matrix with rank equal to s. Then the random vector O with components
Oj =

∑d
k=1 ajkO

�k� �j = 1�    � s� is B-stable with (discrete) spectral measure

R =
d∑

k=1

{
1
2

�1+Ck�0k(sk
+ 1

2
�1−Ck�0k(−sk

}
�

where Ck ∈ �, 0k ≥ 0 depend on the parameters of O�k� and on A, and the vectors sk ∈ Qs

are normalized columns of A (see Samorodnitsky and Taqqu 1994, Example 2.3.6). Hence,
it holds that ∫

Qs
��x����2R �d�� =

d∑
k=1

0k��x� sk��2

and R is nonsingular since span�s1�    � sd� = �s .
Let us finally consider empirical estimates Bn and Rn of some unknown pair �B�R� ∈

�1�2�×��Qs� of parameters of a stable random vector O. If the spectral measure R is
nonsingular, Proposition 4.1 and Theorem 5.2 imply that

G

(
sup

x∈S�Bn�Rn�

d�x�S�B�R���0
)
= O�G�"1�Rn� R��0�1/2+G�Bn�B�1/2�

= O��logn�1/4n−1/4��

where, as in the proof of Proposition 4.2, the specific rate of convergence follows from
an estimate of the bracketing number of the set of Lipschitz continuous functions on Qs

(see also Example 4.4) and from the classical limit theory of empirical estimates in �.
Finally, we note that Theorem 5.2 also applies to the study of convergence properties of the
estimation procedures described in Chapter 8 of Rachev and Mittnik (2000).
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