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Abstract. Using results from parametric optimization, we derive for 
chance-constrained stochastic programs quantitative stability properties 
for locally optimal values and sets of local minimizers when the underly- 
ing probability distribution is subjected to perturbations in a metric 
space of  probability measures. Emphasis is placed on verifiable sufficient 
conditions for the constraint-set mapping to fulfill a Lipschitz property 
which is essential for the stability results. Both convex and nonconvex 
problems are investigated. For  a chance-constrained model of power 
dispatch, where the power demand enters as a random vector with 
incompletely known probability distribution, we discuss consequences 
of  our general results for the stability of optimal generation costs and 
optimal generation policies. 
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1. Introduction 

To ensure a cer ta in  level o f  re l iabi l i ty  for  the solu t ions  to op t imiza t i on  
p rob l ems  con ta in ing  r a n d o m  da ta ,  it has  become an  accepted  a p p r o a c h  to 
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introduce probabilistic (or chance) constraints into the model. This leads to 
the following type of optimization problems: 

m i n { f  (x) : x ~ R  m, p ( { z ~ S :  x~X(z)  ) ) > po}, (1) 

where f is a real-valued function defined on ~ m, X is a set-valued mapping 
from ~s into R '~, p0e(0, 1) is a prescribed probability level, and p is a 
probability distribution on ~s  For basic results on chance-constrained prob- 
lems, consult Refs. 1 and 2 and the references therein. 

We are going to study the behavior of (1) with respect to small perturba- 
tions of the probability distribution p. This is motivated by the fact that, in 
practice, one is often faced with incomplete information on the underlying 
probability distributions. Therefore, applicable models should at least enjoy 
some kind of stability with respect to variations of the distributions. 

Our approach relies on stability results for parametric optimization 
problems with parameters in metric spaces (see Ref. 3 for quantitative 
aspects and Refs. 4 and 5 for qualitative aspects). As the parameter space, 
we consider the space N(R s) of all Borel probability measures on Ns 
equipped with a suitable metric. We are aiming at quantitative continuity 
properties for the mappings assigning to each parameter the local optimal 
value and the set of local minimizers, respectively. 

Because of its central place in the convergence theory for probability 
measures, it seems appropriate to study stability with respect to the topology 
of weak convergence on ~(Rs). This has been done in Ref. 6, using the 
results of Ref. 5, and in Ref. 7. An example in Ref. 8 indicates that stability 
of (1) with respect to the topology of weak convergence cannot be expected 
in general without additional smoothness assumptions on the measure p. It 
turned out in Refs. 8-10 that the so called ¢~-discrepancy (this notion is 
made precise in Section 2) is a suitable metric on ~(N' )  for the sensitivity 
analysis of (I). Compared to Refs. 8-10, the present paper deals with more 
practicable models, and it gives sufficient conditions for the also quantitative 
stability of optimal values and optimal solutions which are easier to verify. 
For quite a large class of distributions, we obtain in Section 2 the upper 
semicontinuity of the optimal-set mapping and the Lipschitz continuity of 
the optimal value function. We show that, under more restrictive 
assumptions, it is possible to quantify also the upper semicontinuity of the 
optimal-set mapping. 

For probability distributions which depend on Euclidean parameters, 
the sensitivity of optimal solutions to chance-constrained problems has been 
studied in Ref. 11 using an approach via the implicit function theorem (Ref. 
12). Stability in chance-constrained programming is studied also in Refs. 13 
and 14. Whereas the results of Ref. 13 are relevant for approximation 
schemes, Ref. 14 deals with a statistical approach. 
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The general results that we obtain in Section 2 are specified in two 
directions: First, at the end of Section 2, we briefly, outline potential applica- 
tions in the situation where the distribution p is completely unknown and, 
therefore, estimated via empirical measures. The second specification, which 
is the topic dealt with in Section 3, concerns an optimal power-dispatch 
model. 

The investigations in Section 3 serve to illustrate our general results and 
to discuss the aspect of stability when incorporating chance constraints into 
power-dispatch models. For more details about power dispatch, we have to 
refer to the literature (Refs. 15-23). 

Next, we introduce some basic concepts and notations which are used 
throughout. For  v e ~ ( N ' ) ,  we denote by Fv the distribution function of  v 
and set, for p E [0, 1 ], 

G(v) := {xE N':  v ( X  - (x))  >_p}. 

Hence, problem (1) becomes 

rain{f  (x) : xe  G0(P)}" 

Given V__R" and vE~(Ns),  we denote 

~0v(v):= inf{f(x) : x E Cp0 (v) c~ cl V}, 

I]/V(V) :=  {XECpo(V ) f'h el V:f(x) = (pv(V)}, 

where we employ the abbreviation cl for closure. Following Refs. 5 and 3, 
we call a nonempty subset M of N " a complete local minimizing (CLM) set 
for (1) with respect to Q if Q is an open subset of  ~ " such that Q ~ M and 
M= ~o(P). Later on, we will briefly say that ~o(P) is a CLM set for (1), 
which means that the set in question is a CLM set for (1) with respect to Q. 
Examples of CLM sets are the set of global minimizers [which we shall 
denote by ~(/2) and, accordingly, the global optimal value by (p(p)] or strict 
local minimizing points. We call a multifunction F from a metric space (T, d) 
to N" dosed at toe T if tk ~ to, xk ~Xo, xk~F(tk), keN,  imply x0EF(t0); F 
is said to be upper semicontinuous (usc) at toe Tif, for any open set G ~ F(to), 
there exists a neighborhood U of to such that F ( t ) c G  whenever t~ U; and 
F is said to be pseudo-Lipschitzian at (x0, to)E F(t0) x T (cf. Ref. 24) if there 
are neighborhoods U and V of to and xo, respectively, and a constant L > 0 
such that 

F(t) c~ V___ F(t') +Ld(t, ?)Bm, whenever t, 7~ U, 

where B" is the closed unit ball in N m. For xo~-N" and E>O, we denote 

B(xo, e):= {xEN ' :  Ilx-xoll _<e}. 
Thus, B ' = B ( 0 ,  1). Here, I] " [1 is the Euclidean norm on NC 
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2. Sensitivity Analysis 

To complete the prerequisites for our sensitivity analysis, we specify the 
metric in the parameter space N(R ~) as follows: Consider the N-discrepancy 

a~(p, v):=sup{lp(B) - v(B)l: BEN}, p, v E ~ ( ~ ) ,  

where N is a proper subclass of Borel sets in ~s, in the sense that it is chosen 
such that a~ forms a metric (i.e., N is a determining class, Ref. 25) and that 
it contains all the preimages X - (x) := {z e ~ s: x eX(z )  }, x e ~ m ; cF. (I). 

Our first theorem asserts in a fairly general frame sensitivity properties 
for solutions of a parametric claance-constrained problem. The proof, which 
relies on stability results for abstract parametric programming problems 
obtained by Klatte in Ref. 3, Can be found in Ref. 10 (Theorem 5.4). 

Theorem 2,1. Let in (1) 

p e~(g~'), poe(O, 1), {X-(x):xf=~'~m}cT-N. 

Let further X be a closed multifunction; and le t fbe  Lipschitzian on bounded 
sets. Assume that there exists a bounded open set V~ ~'~ such that g r (p)  
is a CLM set for (1). Let the multifunction p ~ Cp(p) be pseudo-Lipschitzian 
at each ( x o , P o ) e V r ( p ) x  {Po}. Then, g r  is use at p with respect to the 
metric a e  on ~(Ns), and there exist constants L > 0 and fi > 0 such that 

~r(v) is a CLM set for (1) 

and 

I ~ 0 ~ ( ~ )  - ~o~( v ) l <_ L a  ~ (~  , v ) , 

whenever a~(p,  v)<  8, v ~ ( R ' ) .  

As in Ref. 3, it is possible to quantify the upper semicontinuity of the 
solution-set mapping when imposing more restrictive assumptions. So, the 
following result was inspired by the material in Ref. 3, although there is the 
difference that the result also covers the situation when the solution set of 
the unperturbed problem is not a singleton. 

Theorem 2.2. Let p, po, X, N, andfbe  as in Theorem 2.1. Additionally 
to the assumptions of Theorem 2.1, let there exist Xoe Cpo(p) and constants 
c>0,  q>_l such that, for all xeCpo(p) nc l  V, we have 

f (x) >_f (xo) + c I1 x -  xo[q,, 
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where I1" [. is a nontrivial seminorm on R'~. Then, there exist L > 0  and 
8 > 0 such that 

v(V) is a CLM set for (1) 

and 

Ilx-xdq,<__La~(p, v), for all xeqlv(V),  

whenever a~(#, v) < 8, ve~(R~). 

Proof. By assumption, ~v(/-t) is compact. Since p ~ .  Cp(p) is pseudo- 
Lipschitzian at each (Xo, p0)E ~tv(p)x {po}, this together with Proposition 
5.3 in Ref. 10 and a corresponding construction in Ref. 3 implies that there 
are open neighborhoods Vo of ~v(p), U0 of p, and a constant Lo>0 such 
that 

~/v(P) ~ Iio- ~ Vand 

Cpo( V ) n Vo ~ _ Cpo(p ) + Loa ~(p , v ) B,,, , 

Cp0(p) n Vo~_Cpo(v)+LoaMp, v)Bm, whenever v~Uo. (2) 

Now, select an open set VI and a constant p > 0 such that 

V' v(p ) = Vl, Vl + B( O, p) =_ Vo. 

By Theorem 2.1, the mapping ~v is use at g ;  hence, there exists a constant 
80 > 0 such that 

~/v(V) = V1, whenever ~ ( R ' ) ,  a~(#, v) < 80. 

We choose 8 > 0  such that 6 < m i n { l ,  8o ,p /Lo ,8~}  and { v ~ ( ~ ) :  
a~(p, v)<8}_<Uo; 8~o denotes the bound on a~(p, v) arising in the 
Lipschitz property for ~Pv which holds due to Theorem 2.1. 

Let w ~ ( ~  ~) such that a~(p, v ) < 8  and X ~ v ( V ) .  Then, we have 
x~Cpo(v) n V0; and by (2), there exists 2~Cp0(/z) such that 

IIx-~ll _<toa~(~, v). (3) 

This yields 

IIx-211 <LoS <p,  

implying that 

~ec~o(~) n Vo_=C~0(u) n c l v .  
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Hence, 

f ( x )  > f (2 )  - L f i lx -  21I >_f(xo) + c112- xol~ - LfLoa~(p, v), 

where Ly is a Lipschitz constant for f o r t  cl V. This yields 

112- xd q <_ (1/c)[(f(x) - f (xo))  + LfLoa~(p, v)] 

< (1/c)[Iq~v(p) - ~0v(V)l + Lftoa~(p, V)]. 

In view of the Lipschitz property for ~Ov (cf. Theorem 2.1) and the inequality 

IIx-xol,___ Ilx-21, + 11~- x01,, 

it suffices to estimate Hx-21, to prove the assertion. As a general property 
for the seminorm I/" 1,, we have that there exists a constant cl > 0 such that, 

llyI,<c~llyll, for all y e n  m. 

Therefore, by (3), 

IIx- 2t, _<ct IIx-211 <clZoa.¢(la, v), 

which completes the proof. [] 

Remark 2.1. The above results may also be viewed as stability results 
with respect to perturbations of p in the space ~ ( ~ )  equipped with the 
topology of weak convergence if ~ is a p-uniformity class of Borel sets in 
~ s  Recall that ~ is a p-uniformity class if a s ( p , ,  p)  ~ 0  holds for every 
sequence (p,) converging weakly to p (Ref. 26). If ~ is a subclass of 

~ c  := {Be  ~' :  B is convex and Borel}, 

the following result is known (Theorem 2.11 in Ref. 26) : M is a p-uniformity 
class iff p (dB)=0  for all B ~ ;  here, ~B denotes the topological boundary 
of B. Hence, the class 

~R := {2~, (-oo, z]: z e a  s} 

is a p-uniformity class if the distribution function Fu of p is continuous on 
R s, and ~ c  is a p-uniformity class i fp has a density with respect to Lebesgue 
measure on Es  We note that 

d,,(p, , ) :=  a~.(p, v) = ~uglF.(z)- F~(z)l 

is the so-called Kolmogorov distance on ~(~*). 



JOTA: VOL 71, NO. 3, DECEMBER 1991 575 

We now reveal conditions on the measure p and on the multifunction 
X to have the mapping p~-~ Cp(p) pseudo-Lipschitzian at some point 
(x0, p0)e Nm X [0, 1], thus arriving at stability results which are specifications 
of Theorems 2.1 and 2.2. The first part of our analysis concerns the special 
case where the sets Cp(l~), p~[0, 1], are convex. 

We say that/~ eN(R ' )  belongs to the class dd,, r~[ -oo ,  +co), if for all 
Zs[0, 1] and all Borel sets B~, Bac  R', such that ),B~ + (1 -Z)B2 is Borel, 

/~ (ZB~ + (1 -Z)B2) _> {L[/; (B~)]~ + (1 -~)[/2 (B2)] ~} ~/~. (4) 

Here, 

ZB, + (1 - Z)B2 := {~.b~ + (1 - Z)b2: b~B~, i=  1, 2}. 

In the cases r = 0 and r = -  ~ ,  the right-hand side of  (4) is interpreted by 
continuity as 

[/~(B~)]z[#(B2)] ~-~ and min{/x(B~),y(B2)}, 

respectively. The classes ~/~ have been introduced and studied in Refs. 27- 
29. Clearly, we have 

~ @ J/'r~, --o0 _<rl < r2<  +oo. 

Measures belonging to ~¢/0 ( . ~ -  ~) are called logarithmic concave (quasicon- 
cave). ~'0 was first and extensively studied by Pr6kopa in Refs. 28 and 30. 
It is known (cf., e.g., Theorem 1 in Ref. 29) that/~ belongs to ~ r ,  r e [ -oo ,  0], 
if/1 has a densityJ~ and ffff (~-m is convex, -oc_<r<0 ,  logf~ is concave 
(r=0). 

It is well known that the nondegenerate multivariate normal, the multi° 
variate beta, Dirichlet and Wishart, a special multivariate gamma, and the 
multivariate Pareto t and Fdistfibutions (cf. Ref. 3 l) belong to , ~  for some 
r_< 0 (see Refs. 27-30). 

For convex chance constraints, we now have the following corollary to 
Theorem 2.1. 

Corollary 2.1. Assume that in (1) #6~g,. for some rE( -o%0] ,  
p06(0, i), X has a closed convex graph, and f is Lipschitzian on bounded 
sets. Let {X-(x) :  x ~  m}___~__~c and Uz~,X(z) be bounded. Assume 
that there exists 26 ~ '~ such that/~ (X-  (2))>p0 (Slater condition). Then, 
is use at p with respect to a~ on ~ ( ~ ' )  and there exist constants L >  0 and 
8 > 0  such that ~ ( v ) # ~  and [q)(12)-~o(v)l<_La~(#,v), whenever 
a~(/~, v) < 8, v e ~ ( ~ 9 .  
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Proof. Since ~//0_cdg~ for each r ~ ( - ~ ,  0), we assume w.l.o.g, that 
r e ( - ~ ,  0) and write (1) in the equivalent form 

min{f(x) : x~N m, [#(X - (x))l '<p;}. (5) 

Since the constraint set of (5) is closed (see Ref. 10) and bounded (according 
to the assumptions), we have that the set of global minimizers ~t(p) to (5) 
is nonempty and that the assumptions in Theorem 2.1 concerning the CLM 
set may be fulfilled with a bounded open set V~ ~ , X ( z ) ;  hence, the 
mappings q/and ~tv, tp and Cpv coincide. 

We define the function g(x):=[p(X-(x))]" from N m to ( - ~ ,  ~ ]  and 
have, for all xl, x 2 ~ "  and ;~[0, 1], that 

g(A,x, + (1 - A,)x2) = [p (X - (Ax~ + (1 - ~,)x2))]" 

_< [p ( Z X -  (x~) + (1 - Z ) X -  (x:))]  r 

_< Z[~ ( X -  ( x 0 ) r  + (1 - Z)[p (X - ( x : ) ) L  

Here, we used in the first inequality that X has convex graph, and in the 
second that (4) is valid. 

Hence, g is convex and the multifunction F (from N to N m) defined by 

F(t):={xeNm:g(x)<t}, teN, 

has a closed convex graph. Due to Theorem 2 in Ref. 32, F is pseudo- 
Lipschitzian at each (x0, to) with xoeF(t0) and to belonging to the interior 
of { t e N : F ( t ) # ~ } .  Since g(ff)<p~, p~ is an interior point of 
{ t e N: F(t) ¢ ~} .  Therefore, F is pseudo-Lipschitzian at (Xo, p~) for each 
xoeF(p~). In view of Cp(p)=F(pr), this means that there exist positive 
constants L, c~ and a neighborhood V of xoeCpo(p) such that 

Cp(I.t) c~ V~ C~(~) + Lip" - firlBm, 

whenever p', ~'eB(p;, 8). Since the function ~__~r is locally Lipschitzian 
for positive ~, we obtain that the multifunction p ~-~ Cp(p) is pseudo-Lipsch- 
itzian at each (xo,po)eCpo(p)x {po}. The assertion now follows from 
Theorem 2.1. [] 

The above corollary extends results obtained by Salinetti (Corollary 
3.2.2 in Ref. 13) and Wang (Theorem 6 in Ref. 7). 

We remark that the Lipschitz modulus L in Corollary 2.1 can be estima- 
ted above, povided that c~ [which restricts a~(p, v)] is sufficiently small. 
According to Ref. 3, such a bound for L is given by Lf(Lc+ 1), where Lf is 
the Lipschitz modulus for f on cl V (cf. the above proof) and Lc is the 
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modulus that we have for p ~ Cp(p), since it is pseudo-Lipschitzian (cf. the 
proofs of  Proposition 5.3 and Theorem 5.4 in Ref. 10). Starting from results 
of, for example, Robinson (Theorem 2 in Ref. 32) or Pshenichny (Ref, 33, 
Theorem 1.2, p. 100), a further estimation of  Lc is possible. This exploits 
the uniform compactness of  the sets Cp(p), p ~ (0, 1), and the explicit know- 
ledge of  the Slater point 2. 

Remark 2.2. Let, additionally to the assumptions of  Corollary 2.1, 
there exist Xo~ Cpo(p) and c > 0 such that 

f ( x )  >f(xo) + cl[x- xolq., for all xe  Cpo(p ), (6) 

where H " 1, is a nontrivial seminorm on E m. Then, using Theorem 2.2, we 
arrive at the following quantitative stability result for the global minimizers: 

There exist constants L > 0 and fi > 0 such that 

[tx-x0l q <_La~(lt, v), for all xe  ~(v) ,  

whenever as(p,  v)< 8, ve~(Rs) .  

We proceed with the nonconvex case. Here, we assume that the multi- 
function X is given by 

X(z) := {x~X0: Ax>_z}, z ~  ~, (7) 

where Xo_  A m is a nonempty closed set and A ~L(~ m, ~s). Again, sufficient 
conditions are essential under which the multifunction p ~-~ Cp(p) is pseudo- 
Lipschitzian at certain points (x0, p0). From the literature, it is known that 
constraint qualifications are such sufficient conditions (cf. Refs. 24, 34). As 
an example of  results that can be derived in this way, we present the following 
proposition. 

Proposition 2.1. Let the distribution function Fu o f p  ~ ( E s )  be locally 
Lipschitzian, poe(0, 1); let Xo be a closed set; and let xoeXo be such that 
Fu(Axo) >Po. In the case F~(Axo) =Po, let further 3Fu(Axo) c~ Nxo(xo) = ~ ,  
where 0 denotes the Clarke generalized gradient of F~(A • ) and Nxo(Xo) is 
the Clarke normal cone to Xo at Xo (see Ref. 35). Then, the multifunction 
p ~ { x ~Xo: F, (Ax) > p  } is pseudo-Lipschitzian at (Xo, po). 

ProoL Define 

r(p):= {x:p-FAAx)<_O, (p, z)s~ ×X0}. 
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According to Theorem 3.2 in Ref. 24, the multifunction F is pseudo-Lipsch- 
itzian at (x0, p0) if the following holds: 

if there are y, z ~ N such that 

y >_ O, Y(Po - Fu(Axo)) = O, and 

(0, z) ~ {y(x, 1) + (~, O) : - x  ~ OF u (Axo), ~ ~ Nxo(Xo) }, 

then y = z = 0. 

Now, assume that, in our situation, the above does not hold. Then, there 
are y > 0 ,  2ESFu(Axo), and ~eNxo(Xo) such that - y 2 + £ = 0 .  The last 
identity, however, implies YcsNxo(Xo), which contradicts 8Fu(Axo)n 
Nxo(Xo) = ~ .  [] 

Of course, making use of  Proposition 2.1 hinges upon whether one is 
able to check the constraint qualification 

8F,(Axo) n Nxo(Xo) = ~ .  

In applications, this may be a formidable task, especially when exploiting 
the result in its fullest generality. 

Therefore, in the following, we establish by an alternative way sufficient 
conditions which are easier to verify. These conditions are similar to that 
given in Ref. 9 and are essentially based on a local growth property for 
the distribution function of the probability distribution in the unperturbed 
problem [see (8) below]. 

Corollary 2.2. In (1), let p ~ ( R  s) have a continuous distribution 
function F~; further, let poe(O, 1), and let the multifunction X be given by 
(7), where the set X0 is convex and closed. Suppose that there exists a 
bounded open set Vc  ~"~ such that Vv(P) is a CLM set for (1). For each 
Xoe Vv(P) with l~(Axo)=P0, let there exist reals eo > 0 and c>  0 such that, 
for any xeXo c~ B(xo, e0), there exists 2~Xo with the property 

F~(Ax+tA(2-x))>_>_Fu(Ax)+ct, for all tel0,  11. (s) 

Then, V v is upper semicontinuous at p with respect to the metric dx on 
N(g~'), and there exist constants L > 0 ,  6 > 0  such that Vv(V) is a CLM set 
for (1) and 

Iq~v(/.t) - q~v(v)l <_Ldx(p, v), 

whenever dK(p, v) < 8, V~(OU).  



JOTA: VOL. 71, NO. 3, DECEMBER 1991 579 

Proof. Once more, we apply Theorem 2.1. We merely have to check 
whether the mapping p~--, Cp(p) is pseudo-Lipschitzian at each (x0, p0)e 

× {po}. 
Let Xoe gtv(p), and consider at first the case where F~,(Axo)>po. Then, 

there exists 60 > 0 such that Fu(Axo ) >Po + rio; and, due to the continuity of 
F u, we have eo > 0 such that 

F u (Ax) >-po + rio, for all x e B(xo, eo). 

Hence, 

Cp(p) c~B(xo, eo)C_Cp+~(p), for each pe(po-fio,po], 

and each 6 e (0, rio). Therefore, the multifunction p~--* Cp(p) is pseudo-Lip- 
schitzian at (Xo, Po). Now, let Fu(Axo)=Po. Take eo> 0 and c>  0 according 
to the assumption, and define 6o := c and L := c -1. We will show that 

Cp([A ) ("5 B(xo, Eo) ~ Cp+ 6(~l ) '~ L r  Bm, 

for each p e (Po-  rio, Po] and each 6 e (0, rio), which yields the desired pseudo- 
Lipschitzian property. 

Let pe(po-fo ,po] ,  rie(0, rio), be chosen arbitrarily, and consider 
xe  Cp(p) c~ B(xo, Co). Due to the assumption, there exists 2eXo such that 
(8) holds. In view of the convexity of Xo, without loss of generality, it is 
possible to select this 2 in such a way that we additionally have 11~?-xH _< 1. 
Consider 

Now, 

and 

Hence, 

y:=x + 6c-~(2-x )eXo .  

]]x- yH <_L6 

Fu(Ay ) = F~,( Ax + ric- IA(.~- x) ) >_ F~( Ax) + c6c- 1 > p + ft. 

yeCp+~(p) and xeCp+~(p)+LfiBm. 

The assertion finally follows from Theorem 2.1. [] 

Remark 2.3. If  F~ is continuously differentiable at Axo, then (8) 
implies the constraint qualification used in Proposition 2.1. 

Remark 2.4. Corollary 2.2 is a generalization of Corollary 2.1 when 
X is given as in (7). 
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To see this, suppose that peJCr,  for some r e ( - ~ , 0 ] ,  and assume 
that there exists ~eX0 such that Fu(A2 ) >p0 (Slater condition). Then, the 
distribution function F u is continuous, since p is absolutely continuous with 
resPect to the Lebesgue measure on R s (Ref. 27). Now, let xoeXo such that 
F~,(Axo)=po. There exist Co>0 and 60>0 such that 

O < p o - ~ o < F u ( A x ) < p o +  So<F~(A~), for all xeB(xo ,  Eo). 

We are going to show that, with a suitable c>0,  condition (8) is fulfilled for 
any xeXo  m B(xo, E0). 

For this, let without loss of generality r < 0, and define 

a :=Po-  ~o > 0 and b:= [F~(A2)y- (Po + ~o) r < 0. 

We obtain, for arbitrary te[0, 1], 

F u (Ax + tA (Yc - x) f < tF~(AYc) ~ + (1 - t)F~,(Axf 

<_ a r + t(F u ( A 2 f  - (Po + gof )  = a ~ + tb; 

therefore, 

Fu(Ax + tA(Yc- x) ) > (ar + tb) 1/r 

> a +  tr- lba 1-~, for all t¢[0, - db -~] .  

The last inequality holds, since the function g(t):= ( d +  tb) ~/~ is convex for 
t¢[0, - d b - ~ ] ;  consequently, 

g(t) >g(O) +g'(0)t, for te [0, -db -~] .  

Taking finally into account that - d b -  ~ > 1, we obtain (8) with c := r-  ~ba ~ - r. 

The following lemma is very useful when verifying the growth condition 
(8). Its proof is essentially based on an idea that has already been developed 
in Ref. 9, Lemma 4.9. 

Lemma 2.1. Let # E ~ ( ~ ) ,  let Xo be a dosed convex set, and fix some 
xoeXo. Assume that p has a densityf~ and that there exist d>0,  p > 0  such 
that 

f u ( z ) > d ,  for all z~B(Axo,  p). 

Furthermore, assume that there exists ~eXo such that A ~ > A x o  and 
A 2 # A x o .  Then, there exist Co>0 and c>0  such that (8) holds for each 
xeXo n B(xo, Eo). 

Proof. First, one confirms that, without loss of generality, it is possible 
to suppose A2eB(Axo ,  Pl) and [AYc]~>[Axo]~, where p~:=p/4 and [z]i 
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denotes the/ th component of z~E ~. Now, we choose e0>0 such that, on 
the one hand, there exists ~e R such that 

[A~]l > ~ >--- [Ax]1, for all x ~ B ( x o ,  eo), 

and on the other hand 

max t[Ax]~-[Axo]il  <-Pl,  for all x e B ( x o ,  Eo). 
i ~  l , . , , , s  

Denote 

a:= [Aff]1-4>0. 

Then, we have, for arbitrary x ~ X o  n B(xo ,  e0) and t~[0, 11, 

F u ( A x  + t A ( Y c -  x )  ) - V u ( A x  ) 

• ' '  j f~,(z, . . . .  , z ,)  d z s . . ,  dz, 
> ~[Axh oo --oo 

~[Axh+ta ~[Axoh-pl C[Ax0],--pl 

--~J[Axh ~[Axoh-2m " " " J[Axo],-2pl fu ( z l  ' " " " ' zs) dzs" " " dzl 

>__ tap~- l d. 

Hence, the desired result follows with 

c : =  ( [A~h - ~ ) d ( p / 4 )  ~- 1, D 

We remark that Corollaries 2.1 and 2.2 also represent qualitative 
stability results with respect to weak convergence of probability measures. 
This is mainly due to the smoothness assumptions imposed on the measures 
which led to p-uniformity classes (cf. Remark 2.1). On the other hand, also 
without such smoothness assumptions, conclusions from Theorem 2.1 may 
be drawn, as can be seen by the following remark where we deal with discrete 
distributions. 

Remark 2.5. Let p eN(Es) be a discrete measure with countable sup- 
port; consider (t) with X given by (7). Let po~(0, i) be such that 

inftF~(z) -Po] > O. 
z ~  s 

Then, there exists a neighborhood U of po such that 

Cpo(p) = Cp(p) ,  for altp~ U; 

consequently, the mapping p ~ Cp(l.t) is pseudo-Lipschitzian at each (xo, po) 
with Xo~ Cpo(p ). 
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If  the objective in (1) is Lipschitzian on bounded sets and if there exists 
a bounded open set V = ~  m such that ~tv(#) is a CLM set for (1), we now 
obtain the stability assertions of  Theorem 2.1 with respect to the Kolmogo- 
roy metric dK. 

In what follows, we indicate the potential of  our general results for the 
situation of  unknown distribution p. Let ~ ,  ~2,. •. be independent random 
variables on a probability space (f~, d ,  P) with values in N s and common 
distribution tt. Consider the empirical measure Pn which is given by 

p , (co) :=n -1 ~ S~i(o~), o J e f ~ , n ~ ,  
i=1 

where f i ze~(~  s) denotes the measure with unit mass at z e ~  s. Then, it is 
known that (see, e.g., Ref. 25 and the references therein) 

dK(p,(co), p)  = O((log log n/n)~/2), P-almost surely, (9) 

P({c0 : dK(p,( co ), p) > e} ) <_ C1 exp(-C2E2n), (10) 

where G > 0  and 0 < C 2 < 2  are some constants. Inequality (10) is often 
referred to as the Dvoretzky-Kiefer-Wolfowitz inequality. 

Our quantitative stability results together with relation (9) now give 
rise to rates for the almost-sure convergence of optimal values and optimal 
solutions if the unknown distribution # is estimated by empirical 
distributions. 

Let us finally illustrate how to combine our Lipschitz (or H61der) 
stability results with Ineq. (10). Suppose for instance that we have a result 
of  the type 

Iq~v(p)-~pv(v)l<_Ldx(p, v), whenever dK(p, v ) < 3 ;  

see Corollary 2.2, Remark 2.5. Then, we obtain 

P({o~: I~0~(~.(co)) - ~0~(~)1 > E} ) 

< e({co : e < Ld~lan(oJ), p)} ) + P({co : dK(U,(CO), p)  > 8} ); 

in view of (10), we can continue, 

< 2C~ exp(-C2(min{e/L,  8) )Zn). 

Following the above way, in principle, it is possible to derive corresponding 
estimates for optimal solutions or feasible sets. In the latter case, one then 
arrives at results which are in the spirit of Theorem 3 and Proposition 1 in 
Ref. 14. 
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3. Application to Power Dispatch 

The problem of the optimal power dispatch consists of allocating 
amounts of electric power to generation units such that the total generation 
costs are minimal, while an electric power demand is met and certain addi- 
tional constraints are satisfied. The generation units in our model are thermal 
power stations, pumped storage plants, and an energy contract. The genera- 
tion process is considered for a time horizon up to one day with a discretiza- 
tion into hourly or half-hourly intervals. Unit commitment and network 
questions are excluded. 

The special feature of  our model is that randomness of  electrical power 
demand is taken into account by formulating the equilibrium between total 
generation and demand as a chance constraint. The typical situation in 
practice, however, is that the probability distribution of the power demand 
is not completely available. In the present section, therefore, we apply the 
theory developed in Section 2 to derive sufficient conditions for the model 
to be stable under perturbations of the distribution of power demand. Before 
doing that, we introduce our model and give a few comments on possible 
model refinements. 

Let K and M denote the number of  thermal power stations and pumped 
storage plants. Let N be the number of  subintervals in the discretization of  
the time period. The unknown levels of production in the thermal power 
stations and the pumped storage plants are y~, i = 1 . . . . .  K and r = l, . . . .  N, 
s J), j = 1 . . . .  , M and r = I . . . .  , N (generation mode), and ~/), j = 1 , . . . ,  M 
and r =  1 . . . . .  N (pumping mode). By zr, r =  1 , . . . ,  N, we denote the 
unknown amounts of energy purchased or sold according to the contract. 

The total generation costs are given by the fuel costs of the thermal 
power stations (which are assumed to be a strictty convex quadratic function 
of the generated power, cf. Refs. 21 and 22) plus the costs (respectively, 
takings) according to the energy contract (which are a linear function of the 
power), Concerning pumped storage plants, we remark that sometimes 
(Refs. 16 and 17) the stock in the upper dam is evaluated by a certain 
function such that another term enters the objective, which reflects the costs 
and takings, respectively, according to the change of stock caused by the 
operation of the plant. In our model, however, we do not pursue this; hence, 
the objective becomes 

yTHy+h +gTz, (11) 

where ySRKN, Z~RN, H~L([~KN, ~:N) is positive definite and diagonal, 
h ~  KN, and gE~ u. 
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According to the discretization of the time period, we have a demand 
vector d of dimension iV; which is understood as a random vector with 
distribution p e~(RN) .  Claiming that a generation (y, s, w, z) fulfills the 
demand with probability p0E(0, 1) then means that 

d~RN: Y~+ 2 (s~-w~)+zr>dr, r=l . . . . .  >po. 
i=1 .i=1 

In addition to this probabilistic constraint, we take into account condi- 
tions which characterize the operation of the different plants: 

_al _.<y ~ d l ,  0 ~ s ~ t ~ 2 ,  0~w___(~3, a_4_( z_( a4; (12) 

s 0_ 0< Sj _ 
r=l 

j =  1 . . . . .  M, r = 1 . . . . .  N; (13) 

N N 
(s~-rbw~)=blj, j = I , . . . , M ,  Z z,=b2. (14) 

r=l r=l  

Restrictions for the power output are modeled in (12). Inequalities (13) 
reflect the balance between generation and pumping (measured in energy) 
in the pumped storage plants; sO ° and S ° denote, respectively, the initial 
and maximal stocks in energy in the upper dam. For each pumped storage 
plant, we assume that the maximal stock in water of the upper dam equals 
that of the lower dam and that no additional inflow or outflow occurs. We 
then pat the pumping efficiency, denoted 1 b, as the quotient of the energy 
that is gained when letting the full content of the upper dam go down and 
the energy that is needed when pumping the full content of the lower dam 
upward. A further refinement of the model is possible if the pumping effi- 
ciency is not put as a constant, but as a function of the actual stock in the 
upper dam (Ref. 36). Equations (14) are balances over the whole time 
period for the pumped storage plants and according to the energy contract, 
respectively. The model can be supplemented by further linear, nonproba- 
bilistic constraints, for instance those reflecting fuel quotas in the thermal 
power stations. 

Since we have different variables for generation and pumping in the 
pumped storage plants, our model does not exclude a priori the impracticable 
situation of  simultaneous generation and pumping. However, it is possible 
to show that a generation (y, s, w, z) which has, for somej~ {1 . . . . .  M} and 
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some re { 1 . . . . .  N}, both s~ > 0 and w~ > 0 cannot be optimal. Altogether, 
our model can formally be expressed as 

min{ f (x)  : xeXo, ju({de NN: Ax>_d} ) ->Po}, 

where x=(y,s,w,z)e[R m, m=N(K+2M+I), f(x) is defined by (11), 
X0cN m is the bounded convex polyhedron given by (12)-(14), 
AeL(N", R N) is a suitable matrix, and p is the probability distribution of 
random demand. 

The results of Section 2 now provide the following conclusions. If we 
assume that we have approached the true distribution of the demand 
sufficiently accurately, then the optimal production policies behave upper 
semicontinuously and the optimal costs are Lipschitz continuous if either 
(i), (ii), (iii) hold: 

(i) 

(ii) 
(iii) 

we know that the true distribution has a certain convexity prop- 
erty [cf. (4)] and there exists a Slater point (Corollary 2.1); 
the true distribution is a discrete one (Remark 2.5); 
the true distribution has a density which is uniformly bounded 
below by a positive number on some neighborhood related to the 
set of optimal solutions and, among the optimal policies (with 
respect to the true distribution), there is no one which exhausts 
the full generation capacity; see the constraint (12), Corollary 
2.2, Lemma 2.1. In practice, the latter requirement on the optimal 
generation policy is always fulfilled, since, due to lower demand 
during the night, there is usually at least one power station which, 
during at least one hour, does not work with maximum capacity. 

An examination of the objective in the optimal power-dispatch model 
shows that it is possible to fulfill condition (6) with q = 2  and ]lxi,: = [lylI2; 
here, [[-[Iz is the Euclidean norm on NN~. Hence, in the presence of the 
assumptions made in Corollary 2.1, Remark 2.2 applies, and we have Hrlder 
continuity (with exponent 1/2) of the optimal generation policies in the 
thermal plants. 

When the original distribution is estimated by empirical ones, then the 
presented stability results together with the considerations at the end of 
Section 2 yield rates of convergence for optimal values and optimal solutions. 

Finally, let us point out that the material developed in Section 2 also 
applies to a number of practical models which are known from the literature 
(the STABIL model in Ref. 20, a flood control model in Ref. 37, and a 
model for water resources system planning in Ref. 38). 
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