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Part Il: Quasi-Monte Carlo methods and their recent developments
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Introduction to Quasi-Monte Carlo methods

We consider the approximate computation of

Lo(f) = f(&)dg

0,1}

by a QMC algorithm
Qnalf) =15 £(€)
i=1

with (non-random) points &', i = 1,...,n, from [0, 1]%.

We assume that f belongs to a linear normed space F,; of functions on [0, 1]
with norm || - ||z and unit ball By = {f € F;: || f||la < 1} such that I; and Q),, 4
are linear bounded functionals on F.

Worst-case (absolute) error of @), 4 over By:

6(@71,61) = Sup |Id(f) - Qn,d(f)}

J€By



An approximation criterion may be based on the relative error and a given tol-
erance € > 0, namely, in finding the smallest number ny, (e, Qnq) € N such
that

e(@na) < ce(Qoa) = el Lall  for all n > npin(e, Qn,a),
holds, where Qg 4(f) = 0 and, hence, e(Qyq) = ||Z4]|-

The behavior of the error e(Q,, 4) with respect to n € N and of nyi(e, Qn.a)
with respect to ¢ is of considerable interest. In both cases the dependence on
the dimension d is often crucial, too.

The behavior of both quantities depends heavily on the normed space F.

It is desirable that an estimate of the form
Nmin (€, @n.a) < Cdle™ ("polynomial tractability’)

is valid for some constants ¢ > 0, C,p > 0 and for every € € (0,1). Of course,
g = 0 is highly desirable for high-dimensional problems.



Example 1:
Consider the Banach space F; = Lip([0, 1]%) of Lipschitz continuous functions
equipped with the norm

_ _1f©) -~ )
£l = 170) +sup-= =22,

c . 1
The best possible convergence rate is e(Q,,q) = O(n~d). (Bakhvalov 59).
The unit ball in Lip([0, 1]¢) is too large !

Example 2:
Consider the Banach space F; = C7([0,1]9) (r € N) of r times continuously
differentiable functions with the norm

|f]la = max || |,
la| <r

where @ = (v, ..., ay) € N¢is used to denote by £(@) a3 partial derivative of f
of order |a| = 2?21 o, i.e.,

olal
f(a) (5) - agfél .. f(‘?gCOléd (€> :

r

The best possible convergence rate then is e(Q;,.4) = O(n"d) (Novak 88).



Classical convergence results:

Theorem: (Proinov 88)
If the real function f is continuous on [0, 1], then there exists C' > 0 such that

Qnalf) = L(f)| < Cwy(DL(E, ..., €M),

where w(8) = sup{|f(&) — f(E)] : |€ = E)|| < 6, &,€ € [0,1]%} is the modulus
of continuity of f and

Dy(&',...,€"):= sup |disc(z)], diSC(fb“)IAd([Oax))—%ilm,x)(?),

r€[0,1]d i=1

is the star-discrepancy of &1, ... &" (\? denotes Lebesgue’'s measure on R?).

Theorem: (Koksma-Hlawka 61)
If Vi (f) is the variation of f in the sense of Hardy and Krause, it holds

1a(f) = Qua(f)] < Vax(f)Dy(E", ..., €")
for any n € Nand any &', ...,€" € [0,1]%



Example 3:
Consider the linear normed space F; = BV ([0, 1]¢) of functions having bounded
variation in the sense of Hardy and Krause equipped with the norm

The Koksma-Hlawka theorem then implies
G(Qn,d> S D;kz(glv S 7€n)

However, the variation in the sense of Hardy and Krause is a difficult quantity
and it is not clear which functions belong to IF;.



Variation of a function in the sense of Hardy and Krause (Owen 05)

Let D = {1,...,d} and we consider subsets u of D with cardinality |u|. By —u we mean
—u = D\ u. The expression £ denotes the |u|-tuple of the components &;, j € u, of £ € R%.

For example, we write f(&) = f(£", 7).
We consider the d-fold alternating sum of f over a d-dimensional interval [a, b]

A(fia,0) =Y (=DM f(a*,0™) and  Au(fia,b) => (=DM f(@”,67") (uC D).

uCD vCu
The variation of f over a finite grid G in [a,b) is (with g* € [a, b] denoting a successor to g)
= |A(f;9,9"
geG

If G denotes the set of all finite grids in [a, b), the variation of f on [a,b] in Vitali's sense is

Viay (f) = sup Va(f) .
GG

The variation of f on [a,b] in the sense of Hardy and Krause is
VHKfCLb Zvaub u)bu))'
uCD

Bounded variation on [a, b] in the sense of Hardy and Krause then means Vi (f;a,b) < oo



A first QMC construction

Radical inverse function:
Fori € Ny, b € N, b > 2, the radical inverse function ¢;(7) is defined as follows:

ifi= ib" ! with iy € {0,1,...,b— 1}, then (i) := Z—Z
k=1 k=1
Van der Corput sequence:
The sequence (¢(1))nen, in [0, 1) is called van der Corput sequence in base b.

Halton sequence:
Let p;, ¢ = 1,...,d, be the first d prime numbers. The Halton sequence in d
dimensions is given by

= (¢, (i), ..., $p,(1)) €0,1)? (i € Ny).
Theorem: The Halton sequence in d dimensions satisfies the estimate
(log )
n

for some constant C'(d) depending on d and all n € N.
It is known that the constant C(d) gets very large even for moderately large d and that the
right-hand side of the estimate increases with increasing n for all n < expd.

Dy(E',...,€") < C(d)



The case of kernel reproducing Hilbert spaces (Aronszajn 50)

We assume that [F; is a kernel reproducing Hilbert space with inner product (-, -)
and kernel K : [0,1]Y x [0,1]¢ = R, i.e.,

K(-,y) € Fgand (f(-),K(y) = fly) (Yye[0,1]% f € Fy).

If I, is a linear bounded functional on Iy, the quadrature error e,(Q,.4) allows
the representation

e(Qna) = sup |Lu(f) — Qua(f)] = sup [(f, )| = [Pl

feBy
according to Riesz' theorem for linear bounded functionals.

The representer h,, € F; of the quadrature error is of the form

ho(z) = K(z,y)dy — =3 K(z,&") (Va € [0,1]%),
[0,1]4 i=1
and it holds
e (Qua)=[ K(z,y)dzdy— %Z [ K(&,y)dy + QZK(? &)
[0,1]24 i=110,1)d i,j=1

(Hickernell 98)



Example: Weighted tensor product Sobolev spaces

equipped with the weighted norm || f||Z = (f, f)- and inner product

ol olul
<f7 g>”y — /0 f )%f(ﬁu, 1)d£€u,

ox
uC{l ..... 1] i Y

where 71 > > - > 9 >0, v, = Hjeu 7, is a kernel reproducing Hilbert
space with the kernel

d
Kd’y X y H 1+7]:“ x]ay] ) (ZU,y S [07 Hd))
=il

where Qe=1Js =11} , (t=1)(s—1)
miny |t — 1|, [s—1} , (t—1)(s—1) >0,
) = { 0 , else.

Note that f € Fy iff 3ol(-, 1) € Lo([0, 1)) for all u C D.



Theorem: (Sloan-Wozniakowski 98)
Let F, = Wit )([O 1]%). Then the worst-case error

2 7y, mix
e*(Qna) = sup |Li(f) — Qna(f)] = Z H’yj/ disc? (2, 1)dz,
Hf”’YSl @#UCD JEU 0 1 [ul

is the so-called weighted Lo-discrepancy of £, ..., &

Note that any f € [F; is of bounded variation Vi (f) in the sense of Hardy and
Krause and it holds

VHK Z /0 1]lul

0#uCD

olul f
0x,

(2y, 1)‘da:u.



Extended (weighted) Koksma-Hlawka inequality:

[1a(f) = Qna(f)] < [|disc(:)

where 1 < p.p'.q,q¢ < oo, —|——:12% l,:l and

v,0,0 HfH 7,454

»
7

1
disc(- = ( u(/ disc(z,, 1 v dxu)p)p
sl = (S [ st )

uCD
(9'“’]‘ q’ -7 é
—(xu; 1) dmu) ! >

)= ,1(
Hqu,q (l;)’yu, /()1“ axu

with the obvious modifications if one or more of p, p’, ¢, ¢’ are infinite.

and
q

In partlcular the classical Koksma-Hlawka inequality essentially corresponds to

.....

which is defined next.

Starting point is the Hlawka-Zaremba identity

Jul
; Z f(& flz)dr = Z(—l)‘“’ / 0 f(xu, 1)disc(xy, 1)dx,, .

[0,1]@ WCD [0,1]lul 0Ty




First general QMC construction: Digital nets (Sobol 69, Niederreiter 87)
Elementary subintervals £ in base b € N, b > 2:

m_ d a; aj+1
LL1pdi” i )7

J=1

where a;,d; € Z,,0 < a; <b%i,i=1,...,d.

Let m,t € Z,, m >t. A set of b™ points in [0,1)? is a (t,m, d)-net in base b if
every elementary subinterval E in base b with \X?(E) = b/~ contains b’ points.

lllustration of a (0,4, 2)-net with b = 2

| P —

Ole 1
A sequence (£7) in [0,1)? is a (¢, d)-sequence in base b if, for all integers k € Z,
and m > t, the set

(€ kb <i< (k+1)b"}

is a (t,m, d)-net in base b.



For fixed b and m the (¢, m, d)-net condition gets stronger if the quality param-
eter t gets smaller. The quantity m —t is called the strength of the (¢, m, d)-nets.

Theorem: There exist (¢, d)-sequences (£') in [0, 1] such that
D&, .. &M =0m Y logn)™h) < C(6,d)n~t° (V6 > 0).

Note that, in general, the constant C'(9, d) depends indeed upon § and the di-
mension d. However, the constants for (¢, d)-sequences are essentially smaller
compared to the Halton sequence.

Specific sequences:

The Sobol’ sequence (Sobol’ 67) is a (¢, d)-sequence in base b = 2, where ¢ is a
non-decreasing function of d;

the Faure sequence (Faure 82) is a (0, d)-sequence with d < b;

the Niederreiter squences (Niederreiter 88) include both Sobol’ and Faure construc-
tions as special cases; and the Niederreiter-Xing sequences.

(Dick-Pillichshammer 10, Dick-Kuo-Sloan 14).



Recent development:

Scrambling of (¢, m, d)-nets and (¢, d)-sequences

Idea: Random permutation of the digits in each component (Owen 95).
Scrambled nets and sequences combine favorable properties of MC and QMC and
improve their convergence properties (in a probabilistic sense).
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left: 1000 Niederreiter-points for d = 40, projection (16, 18).
right: 1000 Scrambled-Niederreiter-points for d = 40, projection (16, 18).



Second general QMC construction: Lattices (Korobov 59, Sloan-Joe 94)

A lattice in R? is a discrete subset of R? which is closed under addition and
subtraction. An integration lattice in R? is a lattice which contains Z¢ as a
subset. A lattice rule is an equal-weight quadrature rule whose quadrature points
are those points of an integration lattice that lie in [0, 1)%.

Every lattice rule can be written as a multiple sum involving one or more gener-
ating vectors.

Rank-1 lattice rule:
An n-point rank-1 lattice rule in d dimensions, also called the method of good
lattice points, is a QMC method with quadrature points

{fi:{%g}:izl,...,n},

where g € Z¢ is the generating vector. The braces indicate that the fractional
part is taken for each component, i.e., {z} =z — |z] € [0,1) for each z € R,.
The components of g can be restricted to {0,1,...,n — 1} or even to

G,={2€Z:1<z<n-—1andged(z,n) =1}

The number of elements in G, is p(n) = |G,|, the Euler totient function.



Example: (Korobov construction)
Givena € N, 1 < a <n — 1, with ged(a,n) = 1 we define

d—l)

g=gla)=(1,a,a*...,a mod 7.

Example: (Component-by-component (CBC) construction)

Given n, construct a generating vector g = (g, ..., gq) as follows:
1. Set g1 = 1.
i. With ¢1,...,9;_1 held fixed, choose g; € G, to minimize a desired error

criterion in ¢ dimensions.

Theorem:
Let ()¢ denote a rank-1 lattice rule with generating vector g and the integrand
f have an absolutely convergent complex Fourier series. Then

L) - Quafl <e S ——

hi---hs)&
hezd\ {0} ( 1 d)
h-g=0(mod n)

where f € Eu.(c) = {f : |f(h)| < h—h)a’h c Z% with ¢ > 0, o > 1,

h = max{1, ||} and f(h), h € Z¢, denoting the Fourier coefficients of f.
(Sloan-Joe 94)




v2

Fig. 5.3 Four different point sets with n = 64: random (top left), rectangular grid (top
right), Korobov lattice (bottom left), and Sobol’ (bottom right).



Recent development: Randomly shifted lattice rules:
If A is a sample from the uniform distribution in [0, 1]¢. put

Quals; ) = z F{ELg + A

If f € F; one obtains

‘Id(f) o Qn,d(A; f)‘ < G(Qn,d<A; ))Hf”d

Hence, it follows

BAS) = Qua s S [ e@ual s )b 51
Theorem:
If IF; is a kernel reproducing Hilbert space with kernel K, it holds

n—1

| e@uisinas=-[ [ Kaydedy+s Y KL,
0,1]d [0,1]¢ J[0,1)4 ij=1
where ¢ = % i=1,...,n, and K*" is the shift-average kernel

Etz,y)= | K({z+ A} {y+A}dA.

[0,1)4



The kernel K" is shift-invariant and it can be shown
(E(@na(; ) = /[ S Qual )i = (@,

where @, 4(f) = 1 Z ({=1g}) and the worst-case error €((Q,, ) is taken in

T on

the reproducing kernel Hilbert space with kernel K*".

Theorem:
Let n be prime, F; = WQ( m}i([o 1]%) and g € Z be CBC constructed. Then

there exists for any § € (0, 3] a constant C'(§) > 0 such that the mean quadrature
error attains the optimal convergence rate

E(Qna(Lr;)) < C(En~,

where the constant C(§) grows when ¢ decreases, but does not depend on the
dimension d if the sequence (;) satisfies the condition

00 1
Z%’Z(l_é) < o0 (e.8- v = Lz)
j=1

(Sloan/Wozniakowski 98, Sloan/Kuo/Joe 02, Kuo 03)



Conclusions

e Classical Quasi-Monte Carlo methods converge faster than Monte Carlo
schemes, but the convergence rate becomes effective only for n > e?.

e QMC methods can be constructed via integration lattices or via (¢, m,d)-
nets.

e Scrambled (¢, m, d)-nets combine favorable properties of MC and QMC and
have improved convergence properties.

e Recently developed randomly shifted lattice rules lift the curse of dimen-
sionality and converge significantly faster than Monte Carlo.

e This presentation didn't cover the more recent development of digitally
shifted polynomial lattice rules which allow for higher order convergence
rates and error estimates of the form

é(Qna) < C(SN T,

if f belongs to W<T"”’T)<[O, 1]d> and 0 € (O, %] (Dick-Pillichshammer 10).

2,7, mix
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