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Introduction to Quasi-Monte Carlo methods

We consider the approximate computation of

Id(f ) =

∫
[0,1]d

f (ξ)dξ

by a QMC algorithm

Qn,d(f ) = 1
n

n∑
i=1

f (ξi)

with (non-random) points ξi, i = 1, . . . , n, from [0, 1]d.

We assume that f belongs to a linear normed space Fd of functions on [0, 1]d

with norm ‖ · ‖d and unit ball Bd = {f ∈ Fd : ‖f‖d ≤ 1} such that Id and Qn,d

are linear bounded functionals on Fd.

Worst-case (absolute) error of Qn,d over Bd:

e(Qn,d) = sup
f∈Bd

∣∣Id(f )−Qn,d(f )
∣∣



An approximation criterion may be based on the relative error and a given tol-

erance ε > 0, namely, in finding the smallest number nmin(ε,Qn,d) ∈ N such

that

e(Qn,d) ≤ εe(Q0,d) = ε‖Id‖ for all n ≥ nmin(ε,Qn,d),

holds, where Q0,d(f ) = 0 and, hence, e(Q0,d) = ‖Id‖.

The behavior of the error e(Qn,d) with respect to n ∈ N and of nmin(ε,Qn,d)

with respect to ε is of considerable interest. In both cases the dependence on

the dimension d is often crucial, too.

The behavior of both quantities depends heavily on the normed space Fd.

It is desirable that an estimate of the form

nmin(ε,Qn,d) ≤ C dqε−p (’polynomial tractability’)

is valid for some constants q ≥ 0, C, p > 0 and for every ε ∈ (0, 1). Of course,

q = 0 is highly desirable for high-dimensional problems.



Example 1:
Consider the Banach space Fd = Lip([0, 1]d) of Lipschitz continuous functions

equipped with the norm

‖f‖d = |f (0)| + sup
ξ 6=ξ̃

|f (ξ)− f (ξ̃)|
‖ξ − ξ̃‖

.

The best possible convergence rate is e(Qn,d) = O(n−
1
d). (Bakhvalov 59).

The unit ball in Lip([0, 1]d) is too large !

Example 2:
Consider the Banach space Fd = Cr([0, 1]d) (r ∈ N) of r times continuously

differentiable functions with the norm

‖f‖d = max
|α|≤r
‖f (α)‖∞,

where α = (α1, . . . , αd) ∈ Nd
0 is used to denote by f (α) a partial derivative of f

of order |α| =
∑d

i=1 αi, i.e.,

f (α)(ξ) =
∂|α|f

∂ξα11 · · · ∂ξ
αd
d

(ξ) .

The best possible convergence rate then is e(Qn,d) = O(n−
r
d) (Novak 88).



Classical convergence results:

Theorem: (Proinov 88)

If the real function f is continuous on [0, 1]d, then there exists C > 0 such that

|Qn,d(f )− Id(f )| ≤ Cωf
(
D∗n(ξ1, . . . , ξn)

1
d
)
,

where ωf(δ) = sup{|f (ξ)− f (ξ̃)| : ‖ξ − ξ̃)‖ ≤ δ, ξ, ξ̃ ∈ [0, 1]d} is the modulus

of continuity of f and

D∗n(ξ1, . . . , ξn) := sup
x∈[0,1]d

|disc(x)|, disc(x) = λd([0, x))− 1
n

n∑
i=1

1l[0,x)(ξ
i),

is the star-discrepancy of ξ1, . . . , ξn (λd denotes Lebesgue’s measure on Rd).

Theorem: (Koksma-Hlawka 61)

If VHK(f ) is the variation of f in the sense of Hardy and Krause, it holds

|Id(f )−Qn,d(f )| ≤ VHK(f )D∗n(ξ1, . . . , ξn)

for any n ∈ N and any ξ1, . . . , ξn ∈ [0, 1]d.



Example 3:
Consider the linear normed space Fd = BVHK([0, 1]d) of functions having bounded

variation in the sense of Hardy and Krause equipped with the norm

‖f‖d = |f (1, . . . , 1)| + VHK(f ) .

The Koksma-Hlawka theorem then implies

e(Qn,d) ≤ D∗n(ξ1, . . . , ξn)

However, the variation in the sense of Hardy and Krause is a difficult quantity

and it is not clear which functions belong to Fd.



Variation of a function in the sense of Hardy and Krause (Owen 05)

Let D = {1, . . . , d} and we consider subsets u of D with cardinality |u|. By −u we mean
−u = D\u. The expression ξu denotes the |u|-tuple of the components ξj, j ∈ u, of ξ ∈ Rd.
For example, we write f(ξ) = f(ξu, ξ−u).
We consider the d-fold alternating sum of f over a d-dimensional interval [a, b]

4(f ; a, b) =
∑
u⊆D

(−1)|u|f(au, b−u) and 4u(f ; a, b) =
∑
v⊆u

(−1)|v|f(av, b−v) (u ⊆ D).

The variation of f over a finite grid G in [a, b) is (with g+ ∈ [a, b] denoting a successor to g)

VG(f) =
∑
g∈G

|4(f ; g, g+)| .

If G denotes the set of all finite grids in [a, b), the variation of f on [a, b] in Vitali’s sense is

V[a,b](f) = sup
G∈G

VG(f) .

The variation of f on [a, b] in the sense of Hardy and Krause is

VHK(f ; a, b) =
∑
u⊂D

V[a−u,b−u](f(ξ−u, bu)) .

Bounded variation on [a, b] in the sense of Hardy and Krause then means VHK(f ; a, b) <∞.



A first QMC construction

Radical inverse function:
For i ∈ N0, b ∈ N, b ≥ 2, the radical inverse function φb(i) is defined as follows:

if i =

∞∑
k=1

ikb
k−1 with ik ∈ {0, 1, . . . , b− 1}, then φb(i) :=

∞∑
k=1

ik
bk
.

Van der Corput sequence:
The sequence (φb(n))n∈N0 in [0, 1) is called van der Corput sequence in base b.

Halton sequence:
Let pi, i = 1, . . . , d, be the first d prime numbers. The Halton sequence in d

dimensions is given by

ξi+1 = (φp1(i), . . . , φpd(i)) ∈ [0, 1)d (i ∈ N0).

Theorem: The Halton sequence in d dimensions satisfies the estimate

D∗n(ξ1, . . . , ξn) ≤ C(d)
(log n)d

n
for some constant C(d) depending on d and all n ∈ N.
It is known that the constant C(d) gets very large even for moderately large d and that the
right-hand side of the estimate increases with increasing n for all n < exp d.



The case of kernel reproducing Hilbert spaces (Aronszajn 50)

We assume that Fd is a kernel reproducing Hilbert space with inner product 〈·, ·〉
and kernel K : [0, 1]d × [0, 1]d → R, i.e.,

K(·, y) ∈ Fd and 〈f (·), K(·, y)〉 = f (y) (∀y ∈ [0, 1]d, f ∈ Fd).

If Id is a linear bounded functional on Fd, the quadrature error en(Qn,d) allows

the representation

e(Qn,d) = sup
f∈Bd

∣∣Id(f )−Qn,d(f )
∣∣ = sup

f∈Bd
|〈f, hn〉| = ‖hn‖d

according to Riesz’ theorem for linear bounded functionals.

The representer hn ∈ Fd of the quadrature error is of the form

hn(x) =

∫
[0,1]d

K(x, y)dy − 1
n

n∑
i=1

K(x, ξi) (∀x ∈ [0, 1]d),

and it holds

e2(Qn,d)=

∫
[0,1]2d

K(x, y)dx dy − 2
n

n∑
i=1

∫
[0,1]d

K(ξi, y)dy + 1
n2

n∑
i,j=1

K(ξi, ξj)

(Hickernell 98)



Example: Weighted tensor product Sobolev spaces

Fd =W (1,...,1)
2,γ,mix([0, 1]d) =

d⊗
j=1

W 1
2,γj

([0, 1])

equipped with the weighted norm ‖f‖2
γ = 〈f, f〉γ and inner product

〈f, g〉γ =
∑

u⊆{1,...,d}

γ−1
u

∫
[0,1]|u|

∂|u|f

∂xu
(xu, 1)

∂|u|g

∂xu
(xu, 1)dxu ,

where γ1 ≥ γ2 ≥ · · · ≥ γd > 0, γu =
∏

j∈u γj, is a kernel reproducing Hilbert

space with the kernel

Kd,γ(x, y) =

d∏
j=1

(1 + γjµ(xj, yj)) (x, y ∈ [0, 1]d),

where

µ(t, s) =

{
min{|t− 1|, |s− 1|} , (t− 1)(s− 1) > 0,

0 , else.

Note that f ∈ Fd iff ∂|u|f
∂xu

(·, 1) ∈ L2([0, 1]|u|) for all u ⊆ D.



Theorem: (Sloan-Woźniakowski 98)

Let Fd =W (1,...,1)
2,γ,mix([0, 1]d). Then the worst-case error

e2(Qn,d) = sup
‖f‖γ≤1

|Id(f )−Qn,d(f )| =
∑
∅6=u⊆D

∏
j∈u

γj

∫
[0,1]|u|

disc2(xu, 1)dxu

is the so-called weighted L2-discrepancy of ξ1, . . . , ξn.

Note that any f ∈ Fd is of bounded variation VHK(f ) in the sense of Hardy and

Krause and it holds

VHK(f ) =
∑
∅6=u⊆D

∫
[0,1]|u|

∣∣∣∂|u|f
∂xu

(xu, 1)
∣∣∣dxu .



Extended (weighted) Koksma-Hlawka inequality:

|Id(f )−Qn,d(f )| ≤ ‖disc(·)‖γ,p,p′‖f‖γ,q,q′ ,
where 1 ≤ p, p′, q, q′ ≤ ∞, 1

p + 1
q = 1, 1

p′ + 1
q′ = 1, and

‖disc(·)‖p,p′ =
(∑
u⊆D

γu

(∫
[0,1]|u|

|disc(xu, 1)|p
′
dxu

) p
p′
)1
p

and

‖f‖q,q′ =
(∑
u⊆D

γ−1
u

(∫
[0,1]|u|

∣∣∣∂|u|f
∂xu

(xu, 1)
∣∣∣q′dxu) q

q′
)1
q

with the obvious modifications if one or more of p, p′, q, q′ are infinite.

In particular, the classical Koksma-Hlawka inequality essentially corresponds to

p = p′ = ∞ if f belongs to the tensor product Sobolev space W (1,...,1)
2,mix ([0, 1]d)

which is defined next.

Starting point is the Hlawka-Zaremba identity

1
n

n∑
i=1

f (ξi)−
∫

[0,1]d
f (x)dx =

∑
u⊆D

(−1)|u|
∫

[0,1]|u|

∂|u|f

∂xu
(xu, 1)disc(xu, 1)dxu .



First general QMC construction: Digital nets (Sobol 69, Niederreiter 87)

Elementary subintervals E in base b ∈ N, b ≥ 2:

E =

d∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

where ai, di ∈ Z+, 0 ≤ ai < bdi, i = 1, . . . , d.

Let m, t ∈ Z+, m ≥ t. A set of bm points in [0, 1)d is a (t,m, d)-net in base b if

every elementary subinterval E in base b with λd(E) = bt−m contains bt points.

Illustration of a (0, 4, 2)-net with b = 2 s s s s
s s s ss s s s

s s s s

1

0 1

A sequence (ξi) in [0, 1)d is a (t, d)-sequence in base b if, for all integers k ∈ Z+

and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}
is a (t,m, d)-net in base b.



For fixed b and m the (t,m, d)-net condition gets stronger if the quality param-

eter t gets smaller. The quantity m−t is called the strength of the (t,m, d)-nets.

Theorem: There exist (t, d)-sequences (ξi) in [0, 1]d such that

D∗n(ξ1, . . . , ξn) = O(n−1(log n)d−1) ≤ C(δ, d)n−1+δ (∀δ > 0).

Note that, in general, the constant C(δ, d) depends indeed upon δ and the di-

mension d. However, the constants for (t, d)-sequences are essentially smaller

compared to the Halton sequence.

Specific sequences:
The Sobol’ sequence (Sobol’ 67) is a (t, d)-sequence in base b = 2, where t is a

non-decreasing function of d;

the Faure sequence (Faure 82) is a (0, d)-sequence with d ≤ b;

the Niederreiter squences (Niederreiter 88) include both Sobol’ and Faure construc-

tions as special cases; and the Niederreiter-Xing sequences.

(Dick-Pillichshammer 10, Dick-Kuo-Sloan 14).



Recent development:
Scrambling of (t,m, d)-nets and (t, d)-sequences

Idea: Random permutation of the digits in each component (Owen 95).

Scrambled nets and sequences combine favorable properties of MC and QMC and

improve their convergence properties (in a probabilistic sense).

left: 1 000 Niederreiter-points for d = 40, projection (16, 18).
right: 1 000 Scrambled-Niederreiter-points for d = 40, projection (16, 18).



Second general QMC construction: Lattices (Korobov 59, Sloan-Joe 94)

A lattice in Rd is a discrete subset of Rd which is closed under addition and

subtraction. An integration lattice in Rd is a lattice which contains Zd as a

subset. A lattice rule is an equal-weight quadrature rule whose quadrature points

are those points of an integration lattice that lie in [0, 1)d.

Every lattice rule can be written as a multiple sum involving one or more gener-

ating vectors.

Rank-1 lattice rule:
An n-point rank-1 lattice rule in d dimensions, also called the method of good

lattice points, is a QMC method with quadrature points{
ξi =

{
i−1
n g
}

: i = 1, . . . , n
}
,

where g ∈ Zd is the generating vector. The braces indicate that the fractional

part is taken for each component, i.e., {z} = z − bzc ∈ [0, 1) for each z ∈ R+.

The components of g can be restricted to {0, 1, . . . , n− 1} or even to

Gn = {z ∈ Z : 1 ≤ z ≤ n− 1 and gcd(z, n) = 1}.
The number of elements in Gn is ϕ(n) = |Gn|, the Euler totient function.



Example: (Korobov construction)

Given a ∈ N, 1 ≤ a ≤ n− 1, with gcd(a, n) = 1 we define

g = g(a) = (1, a, a2, . . . , ad−1) mod n .

Example: (Component-by-component (CBC) construction)

Given n, construct a generating vector g = (g1, . . . , gd) as follows:

1. Set g1 = 1.

i. With g1, . . . , gi−1 held fixed, choose gi ∈ Gn to minimize a desired error

criterion in i dimensions.

Theorem:
Let Qn,d denote a rank-1 lattice rule with generating vector g and the integrand

f have an absolutely convergent complex Fourier series. Then

|Id(f )−Qn,d(f )| ≤ c
∑

h∈Zd\{0}
h·g≡0(mod n)

1

(h̄1 · · · h̄d)α
,

where f ∈ Eα(c) = {f : |f̂ (h)| ≤ c
(h̄1···h̄d)α

, h ∈ Zd} with c > 0, α > 1,

h̄ = max{1, |h|} and f̂ (h), h ∈ Zd, denoting the Fourier coefficients of f .

(Sloan-Joe 94)





Recent development: Randomly shifted lattice rules:

If 4 is a sample from the uniform distribution in [0, 1]d. put

Qn,d(4; f ) = 1
n

n∑
i=1

f
(
{i−1

n g +4}
)
.

If f ∈ Fd one obtains

|Id(f )−Qn,d(4; f )| ≤ e(Qn,d(4; ·))‖f‖d
Hence, it follows

E[|Id(f )−Qn,d(4; f )|2] ≤
∫

[0,1]d
e2(Qn,d(4; ·))d4‖f‖2

d

Theorem:
If Fd is a kernel reproducing Hilbert space with kernel K, it holds∫

[0,1]d
e2(Qn,d(4; ·))d4 = −

∫
[0,1]d

∫
[0,1]d

K(x, y)dxdy + 1
n2

n−1∑
i,j=1

Ksh(ξi, ξj) ,

where ξi = i−1
n , i = 1, . . . , n, and Ksh is the shift-average kernel

Ksh(x, y) =

∫
[0,1]d

K({x +4}, {y +4})d4 .



The kernel Ksh is shift-invariant and it can be shown

(ê(Qn,d(4; ·)))2 :=

∫
[0,1]d

e2(Qn,d(4; ·))d4 = e2(Qn,d),

where Qn,d(f ) = 1
n

n∑
i=1

f
(
{i−1

n g}
)

and the worst-case error e(Qn,d) is taken in

the reproducing kernel Hilbert space with kernel Ksh.

Theorem:
Let n be prime, Fd = W (1,...,1)

2,γ,mix([0, 1]d) and g ∈ Zd be CBC constructed. Then

there exists for any δ ∈ (0, 1
2] a constant C(δ) > 0 such that the mean quadrature

error attains the optimal convergence rate

ê(Qn,d(4; ·)) ≤ C(δ)n−1+δ ,

where the constant C(δ) grows when δ decreases, but does not depend on the

dimension d if the sequence (γj) satisfies the condition
∞∑
j=1

γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j2
).

(Sloan/Wožniakowski 98, Sloan/Kuo/Joe 02, Kuo 03)



Conclusions

• Classical Quasi-Monte Carlo methods converge faster than Monte Carlo

schemes, but the convergence rate becomes effective only for n ≥ ed.

• QMC methods can be constructed via integration lattices or via (t,m, d)-

nets.

• Scrambled (t,m, d)-nets combine favorable properties of MC and QMC and

have improved convergence properties.

• Recently developed randomly shifted lattice rules lift the curse of dimen-
sionality and converge significantly faster than Monte Carlo.

• This presentation didn’t cover the more recent development of digitally

shifted polynomial lattice rules which allow for higher order convergence

rates and error estimates of the form

ê(Qn,d) ≤ C(δ)n−r+δ,

if f belongs to W (r,...,r)
2,γ,mix([0, 1]d) and δ ∈ (0, 1

2] (Dick-Pillichshammer 10).
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