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Introduction

We consider stochastic generalized equations (SGE) of the form

0 ∈ EP [Γ(x, ξ)] + G(x),

where Γ :: X × Ξ → 2Y and G : X → 2Y are closed set-valued

mappings, X and Y are subsets of Banach spaces X and Y (with

norm ‖ · ‖X and ‖ · ‖Y ) respectively, ξ : Ω → Ξ is a random vector

defined on a probability space (Ω,F,P) with support set Ξ ∈ Rd

and probability distribution P , and EP [·] denotes Aumann’s set-

valued integral with respect to P , i.e.,

EP [Γ(x, ξ)] :=

∫
Ξ

Γ(x, ξ)P (dξ)

=
{∫

Ξ

γx(ξ)P (dξ) :γx is integrable selection of Γ(x, ·)
}
.

If X is separable and P non-atomic, Γ closed-valued and integrably

bounded, then EP [Γ(x, ξ)] is convex.

Stochastic generalized equations were first studied by Ralph-Xu in MOR 2011.
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Aim: Framework for stability analysis of stochastic varia-
tional problems

Contents:

(1) Prerequisites about support functions

(2) Quantitative stability analysis of SGEs

(3) Stability of linear two-stage stochastic programs (revisited)

(4) Stability of two-stage stochastic programs with complementar-

ity constraints

(5) Stability of stochastic programs with second order dominance

constraints

(6) Conclusions

(7) References
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Prerequisites about support functions

Lemma:
Let C,D be nonempty compact and convex subsets of a Banach

space E with support functions σ(·, C) and σ(·, D) given on the

dual E∗, i.e., σ(u,C) = supx∈C〈u, x〉.
Then it holds for the excess

D(C,D) := sup
x∈C

d(x,D) = max
‖u‖∗≤1

(σ(u,C)− σ(u,D))

and for the Pompeiu-Hausdorff distance

H(C,D) := max{sup
x∈C

d(x,D), sup
x∈D

d(x,C)}

= max
‖u‖∗≤1

|σ(u,C)− σ(u,D)|.

Lemma:
If Γ : Ξ → E is closed convex-valued and integrably bounded, then

it holds for all u ∈ E∗

EP [σ(u,Γ(ξ))] = σ(u,EP [Γ(ξ)]).
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Main quantitative stability result

We consider the stochastic generalized equation

(SGE(P )) 0 ∈ EP [Γ(x, ξ)] + G(x)

and its perturbation

(SGE(Q)) 0 ∈ EQ[Γ(x, ξ)] + G(x).

for probability measures P and Q on Ξ.

We consider the following “distance” of probability measures

D(Q,P ) := sup
g∈F

(
EQ[g(ξ)]− EP [g(ξ)]

)
where F := {g : g(ξ) := σ(u,Γ(x, ξ)), for x ∈ X , ‖u‖∗ ≤ 1}.

Note that D(Q,P ) may be bounded by the ζ-metric

ζF (Q,P ) := sup
g∈F

∣∣EQ[g(ξ)]− EP [g(ξ)]
∣∣.
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Theorem:
Let X be a compact subset of X and S(P ) and S(Q) denote the

solution sets of (SGE(P)) and (SGE(Q)) restricted to X . Assume

(a) Γ is set-valued taking convex and compact values in Y ,

(b) Y is finite-dimensional or Γ is single-valued,

(c) Γ(·, ξ) is upper semi-continuous for every ξ ∈ Ξ and integrably

bounded, i.e., supy∈Γ(x,ξ) ‖y‖ integrable for all x ∈ X ,

(d) G is upper semi-continuous,

(e) S(Q) is nonempty if D(Q,P ) is small.

For any ε > 0, let

R(ε) := inf
x∈X , d(x,S(P ))≥ε

d(0,EP [Γ(x, ξ)] + G(x)).

Then R(ε) → 0 as ε→ 0 and

D(S(Q), S(P )) ≤ R−1(2D(Q,P )),

where R−1(t) := min{ε ∈ R+ : R(ε) = t}.
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Stability of linear two-stage stochastic programs

We consider
minx∈Rn c>x + EP [v(x, ξ)]

s.t. x ∈ X,
where X is convex polyhedral and v(x, ξ) is the second stage op-

timal value function

miny∈Rm q(ξ)>y

s.t. T (ξ)x +Wy = h(ξ), y ≥ 0,

where W ∈ Rr×m is a fixed recourse matrix, T (ξ) ∈ Rr×n is a

random matrix, and h(ξ) ∈ Rr and q(ξ) ∈ Rm are random vectors.

We assume that T (·), h(·) and q(·) are affine functions of ξ and

that Ξ is a polyhedral subset of Rs (for example, Ξ = Rs).

Stochastic generalized equation

0 ∈ EP [c− T (ξ)>D(x, ξ)] + NX(x),

where D(x, ξ) is the solution set of the dual second stage problem

D(x, ξ) := arg max
W>ζ≤q(ξ)

ζ>(h(ξ)− T (ξ)x).
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Theorem: Assume that

(a) h(ξ)− T (ξ)x ∈ W (Rm
+) for all (ξ, x) ∈ Ξ×X,

(b) M(q(ξ)) = {π : W>π ≤ q(ξ)} 6= ∅ is bounded for all ξ ∈ Ξ,

(c) P has finite second order moments, i.e., EP [‖ξ‖2] < +∞ and

(d) X is a nonempty and bounded polyhedron.

Then it holds for any probability measure Q such that D(Q,P ) is

sufficiently small

D(S(Q), S(P )) ≤ R−1(2D(Q,P )),

where the function R is defined by

R(ε) := inf
x∈X,d(x,S(P ))≥ε

d(0,EP [Γ(x, ξ)] + NX(x)).

The class F for defining D is contained in

{g : g(ξ)− g(ξ̃) ≤ C max{1, ‖ξ‖, ‖ξ̃‖}2‖ξ − ξ̃‖,∀ξ, ξ̃ ∈ Ξ}.



Home Page

Title Page

Contents

JJ II

J I

Page 9 of 17

Go Back

Full Screen

Close

Quit

Stability of two-stage SMPCC

The theory applies to

min
x, y(·)∈Y

EP [f (x, y(ω), ξ(ω))]

subject to x ∈ X and for almost every ω ∈ Ω :

g(x, y(ω), ξ(ω)) ≤ 0,

h(x, y(ω), ξ(ω)) = 0,

0 ≤ G(x, y(ω), ξ(ω)) ⊥ H(x, y(ω), ξ(ω)) ≥ 0,

where X is a nonempty closed convex subset of Rn, f, g, h,G,H

are continuously differentiable functions from Rn × Rm × Rq to

R,Rs,Rr,Rm,Rm, respectively, ξ : Ω → Ξ is a vector of random

variables defined on probability (Ω,F, P ) with compact support

set Ξ ⊂ Rq, and EP [·] denotes the expected value with respect

to probability measure P , and ‘⊥’ denotes the perpendicularity of

two vectors, Y is a space of functions y(·) : Ω → Rm such that

EP [f (x, y(ω), ξ(ω))] is well defined.
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The two-stage SPCC may be reformulated as

min
x

θ(x) = EP [v(x, ξ)]

s.t. x ∈ X,

where v(x, ξ) denotes the optimal value function of the following

second stage problem:

MPCC(x, ξ) : min
y

f (x, y, ξ)

s.t. g(x, y, ξ) ≤ 0,

h(x, y, ξ) = 0,

0 ≤ G(x, y, ξ) ⊥ H(x, y, ξ) ≥ 0.

Under certain assumptions v(·, ξ) is locally Lipschitz continuous

(with a P -integrable Lipschitz constant) and one may consider the

necessary optimality conditions (using the Clarke subdifferential)

0 ∈ EP [∂xv(x, ξ)] + NX(x).

as SGE that hopefully satisfies the assumptions of the stability re-

sult.
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Let us, in particular, consider the stochastic optimization model

min{c>x + EP [q(ξ)>y] : 0 ∈Wy + T (ξ)x− h(ξ) +NRm̄
+
(y), x ∈ X},

where similar conditions are imposed as in the (standard) two-stage

model before. The linear generalized equation is equivalent to the

linear complementarity problem

Wy + T (ξ)x ≥ h(ξ), y ≥ 0, y>(Wy + Tx− h(ξ)) = 0.

Its solution set is a polyhedral multifunction (of a = h(ξ)−T (ξ)x)

and, hence, is locally upper Lipschitz continuous at each a (with

the same modulus L > 0). Hence, the reformulation reads

min{c>x + E[v(x, ξ)] : x ∈ X}
and the function v(·, ξ) is locally Lipschitz continuous (with con-

stant L‖q(ξ)‖‖T (ξ)‖). Then the general theory implies (local)

upper Lipschitz continuity of the solution set mapping at P with

respect to the ζ-distance ζF and the function class

F = {vo(x, ·;u) : x ∈ X, ‖u‖ ≤ 1},
where vo(x, ξ;u) denotes the Clarke directional derivative of v(·, ξ)
at x.
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Stability of convex programs with second order dominance
constraints

We consider convex programs with second order dominance con-

straints

min
x

f (x)

s.t. EP [(η −G(x, ξ))+] ≤ EP [(η − Y (ξ))+], ∀η ∈ [a, b],

x ∈ X,

where X is a closed convex subset of Rn, f : Rn → R is convex

and differentiable and G : Rn×Ξ → R is concave in the first com-

ponent and has linear growth in the second, ξ is a random vector

with distribution P and support Ξ in Rd.

The constraint satisfies the uniform dominance condition (udc) at

P if x̄ ∈ X exists such that

min
η∈[a,b]

(
EP [(η −G(x̄, ξ))+]− EP [(η − Y (ξ))+]

)
> 0.
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Optimality condition:
Let udc be satisfied at P . If a feasible x∗ ∈ X is optimal, there

exists u∗ ∈ U1 satisfying

0 ∈ EP [Γ(x∗, u∗, ξ)] + G(x∗)

i.e.,

0 ∈ f ′(x∗) + EP [∂x(−u∗(G(x∗, ξ))] +NX(x∗)

0 = EP [u∗(G(x∗, ξ))− u∗(Y (ξ)))],

where U1 = {u ∈ C1(R) : ∃ϕ : I → R+ nonincreasing,

left-continuous and bounded such that u′(t) = ϕ(t), t ∈ [a, b],

u′(t) = ϕ(a), t < a, u(t) = 0, t ≥ b}.

Theorem:
Let udc be satisfied at P and X be compact. Then it holds

D(S(Q), S(P )) ≤ R−1(2D(Q,P )),

where R and R−1 are defined in the stability theorem.

Characterization of the class F ?
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Another stability result for such models (Dentcheva/Römisch 12):

Let v(ξ, Y ) denote the optimal value and S(ξ, Y ) the solution set

and X (ξ, Y ) the feasible set.

We consider the growth function

ψ(ξ,Y )(τ ) := inf{f (x)− v(ξ, Y ) : d(x, S(ξ, Y )) ≥ τ, x ∈ X (ξ, Y )}

and

Ψ(ξ,Y )(θ) := θ + ψ−1
(ξ,Y )(2θ) (θ ∈ R+),

where we set ψ−1
(ξ,Y )(t) = sup{τ ∈ R+ : ψ(ξ,Y )(τ ) ≤ t}.

Note that Ψ(ξ,Y ) is inreasing and vanishes at θ = 0.
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Theorem:
Let X be compact and assume that the function G satisfies

|G(x, u)−G(x, ũ)| ≤ LG‖u− ũ‖

for all x ∈ D, u, ũ ∈ Ξ and some constant LG > 0. Assume that

udc is satisfied at (ξ, Y ).

Then there exist positive constants L and δ such that

|v(ξ, Y )− v(ξ̃, Ỹ )| ≤ Ld2((ξ, Y ), (ξ̃, Ỹ ))

D(S(ξ̃, Ỹ ), S(ξ, Y )) ≤ Ψ(ξ,Y )(Ld2((ξ, Y ), (ξ̃, Ỹ )))

whenever d2((ξ, Y ), (ξ̃, Ỹ )) < δ.

The metric d2 is defined by

d2((ξ, Y ), (ξ̃, Ỹ )) = `1(ξ, ξ̃) + sup
t∈R

|F (2)
Y (t)− F

(2)

Ỹ
(t)|

with the L1-minimal metric `1 and F
(2)
Y (t) =

∫ t

−∞ FY (x)dx (t ∈
R).
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Conclusions

• The stability analysis of SGEs allows to extend the stability

theory to more general stochastic variational problems.

• In particular, quantitative stability results for two-stage SPCCs

and programs with stochastic dominance constraints were ob-

tained.

• A characterization of the distances D and the function classes

F might improve the understanding of scenario generation for

such models.

Thank you !
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