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Introduction

• Stochastic programs are optimization problems containing in-

tegrals in the objective function and/or constraints.

• Applied stochastic programming models in production, trans-

portation, energy, finance etc. are typically large scale.

• Standard approach for solving such models are variants of Monte

Carlo for generating scenarios (i.e., samples).

• A few recent approaches to scenario generation in stochastic

programming besides MC:

(a) Optimal quantization of probability distributions (Pflug-Pichler

2010).

(b) Quasi-Monte Carlo (QMC) methods (Koivu-Pennanen 05, Homem-

de-Mello 06).

(c) Sparse grid quadrature rules (Chen-Mehrotra 08).



Home Page

Title Page

Contents

JJ II

J I

Page 3 of 18

Go Back

Full Screen

Close

Quit

While the justification of MC and (a) may be based on available sta-

bility results for stochastic programs, there is almost no reasonable

justification of applying (b) and (c).

Personal interest: Applying and justifying randomized QMC

methods (randomly shifted and digitally shifted polynomial lattice

rules) with application in energy models.
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Two-stage linear stochastic programs

Two-stage stochastic programs arise as deterministic equivalents of

improperly posed random linear programs

min{〈c, x〉 : x ∈ X, Tx = ξ},

where X is a convex polyhedral subset of Rm, T a matrix, ξ is a

d-dimensional random vector.

A possible deviation ξ − Tx is compensated by additional costs

Φ(x, ξ) whose mean with respect to the probability distribution P

of ξ is added to the objective. We assume that the additional costs

represent the optimal value of a second-stage program, namely,

Φ(x, ξ) = inf{〈q, y〉 : y ∈ Rm̄, Wy = ξ − Tx, y ≥ 0},

where q ∈ Rm̄, W a (d, m̄)-matrix (having rank d) and t varies in

the polyhedral cone W (Rm̄
+).

The deterministic equivalent then is of the form

min
{
〈c, x〉 +

∫
Rd

Φ(x, ξ)P (dξ) : x ∈ X
}

.
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We assume that the additional costs are of the form

Φ(x, ξ) = ϕ(ξ − Tx)

with the second-stage optimal value function

ϕ(t) = inf{〈q, y〉 : Wy = t, y ≥ 0}
= sup{〈t, z〉 : W>z ≤ q} = sup

z∈D
〈t, z〉 ,

There exist vertices vj of the dual feasible set D and polyhedral

cones Kj, j = 1, . . . , `, decomposing dom ϕ such that

ϕ(t) = 〈vj, t〉, ∀t ∈ Kj, and ϕ(t) = max
j=1,...,`

〈vj, t〉.

Hence, the integrands are of the form

f (ξ) = max
j=1,...,`

〈vj, ξ − Tx〉.

Problem: When transformed to [0, 1]d, f is not of bounded variation

in the Hardy-Krause sense and does not belong to tensor product

Sobolev spaces
⊗d

i=1 W 1
2 ([0, 1]) in general.
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Model extensions

• Two-stage models with affine functions h(ξ) and/or T (ξ), hence,

the integrands f are of the form

f (ξ) = max
j=1,...,`

〈vj, h(ξ)− T (ξ)x〉.

• Two-stage models with random second-stage costs q(ξ)

f (ξ)= max
j=1,...,`

〈vj(ξ), h(ξ)− Tx〉= max
j=1,...,`

〈Cjq(ξ), h(ξ)− T (ξ)x〉.

• Multi-period models: Random vector ξ = (ξ1, . . . , ξT )

f (ξ) = Ψ1(ξ, x),

where Ψ1 is given by the DP recursion

Φt(ξ
t, ut−1) := sup

{
〈ut−1, zt〉 + Ψt+1(ξ

t, zt) : W>
t zt ≤ qt(ξt)

}
Ψt(ξ

t, zt−1) := Φt(ξ
t, ht(ξt)− Tt(ξt)zt−1), t = T, . . . , 1,

where z0 = x, ξt = (ξt, . . . , ξT ) and ΨT+1(ξ
T+1, zT ) ≡ 0.

• Multi-stage models: The only difference to multi-period is

Ψt(ξ
t, zt−1) := E[Φt(ξ

t, ht(ξt)− Tt(ξt)zt−1)|ξ1, . . . , ξt].
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ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of them are

smooth, but hopefully only some of them relevant.

Let D = {1, . . . , d} and f ∈ L1,ρd
(Rd) with ρd(ξ) =

∏d
j=1 ρj(ξj).

Let the projection Pk, k ∈ D, be defined by

(Pkf )(ξ) :=

∫ ∞

−∞
f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).

Clearly, Pkf is constant with respect to ξk. For u ⊆ D we write

Puf =
( ∏

k∈u

Pk

)
(f ),

where the product means composition, and note that the ordering

within the product is not important because of Fubini’s theorem.

The function Puf is constant with respect to all xk, k ∈ u. Note

that Pu satisfies the properties of a projection.



Home Page

Title Page

Contents

JJ II

J I

Page 8 of 18

Go Back

Full Screen

Close

Quit

ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = PD(f ) and recursively

fu = P−u(f )−
∑
v⊆u

fv

or

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f )),

where P−u and Pu−v mean integration with respect to ξj, j ∈ D\u

and j ∈ u \ v, respectively. The second representation motivates

that fu is essentially as smooth as P−u(f ).

If f belongs to L2,ρd
(Rd), the ANOVA functions {fu}u⊆D are or-

thogonal in L2,ρd
(Rd).
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We set σ2(f ) = ‖f − Id(f )‖2
L2

and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

‖fu‖2
L2

.

The truncation dimension dt of f is the smallest dt ∈ N such that∑
u⊆{1,...,dt}

‖fu‖2
L2
≥ pσ2(f ) (where p ∈ (0, 1) is close to 1).

Then it holds ∥∥∥f −
∑

u⊆{1,...,dt}

fu

∥∥∥
L2
≤ (1− p)σ2(f ).

(Wang-Fang 03, Kuo-Sloan-Wasilkowski-Woźniakowski 10, Griebel-Holtz 10)

According to an observation of Griebel-Kuo-Sloan 10 the ANOVA terms

fu can be smoother than f under certain conditions.
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ANOVA decomposition of two-stage integrands

Assumption:
(A1) W (Rm̄

+) = Rd (complete recourse).

(A2) D 6= ∅ (dual feasibility).

(A3)
∫

Rd ‖ξ‖P (dξ) < ∞.

(A4) P has a density of the form ρd(ξ) =
∏d

j=1 ρj(ξj) (ξ ∈ Rd)

with ρj ∈ C(R), j = 1, . . . , d.

(A1) and (A2) imply that dom ϕ = Rd and D is bounded and,

hence, it is the convex hull of its vertices. Furthermore, the cones

Kj are the normal cones to D at the vertices vj, i.e.,

Kj = {t ∈ Rd : 〈t, z − vj〉 ≤ 0, ∀z ∈ D} (j = 1, . . . , `)

= {t ∈ Rd : 〈t, vi − vj〉 ≤ 0, ∀i = 1, . . . , `, i 6= j}.
It holds that ∪j=1,...,`Kj = Rd and for j 6= j′ the intersection

Kj ∩ Kj′ is a common closed face of dimension d − 1 iff the two

cones are adjacent and is contained in

{t ∈ Rd : 〈t, vj′ − vj〉 = 0}.
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To compute projections Pk(f ) for k ∈ D. Let ξi ∈ R, i = 1, . . . , d,

i 6= k, be given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and

ξs = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) ∈ Rd = ∪j=1,...,`Kj.

Assuming (A1)–(A4) it is possible to derive an explicit representa-

tion of Pk(f ) that depends on ξk and on the finitely many points

at which the one-dimensional affine subspace {ξs : s ∈ R} meets

the common face of two adjacent cones. This leads to

Proposition:
Let k ∈ D. Assume (A1)–(A4) and that all adjacent vertices of D
have different kth components.

The kth projection Pkf is infinitely differentiable if the density ρk

is in C∞(R) and all its derivatives are bounded on R.
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Theorem:
Let u ⊂ D. Assume (A1)–(A4) and that all adjacent vertices of D
have different kth components for some k ∈ D \ u.

Then the ANOVA term fu belongs to C∞(Rd−|u|) if ρk ∈ C∞(R)

and all its derivatives are bounded on R.

Remark: The algebraic condition on the vertices of D is satisfied

almost everywhere in the following sense:

Given D there are only finitely many orthogonal matrices Q per-

forming rotations of Rd such that the condition is not satisfied for

QD = {z ∈ Rd : (QW )>z ≤ q}. Note that then the optimal

value φ(t) is equal to max{〈Qt, z〉 : z ∈ QD}. Such an orthogo-

nal transformation of D leads only to simple changes.
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Example:
Let m̄ = 3, d = 2, P denote the two-dimensional standard normal

distribution and let the following vector q and matrix W

W =

(
−1 1 0

1 1 −1

)
q =

 1

1

0


be given. Then (A1) and (A2) are satisfied and the dual feasible

set D is the triangle (in R2)

D = {z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0},

with the vertices

v1 =

(
1

0

)
v2 =

(
−1

0

)
v3 =

(
0

1

)
.

The normal cones Kj to D at vj, j = 1, 2, 3, are

K1 = {z ∈ R2 : z1 ≥ 0, z2 ≤ z1},
K2 = {z ∈ R2 : z1 ≤ 0, z2 ≤ −z1},
K3 = {z ∈ R2 : z2 ≥ z1, z2 ≥ −z1}.
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Figure 1: Illustration of D, its vertices vj and the normal cones Kj to its vertices

Hence, the second component of the two adjacent vertices v1 and

v2 coincides. The function ϕ is of the form

ϕ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

and the integrand is

f (ξ) = max{|ξ1 − [Tx]1|, ξ2 − [Tx]2}

The ANOVA projection P1f is in C∞, but P2f is not differentiable.
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Remark: Under the assumptions of the theorem the function

fd−1(ξ) =
∑

|u|≤d−1

fu

is in C∞(Rd) if ρk ∈ C∞(R) and all its derivatives are bounded on

R for every k ∈ D. On the other hand, it holds

f = fd−1 + fD.

Hence, the question arises: For which two-stage linear stochastic

programs is the L2-norm of fD small or, equivalently, is fd−1 a good

approximation of f in L2,ρd
?

Open problem: Estimates of the truncation dimension of two-

stage linear stochastic programs ?
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Conclusions

• The results provide a first theoretical explanation of our com-

putational results close to the optimal rate for randomly shifted

lattice rules applied to two-stage stochastic programs.

• The results will be extended to more general two-stage situa-

tions.

• Numerical experiments with and without orthogonal transfor-

mations will hopefully lead to more computational insight into

the geometric condition on adjacent vertices.

• Challenge: Multi-stage and integer stochastic programs.
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I. H. Sloan and H. Woźniakowski: When are Quasi Monte Carlo algorithms efficientnfor high-
dimensional integration, Journal of Complexity 14 (1998), 1–33.

I. H. Sloan, F. Y. Kuo and S. Joe: On the step-by-step construction of Quasi-Monte Carlo integra-
tion rules that achieve strong tractability error bounds in weighted Sobolev spaces, Mathematics of
Computation 71 (2002), 1609-1640.

X. Wang and K.-T. Fang: The effective dimension and Quasi-Monte Carlo integration, Journal of
Complexity 19 (2003), 101–124.


