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Introduction
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e Stochastic programs are optimization problems containing in-
tegrals in the objective function and/or constraints. Tice Page_|

e Applied stochastic programming models in production, trans- |
portation, energy, finance etc. are typically large scale.

. . 4 »»
e Standard approach for solving such models are variants of Monte L
Carlo for generating scenarios (i.e., samples). =

e A few recent approaches to scenario generation in stochastic

programming besides MC: Poge 20r15 |

(a) Optimal quantization of probability distributions (Pflug-Pichler Gogack |
2010).
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(b) Quasi-Monte Carlo (QMC) methods (Koivu-Pennanen 05, Homem-
de-Mello 06).

(c) Sparse grid quadrature rules (Chen-Mehrotra 08).
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While the justification of MC and (a) may be based on available sta-
bility results for stochastic programs, there is almost no reasonable
justification of applying (b) and (c).

Personal interest: Applying and justifying randomized QMC
methods (randomly shifted and digitally shifted polynomial lattice
rules) with application in energy models.
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Two-stage linear stochastic programs

Two-stage stochastic programs arise as deterministic equivalents of
improperly posed random linear programs

min{{c,z) : x € X, Tx = £},

where X is a convex polyhedral subset of R™, T" a matrix, £ is a
d-dimensional random vector.

A possible deviation & — T'x is compensated by additional costs
O (x, &) whose mean with respect to the probability distribution P
of ¢ is added to the objective. We assume that the additional costs
represent the optimal value of a second-stage program, namely,

O(x, &) =inf{(q,y) :y e R", Wy =& — T,y > 0},

where ¢ € R™, W a (d, m)-matrix (having rank d) and ¢ varies in
the polyhedral cone W (RT').
The deterministic equivalent then is of the form

min {(c, x) + /Rd Oz, E)P(dE) : x € X}.
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We assume that the additional costs are of the form

O(z,8) = (& — Tx)

with the second-stage optimal value function

p(t) = nf{(q,y) : Wy =t,y > 0}

= sup{(t,z) : W'z < ¢} =sup(t,2),
zeD

There exist vertices v/ of the dual feasible set D and polyhedral
cones K;, 7 =1,...,¢, decomposing dom ¢ such that

plt) = (v7,1), Yt € Kj, and p(t) = max (1)
Hence, the integrands are of the form

f(&) = max <Uj,f—Tx>.
J=1,...0

.....

Problem: When transformed to [0, 1]¢, f is not of bounded variation

in the Hardy-Krause sense and does not belong to tensor product
Sobolev spaces 7, W, ([0, 1]) in general.
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Model extensions
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e Two-stage models with affine functions h(&) and /or T'(¢), hence,

the integrands f are of the form Tice Page |
7€) = mmax (o7, h(€) — T(a). _

KT

< >
e Multi-period models: Random vector £ = (&1, ...,&r) I
f(g) — @1(57 Qj), Page 6 of 18 I

where W1 is given by the DP recursion

Q€ up1) = sup { (w1, 20) + Ura(€, 20) - Wyl 2 < i) }
W&, zp-1) = Qo€ he(&) — To(&)ze—1), t =T, ..., 1, Full sereen_|

where 29 =z, £ = (&, ...,&r) and ‘I’T+1(5T+17 zr) = 0. Cose |

gocoge o Jl=dbgeoooyg
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e Multi-stage models: The only difference to multi-period is

V(€' 2i-1) = B[®4(E', (&) — Ti(6)z-1)&s, - -+, &4 N



ANOVA decomposition of multivariate functions

Home Page I

Idea: Decompositions of f may be used, where most of them are
smooth, but hopefully only some of them relevant. Tite Page |

Let D={1,...,d} and f € Ly ,,(R?) with py(§) = H;-Z:l pi(&;). e ]
Let the projection P, k € D, be defined by —

(Pef)(€) = /OO F€rs o &1y 8, Er1s - - Ed)pr(s)ds (€ € RY). e

Clearly, P f is constant with respect to &;. For u C D we write P |
r.f=(T12)w. |
g Go Back

where the product means composition, and note that the ordering ol sereen |
within the product is not important because of Fubini's theorem.

The function P, f is constant with respect to all z;, £ € u. Note Close |
that P, satisfies the properties of a projection.
Quit I



ANOVA-decomposition of f:
f= Z fus

where fy = I;(f) = Pp(f) and recursively

f)_va
or :

fu — Z(_l)w_w‘P—vf = P_ u Z |u’ MPL U(P (f))a

vCu vCU

where P_,, and P,_, mean integration with respect to §;, j € D\ u
and j € u \ v, respectively. The second representation motivates
that f, is essentially as smooth as P_,(f).

If f belongs to Lo, (R?), the ANOVA functions {f,}.cp are or-
thogonal in Lo, (RY).
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We set o*(f) = ||f — La(f)||7, and have

o’(f) = IfIz, — ()= D Iful,.

0#uCD

The truncation dimension d; of f is the smallest d; € N such that

Z Hfu”%2 > po*(f) (where p € (0,1) is close to 1).
ug{l ..... dt}

Then it holds

lr= > 4

uC{l ..... dt

(1 =p)a(f).

(Wang-Fang 03, Kuo-Sloan-Wasilkowski-Wozniakowski 10, Griebel-Holtz 10)

According to an observation of Griebel-Kuo-Sloan 10 the ANOVA terms
fu can be smoother than f under certain conditions.
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ANOVA decomposition of two-stage integrands

Assumption:

(A1) W(RT) = R? (complete recourse).

(A2) D # 0 (dual feasibility).

(A3) [y €1 P(dg) < o0

(A4) P has a density of the form p,(&) = H?ﬂ p;(&) (€ € RY)
with p; €e C(R), 7 =1,....,d.

(A1) and (A2) imply that dom = R and D is bounded and,
hence, it is the convex hull of its vertices. Furthermore, the cones
IC; are the normal cones to D at the vertices v, e,

Ki = {tecR: (t,z ') <0,Vz€D} (j=1,...,0
= {teRY: (t,v' =) <0, Vi=1,....0,i#j}.

.....

KN ICj/ is a common closed face of dimension d — 1 iff the two
cones are adjacent and is contained in

{t e RY: (t,0/" — ) =0}
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To compute projections Py (f) fork € D. Let§ e R, i=1,....,d,
i # k, be given. We set &8 = (&, ..., &1, &1, - - -, &q) and

€S:(gla'“7€/€—1737€k‘+17'°'7£d)GR _U] 1,..., E’CJ

Assuming (A1)-(A4) it is possible to derive an explicit representa-
tion of P.(f) that depends on ¥ and on the finitely many points
at which the one-dimensional affine subspace {£; : s € R} meets
the common face of two adjacent cones. This leads to

Proposition:

Let £ € D. Assume (Al)—(A4) and that all adjacent vertices of D
have different kth components.

The kth projection P f is infinitely differentiable if the density py
is in C*°(R) and all its derivatives are bounded on R.
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Theorem:

Let w C D. Assume (Al)—(A4) and that all adjacent vertices of D T ]
have different kth components for some k € D \ u. e |
Then the ANOVA term f, belongs to C°(R* 14} if p, € C=(R)

and all its derivatives are bounded on R. «| »

DRI N

Remark: The algebraic condition on the vertices of D is satisfied Poge 126115 |
almost everywhere in the following sense:

Given D there are only finitely many orthogonal matrices () per- GoBack |
forming rotations of R such that the condition is not satisfied for

QD = {z € RY: (QW)T2 < ¢q}. Note that then the optimal [l |

value ¢(t) is equal to max{(Qt, z) : z € QD}. Such an orthogo-
nal transformation of D leads only to simple changes. =T
Quit |



Example:
Let m = 3, d = 2, P denote the two-dimensional standard normal L Hemfee ]
distribution and let the following vector ¢ and matrix W

. Title Page |
o110 |,
= 1 1 —1 q = ) Contents |

be given. Then (A1) and (A2) are satisfied and the dual feasible ]
set D is the triangle (in R?) S

D:{ZER2:_Zl+22§1721+22§17—22§0},

Page 13 of 18 |
with the vertices

(1) () ()
0 0 1/
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The normal cones K; to D at v/, j = 1,2,3, are
Ky = {ZERQI,Z’lZO,ZQSZl}, LI

2
’CQ {Z eER: 5 < O, 22 > Zl}a o |

Ky = {Z € RQ D29 > 21,29 = —Zl}.



v? 0 v

Ko Ky

Figure 1: lllustration of D, its vertices v/ and the normal cones KC; to its vertices

1

Hence, the second component of the two adjacent vertices v* and

v? coincides. The function ¢ is of the form

o(t) = _mlaéx3<vi, t) = max{ty, —t1, o} = max{|t1|, {2}
/l/: b) b)

and the integrand is
f(&) = max{|&; — [Tz]i|, & — [Tz}
The ANOVA projection P f isin C'™°, but P f is not differentiable.
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Remark: Under the assumptions of the theorem the function
fir) = D fu

lu|<d—1

is in C°(R?) if p, € C°°(R) and all its derivatives are bounded on
R for every k € D. On the other hand, it holds

J=Jie1+ Jfp.

Hence, the question arises: For which two-stage linear stochastic
programs is the Lo-norm of fp small or, equivalently, is f;_1 a good
approximation of fin Ly, ?

Open problem: Estimates of the truncation dimension of two-
stage linear stochastic programs 7
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Conclusions

e The results provide a first theoretical explanation of our com-
putational results close to the optimal rate for randomly shifted
lattice rules applied to two-stage stochastic programs.

e The results will be extended to more general two-stage situa-
tions.

e Numerical experiments with and without orthogonal transfor-
mations will hopefully lead to more computational insight into
the geometric condition on adjacent vertices.

e Challenge: Multi-stage and integer stochastic programs.
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