
Energy Systems under Uncertainty:
Modeling and Computations

W. Römisch

Humboldt-University Berlin
Department of Mathematics

www.math.hu-berlin.de/~romisch

Systems Analysis 2015, November 11–13, IIASA (Laxenburg, Austria)



Introduction

Energy systems often contain uncertain parameters, for example, demands, prices,

inflows, wind speeds. Hence, an important modeling issue is data driven uncer-

tainty quantification. In most cases, huge data sets are available. We discuss how

starting from suitable statistical models sets of scenarios are generated that are

representative for the uncertain parameters. The scenarios are then inserted into

mathematical models describing the systems.

In this talk we consider the following two examples of energy systems:

• Electricity portfolio management under load-price uncertainty

• Evaluation of gas network capacities under demand uncertainty, validation of

nominations and verification of booked capacities (supporting decisions of gas

transmission system operators (TSOs) to sell capacity rights to customers)

nomination = vector defining the amounts of gas entering and leaving at each entry and exit, respectively
gas network capacity = determined by the set of all ”reasonable” nominations
validation of nominations = answering the question whether particular nominations can be transported
verification of booked capacities = how likely is that all reasonable nominations can be transported?



Mean-Risk Electricity Portfolio Management

(A. Eichhorn, I. Wegner-Specht)



We consider the electricity portfolio management of a German municipal electric

power company. Its portfolio consists of the following positions:

• Power production (based on company-owned thermal units),

• (yearly) bilateral contracts,

• (physical) (day-ahead) spot market trading (e.g., European Energy Exchange

(EEX)) and

• (financial) trading of (monthly) electricity futures.

The time horizon is discretized into hourly intervals. The underlying stochasticity

consists in a multivariate stochastic load and price process that will be represen-

ted approximately by a finite number of scenarios.

The objective is to maximize the total expected revenue and to minimize
the risk. The portfolio management model is a large scale (mixed-integer) multi-

stage stochastic optimization problem.
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Figure 1: Time plot of load profile for one year
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Figure 2: Time plot of spot price profile for one year



Statistical models and scenario trees

For the stochastic input data of the optimization model (here yearly electricity

and heat demand, and electricity spot prices), a statistical model is employed.

- cluster classification for the intra-day (demand and price) profiles,

- Three-dimensional linear time series model for the daily average values (deter-

ministic trend functions, a trivariate ARMA model for the (stationary) residual

time series),

- Generation of scenarios by computing (Quasi-)Monte Carlo samples from the

multivariate normal distribution that corresponds to the ARMA process, and ad-

ding on trend functions as well as matched intra-day profiles from the clusters

afterwards,

- generation of scenario trees based on monthly recursive scenario reduction ap-

plied to a given set of scenarios (Heitsch-Römisch 09).
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Yearly scenario tree for the trivariate load-price process with monthly branching



Numerical results

Test runs were performed on real-life data of a German municipal power company

leading to a linear optimization problem containing T = 365 · 24 = 8760 time

steps, a scenario tree with 40 demand-price scenarios with about 150.000 nodes.

The objective function is of the form

Minimize γρ(z)− (1− γ)E(zT )

with some (multiperiod) risk measure ρ with risk aversion parameter γ ∈ [0, 1]

(γ = 0 corresponds to the risk-neutral case).

Risk measure (of aggregation type):

ρ(z) = AVaRα

(
min

j=1,...,J
ztj

)
= inf

r∈R

{
r +

1

α
E[max{0,−r − min

j=1,...,J
ztj}]

}
,

where {zt : t = 1, . . . , T} is the stochastic revenue process and tj, j = 1, . . . , J ,

J = 52, are the risk measuring time steps. The latter correspond to 11 pm at

the last trading day of each week.



It turns out that the numerical results for the expected maximal revenue and

minimal risk

E(z∗γT ) and ρ(z∗γt1 , . . . , z
∗γ
tJ

)

with the optimal revenue process z∗γ are (almost) identical for γ ∈ [0.15, 0.95]

and the risk measure ρ. The efficient frontier

γ 7→
(
ρ(z∗γt1 , . . . , z

∗γ
tJ

),E(z∗γT )
)

is concave for γ ∈ [0, 1].
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The LP is solved by CPLEX 9.1 in about 1 h running time on a 2 GHz Linux PC with 1 GB RAM.

Risk aversion costs less than 1% of the expected overall revenue.
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Gas network capacities and validation of nominations

(H. Heitsch, H. Leövey, R. Mirkov, I. Wegner-Specht)

We consider the gas transport network of the company Open Grid Europe GmbH

(OGE). It is Germany’s largest gas transport company. Such networks consist

of intermeshed pipelines which are actuated and safeguarded by active elements

(like valves and compressor machines). Here, we consider the stationary state of

the network and the isothermal case.

Two different gas qualities are considered: H-gas and L-gas (high and low calorific

gas). Both are transported by different networks.

The gas dynamics in a pipe is modeled by the Euler equations, a nonlinear system

of hyperbolic partial differential equations. In the stationary and isothermal situa-

tion they boil down to nonlinear relations between pressure and flow. Together

with models for the active elements, this leads to large systems of nonlinear

mixed-integer equations and inequalities.

Aim: Evaluating the capacity of a gas network, validating nominations and ve-

rifying booked capacities.







Statistical data and data analysis

Hourly gas flow data is available at all exit nodes of a given network for a period

of eight years. Due to stationary modeling we consider the daily mean gas flow

at all exit nodes. Since it depends on the daily mean temperature, we consider a

daily reference temperature based on a weighted average temperature taken at

different network nodes.

Due to stationary and isothermal modeling we introduce the temperature classes

(-15,-4], (-4,-2], (-2,0],. . ., (18,20], (20,30) and perform a corresponding filtering

of all daily mean gas flows at all exit nodes according to the daily reference

temperatures. We also check that a reasonable amount of daily mean gas flow

data is available for all temperature classes except for (-15,-4]. Another filtering

is carried out for day classes (working day, weekend, holiday).



Examples of daily main gas flow at exit nodes as function of the temperature

Daily mean gas flow data at exit nodes with municipal power stations, with zero flow (right).

Daily mean gas flow data at exit nodes with company (left), market transition (middle), storage (right).



Univariate distribution fitting

Classes of univariate probability distributions:

• (shifted) uniform distributions

• (shifted) (log)normal distributions

• Zero gas flow appears with empirical probability p at several exit nodes.

Hence, we consider the shifted probability distribution function

F (x) = pF 0(x) + (1− p)F+(x)

Probability distribution function of a shifted normal distribution at exit 1603



Fitting multivariate normal distributions

• Multivariate normal distributions are fitted for exit gas flows that satisfy

normality tests and have significant correlations with other exit nodes, i.e.,

in addition to means and variances, correlations are estimated by standard

estimators if sufficient data is available.

• Examples of correlation matrices:

Correlation plots for the temperature classes (10, 12] and (18, 20] in certain areas of the H-gas network.



Forecasting gas flow demand for low temperatures

• Low temperatures require a specific treatment due to lack of data.

• Idea: Penalized spline (P-spline) regression with shape constraints.

• Ansatz: Least squares regression for all standardized daily maximal gas flows

yi for the temperature ti at some exit node.

min
a∈Rm

{ n∑
i=1

(yi − S(ti))
2 + λ

m∑
j=3

(δ2aj)
2 + κ

m∑
j=2

bj(δ
1aj)

2
}
,

where λ and κ are positive smoothing and shape parameters and

S(t) =

m∑
j=1

ajBj(t)

is a cubic spline in B-spline basis representation.

Here, it holds δ1aj = aj − aj−1 und δ2aj = aj − 2aj−1 + aj−2.



• Using the regression model to fit the mean of a univariate normal distribution

at t = −14◦C and using the variance taken from the temperature class

(−4◦C, −2◦C].

• Example parameters: λ = 2.51, κ = 100 und bj = 1.

P-spline regression with flattening asymptotes and comparison with sigmoid regression (red)



Scenario generation

Using randomized Quasi-Monte Carlo methods we determine N samples with

probability 1
N for the d-dimensional random vector ξ that corresponds to the

random gas flows at the d exits of a given network. We proceed as follows:

• We determine N samples ηj of the uniform distribution on [0, 1)d using So-

bol’ points and perform a componentwise random scrambling of their binary

digits using the Mersenne Twister. The scenarios ηj, j = 1, . . . , N , combine

favorable properties of both Monte Carlo and Quasi-Monte Carlo methods.

• Determine samples in Rd by

ζji = Φ−1i (ηji ) (i = 1, . . . , d; j = 1, . . . , N)

using the univariate distribution function Φi of the ith component.

• If a part of the components of ξ has a d-dimensional multivariate normal

distribution with mean m ∈ Rs and s× s covariance matrix Σ, we perform

a decomposition Σ = AA>, where the matrix A preferably corresponds to

principal component analysis. Then the s-dimensional vectors

ξj = Aζj + m (j = 1, 2, . . . , N)

are suitable scenarios for this part of the random vector ξ.
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Comparison of n = 27 Monte Carlo Mersenne Twister points and randomly binary shifted Sobol’ points in
dimension d = 500, projection (8,9)



Optimal scenario reduction

• Given is a large number N of d-dimensional scenarios ξi, i = 1, . . . , N , with

probabilities 1
N and a norm ‖ · ‖ on Rd.

• The aim is to select n ≤ N scenarios and to determine their new probabilities

such that the discrete probability distribution based on the original scena-

rio set is approximated best possible in terms of the so-called Kantorovich

distance of probability distributions (optimal scenario reduction).

• First, this requires the solution of the combinatorial optimization problem

min
{∑

j∈J

min
i 6∈J
‖ξi − ξj‖ : J ⊂ {1, ..., N},#J = N − n

}
(called n-median problem) to determine the index set J of deleted scenarios.

This problem is NP-hard and may be reformulated as a mixed-integer linear

optimization problem. Simple greedy heuristics work well in many cases.

• Secondly, the new probabilities pi, i 6∈ J , of the selected scenarios are

pi = 1+#Ji
N , where Ji = {j ∈ J : i = i(j)} and i(j) ∈ arg min

i6∈J
‖ξi − ξj‖,

i.e., the probability of any deleted scenario is added to the probability of one

of the closest selected scenarios (optimal redistribution).



Illustration:
103 samples based on randomized Quasi-Monte Carlo methods are generated and later reduced
by scenario reduction to 50 scenarios. The result is shown below where the diameters of the
red balls are proportional to the new probabilities.
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Conclusions

• Filtering exit gas flow data into temperature classes and fitting univariate

(shifted) uniform or (log)normal distributions, respectively, and of multiva-

riate (log)normal distributions for groups of exits.

• A univariate normal distribution is assumed for low temperatures. Its mean

is fitted by a P-spline regression and its standard deviation is taken from the

neighboring temperature class.

• Randomized Quasi-Monte Carlo methods are used to generate a large number

of gas flow scenarios at all network exits. Using optimal scenario reduction

the large scenario set is represented best possible by a reasonable number of

scenarios for computational feasibility studies.

Literature: T. Koch, B. Hiller, M. E. Pfetsch and L. Schewe (Eds.): Evaluating Gas Network Capacities, MOS-
SIAM Series on Optimization, Philadelphia, 2015.


