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Stability of stochastic programs

Consider the stochastic programming model

min
{∫

Ξ

f0(x, ξ)P (dξ) : x ∈M(P )
}

M(P ) :=
{
x ∈ X :

∫
Ξ

fj(x, ξ)P (dξ) ≤ 0, j = 1, ..., r
}

where fj from Rm × Ξ to the extended reals R are normal inte-
grands, X is a nonempty closed subset of Rm, Ξ is a closed subset
of Rd and P is a Borel probability measure on Ξ.
(f is a normal integrand if it is Borel measurable and f(ξ, .) is lower semicontinuous ∀ξ ∈ Ξ.)

Let P(Ξ) the set of all Borel probability measures on Ξ and by

v(P ) = inf
x∈M(P )

∫
Ξ

f0(x, ξ)P (dξ) (optimal value)

Sε(P ) =
{
x ∈M(P ) :

∫
Ξ

f0(x, ξ)P (dξ) ≤ v(P ) + ε
}

S(P ) = S0(P ) = arg min
x∈M(P )

∫
Ξ

f0(x, ξ)P (dξ) (solution set).
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The underlying probability distribution P is often incompletely known
in applied models and/or has to be approximated (estimated, dis-
cretized).
Hence, the stability behavior of stochastic programs becomes im-
portant when changing (perturbing, estimating, approximating) the
probability distribution P on Ξ.

Stability refers to (quantitative) continuity properties of the opti-
mal value function v(.) and of the set-valued mapping Sε(.) at P ,
where both are regarded as mappings given on certain subset of
P(Ξ) equipped with some probability metric.

(The corresponding subset of probability measures is determined by imposing certain moment
conditions that are related to growth properties of the integrands fj with respect to ξ.)

Examples: Two-stage and chance constrained stochastic pro-
grams.

Survey:
W. Römisch: Stability of stochastic programming problems, in: Stochastic Programming (A.
Ruszczynski, A. Shapiro eds.), Handbook, Elsevier, 2003.
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Weak convergence in P(Ξ)

Pn →w P iff
∫

Ξ

f (ξ)Pn(dξ)→
∫

Ξ

f (ξ)P (dξ) (∀f ∈ Cb(Ξ)),

iff Pn({ξ ≤ z})→ P ({ξ ≤ z}) at continuity points z
of P ({ξ ≤ ·}).

Probability metrics on P(Ξ) (Monographs: Rachev 91, Rachev/Rüschendorf 98)
Metrics with ζ-structure:

dF(P,Q) = sup

{∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Q(dξ)

∣∣∣∣ : f ∈ F
}

where F is a suitable set of measurable functions from Ξ to R and
P , Q are probability measures in some set PF on which dF is finite.

Examples (of F): Sets of locally Lipschitzian functions on Ξ or
of piecewise (locally) Lipschitzian functions.

There exist canonical sets F and metrics dF for each specific class
of stochastic programs!
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General quantitative stability results

To simplify matters, let X be compact (otherwise, consider localizations).

F := {fj(x, ·) : x ∈ X, j = 0, . . . , r},

PF :=
{
Q ∈ P(Ξ) :

∫
Ξ

inf
x∈X

fj(x, ξ)Q(dξ) > −∞,

sup
x∈X

∫
Ξ

fj(x, ξ)Q(dξ) <∞, j = 0, . . . , r
}
,

and the probability (semi-) metric on PF :

dF(P,Q) = sup
x∈X

max
j=0,...,r

∣∣∣ ∫
Ξ

fj(x, ξ)(P −Q)(dξ)
∣∣∣.

Lemma:
The functions (x,Q) 7→

∫
Ξ

fj(x, ξ)Q(dξ) are lower semicontinuous

on X × PF .
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Theorem: (Rachev-Römisch 02)

If d ≥ 1, let the function x 7→
∫

Ξ f0(x, ξ)P (dξ) be Lipschitz
continuous on X , and, let the function

(x, y) 7→ d
(
x,
{
x̃ ∈ X :

∫
Ξ

fj(x̃, ξ)P (dξ) ≤ yj, j = 1, ..., r
})

be locally Lipschitz continuous around (x̄, 0) for every x̄ ∈ S(P )

(metric regularity condition).
Then there exist constants L, δ > 0 such that

|v(P )− v(Q)| ≤ LdF(P,Q)

S(Q) ⊆ S(P ) + ΨP (LdF(P,Q))B

holds for all Q ∈ PF with dF(P,Q) < δ.

Here, ΨP (η) := η + ψ−1(η) and ψ : R+ → R+ is given by

ψ(τ ) :=min
{∫

Ξ

f0(x, ξ)P (dξ)− v(P ) :d(x, S(P )) ≥ τ, x ∈M(P )
}
.

(Proof by appealing to general perturbation results see Klatte 94 and Rockafellar/Wets 98.)
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Convex case and r := 0:
Assume that f0(·, ξ) is convex on Rm for each ξ ∈ Ξ.

Theorem: (Römisch-Wets 07)

Then there exist constants L, ε̄ > 0 such that

dl∞(Sε(P ), Sε(Q)) ≤ L

ε
dF(P,Q)

for every ε ∈ (0, ε̄) and Q ∈ PF such that dF(P,Q) < ε.

Here, dl∞ is the Pompeiu-Hausdorff distance of nonempty closed
subsets of Rm, i.e.,

dl∞(C,D) = inf{η ≥ 0 : C ⊆ D + ηB, D ⊆ C + ηB}.

(Proof using a perturbation result see Rockafellar/Wets 98)
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The (semi-) distance dF plays the role of a minimal probability met-
ric implying quantitative stability.

Furthermore, the result remains valid when bounding dF from above
by another distance and when reducing the set PF to a subset on
which this distance is defined and finite.

Idea: Enlarge F , but maintain the analytical (e.g., (dis)continuity)
properties of fj(x, ·), j = 0, . . . , r !

This idea may lead to well-known probability metrics, for which a
well developed theory is available !
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Example: (Fortet-Mourier-type metrics)
We consider the following classes of locally Lipschitz continuous
functions (on Ξ)

FH := {f : Ξ→ R : f (ξ)− f (ξ̃) ≤ max{1, H(‖ξ‖), H(‖ξ̃‖)}
·‖ξ − ξ̃‖,∀ξ, ξ̃ ∈ Ξ},

where H : R+ → R+ is nondecreasing, H(0) = 0. The corre-
sponding distances are

dFH(P,Q) = sup
f∈FH

∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Q(dξ)

∣∣∣∣ =: ζH(P,Q)

so-called Fortet-Mourier-type metrics defined on

PH(Ξ) :={Q ∈ P(Ξ) :

∫
Ξ

max{1, H(‖ξ‖)}‖ξ‖Q(dξ) <∞}

Important special case: H(t) := tp−1 for p ≥ 1 leading to the
notation Fp, Pp(Ξ) and ζp, respectively.

(Convergence with respect to ζp means weak convergence of the probability measures and
convergence of the p-th order moments (Rachev 91))
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Stability of two-stage models

min
{
〈c, x〉 + E[Φ(q(ξ), h(ξ)− T (ξ)x)] : x ∈ X

}
,

where Φ(u, t) is the optimal value function of the second-stage
problem min{〈u, y〉 : Wy = t, y ∈ Y }. We set

f0(x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x)

if it is finite.

Proposition:
Assume (A1) and (A2). Then there exist L̂ > 0 such that

|f0(x, ξ)− f0(x, ξ̃)| ≤ L̂max{1, ‖ξ‖, ‖ξ̃‖}‖ξ − ξ̃‖
|f0(x, ξ)− f0(x̃, ξ)| ≤ L̂max{1, ‖ξ‖2}‖x− x̃‖

for all ξ, ξ̃ ∈ Ξ, x, x̃ ∈ X .
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Theorem:
Assume (A1)–(A3) and let X be compact. Then there exist L > 0,
ε̄, δ > 0 such that

|v(P )− v(Q)| ≤ Lζ2(P,Q),

S(Q) ⊆ S(P ) + ΨP (Lζ2(P,Q))B,

dl∞(Sε(P ), Sε(Q)) ≤ L

ε
ζ2(P,Q),

whenever Q satisfies ζ2(P,Q) < δ, ε ∈ (0, ε̄],
ΨP (η) := η + ψ−1(η) and

ψ(τ ) :=min
{∫

Ξ

f0(x, ξ)P (dξ)− v(P ) :d(x, S(P )) ≥ τ, x ∈ X
}
.

Note ψ has quadratic growth (near 0) in a number of cases (Schultz

94) and linear growth if P is discrete.
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Two-stage mixed-integer models

min
{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X
}
,

where Φ is given by

Φ(u, t) := inf
{
〈u1, y〉 + 〈u2, ȳ〉 : Wy + W̄ ȳ ≤ t, y ∈ Zm̂, ȳ ∈ Rm̄

}
.

The quantitative stability result holds with respect to the distance
ζ2,ph on P2(Ξ):

ζ2,ph(P,Q) := sup

{∣∣∣ ∫
B

f (ξ)(P −Q)(dξ)
∣∣∣ ∣∣∣∣ f ∈ F2(Ξ)

B ∈ Bph(Ξ)

}
Here, Bph(Ξ) is a class of polyhedral subsets of Ξ and F2(Ξ) con-
tains all functions f : Ξ→ R such that

|f (ξ)| ≤ max{1, ‖ξ‖2} , |f (ξ)−f (ξ̃)| ≤ max{1, ‖ξ‖, ‖ξ̃‖}‖ξ−ξ̃‖

for all ξ, ξ̃ ∈ Ξ.

(Römisch/Vigerske 08)
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Chance constrained models

min{〈c, x〉 : x ∈ X,P ({ξ ∈ Ξ : T (ξ)x ≥ h(ξ)}) ≥ p},
where c ∈ Rm, X and Ξ are polyhedra in Rm and Rs, respectively,
p ∈ (0, 1), P ∈ P(Ξ), and the right-hand side h(ξ) ∈ Rd and the
(d,m)-matrix T (ξ) are affine functions of ξ.
By specifying the general (semi-) distance we obtain

dF(P,Q) := sup
x∈X

max
j=0,1

∣∣∣∣∫
Ξ

fj(x, ξ)(P −Q)(dξ)

∣∣∣∣
= sup

x∈X
|P (H(x))−Q(H(x))|,

where f0(ξ, x) = 〈c, x〉, f1(ξ, x) = p− 1lH(x)(ξ) and
H(x) = {ξ ∈ Ξ : T (ξ)x ≥ h(ξ)} (polyhedral subsets of Ξ).

Hence, the quantitative stability result holds with respect to poly-
hedral discrepancies:

αph(P,Q) = sup
B∈Bph(Ξ)

|P (B)−Q(B)|
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Quantitative Stability of multistage models

We consider the linear multistage model

min

E
[

T∑
t=1

〈bt(ξt), xt〉

]∣∣∣∣∣∣
xt ∈ Xt, t = 1, . . . , T,

xt is Ft(ξ)-measurable, t = 1, . . . , T,

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, ., T


where X1 is bounded polyhedral and Xt, t = 2, . . . , T , are polyhe-
dral cones, the vectors bt(·), ht(·) and At,1(·) are affine functions
of ξt, and ξ = (ξt)

T
t=1 a stochastic process with

Ft(ξ) = σ(ξ1, . . . , ξt) (t = 1, . . . , T ).

Let F denote the objective function defined on Lr′(Ω,F ,P;Rs)×
Lr(Ω,F ,P;Rm)→ R by

F (x, ξ) := E
[ T∑
t=1

〈bt(ξt), xt〉
]
,
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where r ≥ 1 and

r′ :=


r
r−1 , if only costs are random
r , if only right-hand sides are random
2 , if costs and right-hand sides are random
∞ , if all technology matrices are random and r = T.

Let

Xt(xt−1; ξt) := {xt ∈ Xt : At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) := {x ∈ Lr′(Ω,F ,P;Rm) : x1 ∈ X1, xt ∈ Xt(xt−1; ξt)}

the set of feasible elements with input ξ.
Then the multistage stochastic program may be rewritten as

min{F (x, ξ) : x ∈ X (ξ) ∩Nr′(ξ)},

where Nr′(ξ) is the nonanticipativity subspace of Lr′.
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Let v(ξ) denote its optimal value and, for any ε ≥ 0,

Sε(ξ) := {x ∈ X (ξ) ∩Nr′(ξ) : F (x, ξ) ≤ v(ξ) + ε}
S(ξ) := S0(ξ)

denote the ε-approximate solution set and the solution set of the
stochastic program with input ξ.

Assumptions:
(A1) ξ ∈ Lr(Ω,F ,P;Rs) for some r ≥ 1.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F ,P;Rs)

with ‖ξ̃ − ξ‖r ≤ δ, any t = 2, . . . , T and any x1 ∈ X1, xτ ∈
Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t − 1, the set Xt(xt−1; ξ̃t) is nonempty
(relatively complete recourse locally around ξ).

(A3) Assume that the optimal values v(ξ̃) are finite if ‖ξ−ξ̃‖r ≤ δ

and that the objective function F is level-bounded locally uniformly
at ξ, i.e., for some ε > 0 there exists a bounded subset B of
Lr′(Ω,F ,P;Rm) such that Sε(ξ̃) is contained in B if ‖ξ̃−ξ‖r ≤ δ.
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Theorem: (Heitsch/Römisch/Strugarek 06)

Let (A1) – (A3) be satisfied and X1 be bounded.
Then there exist positive constants L and δ such that

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + df,T−1(ξ, ξ̃))

holds for all ξ̃ ∈ Lr(Ω,F ,P;Rs) with ‖ξ̃ − ξ‖r ≤ δ.
If 1 < r′ < ∞ and (ξ(n)) converges to ξ in Lr and with respect
to df,T , then any sequence xn ∈ S(ξ(n)), n ∈ N, contains a subse-
quence converging weakly in Lr′ to some element of S(ξ).

Here, df,τ (ξ, ξ̃) denotes the filtration distance of ξ and ξ̃ defined by

df,τ (ξ, ξ̃) := sup
‖x‖r′≤1

τ∑
t=2

‖E[xt|Ft(ξ)]− E[xt|Ft(ξ̃)]‖r′.

Remark:
For T = 2 one obtains the same result for the optimal values as
in the two-stage case ! However, one obtains weak convergence of
subsequences of (random) second-stage solutions, too!
Different approach by Plug/Pichler based on distances of conditional probability distributions.
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Empirical or Monte Carlo approximations of stochastic
programs

Given a probability distribution P ∈ P(Ξ), we consider a sequence
ξ1, ξ2, . . . , ξn, . . . of independent, identically distributed Ξ-valued
random variables on some probability space (Ω,F ,P) having the
common distribution P .
We consider the empirical measures

Pn(ω) :=
1

n

n∑
i=1

δξi(ω)

for every n ∈ N.

Empirical or sample average approximation of stochastic programs
(replacing P by Pn(·)):

min
{1

n

n∑
i=1

f0(ξi, x) : x ∈ X, 1

n

n∑
i=1

fj(ξi, x) ≤ 0, j = 1, . . . , r
}
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To study convergence of empirical approximations, one may use the
quantitative stability results by deriving estimates of the (uniform)
distances

dF(P, Pn(·))
Tool: Empirical process theory, in particular, the size of F as
subset of Lp(Ξ, P ) measured by covering numbers, where

F =
{
fj(x, ·) : x ∈ X, j = 0, . . . , r

}
.

Empirical process (indexed by some class of functions):{
n

1
2(Pn(·)− P )f = n−

1
2

n∑
i=1

(
f (ξi(·))−

∫
Ξ

f (ξ)P (dξ)
)}

f∈F

Desirable estimate:

P
({
ω : n

1
2dF(P, Pn(ω)) ≥ ε

})
≤ CF(ε) (∀ε > 0, n ∈ N)

for some tail function CF(·) defined on (0,+∞) and decreasing to
0, in particular, exponential tails CF(ε) = Kεr exp(−2ε2).
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If N(ε, Lp(Q)) denotes the minimal number of open balls {g :

‖g− f‖Q,p < ε} needed to cover F , then an estimate of the form

sup
Q

N(ε, L2(Q)) ≤
(R
ε

)r
for some r, R ≥ 1 and all ε > 0, is needed to obtain exponential
tails.

(Literature: Talagrand 94, van der Vaart/Wellner 96, van der Vaart 98)

Typical result for optimal values:

P
(
|v(P )− v(Pn)| ≥ ε n−

1
2
)
≤ CF

(
min{δ, ε L−1}

)
Such results are available for two-stage (mixed-integer) and chance
constrained stochastic programs (Römisch 03).



Home Page

Title Page

Contents

JJ II

J I

Page 22 of 77

Go Back

Full Screen

Close

Quit

Desirable results for optimal values: Limit theorems

n
1
2(v(Pn(·))− v(P )) −→ z,

where z is a real random variable and the convergence is conver-
gence in distribution.

Such results can be derived if F is a Donsker class of functions.
Donsker classes can also be characterized via covering numbers.

Examples for available limit theorems:

• Limit theorem for optimal values of mixed-integer two-stage
stochastic programs (Eichhorn/Römisch 07).

• Limit theorem for optimal values of kth order stochastic dom-
inance constrained stochastic programs for k ≥ 2

(Dentcheva/Römisch 12).
(Chapters by Shapiro and Pflug in the Handbook 2003; recent work of Shapiro, Xu and
coworkers)
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Scenario generation methods

Assume that we have to solve a stochastic program with a class
F = {fj(x, ·) : x ∈ X, j = 1, . . . , r} of functions on Ξ ⊆ Rd and
probability (semi-) metric

dF(P,Q) = sup
f∈F

∣∣∣ ∫
Ξ

f (ξ)(P −Q)(dξ)
∣∣∣.

Optimal scenario generation:
For given n ∈ N and probabilities pi = 1

n, i = 1, . . . , n, the best
possible choice of scenarios ξi ∈ Ξ, i = 1, . . . , n, is obtained by
solving the best approximation problem

min
{
dF
(
P, 1

n

∑n
i=1 δξi

)
; ξi ∈ Ξ, i = 1, . . . , n

}
.

However, this is a large-scale, nonsmooth and nonconvex minimiza-
tion problem (of dimension n · d) and often extremely difficult to
solve. Note that, in addition, function calls for fj(x, ·) are often
expensive and the appropriate choice of n ∈ N is difficult.
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Next we discuss 4 specific scenario generation methods for stochas-
tic programs (without information constraints) based on (high-
dimensional) numerical integration methods:

(a) Monte Carlo sampling from the underlying probability distribu-
tion P on Rd (Shapiro 03).

(b) Optimal quantization of probability distributions (Pflug-Pichler 11).

(c) Quasi-Monte Carlo methods (Koivu-Pennanen 05, Homem-de-Mello 08).

(d) Quadrature rules based on sparse grids (Chen-Mehrotra 08).

Given an integral

Id(f ) =

∫
Rd
f (ξ)ρ(ξ)dξ or Id(f ) =

∫
[0,1]d

f (ξ)dξ

a numerical integration method means

Qn,d(f ) =
1

n

n∑
i=1

f (ξi).
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Monte Carlo sampling

Monte Carlo methods are based on drawing independent identi-
cally distributed (iid) Ξ-valued random samples ξ1(·), . . . , ξn(·), . . .
(defined on some probability space (Ω,A,P)) from an underlying
probability distribution P (on Ξ) such that

Qn,d(ω)(f ) =
1

n

n∑
i=1

f (ξi(ω)),

i.e., Qn,d(·) is a random functional, and it holds

lim
n→∞

Qn,d(ω)(f ) =

∫
Ξ

f (ξ)P (dξ) = E(f ) P-almost surely

for every real continuous and bounded function f on Ξ.
If P has finite moment of order r ≥ 1, the error estimate

E

(∣∣∣∣∣1n
n∑
i=1

f (ξi(ω))− E(f )

∣∣∣∣∣
r)
≤ E ((f − E(f ))r)

nr−1
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is valid. Hence, the mean square convergence rate is

‖Qn,d(ω)(f )− E(f )‖L2 = σ(f )n−
1
2 ,

where σ2(f ) = E
(
(f − E(f ))2

)
.

The latter holds without any assumption on f except σ(f ) <∞.

Advantages:
(i) MC sampling works for (almost) all integrands.
(ii) The machinery of probability theory is available.
(iii) The convergence rate does not depend on d.

Deficiencies: (Niederreiter 92)
(i) There exist ’only’ probabilistic error bounds.
(ii) Possible regularity of the integrand does not improve the rate.
(iii) Generating (independent) random samples is difficult.

Practically, iid samples are approximately obtained by pseudo ran-
dom number generators as uniform samples in [0, 1]d and later trans-
formed to more general sets Ξ and distributions P .
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Survey: L’Ecuyer 94.

Classical generators for pseudo random numbers are based on linear
congruential methods. As the parameters of this method, we choose
a large M ∈ N (modulus), a multiplier a ∈ N with 1 ≤ a < M

and gcd(a,M) = 1, and c ∈ ZM = {0, 1, . . . ,M − 1}. Starting
with y0 ∈ ZM a sequence is generated by

yn ≡ ayn−1 + c mod M (n ∈ N)

and the linear congruential pseudo random numbers are

ξn =
yn
M
∈ [0, 1).

Excellent pseudo random number generator: Mersenne Twister
(Matsumoto-Nishimura 98).

Use only pseudo random number generators that passed a series
of statistical tests, e.g., uniformity test, serial correlation test, serial
test, coarse lattice structure test etc.
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Optimal quantization of probability measures

Assume that the underlying stochastic program behaves stable with
respect to a distance d of probability measures on Rd.
Examples:
(a) Fortet-Mourier metric ζr of order r,
(b) Lr-minimal metric `r (or Wasserstein metric), i.e.

`r(P,Q) = inf{(E(‖ξ − η‖r))
1
r : L(ξ) = P, L(η) = Q}

Let P be a given probability distribution on Rd. We are looking for
a discrete probability measure Qn with support

supp(Qn) = {ξ1, . . . , ξn} and Qn({ξi}) =
1

n
, i = 1, . . . , n,

such that it is the best approximation to P with respect to d, i.e.,

d(P,Qn) = min{d(P,Q) : |supp(Q)| = n,Q is uniform}.

Existence of best approximations, called optimal quantizers, and
their convergence rates are well known for `r (Graf-Luschgy 00).
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Note, however, `r(P,Qn) ≥ cn−
1
d for some c > 0 and all n ∈ N.

In general, the function

Ψd(ξ
1, . . . , ξn) := d

(
P,

1

n

n∑
i=1

δξi
)

Ψ`r(ξ
1, . . . , ξn) =

(∫
Rd

min
i=1,...,n

‖ξ − ξi‖rP (dξ)

)1
r

is nonconvex and nondifferentiable on Rdn.
Hence, the global minimization of Ψd is not an easy task.

Algorithmic procedures for minimizing Ψ`r globally may be based on
stochastic gradient algorithms, stochastic approximation methods
and stochastic branch-and-bound techniques (e.g. Pflug 01, Hochreiter-

Pflug 07, Pagés 97, Pagés et al 04).

Asymptotically optimal quantizers can be determined explicitly in a
number of cases (Pflug-Pichler 11).
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Quasi-Monte Carlo methods

The basic idea of Quasi-Monte Carlo (QMC) methods is to replace
random samples in Monte Carlo methods by deterministic points
that are uniformly distributed in [0, 1]d. The latter property may be
defined in terms of the so-called star-discrepancy of ξ1, . . . , ξn

D∗n(ξ1, . . . , ξn) := sup
ξ∈[0,1]d

∣∣∣∣∣λd([0, ξ))− 1

n

n∑
i=1

1l[0,ξ)(ξi)

∣∣∣∣∣,
by calling a sequence (ξi)i∈N uniformly distributed in [0, 1]d

D∗n(ξ1, . . . , ξn)→ 0 for n→∞ .

A classical result due to Roth 54 states

D∗n(ξ1, . . . , ξn) ≥ Bd
(log n)

d−1
2

n

for some constant Bd and all sequences (ξi) in [0, 1]d.
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Classical convergence results:

Theorem: (Proinov 88)

If the real function f is continuous on [0, 1]d, then there exists
C > 0 such that

|Qn,d(f )− Id(f )| ≤ Cωf
(
D∗n(ξ1, . . . , ξn)

1
d
)
,

where ωf(δ) = sup{|f (ξ)− f (ξ̃)| : ‖ξ− ξ̃)‖ ≤ δ, ξ, ξ̃ ∈ [0, 1]d} is
the modulus of continuity of f .

Theorem: (Koksma-Hlawka 61)

If f is of bounded variation VHK(f ) in the sense of Hardy and
Krause, it holds∣∣Id(f )−Qn,d(f )

∣∣ ≤ VHK(f )D∗n(ξ1, . . . , ξn) .

for any n ∈ N and any ξ1, . . . , ξn ∈ [0, 1]d.
There exist sequences (ξi) in [0, 1]d such that

D∗n(ξ1, . . . , ξn) = O(n−1(log n)d−1),

however, the constant depends on the dimension d.
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First general construction: (Sobol 69, Niederreiter 87)

Elementary subintervals E in base b:

E =

d∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

with ai, di ∈ Z+, 0 ≤ ai < di, i = 1, . . . , d.

Let m, t ∈ Z+, m > t.
A set of bm points in [0, 1]d is a (t,m, d)-net in base b if every
elementary subinterval E in base b with λd(E) = bt−m contains bt

points.

A sequence (ξi) in [0, 1]d is a (t, d)-sequence in base b if, for all
integers k ∈ Z+ and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}

is a (t,m, d)-net in base b.
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Specific sequences: Faure, Sobol’, Niederreiter and Niederreiter-
Xing sequences (Lemieux 09, Dick-Pillichshammer 10).

Recent development: Scrambled (t,m, d)-nets, where the dig-
its are randomly permuted (Owen 95).

Second general construction: (Korobov 59, Sloan-Joe 94)

Lattice rules: Let g ∈ Zd and consider the lattice points{
ξi =

{ i
n
g
}

: i = 1, . . . , n
}
,

where {z} is defined componentwise and is the fractional part of
z ∈ R+, i.e., {z} = z − bzc ∈ [0, 1).
The generator g is chosen such that the lattice rule has good con-
vergence properties.

Such lattice rules may achieve better convergence rates O(n−k+δ),
k ∈ N, for smooth integrands.
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Recent development: Randomized lattice rules.

Randomly shifted lattice points:{
ξi =

{ i
n
g +4

}
: i = 1, . . . , n

}
,

where 4 is uniformly distributed in [0, 1]d.
There is a component-by-component construction algorithm for g
such that for some constant C(δ) and all 0 < δ ≤ 1

2 the optimal
convergence rate

e(Qn,d) ≤ C(δ)n−1+δ (n ∈ N)

is achieved if the integrand f belongs to the tensor product Sobolev
space

Fd = W
(1,...,1)
2 ([0, 1]d) =

d⊗
i=1

W 1
2 ([0, 1])

equipped with a weighted norm. Since the space Fd is a kernel
reproducing Hilbert space, a well developed technique for estimating
the quadrature error can be used.
(Hickernell 96, Sloan/Wožniakowski 98, Sloan/Kuo/Joe 02, Kuo 03)
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Is QMC efficient in stochastic programming ?

Problem: Typical integrands in linear stochastic programming
are not of bounded variation in the HK sense and nonsmooth and,
hence, do not belong to the relevant function space Fd in general.

Idea: Study the ANOVA decomposition and efficient dimension of
two-stage integrands.

ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = ID(f ) and recursively

fu = I−u(f ) +
∑
v⊆u

(−1)|u|−|v|Iu−v(I−u(f )) ,

where I−u means integration with respect to ξj in [0, 1], j ∈ D \ u
and D = {1, . . . , d}. Hence, fu is essentially as smooth as I−u(f )

and does not depend on ξ−u.
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We set σ2(f ) = ‖f − Id(f )‖2
L2

and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

‖fu‖2
L2
.

The superposition dimension ds of f is the smallest ds ∈ N with∑
|u|≤ds

‖fu‖2
L2
≥ (1− ε)σ2(f ) (where ε ∈ (0, 1) is small).

Then
‖f −

∑
|u|≤ds

fu‖2
L2
≤ εσ2(f ).

Result:
All ANOVA terms fu, u ⊂ D, u 6= D, of integrands in two-stage
stochastic programming belong to C∞ if the underlying marginal
densities belong to C∞b (R) and certain geometric condition is sat-
isfied (Heitsch/Leovey/Römisch 12).

Hence, after reducing the efficient superposition dimension of f
such that (at least) ds ≤ d− 1 holds, QMC methods should have
optimal rates.
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Quadrature rules with sparse grids

Again we consider the unit cube [0, 1]d in Rd. Let nested sets of
grids in [0, 1] be given, i.e.,

Ξi = {ξi1, . . . , ξimi
} ⊂ Ξi+1 ⊂ [0, 1] (i ∈ N),

for example, the dyadic grid

Ξi =

{
j

2i
: j = 0, 1, . . . , 2i

}
.

Then the point set suggested by Smolyak (Smolyak 63)

H(n, d) :=
⋃

∑d
j=1 ij=n

Ξi1 × · · · × Ξid (n ∈ N)

is called a sparse grid in [0, 1]d. In case of dyadic grids in [0, 1] the
set H(n, d) consists of all d-dimensional dyadic grids with product
of mesh size given by 1

2n .
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The corresponding tensor product quadrature rule for n ≥ d on
[0, 1]d with respect to the Lebesgue measure λd is of the form

Qn,d(f ) =
∑

n−d+1≤|i|≤n

(−1)n−|i|
(
d− 1

n− |i|

)mi1∑
j1=1

· · ·
mid∑
jd=1

f (ξi1j1, . . . , ξ
id
jd

)

d∏
l=1

a
il
jl
,

where |i| =
∑d

j=1 ij and the coefficients aij (j = 1, . . . ,mi, i =

1, . . . , d) are weights of one-dimensional quadrature rules.

Even if the one-dimensional weights are positive, some of the weights
wi may become negative. Hence, an interpretation as discrete prob-
ability measure is no longer possible.

Theorem: (Bungartz-Griebel 04)

If f belongs to Fd = W
(r,...,r)
2 ([0, 1]d), it holds∣∣∣∣∣

∫
[0,1]d

f (ξ)dξ −
n∑
i=1

wif (ξi)

∣∣∣∣∣ ≤ Cr,d‖f‖d
(log n)(d−1)(r+1)

nr
.
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Scenario reduction

Assume that a two-stage stochastic program behaves stable with
respect to a Fortet-Mourier metric ζr for some r ≥ 1.

Proposition: (Rachev-Rüschendorf 98)

If Ξ is bounded, ζr may be reformulated as transportation problem

ζr(P,Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) :π1η=P, π2η =Q

}
,

where ĉr is a metric (reduced cost) with ĉr ≤ cr and given by

ĉr(ξ, ξ̃) := inf

{
n−1∑
i=1

cr(ξli, ξli+1
) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.

We consider discrete distributions P with scenarios ξi and proba-
bilities pi, i = 1, . . . , N , and Q being supported by a given subset
of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, of P .
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Best approximation given a scenario set J :

The best approximation of P with respect to ζr by such a distribu-
tion Q exists and is denoted by Q∗. It has the distance

DJ := ζr(P,Q
∗) = min

Q
ζr(P,Q) =

∑
i∈J

pi min
j 6∈J

ĉr(ξ
i, ξj)

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

ĉr(ξ
i, ξj), ∀i ∈ J

(optimal redistribution) (Dupačová-Gröwe-Römisch 03).

For mixed-integer two-stage stochastic programs the relevant dis-
tance is a polyhedral discrepancy. In that case, the new weights
have to be determined by linear programming (Henrion-Küchler-Römisch

08, 09).
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Determining the optimal index set J with prescribed cardinality
N − n is a clustering problem, thus, a combinatorial optimization
problem of n-median type:

min {DJ : J ⊂ {1, ..., N}, |J | = N − n}

Hence, the problem of finding the optimal set J for deleting scenar-
ios is NP-hard and polynomial time algorithms are not available
in general.

Development fast heuristics starting from n = 1 or n = N − 1.
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Fast reduction heuristics

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξ
l, ξj)

Algorithm 1: (Backward reduction)

Step [0]: J [0] := ∅ .
Step [i]: li ∈ arg min

l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξ
k, ξj).

J [i] := J [i−1] ∪ {li} .
Step [N-n+1]: Optimal redistribution.



Home Page

Title Page

Contents

JJ II

J I

Page 45 of 77

Go Back

Full Screen

Close

Quit

Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξ
k, ξu)

Algorithm 2: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξ
k, ξj),

J [i] := J [i−1] \ {ui} .
Step [n+1]: Optimal redistribution.

(Heitsch-Römisch 03, 07)
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Scenario reduction w.r.t. `1 from N=10 000 MC samples of N(0, I) in R2 to n = 20. The
diameters of the circles are proportional to their probabilities
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Example: (Electrical load scenario tree)

(Mean shifted ternary) Load scenario tree (729 scenarios)
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<Start Animation>

file:E:/anim/animation.html
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Reduced load scenario tree obtained by the forward selection method (15 scenarios)
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Reduced load scenario tree obtained by the backward reduction method (12 scenarios)
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Generation of scenario trees

In multistage stochastic programs the decisions x satisfy the in-
formation constraint that xt is measurable with respect to Ft =

σ(ξ1, . . . , ξt), t = 1, . . . , T . The increase of the σ-fields Ft w.r.t.
t is reflected by approximating the underlying stochastic process
ξ = (ξt)

T
t=1 by scenarios forming a scenario tree.

Some recent approaches:

(1) Bound-based approximation methods: Kuhn 05, Casey-Sen 05.

(2) Monte Carlo-based schemes: Shapiro 03, 06.

(3) Quasi-Monte Carlo methods: Pennanen 06, 09 .

(4) Moment-matching principle: Høyland-Kaut-Wallace 03.

(5) Optimal quantization: Pagés et al. 99.

(6) Stability-based approximations: Hochreiter-Pflug 07, Pflug-Pichler 11,

Heitsch-Römisch 09, 10.

Survey: Dupačová-Consigli-Wallace 00
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Theoretical basis of (6):
Quantitative stability results for multi-stage stochastic programs.
(Heitsch-Römisch-Strugarek 06; Mirkov-Pflug 07, Pflug 09, Pflug-Pichler 11)

Scenario tree generation: (Heitsch-Römisch 09)

(i) Generate a number of scenarios by one of the methods dis-
cussed earlier.

(ii) Construction of a scenario tree out of these scenarios by recur-
sive scenario reduction and bundling over time such that the
optimal value stays within a prescribed tolerance.

Implementation: GAMS-SCENRED 2.0 (developed by H. Heitsch)
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Illustration of the forward tree generation for an example including T=5 time periods starting with
a scenario fan containing N=58 scenarios

<Start Animation>

file:F:/anim/animation.html
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0 210 420 630 840 1050 1260 1470 1680 1890 2100

Two-yearly demand-inflow scenario tree with weekly branchings for French EDF
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Decomposition of (convex) stochastic programs

Direct or primal decomposition approaches:
- starting point: Benders decomposition based on both feasibility
and objective cuts;
- variants: regularization to avoid an explosion of the number of
cuts; nesting when applied to solve the dynamic programming equa-
tions on subtrees recursively; stochastic cuts.

Dual decomposition approaches:
(i) Scenario decomposition by Lagrangian relaxation of nonanticipa-
tivity constraints (solving the dual by bundle subgradient methods,
augmented Lagrangian decomposition, splitting methods);
(ii) nodal decomposition by Lagrangian relaxation of dynamic con-
straints (same variants as in (i));
(iii) geographical decomposition by Lagrangian relaxation of cou-
pling constraints (same variants as in (i)).
Mostly used for convex models: nested Benders decomposi-
tion, stochastic dual dynamic programming, stochastic decomposi-
tion and scenario decomposition. (Ruszczyński 03)
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Geographical decomposition

In electricity optimization the tree representation of the multistage
stochastic program often has block separable structure

min


∑
n∈N

πn
k∑
i=1

〈bit(n)(ξ
n), xni 〉

∣∣∣∣∣∣∣∣∣
xni ∈ X i

t(n)∑k
i=1B

i
t(n)(ξ

n)xni ≥ gt(n)(ξ
n)

Ai
t(n),0x

n
i + Ai

t(n),1x
n−
i =hit(n)(ξ

n)

i = 1, . . . , k, n ∈ N


Lagrange relaxation of coupling constraints: L(x, λ) =

∑
n∈N

πn
( k∑

i=1

〈bit(n)(ξ
n), xni 〉+ 〈λn,

(
gt(n)(ξ

n)−
k∑
i=1

Bi
t(n)(ξ

n)xni

)
〉
)

The dual problem
max
λ≥0

inf
x
L(x, λ)

decomposes into k geograhical subproblems and is solved by bundle
subgradient methods. For nonconvex models the duality gap is
typically small allowing for Lagrangian heuristics.
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Mean-Risk Electricity Portfolio Management

(Eichhorn/Römisch/Wegner 05, Eichhorn/Heitsch/Römisch 10)
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We consider the electricity portfolio management of a German mu-
nicipal electric power company. Its portfolio consists of the follow-
ing positions:

• power production (based on company-owned thermal units),

• bilateral contracts,

• (physical) (day-ahead) spot market trading (e.g., European En-
ergy Exchange (EEX)) and

• (financial) trading of futures.

The time horizon is discretized into hourly intervals. The underlying
stochasticity consists in a multivariate stochastic load and price
process that is approximately represented by a finite number of
scenarios. The objective is to maximize the total expected revenue
and to minimize the risk. The portfolio management model is a
large scale (mixed-integer) multi-stage stochastic program.
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Electricity portfolio management: statistical models
and scenario trees

For the stochastic input data of the optimization model (here yearly
electricity and heat demand, and electricity spot prices), a statistical
model is employed. It is adapted to historical data in the following
way:

- cluster classification for the intra-day (demand and price) profiles,

- 3-dimensional time series model for the daily average values (de-
terministic trend functions, a trivariate ARMA model for the (sta-
tionary) residual time series),

- simulation of an arbitrary number of three dimensional sample
paths (scenarios) by sampling the white noise processes for the
ARMA model and by adding on the trend functions and matched
intra-day profiles from the clusters afterwards,

- generation of scenario trees (Heitsch-Römisch 09).
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Electricity portfolio management: Results

Test runs were performed on real-life data of a German munici-
pal power company leading to a linear program containing T =

365 · 24 = 8760 time steps, a scenario tree with 40 demand-price
scenarios (see below) with about 150.000 nodes. The objective
function is of the form

Minimize γρ(Y )− (1− γ)E
(∑T

t=1
Yt

)
with a (multiperiod) risk functional ρ with risk aversion parameter
γ ∈ [0, 1] (γ = 0 corresponds to no risk).

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000
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Single-period and multi-period risk functionals are computed for
the accumulated income at t = T and at the risk time steps tj,
j = 1, . . . , J = 52, respectively. The latter correspond to 11 pm
at the last trading day of each week.

It turns out that the numerical results for the expected maximal
revenue and minimal risk

E
(∑T

t=1
Y γ∗
t

)
and ρ(Y γ∗

t1
, . . . , Y γ∗

tJ
)

with the optimal income process Y γ∗ are identical for γ ∈ [0.15, 0.95]

and all risk functionals used in the test runs.

The efficient frontier

γ 7→
(
ρ(Y γ∗

t1
, . . . , Y γ∗

tJ
),E

(∑T

t=1
Y γ∗
t

))
is concave for γ ∈ [0, 1].

Risk aversion costs less than 1% of the expected overall
revenue.
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Efficient frontier with expected revenue (ordinate axis) and risk (abscissa)

The LP is solved by CPLEX 9.1 in about 1 h running time on a 2 GHz Linux PC with 1 GB RAM.
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Future research directions

Stochastic Programming is still a young mathematical field
and started in 1955. It has a high potential for further develop-
ments in connection with progress in other fields.

Possible research directions:

• Extending the available theory and numerical methods for chance
constrained models.

• Theory and scenario generation for mixed-integer two- and
multi-stage stochastic programs.

• Systematic study of methods for high-dimensional numerical
integration and their use for scenario generation.

• Study of conditioning of stochastic programs and improving
the understanding of ”which stochastic programs are difficult
to solve” (e.g. require an extremely high number of scenarios)
(first attempt to conditioning by Shapiro/Homem-de-Mello/Kim 02)
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• Extending theory, (quantitative) stability analysis and solution
methods to more involved models like SMPECs, SGNEP (stochas-
tic generalized Nash equilibrium problems, SEPECs (stochastic
equilibrium problems with equilibrium constraints)
(recent pioneering work by Xu and his coworkers)

Thank you for your patience
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