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Introduction

A hyperkähler manifold is a simply connected compact Kähler manifold X
such that

H2,0(X) = H0(X,Ω2
X) = Cσ

is generated by a nowhere vanishing holomorphic 2-form σ (a holomorphic
symplectic form).

A few immediate consequences
• X must be of even (complex) dimension 2n since it is symplectic.
• The symplectic form σ induces an isomorphism σ : TX

∼−→ ΩX . In
particular, all the odd Chern classes and Chern characters vanish:

∀ k ∈ Z c2k+1(TX) = 0, ch2k+1(TX) = 0.

• The canonical bundle ωX = Ω2n
X is trivial: a trivialization is given by

σn := σ ∧ · · · ∧ σ.
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Some examples
• In dimension 2: K3 surface (e.g., a quartic surface). They all have

the same topological type, and b2 = 22.
• K3[n]: Hilbert scheme of “n points” on a K3 surface (and

deformation), with b2 = 23.
• Kumn: generalized Kummer variety (and deformation), with b2 = 7.
• Two examples found by O’Grady: one of dimension 6 with b2 = 8,

and one of dimension 10 with b2 = 24.

This in fact gives a complete list of all known examples.

It is interesting to study a priori constraints that a hyperkähler manifold
should satisfy.
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A key conjecture

We call a partition even if it only contains even integers, and odd
otherwise. For a hyperkähler manifold X, any Chern number/Chern
character number given by an odd partition automatically vanishes.

Conjecture (Ellingsrud–Göttsche–Lehn, Nieper-Wißkirchen, ...)
Let X be a compact hyperkähler manifold of dimension 2n. Then
•

∫
X
cλ > 0 for all even partitions λ of 2n.

• Similarly, (−1)n
∫
X
chλ > 0 for all even partitions λ of 2n.

For example, when n = 3, this means that the integrals of c6, c4c2, and c32
are all positive, while the integrals of ch6, ch4 ch2, and ch32 are all negative.
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Cobordism classes
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Review: complex cobordism ring

We write Ω∗ for the complex cobordism ring.

For a complex manifold X of dimension n, its cobordism class is denoted
by [X]. The ring structure on Ω∗ satisfies the following

[X] + [Y ] = [X ⊔ Y ], [X]× [Y ] = [X × Y ].
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Theorem (Milnor, Novikov, Thom)

(1) The cobordism class of a complex manifold X of dimension m is
uniquely determined by its Chern numbers

{∫
X
cλ
}
λ⊢m, or

equivalently, by the Chern character numbers
{∫

X
chλ

}
λ⊢m.

(2) Consider a sequence (Xk)k∈Z>0
of manifolds such that

dim(Xk) = k and
∫
Xk

chk ̸= 0.

Then the complex cobordism ring with rational coefficients
Ω∗

Q := Ω∗ ⊗Q is isomorphic to a polynomial ring with infinitely
many variables via

Q[x1, x2, . . . ]
∼−→ Ω∗

Q.

xk 7−→ [Xk]

Note that since
∫
Pn chn = n+1

n! , such a sequence indeed exists.
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Idea of proof for the isomorphism

We illustrate the idea of the proof of (2) using (1).

The goal is to show that, in each dimension m, the products
Xµ :=

∏
i Xµi for all partitions µ ⊢ m form an additive basis.

In other words, for any given manifold Y of dimension m, we need to find
rational coefficients (aµ)µ⊢m such that

∑
µ aµ[Xµ] = [Y ].

Thanks to (1), this is equivalent to solving a system of linear equations

∀λ ⊢ m
∑
µ

aµ ·
(∫

Xµ
chλ

)
=

∫
Y
chλ .
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For simplicity, we look at the case of m = 2: we obtain the linear equations{
a2

∫
X2

ch2 + a1,1
∫
X1,1

ch2 =
∫
Y
ch2

a2
∫
X2

ch1,1 + a1,1
∫
X1,1

ch1,1=
∫
Y
ch1,1

where X1,1 stands for X1 ×X1 and ch1,1 for ch1 × ch1.

Due to the additivity of the Chern character, we have

ch2(X1 ×X1) = ch2(TX1
⊞ TX1

)

= ch2(X1)⊞ ch2(X1) = 0.

On the other hand,
∫
X2

ch2 and
∫
X1,1

ch1,1 are both non-zero by the
assumption that

∫
Xk

chk ̸= 0. So the coefficient matrix is a lower
triangular matrix with non-zero entries on the diagonal, and is therefore
invertible. We may then invert it to solve a2 and a1,1.
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In the general case, we have the following lemma which generalizes the
vanishing argument that we saw when m = 2.

Lemma
Let λ, µ ⊢ m be two partitions. If λ is not a refinement of µ, then for all
manifolds X1, . . . , Xℓ(µ) with dim(Xi) = µi, we have∫

Xµ

chλ = 0,

where we write Xµ for the product manifold
∏

i Xi and chλ for the
product of Chern characters

∏
j chλj

(Xµ).

We can then sort the partitions in the reverse lexicographic order: the
coefficient matrix would then be a lower triangular matrix with non-zero
diagonal entries so it is invertible. This concludes the proof.
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For us, the interest is to study the subring of Ω∗
Q generated by elements

with vanishing odd Chern numbers/Chern character numbers:

Ω∗
Q,even :=

〈
[X]

∣∣ ∫
X
cλ = 0 for all odd λ ⊢ dimX

〉
.

It clearly contains the cobordism classes of all hyperkähler manifolds.

By repeating the same argument, we deduce the following result.

Proposition
Consider a sequence (Xk)k∈Z>0

of manifolds with vanishing odd Chern
numbers such that

dim(Xk) = 2k and
∫
Xk

ch2k ̸= 0.

Then the even complex cobordism ring Ω∗
Q,even is isomorphic to a

polynomial ring Q[x1, x2, . . . ] by sending xk to [Xk].
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The two known infinite families both satisfy the required property: in fact,
we obtained explicit formulae for the integral of the top degree Chern
character.

Proposition (Oberdieck–S.–Voisin)
For n ≥ 1, we have∫

K3[n]

ch2n = (−1)n
(2n+ 2)!

(2n− 1) · n!4
,

and ∫
Kumn

ch2n = (−1)n
(2n+ 2)!

n!4
.

Consequently, both infinite families can be used as generators for the even
complex cobordism ring Ω∗

Q,even.
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Remarks

The proof of these formulae uses the explicit descriptions of the
cohomology ring for these two examples in terms of Nakajima operators,
and the computation is essentially an analysis of the combinatorial
properties of these objects.

We see that both formulae confirm the conjecture on the sign of the top
degree Chern character. For other products of Chern classes/characters,
we have also verified them in small dimensions using a computer, although
we do not have a closed formula in general.

Neither family can be used to express all hyperkähler manifolds using only
positive linear combinations.
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b2 and c2
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One of the most important objects in the study of hyperkähler manifolds is
the second cohomology group H2(X,Z), which carries a natural quadratic
form.

Theorem (Beauville–Bogomolov–Fujiki form)
There exists a unique primitive integral quadratic form qX on H2(X,Z) of
signature (3, b2 − 3) and a constant CX ∈ Q (Fujiki constant) satisfying

∀β ∈ H2(X,Z),

∫
X

β2n = CX · qX(β)n.

More generally, let α ∈ H4k(X,Q) be a class that remains of type (2k, 2k)
on all small deformations of X (e.g., any characteristic class), then there
exists a constant C(α) ∈ Q (generalized Fujiki constant of α) such that

∀β ∈ H2(X,Z),

∫
X

α · β2n−2k = C(α) · qX(β)n−k.

J. Song IMJ-PRG, Université Paris Cité
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• The usual Fujiki constant CX is the same as C(1X).
• In top degree, the generalized Fujiki constants give us characteristic

numbers (i.e., integral of product of Chern classes).
• We have C(c2) > 0, which is explained by results from differential

geometry.
Namely, for a Kähler manifold X of dimension m with trivial
canonical bundle, one can choose a Ricci flat metric and obtain the
following pointwise relation

8π2 c2 ω
m−2 =

∥R∥2

m(m− 1)
ωm,

where ω is the Kähler form and R is the curvature tensor.
By taking ωm

m! as the volume form and integrating over X, we get∫
X

c2 · ωm−2 =
(m− 2)! ∥R∥2

8π2
.

Hence for a hyperkähler manifold X, we have C(c2) > 0 using the
Fujiki relations. Equivalently, we have C(ch2) = C(−c2) < 0.

J. Song IMJ-PRG, Université Paris Cité
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This motivates us to extend the positivity conjecture to generalized Fujiki
constants as well.
Conjecture
Let X be a compact hyperkähler manifold of dimension 2n. Then
• C(cλ) > 0 for all even partitions λ of 2k ≤ 2n.
• Similarly, (−1)kC(chλ) > 0 for all even partitions λ of 2k ≤ 2n.

Moreover, we expect that these positivity results should follow from a
similar local argument. In other words, there are algebraic identities that
provide the pointwise positivity, and the global positivity is obtained by
integrating over X.

J. Song IMJ-PRG, Université Paris Cité
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Boundedness

Question. In each dimension 2n, is the second Betti number b2(X)
bounded for all hyperkähler manifolds X of dimension 2n?

We have the following affirmative result in dimension 4.

Theorem (Guan)
When n = 2, we have b2 = 23 or b2 ≤ 8 for all hyperkähler fourfolds X.
The bound is sharp and is attained by K3[2].

Corollary
For a hyperkähler fourfold X, we have C(ch4) > 0.

J. Song IMJ-PRG, Université Paris Cité
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Our result is the following upper bound on b2, subject to the positivity of
C(ch4).

Theorem (Beckmann–S.)
For a hyperkähler manifold X of dimension 2n, if C(ch4) > 0, or
equivalently, C(c22) > 2C(c4), then we have the following inequality

b2(X) ≤ 10

C(c22)

C(c4)
− 2

− (2n− 9).

The inequality takes a rather strange form. We now introduce another
notion to rewrite it in a more natural form.

J. Song IMJ-PRG, Université Paris Cité
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Riemann–Roch polynomial
Consider the Hirzebruch–Riemann–Roch formula: for a line bundle
L ∈ Pic(X), we have

χ(X,L) =

∫
X

ch(L) tdX

=

∫
X

td2n +td2n−2
L2

2
+ td2n−4

L4

24
+ · · ·

= C(td2n) + C(td2n−2)
qX(L)

2
+ C(td2n−4)

qX(L)2

24
+ · · ·

We get the following Riemann–Roch polynomial of X

RRX(q) :=

n∑
k=0

C(td2n−2k)

(2k)!
qk,

which satisfies the property

∀L ∈ Pic(X) χ(X,L) = RRX(qX(L)).

J. Song IMJ-PRG, Université Paris Cité
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Among the known examples, there are only two types of Riemann–Roch
polynomials.
• (Ellingsrud–Göttsche–Lehn, Ríos Ortiz) For K3[n] and OG10, we have

RRX(q) =

(
q/2 + n+ 1

n

)
;

• (Nieper-Wißkirchen, Ríos Ortiz) For Kumn (n ≥ 2) and OG6, we
have

RRX(q) = (n+ 1)

(
q/2 + n

n

)
.
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In terms of the Riemann–Roch polynomial, the bound on b2 takes an
alternative form.

Theorem (Beckmann–S.)
Let X be a hyperkähler manifold of dimension 2n for n ≥ 2. If the
Riemann–Roch polynomial RRX factorizes as a product of linear factors
(and not all identical), then C(ch4) > 0, and we have the inequality

b2(X) ≤ n− 1

n(
∑

λ2
i )

(
∑

λi)2
− 1

− (2n− 2),

where λi are the roots of RRX .

Here we see that the bound measures the dispersion of the roots: it gets
smaller as the roots get more dispersed.
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Using this description, we can examine the bound for the two known types
of Riemann–Roch polynomials.
• For RRK3[n] , the bound is

b2 ≤ n+ 17 + 12
n+1 .

Among the known examples, it is attained by K3[2], K3[3], and OG10.
• For RRKumn , the bound is

b2 ≤ n+ 5.

Among the known examples, it is attained by Kum2 and OG6.
We remark that the bound also holds for hyperkähler orbifolds in
dimension 4. This further suggests that the generalized Fujiki constants
for characteristic classes and consequently the Riemann–Roch polynomial
RRX are largely governed by properties that are of local nature.

J. Song IMJ-PRG, Université Paris Cité
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It is therefore useful if one could say more about the shape of the
Riemann–Roch polynomial for an arbitrary hyperkähler manifold.

Theorem (Jiang)
Let X be a hyperkähler manifold of dimension 2n. The coefficients of
RRX are all positive. In other words, C(td2k) > 0 for 0 ≤ k ≤ n.

Conjecture
Let X be a hyperkähler variety of dimension 2n (possibly singular).
(1) The Riemann–Roch polynomial RRX factorizes as a product of linear

factors, and the roots form an arithmetic progression;
(2) When X is smooth, the difference between two roots is equal to 2.

J. Song IMJ-PRG, Université Paris Cité
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Generalized Hitchin–Sawon formula

Theorem (Nieper-Wißkirchen)
Consider the following polynomial

RRX,1/2(q) :=

n∑
k=0

C(td
1/2
2n−2k)

(2k)!
qk.

It factorizes as a power

RRX,1/2(q) = C(td
1/2
2n )

(
1 + 1

2rX
q
)n

.

for some positive constant rX .

The proof uses the Rozansky–Witten theory.
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Idea of proof for the bound

Consider the second Chern class c2 ∈ H4(X,Z).

Inside H4(X,Z) we have the image of

⌣ : H2(X,Z)×H2(X,Z) −→ H4(X,Z).

The cup product is in fact injective, so we have
SH4(X) := Sym2 H2(X,Z) sitting inside H4(X,Z).

A natural question is to ask whether c2 lies in SH4(X) or not.

J. Song IMJ-PRG, Université Paris Cité
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Idea of proof for the bound

We can project c2 to SH4(X)

c2 = c2 + z,

and study the difference z, which is a primitive (2, 2)-class.
By the Hodge–Riemann bilinear relations, we get∫

X

z2ω2n−4 ≥ 0,

where equality holds if and only if z = 0.

J. Song IMJ-PRG, Université Paris Cité
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Idea of proof for the bound

If we now look at c22, we have

c22 = c2
2 + 2c2z + z2,

and by considering generalized Fujiki constant, we get

C(c22) = C(c2
2) + C(z2) ≥ C(c2

2).

This gives the main inequality. By computing the values of the generalized
Fujiki constants, we get the desired statement involving C(ch4) and b2.
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In other words, the bound on b2 is essentially given by a triangle inequality
involving c2. This also gives us the following corollaries on the second
Chern class.
Corollary
Let X be a hyperkähler manifold of dimension 2n with n ≥ 2. Then
c2 ∈ SH4(X) if and only if C(ch4) > 0 and b2 attains the upper bound.

Corollary
Among known smooth hyperkähler manifolds of dimension 2n with n ≥ 2,
we have c2 ∈ SH4(X) if and only if X is one of the following

K3[2], K3[3], Kum2, OG6, OG10.

J. Song IMJ-PRG, Université Paris Cité
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Thank you!
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