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Résumé

Cette thèse concerne la géométrie des variétés hyperkählériennes. Elle est composée
de deux parties et cinq chapitres. Dans la première partie, on étudie quelques propriétés
générales de ces variétés. Dans la deuxième partie, on se concentre sur une famille particulière
de variétés hyperkählériennes projectives, dite de Debarre–Voisin, et étudie leur géométrie
explicite.

Au chapitre 1, on rappelle quelques résultats de base bien connus sur les variétés
hyperkählériennes.

Au chapitre 2, on étudie quelques aspects numériques des variétés hyperkählériennes.
Premièrement, on montre une borne supérieure conditionnelle sur le deuxième nombre de
Betti, en termes des constantes de Fujiki généralisées, ou de manière équivalente, en termes
du polynôme de Riemann–Roch. Ensuite, on étudie la classe cohomologique d’un sous-espace
lagrangien. On montre une formule pour la projection de la classe cohomologique vers la
composante de Verbitsky. On propose aussi une formule conjecturale pour la classe entière
dans le cas de K3[n], qui a été vérifiée pour n jusqu’à 6.

Au chapitre 3, on étudie les espaces de modules et les applications des périodes pour
les variétés hyperkählériennes projectives. En général, l’espace de modules pour les variétés
hyperkählériennes polarisées avec un type de polarisation fixé n’est pas nécessairement
connexe. Pour les K3[n] et les Kumn, on obtient une formule précise pour le nombre de
composantes connexes, ainsi que le nombre des types de polarisation ayant un carré et une
divisibilité donnés. Puis on étudie l’image de l’application des périodes polarisée, et on
montre que lorsque l’espace de modules n’est pas connexe, les images de l’application des
périodes peuvent être différentes si l’on se restreint sur des composantes différentes.

Au chapitre 4, on étudie les propriétés générales des variétés de Debarre–Voisin. Une
telle variété est définie à partir d’un trivecteur, et on peut aussi lui associer deux autres
variétés qui sont Fano de type K3. On obtient d’abord les critères de lissité pour ces trois
variétés, et on donne un aperçu de la géométrie de l’espace de modules et de l’application
des périodes. Ensuite, on relie les structures de Hodge entières sur les trois variétés, et on
montre que les deux qui sont Fano satisfont la conjecture de Hodge entière. Ces résultats
sont obtenus par une analyse détaillée de la géométrie de ces variétés le long de trois
diviseurs spéciaux dans l’espace de modules.

Au chapitre 5, on étudie une variété de Debarre–Voisin spéciale qui admet un groupe
d’automorphismes très grand, en appliquant les résultats généraux obtenus au chapitre 4.
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Mots-clés. variétés hyperkählériennes, variétés symplectiques holomorphes, variétés
de Debarre–Voisin, variétés Fano de type K3



Abstract

This thesis concerns the geometry of hyperkähler manifolds. It is divided into two parts
and five chapters. In the first part, we study some general properties for such manifolds.
In the second part, we focus on one particular family of projective hyperkähler manifolds
called Debarre–Voisin fourfolds and study their explicit geometry.

In Chapter 1, we recall some well-known basic results on hyperkähler manifolds.

In Chapter 2, we study some numerical aspects of hyperkähler manifolds. First, we
produce a conditional upper bound on the second Betti number, in terms of the generalized
Fujiki constants, or equivalently, in terms of the Riemann–Roch polynomial. Then we study
the cohomology class of a Lagrangian plane. We deduce a formula for the projection of the
cohomology class to the Verbitsky component. We also propose a conjectural formula for
the full class in the K3[n]-type case, which is verified for n up to 6.

In Chapter 3, we study the moduli spaces and period maps for projective hyperkähler
manifolds. In general, the moduli space for polarized hyperkähler manifolds with a fixed
polarization type is not necessarily connected. For K3[n]-type and Kumn-type, we deduce
a precise formula for the number of connected components, as well as the number of
polarization types with fixed square and divisibility. Then we study the image of the
polarized period map, focusing on the known examples. We show that when the moduli
space is not connected, the images of the period map restricted to different connected
components can be different.

In Chapter 4, we study the general properties of Debarre–Voisin fourfolds. Such
manifolds are defined from a trivector, and there are two Fano varieties of K3-type that can
also be associated with it. We first deduce the smoothness criteria for these three varieties,
and provide a picture of the moduli space and the period map. Then we relate the integral
Hodge structures of the three varieties, and show that the two Fano varieties satisfy the
integral Hodge conjecture. This is obtained as a detailed analysis of the geometry of these
varieties along three special divisors in the moduli space.

In Chapter 5, we study a special Debarre–Voisin fourfold with a large automorphism
group, using the general results obtained in Chapter 4.

Keywords. hyperkähler manifolds, holomorphic symplectic varieties, Debarre–Voisin
varieties, Fano varieties of K3-type
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Introduction (version française)

Cette thèse est consacrée à l’étude des géométries des variétés hyperkählériennes.

Définition. Une variété hyperkählérienne est une variété compacte kählérienne sim-
plement connexe dont l’espace des 2-formes holomorphes est engendré par une 2-forme
holomorphe partout non dégénérée, autrement dit, une forme holomorphe symplectique.
Une telle variété est donc aussi appelée holomorphe symplectique irréductible.

Les variétés hyperkählériennes sont extrêmement importantes dans l’étude des variétés
du fibré canonique trivial. Par le théorème de décomposition de Beauville–Bogomolov
[Bea83, Théorème 2], ils sont parmi l’un des trois types les plus fondamentaux.

Théorème (Beauville–Bogomolov). Soit X une variété compacte kählérienne du fibré
canonique trivial. Alors il existe un revêtement étale

T ×
∏
i

Yi ×
∏
j

Kj −→ X,

où T est un tore complexe, Yi sont des variétés de Calabi–Yau strictes1 et Kj sont des
variétés hyperkählériennes.

En plus, des résultats structuraux assez forts ont été démontrés pour ces variétés. Nous
nous contentons d’en nommer quelques uns ici. Un traitement plus détaillé des résultats
connus sera donné au chapitre 1.

En premier lieu, l’anneau de cohomologie H∗(X,Q) d’une variété hyperkählérienne
X possède une structure très riche : le deuxième groupe de cohomologie H2(X,Z) porte
une forme quadratique qX qui s’appelle la forme de Beauville–Bogomolov–Fujiki, et la
cohomologie entière H∗(X,Q) admet l’action d’une algèbre de Lie dite de l’algèbre de
Looijenga–Lunts–Verbitsky. Par conséquent, on obtient une décomposition naturelle de
H∗(X,Q) en sous-représentations irréductibles. Une composante particulièrement im-
portante est la sous-algèbre engendrée par H2(X,Q), qui s’appelle la composante de
Verbitsky. On peut déjà établir beaucoup de résultats intéressants juste en regardant les
propriétés numériques de l’anneaux H∗(X,Q), sans connaitre concrètement la géométrie
de la variété X.

1Une variété de Calabi–Yau stricte Y est une variété compacte kählérienne simplement connexe de fibre
canonique trivial, telle que Hk,0(Y ) = 0 pour tout k /∈ {0, dim(Y )}.
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2 INTRODUCTION (VERSION FRANÇAISE)

Deuxièmement, beaucoup d’information d’une variété hyperkählérienne X est incorporée
dans son deuxième groupe de cohomologie

(
H2(X,Z), qX

)
muni de la forme de Beauville–

Bogomolov–Fujiki, qui devient une structure de Hodge entière polarisée. Par exemple,
une forme du théorème de Torelli global par Verbitsky indique que l’on peut (quasiment)
identifier la variété hyperkählérienne X juste en regardant cette structure de Hodge. Plus
concrètement, il existe une application des périodes partant de l’espace de modules des
variétés hyperkählériennes (d’un type de déformation fixé) vers l’espace paramétrant les
structures de Hodge correspondantes. Le théorème de Torelli local affirme que c’est
un isomorphisme local, et le théorème de Torelli global montre qu’elle est surjective et
génériquement injective. L’étude de cette application nous permet de mieux comprendre la
géométrie de ces espaces de modules.

Les variétés hyperkählériennes sont aussi très mystérieux dans le sens que très peu
d’exemples sont connus, contrairement au cas des variétés de Calabi–Yau strictes. Voici
une liste complète de tous les exemples connus à ce jour.

• En dimension 2, les variétés hyperkählériennes ne sont autres que les surfaces K3.
Elles ont toutes le même type de topologie, et le deuxième nombre de Betti est
égal à 22.
• K3[n] pour n ≥ 2 : pour une surface K3 S, on peut considérer le schéma de

Hilbert des points S[n], qui est une variété hyperkählérienne de dimension 2n. Plus
généralement, une déformation d’une telle variété est elle aussi hyperkählérienne.
Le b2 est égal à 23.
• Kumn pour n ≥ 2 : de même, pour une surface abélienne A, on peut construire son

schéma de Hilbert des points ; par contre, pour produire une variété simplement
connexe, il faut considérer l’application de somme Σ: A[n+1] → A et prendre la
préimage d’un point Kum(A) := Σ−1(0). Lorsque n = 1 cela donne la surface de
Kummer de A ; c’est la raison pour laquelle les analogues en dimensions supérieures
et leurs déformations sont appelées les variétés de Kummer généralisées. Le b2 est
égal à 7.
• Deux exemples sporadiques découverts par O’Grady en partant des désingularisa-

tions des espaces de modules des faisceaux : un exemple OG6 en dimension 6 avec
b2 = 8, et un autre OG10 en dimension 10 avec b2 = 24.

Dans la première partie de la thèse, on tente d’étudier quelques propriétés générales des
variétés hyperkählériennes, notamment celles liées avec les aspects numériques et avec les
applications des périodes. On tient aussi à examiner ces propriétés dans le cas des exemples
connus.

D’un point de vue algébro-géométrique, il est naturel d’étudier des variétés hyperkäh-
lériennes qui sont projectives ou polarisées, c’est-à-dire une variété X munie d’une classe
ample H qui est primitive. Nous nous intéressons aux familles localement completes : pour
une telle famille, on possède la description du modèle projectif d’un membre général de
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la famille. Par exemple, les modèles projectifs pour les surfaces K3 sont connus en degrés
bas : les résultats en degrés 2, 4, 6, 8 sont classiques, et pour les degrés qui suivent, ils ont
été étudiés par Mukai dans une série de travaux (voir le survol [Deb18, Section 2.3] pour
une liste complète des modèles projectifs connus).

La question est beaucoup plus difficile en dimensions supérieures : il n’y a que quelques
familles localement complètes connues (voir [Deb18, Section 3.6] pour une liste des ex-
emples). La famille la plus célèbre est celle des variétés des droites pour les cubiques de
dimension 4 : elles sont hyperkählériennes de type K3[2]. Des nombreuses travaux ont
été réalisés sur ces variétés et sur leurs relations avec la cubique correspondante : il y a
beaucoup de phénomènes intéressantes au niveau de leurs structures de Hodge, anneaux
de Chow, catégories dérivées, ainsi que la question de rationalité. Les double sextiques
d’EPW donnent une autre famille qui est bien étudiée, toujours de type K3[2]. Il y a
plusieurs similarités entre les deux familles : par exemple, pour une double sextique d’EPW
générale, il y a aussi une variété de Fano de dimension 4 associée qui s’appelle une variété
de Gushel–Mukai.

Debarre et Voisin ont construit une autre famille localement complète de variétés
hyperkählériennes de type K3[2] dans [DV10]. Cette famille n’est pas aussi bien étudiée que
les deux autres, partiellement dû au fait que la variété de Fano associée est de dimension
20 au lieu de 4. On peut néanmoins constater un intérêt croissant à l’égard de ces variétés
[DHOV20, BFM21].

Dans la deuxième partie de la thèse, on se concentre sur ces variétés hyperkählériennes
construites par Debarre–Voisin et on étudie leur géométrie explicite. On retrouvera beaucoup
d’éléments clés pour les deux familles mentionnées ci-dessus dans le cas des variétés de
Debarre–Voisin.

***

Nous présentons maintenant une description détaillée de la structure de cette thèse, en
soulignant les résultats obtenus.

Au chapitre 1, nous allons rappeler quelques résultats importants sur les variétés
hyperkählériennes, y compris la définition de la forme de Beauville–Bogomolov–Fujiki et
celle de l’algèbre de Looijenga–Lunts–Verbitsky, ainsi que les propriétés des applications
des périodes et les théorèmes de type Torelli. Nous rappellerons aussi des autres invariants
importants, comme les constantes de Fujiki généralisées et le polynôme de Riemann–Roch.
La plupart des résultats ici sont déjà connus ; nous démontrons seulement quelques lemmes
faciles qui nous seront utiles dans la suite.

Au chapitre 2, nous étudierons des aspects numériques d’une variété hyperkähléri-
enneX. Par « numérique », on entend des propriétés deX liées à son anneau de cohomologie
H∗(X,Q) et sa forme de Beauville–Bogomolov–Fujiki qX . Telles propriétés peuvent être
étudiées sans connaitre la géométrie de la variété X elle-même.
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La première question que l’on se pose est de déterminer si la deuxième classe de
Chern c2(X) est contenue dans la composante de Verbitsky SH(X). Nous présenterons
un critère qui donne une réponse complète à cette question. En plus, cela nous fournit
une borne conditionnelle sur le deuxième nombre de Betti b2(X) en termes de certains
invariants numériques de X : soit par les constantes de Fujiki généralisées C(c22) et C(c4)
(théorème 2.1.1) ; soit par le polynôme de Riemann–Roch (théorème 2.1.6).

La deuxième question à laquelle on s’intéresse est de calculer la classe [P ] ∈ H2n(X,Q)

d’un n-plan lagrangien P contenu dans X. En général, l’expression pour [P ] peut être
compliquée, mais on va montrer que lorsque l’on se restreint à la composante de Verbitsky,
il existe une formule très simple pour la projection [P ] (théorème 2.2.4). La formule est
exprimée en termes de L ∈ H2(X,Q), la classe duale d’une droite contenue dans P . Dans
certains cas, la projection [P ] nous permet de retrouver la classe P entièrement. Par
exemple, pour les variétés de type K3[3], on retrouve ainsi le résultat principal de [HHT12]
(exemple 2.2.7).

Nous proposerons aussi une formule conjecturale de la classe [P ] pour les variétés
de type K3[n] (conjecture 2.2.10). Cette question a été posée par Bakker dans [Bak17],
où il a démontré que toutes les classes [P ] sont dans la même orbite pour le groupe des
monodromies, et par conséquent une expression universelle pour [P ] existe forcément. En
particulier, pour vérifier la conjecture, il suffit de trouver un seul couple (X,P ) pour lequel
la formule est vraie. En utilisant le calcul formel, on a vérifié la conjecture pour n jusqu’à 6.

Toutes les deux formules font intervenir la partie de degré n du vecteur de Mukai
v(L) := exp(L) td

1/2
X . Nous discuterons quelques propriétés conjecturales de v(L) ainsi que

quelques indices pour les justifier (voir la conjecture 2.2.12 et la proposition 2.2.13).

Le chapitre se conclut par l’appendice 2.A, où nous examinerons les constantes de Fujiki
généralisées pour les exemples connus.

Au chapitre 3, nous étudierons les espaces de modules des variétés hyperkählériennes
polarisées et les applications des périodes correspondantes. Grâce au théorème de Torelli
polarisé démontré par Markman, pour un type de polarisation fixé, l’espace de modules est
plongé comme une sous-variété ouverte dans le domaine des périodes via l’application des
périodes polarisée. Nous allons d’abord rappeler cette construction, suivant les travaux de
Markman [Mar11], et nous expliquerons comment le groupe des monodromies y intervient.
En particulier, nous verrons que l’espace de modules pour les variétés hyperkählériennes
polarisées d’un type de polarisation donné n’est pas nécessairement connexe, un phénomène
qui a été premièrement constaté et examiné par Apostolov dans [Apo14] pour le cas de
K3[n].

Ensuite, nous nous concentrons sur les types de déformation connus et nous déter-
minerons le nombre des composantes connexes pour un type de polarisation donné (voir la
proposition 3.3.4). Pour les types K3[n] et Kumn, nous donnerons aussi une formule pour le
nombre des types de polarisation avec le carré et la divisibilité fixés (voir la proposition 3.3.5).
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Ces résultats raffinent et simplifient les résultats existants obtenus par Apostolov [Apo14]
dans le cas de K3[n] et par Onorati [Ono16] dans le cas de Kumn.

Une fois que la formule pour le nombre des composantes connexes sera établie, nous
analyserons l’image de l’application des périodes, de nouveau pour les types de déformation
connus. Curieusement, lorsque l’on se restreint aux différentes composantes connexes, les
images peuvent être différentes. Un exemple explicit dans le cas de type K3[n] sera donné
en section 3.5.

Au chapitre 4, nous étudierons la géométrie des variétés de Debarre–Voisin mentionnées
plus haut. Une telle variété, que l’on appellera Xσ

6 , est construite à partir de la donnée
d’un trivecteur σ ∈

∧
3V ∨

10, où V10 est un espace vectoriel complexe de dimension 10. À ce
trivecteur σ, deux autres variétés intéressantes Xσ

1 et Xσ
3 peuvent encore être associées

(ainsi nommées car Xσ
k est une sous-variété de Gr(k, V10)).

Nous étudierons d’abord l’espace de modules GIT pour les trivecteurs

M := P(
∧

3V ∨
10)//SL(V10).

Trois diviseurs intéressants dans M seront définis par des conditions de dégénérescence
SL(V10)-invariants sur le trivecteur σ.

Ensuite, nous examinerons la lissité des variétés Xσ
1 , X

σ
3 et Xσ

6 . Nous montrerons que
les lieux dansM où elles deviennent singulières sont précisément les diviseurs introduits
ci-dessus (proposition 4.1.1).

Puis nous donnerons un aperçu global de l’espace de modules et l’application des
périodes. NotonsMsmooth le sous-espace ouvert deM où σ définit une variété de Debarre–
Voisin Xσ

6 lisse : c’est le complément d’un diviseur D3,3,10. On a le diagramme suivant
(voir le théorème 4.4.11 et le lemme 4.4.13).

P(
∧

3V ∨
10)∖∆3,3,10 M P
⊔ q q

∆3,3,10 Msmooth M(2)
22 Im(p)

⊔ ⊔
D3,3,10 D22.

π

π

m p
∼

p̃

bir.

Ici M est l’espace de modules GIT, M(2)
22 est l’espace de modules des variétés hyperkäh-

lériennes polarisées de type K3[2] avec une polarisation de carré 22 et de divisibilité 2, et
P est le domaine des périodes correspondant ; π est l’application de quotient GIT, m est
l’application modulaire donnée par la construction de Debarre–Voisin, et p est l’application
des périodes ; l’application rationnelle p ◦m peut être étendue en codimension 1 : on notera
cette extension p̃ et on l’appellera l’application des périodes étendue.

Nous étudierons ensuite les structures de Hodge des trois variétésXσ
1 , Xσ

3 etXσ
6 . Comme

Xσ
6 est une variété hyperkählérienne polarisée, nous nous intéressons particulièrement à son
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groupe de cohomologie primitif H2(Xσ
6 ,Z)prim muni de la forme de Beauville–Bogomolov–

Fujiki. Sur les variétés de Fano Xσ
1 et Xσ

3 , nous allons définir les groupes de cohomologie
évanescents H6(Xσ

1 ,Z)van et H20(Xσ
3 ,Z)van, tous deux en degré milieu et sont ainsi munis

d’un produit d’intersection. Le résultat principal est que ces trois pièces de structures de
Hodge sont liées par des isométries de Hodge via des correspondances algébriques (voir le
théorème 4.1.2). Comme un corollaire, nous établirons la conjecture de Hodge entière pour
H∗(Xσ

1 ,Z) et H∗(Xσ
3 ,Z) (corollaire 4.1.3). La démonstration pour les isométries de Hodge

est cependant basée sur une analyse de l’un des diviseurs de Heegner, qui fera le sujet de la
section suivante.

Enfin, nous allons effectuer une étude en détail de la géométrie des trois variétés lorsque
le trivecteur σ appartient à l’un des trois diviseurs. Nous montrerons que tous les trois
diviseurs sont envoyés sur des diviseurs de Heegner par l’application des périodes, donc ils
sont tous spéciaux dans le sens de Hassett. Le diviseur de Heegner D28 est étroitement lié
aux plans lagrangiens contenus dans Xσ

6 (voir le théorème 4.6.3), et nous nous servirons
de cette géométrie pour établir les isométries de Hodge. Pour le diviseur de Heegner D24,
nous allons construire une surface K3 tordue (S, β) avec une classe de Brauer β, et nous
montrerons qu’un membre général Xσ

6 dans cette famille est isomorphe à un espace de
modules des faisceaux sur S. Nous analyserons aussi la singularité pour un membre général
de la famille D22 en section 4.8.

Au chapitre 5, nous étudierons une variété de Debarre–Voisin spéciale avec un très
grand groupe d’automorphismes, partant des résultats généraux obtenus au chapitre 4. Les
résultats principaux sont rassemblés dans le théorème 5.1.1. Notamment, en utilisant la
théorie des représentations du groupe simple G := PSL(2,F11) d’ordre 660, on construira
un trivecteur σ0 qui est G-invariant. On va vérifier que la variété de Debarre–Voisin
Xσ0

6 associée est lisse de dimension 4, alors que la variété Xσ0
1 associée admet 55 points

singuliers isolés. On construira ensuite 55 diviseurs distincts sur Xσ0
6 , engendrant le réseau

de Picard qui est de rang 21. Cela nous permettra de conclure que le groupe AutsH(X
σ0
6 )

des automorphismes symplectiques fixant la polarisation est en fait isomorphe à G.



Introduction

We first give the definition of a compact hyperkähler manifold, the main object studied
in this thesis.

Definition. A simply connected compact Kähler manifold X is called a hyperkähler
manifold if the vector space H2,0(X) := H0(X,Ω2

X) is generated by a nowhere degenerate
holomorphic 2-form σ, in other words, a holomorphic symplectic form. Such manifolds are
also known as irreducible holomorphic symplectic manifolds.

Compact hyperkähler manifolds are extremely important in the study of manifolds with
trivial canonical bundle. Notably, by the Beauville–Bogomolov decomposition theorem
[Bea83, Théorème 2], they are one of the three building blocks.

Theorem (Beauville–Bogomolov). Let X be a compact Kähler manifold with trivial
canonical bundle. Then there exists a finite étale cover

T ×
∏
i

Yi ×
∏
j

Kj −→ X,

where T is a complex torus, Yi are strict Calabi–Yau manifolds,2 and Kj are hyperkähler
manifolds.

Moreover, one can prove some very strong structural results for compact hyperkähler
manifolds. We give a brief overview here, and refer to Chapter 1 for more detailed treatments
of the known results.

First, the cohomology ring H∗(X,Q) of a hyperkähler manifold X enjoys many rich
features: the second cohomology group H2(X,Z) carries a quadratic form qX called the
Beauville–Bogomolov–Fujiki form, and the full cohomology H∗(X,Q) admits an action
of a Lie algebra called the Looijenga–Lunts–Verbitsky algebra. Consequently, we have a
natural decomposition of H∗(X,Q) into irreducible subrepresentations. One particularly
important component is the subalgebra SH(X) generated by H2(X,Q) which is called the
Verbitsky component. We can deduce a lot of interesting conclusions by just studying the
numerical properties of the cohomology ring H∗(X,Q), without much knowledge of the
actual geometry of X.

2A strict Calabi–Yau manifold is a simply connected Kähler manifold Y with trivial canonical bundle such
that Hk,0(Y ) = 0 for all k /∈ {0, dim(Y )}.

7
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Second, a lot of information of a hyperkähler manifold X is encoded in its second
cohomology group

(
H2(X,Z), qX

)
equipped with the Beauville–Bogomolov–Fujiki form,

which gives a polarized Hodge structure. For example, one form of the global Torelli
theorem by Verbitsky states that one can (almost) recover the hyperkähler manifold X just
from the polarized Hodge structure on H2(X,Q). More concretely, one can construct a
period map from the moduli space of hyperkähler manifolds (of a fixed deformation type)
to the corresponding moduli space of Hodge structures. The local Torelli theorem asserts
that this is a local isomorphism, and the global Torelli theorem states that the period map
is surjective and generically injective. One can thus study the geometry of this period map
to get a better understanding of these moduli spaces.

Compact hyperkähler manifolds are also mysterious in that only very few examples are
known, in sharp contrast to strict Calabi–Yau manifolds. We give a list of all the known
examples below.

• In dimension 2, these are precisely K3 surfaces. They all have the same topological
type, and the second Betti number b2 is equal to 22.
• K3[n] for n ≥ 2: for a K3 surface S, one can consider the Hilbert scheme of

points S[n], which is a hyperkähler manifold of dimension 2n. More generally, their
deformations are also hyperkähler. They have b2 = 23.
• Kumn for n ≥ 2: similarly, for an Abelian surface A, one can consider the Hilbert

scheme of points; but to produce a simply connected manifold, one use the sum
map Σ: A[n+1] → A and take the preimage of a point Kum(A) := Σ−1(0). When
n = 1 this gives the Kummer surface of A, which is why the higher dimensional
analogues and their deformations are called generalized Kummer varieties. They
have b2 = 7.
• Two sporadic examples discovered by O’Grady, using desingularizations of moduli

spaces of sheaves: one example OG6 of dimension 6 and b2 = 8, and another OG10

of dimension 10 and b2 = 24.

In the first part of the thesis, we study some general properties of hyperkähler manifolds,
focusing on the numerical aspects as well as the period maps mentioned above. We will
also emphasize on applying these results to the known examples.

From the point of view of algebraic geometry, it is natural to study projective or
polarized hyperkähler manifolds, that is, hyperkähler manifolds X equipped with a primitive
ample class H. We are particularly interested in locally complete families: for such families,
we have a description of the projective model of a general member. For example, for K3
surfaces, the projective models are known when the degree of the polarization is small: the
results in degree 2, 4, 6, 8 are classical, while in higher degrees, they are studied by Mukai in
a series of works (see the survey [Deb18, Section 2.3] for a list of known projective models).

The question is more difficult in higher dimensions: only a few locally complete families
of polarized hyperkähler manifolds are known (again see [Deb18, Section 3.6] for a list
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of known examples). The most famous and most studied family is given by varieties of
lines for cubic fourfolds: they are hyperkähler manifolds of K3[2]-type. A lot of studies
have been carried out on such varieties and on their relation with their corresponding cubic
fourfold: there are many interesting phenomena in terms of their Hodge structures, Chow
rings, derived categories, and rationality problems. Another well studied family is given
by double EPW sextics, also of K3[2]-type. This family shares a lot of similarities with
varieties of lines for cubic fourfolds. For example, for a general member, there is also a
Fano fourfold associated, called a Gushel–Mukai fourfold.

Debarre–Voisin constructed another locally complete family of polarized hyperkähler
fourfolds of K3[2]-type in [DV10]. This family is not as well studied as the other two
families, partly due to the fact that the variety playing the role of the Fano fourfold is a
20-dimensional Fano variety. Although in recent years, it has also attracted much attention
[DHOV20, BFM21].

In the second part of the thesis, we focus on Debarre–Voisin hyperkähler manifolds and
study their explicit geometry. We shall see that many features for the first two families
have their counterparts in the case of Debarre–Voisin varieties.

***

We now provide a more detailed outline of the thesis, highlighting the main results
obtained.

In Chapter 1, we recall some important and well known results for hyperkähler
manifolds. This includes the definitions of the Beauville–Bogomolov–Fujiki form and the
Looijenga–Lunts–Verbitsky algebra that we mentioned above, as well as the properties
of the period maps and the Torelli theorems. We will also recall the definitions of some
other interesting invariants like the generalized Fujiki constants and the Riemann–Roch
polynomial RRX . Most results can already be found in the literature. Occasionally, we
deduce some easy lemmas that will become useful in later chapters.

In Chapter 2, we study some numerical aspects of a hyperkähler manifold X. By
“numerical”, we refer to properties of X involving mainly the cohomology ring H∗(X,Q)

and the Beauville–Bogomolov–Fujiki form qX . Notably, such properties can be studied
without much knowledge of the actual geometry of X.

The first question we study is whether the second Chern class c2(X) lies in the Verbitsky
component SH(X). We present a criterion that completely answers this question. Interest-
ingly, the criterion provides an upper bound on the second Betti number b2(X) in terms
of some numerical invariants of X: it can either be expressed in terms of the generalized
Fujiki constants C(c22) and C(c4) (see Theorem 2.1.1), or in terms of the Riemann–Roch
polynomial RRX (see Theorem 2.1.6).

The second question of interest is to determine the cohomology class [P ] ∈ H2n(X,Q) of
a Lagrangian n-plane P contained in X. In general, the class [P ] can be quite complicated.
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But when restricted to the Verbitsky component, we deduce a very simple formula for the
projection [P ] (see Theorem 2.2.4). The formula is expressed in terms of L ∈ H2(X,Q),
the dual class of a line ℓ contained in P . In certain cases, the projection [P ] alone allows
us to determine the full class [P ]. For example, for K3[3]-type, this very easily recovers the
main result of [HHT12] (see Example 2.2.7).

We also propose a conjectural formula for the full class [P ] in the case of K3[n]-type for
all n (see Conjecture 2.2.10). This question has been asked by Bakker in [Bak17]: under
the condition on the line class ℓ being primitive, he showed that all such classes [P ] are in
the same monodromy orbit, so a universal expression for [P ] must exist. In this case, to
verify the conjecture, it suffices to exhibit a single pair (X,P ) for which the formula holds.
Using computer algebra, we can thus verify it for n up to 6.

Both the formula for [P ] in the general case and the one for [P ] in the case of K3[n]-type
involve the degree n part of the Mukai vector v(L) := exp(L) td

1/2
X . We will discuss some

conjectural vanishing behavior of the full Mukai vector v(L) as well as some evidence (see
Conjecture 2.2.12 and Proposition 2.2.13).

We finish the chapter by Appendix 2.A, where we give an account on the generalized
Fujiki constants for the known examples.

In Chapter 3, we study the moduli spaces for polarized hyperkähler manifolds and
the corresponding period maps. Thanks to the polarized Torelli theorem of Markman,
the polarized period map gives an open immersion of the moduli space into the period
domain. We will first recall the construction of the polarized period map following the
work of Markman [Mar11], and explain how the monodromy group is involved in the
construction. In particular, we shall see that the moduli space for polarized hyperkähler
manifolds with a fixed polarization type is not necessarily connected, a phenomenon first
studied by Apostolov in the K3[n]-case in [Apo14].

We then focus on the known deformation types and determine the number of connected
components for a given polarization type (see Proposition 3.3.4). For K3[n]-type and Kumn-
type, we also deduce a formula for the number of polarization types with fixed numerical
invariants, namely, with fixed square and divisibility (see Proposition 3.3.5). This provides
a refined and simplified version of Apostolov’s result [Apo14] for K3[n]-type and Onorati’s
result [Ono16] for Kumn-type.

Once the number of connected components is determined, we analyze the image of the
period map, again focusing on the known deformation types. Interestingly, the images of
the period map restricted to different connected components can be different. We provide
an explicit example in the case of K3[n]-type in Section 3.5.

In Chapter 4, we study the geometry of Debarre–Voisin varieties, which, as already
mentioned above, form a family of locally complete hyperkähler fourfolds of K3[2]-type. Such
varieties are defined from the data of a trivector σ ∈

∧
3V ∨

10, where V10 is a 10-dimensional
complex vector space. We will denote by Xσ

6 the corresponding Debarre–Voisin fourfold.
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To a trivector σ we can associate two other interesting varieties, which are denoted by Xσ
1

and Xσ
3 (they are named this way because Xσ

k is a subvariety of Gr(k, V10)).

We first study the GIT quotient moduli space for trivectors

M := P(
∧

3V ∨
10)//SL(V10).

We define three interesting divisors in M given by some SL(V10)-invariant vanishing
condition on σ.

Next, we study the smoothness of the varieties Xσ
1 , X

σ
3 , and Xσ

6 . We show that the
loci inM where they become singular are given by the divisors that we introduced above
(see Proposition 4.1.1).

Then we give a picture of the moduli spaces and period maps. We writeMsmooth for
the open locus ofM where σ defines a smooth Debarre–Voisin fourfold Xσ

6 , which is the
complement of a divisor D3,3,10. We have the following picture (see Theorem 4.4.11 and
Lemma 4.4.13).

P(
∧

3V ∨
10)∖∆3,3,10 M P
⊔ q q

∆3,3,10 Msmooth M(2)
22 Im(p)

⊔ ⊔
D3,3,10 D22.

π

π

m p
∼

p̃

bir.

HereM is the GIT quotient moduli space,M(2)
22 is the moduli space of polarized hyperkähler

fourfolds of K3[2]-type with a polarization of square 22 and divisibility 2, and P is the
corresponding period domain; π is the GIT quotient map, m is the modular map given by
the Debarre–Voisin construction, and p is the period map; the rational map p ◦m can be
extended to codimension 1, which we denote by p̃ and refer to as the extended period map.

We proceed to study the Hodge structures on the three varieties Xσ
1 , Xσ

3 , and Xσ
6 . Since

Xσ
6 is a polarized hyperkähler fourfold, the primitive cohomology group H2(Xσ

6 ,Z)prim

equipped with the Beauville–Bogomolov–Fujiki form q is of great interest to us. On the
two Fano varieties Xσ

1 and Xσ
3 , one can define the vanishing cohomologies H6(Xσ

1 ,Z)van

and H20(Xσ
3 ,Z)van, both lying in the middle degree so are equipped with the intersection

product. Our main result is that one can obtain Hodge isometries among these three
pieces of Hodge structures using algebraic correspondences (see Theorem 4.1.2). And as
a corollary, we obtain the integral Hodge conjecture for H∗(Xσ

1 ,Z) and H∗(Xσ
3 ,Z) (see

Corollary 4.1.3). The proof of the Hodge isometries however involves the study of one of
the Heegner divisors, which is discussed in the next section.

Finally, we study in detail the geometry of the three varieties when σ belongs to the
three divisors. We show that all three divisors are mapped to some Heegner divisors via
the period map so they are special in the sense of Hassett. The Heegner divisor D28 is
closely related to Lagrangian planes contained in Xσ

6 (see Theorem 4.6.3), and we will use
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the geometry to prove the Hodge isometries. For the Heegner divisor D24, we construct a
Brauer-twisted K3 surface (S, β) of degree 22, and show that a general member Xσ

6 in the
family is isomorphic to a moduli space of sheaves on S. We will also analyze the singularity
for a general member of D22 in Section 4.8.

In Chapter 5, we study a special Debarre–Voisin fourfold with a large automorphism
group, using the general results obtained in Chapter 4. We have gathered the results
in Theorem 5.1.1. Namely, using the representation theory of the simple group G :=

PSL(2,F11) of order 660, we construct a G-invariant trivector σ0. We verify that the
associated Debarre–Voisin Xσ0

6 is a smooth fourfold, while the associated Xσ0
1 admits 55

isolated singular points. Then we construct 55 distinct divisors on Xσ0
6 generating the

Picard lattice of rank 21. This allows us to show that the group AutsH(X
σ0
6 ) of symplectic

automorphisms fixing the polarization is isomorphic to G.



Part I

Generalities on hyperkähler manifolds





CHAPTER 1

Basic results

Let X be a compact hyperkähler manifold of dimension 2n. We recall the definitions of
some interesting objects that one can associate with X, as well as some important general
results that we will need.

1.1. Beauville–Bogomolov–Fujiki form

1.1.1. One of the most important objects in the study of hyperkähler manifolds is the
second integral cohomology group, which is equipped with a natural quadratic form.

Theorem 1.1.1 (Beauville, Bogomolov, Fujiki). Let X be a compact hyperkähler
manifold of dimension 2n. There exist a unique integral primitive quadratic form qX on
H2(X,Z) and a unique positive rational constant CX such that

∀β ∈ H2(X,Z)

∫
X
β2n = CX · qX(β)n.

The form qX is called the Beauville–Bogomolov–Fujiki form of X (BBF form for short). It
is of signature (3, b2 − 3) and satisfies qX(ω) > 0 for any Kähler class ω ∈ H1,1(X,R) on
X. The constant CX is called the Fujiki constant of X.

The isomorphism class of the lattice
(
H2(X,Z), qX

)
and the Fujiki constant CX are

both deformation invariants of X. It is also common to normalize the Fujiki constant
CX by letting CX = (2n− 1)!! · cX , and we will refer to cX as the small Fujiki constant.
For example, it is known that cK3[n] = 1 and cKumn = n + 1. We will frequently write
q instead of qX for the Beauville–Bogomolov–Fujiki form if no confusion can arise. The
form q satisfies the following basic properties.

Proposition 1.1.2. Let X be a hyperkähler manifold with a holomorphic symplectic
form σ ∈ H2,0(X) and the Beauville–Bogomolov–Fujiki form q = qX .

• The Hodge decomposition

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)

is orthogonal with respect to q.
•We have q(σ, σ) = 0 and q(σ, σ̄) > 0.

15
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As already mentioned in the introduction, there are only very few known examples of
hyperkähler manifolds. Below we give the descriptions of the lattice structure on H2(X,Z)

for all the known examples. The cases of K3[n] and Kumn are studied by Beauville in
[Bea83], and OG6 and OG10 by Rapagnetta in [Rap08].

dim b2(X) Λ = H2(X,Z) D(Λ) cX CX

K3 2 22 U⊕3 ⊕ E8(−1)⊕2 0 1 1

K3[n] 2n 23 ΛK3 ⊕ ⟨−(2n− 2)⟩ Z/(2n− 2)Z 1 (2n)!
2nn!

Kumn 2n 7 U⊕3 ⊕ ⟨−(2n+ 2)⟩ Z/(2n+ 2)Z n+ 1 (2n)!
2nn! (n+ 1)

OG6 6 8 U⊕3 ⊕ ⟨−2⟩⊕2 (Z/2Z)2 4 60

OG10 10 24 ΛK3 ⊕
(−6 3

3 −2

)
Z/3Z 1 945

Table 1. Lattice structure on H2(X,Z) for known deformation types

It is conjectured that hyperkähler manifolds are bounded, that is, in each dimension
there are only finitely many deformation types (see [Bea11]). Since a lot of information
for a hyperkähler manifold is encoded in its second cohomology group, a first step towards
boundedness results for hyperkähler manifolds would be to find an upper bound for the
second Betti number. In dimension 4, we have such a bound by results of Guan [Gua01].

Theorem 1.1.3 (Guan). We have b2(X) ≤ 23 for all hyperkähler fourfolds X. The
bound is sharp and is attained by K3[2]. Moreover, if b2(X) < 23, then in fact b2(X) ≤ 8.

Starting from dimension 6, no upper bounds for b2 are currently known (see [Saw15,
KL20] for some conjectural results). In Section 2.1, we will present a conditional bound.

1.1.2. Generalized Fujiki constants. The following result was obtained by Fu-
jiki [Fuj87] and Huybrechts [Huy99]. It is a generalization of the property of the Beauville–
Bogomolov–Fujiki form (compare with Theorem 1.1.1).

Theorem 1.1.4 (Fujiki, Huybrechts). Let X be a compact hyperkähler manifold of
dimension 2n, and let α ∈ H4k(X,R) be a class that remains of type (2k, 2k) on all small
deformations of X (for example, all characteristic classes satisfy this condition). Then
there exists a constant C(α) ∈ R, called the generalized Fujiki constant of α, such that

∀β ∈ H2(X,R)

∫
X
α · β2n−2k = C(α) · qX(β)n−k.

Remark 1.1.5.
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• This generalizes the usual Fujiki constant CX : we have C(1X) = CX .
• It also generalizes characteristic numbers. In fact, for any class α of top degree,

we have C(α) =
∫
X α. This in particular includes all products of Chern classes in

top degree, and similarly for products of Chern characters.
• We have C(c2) > 0. This positivity is explained by results from differential

geometry. Namely, for a Kähler manifold X of dimension m with trivial canonical
bundle, one can choose a Ricci flat metric and obtain the following pointwise
relation

8π2 c2 ω
m−2 =

∥R∥2

m(m− 1)
ωm,

where ω is the Kähler form and R is the curvature tensor (see for example [Tos17,
Lemma 2.6] for a detailed proof of this identity). By taking ωm

m! as the volume
form and integrating over X, we get∫

X
c2 · ωm−2 =

(m− 2)! ∥R∥2

8π2
.

Hence for a hyperkähler manifold X, using the Fujiki relations and the fact that
R cannot be everywhere zero, we see that C(c2) > 0.1 Equivalently, we have
C(ch2) = C(−c2) < 0.
• There are extra relations that the generalized Fujiki constants of a hyperkähler

manifold must satisfy. We will see such examples in Section 1.1.3.

Denote by q ∈ H4(X,Q) the dual of the Beauville–Bogomolov–Fujiki form. We compute
the generalized Fujiki constants for the powers qk.

Proposition 1.1.6. Let X be a hyperkähler manifold of dimension 2n with second
Betti number b := b2(X). For each α ∈ H4k(X,R) that remains of type (2k, 2k) on all
small deformations of X, we have

C(q · α) = b+ 2n− 2k − 2

2n− 2k − 1
C(α).

In particular, we get

C(qk) =
b+ 2n− 2k

1 + 2n− 2k
C(qk−1) =

k∏
i=1

b+ 2n− 2i

1 + 2n− 2i
· C(1).

Proof. Take a basis (e1, . . . , eb) of H2(X,R) such that

q = e21 + e22 + e23 − e24 − · · · − e2b .

Writing si := qX(ei) ∈ {±1}, we have

C(q · α) =
∫
X
q · α · e2n−2k−2

1 =

∫
X
α · (e2n−2k

1 + e2n−2k−2
1 e22 + · · · − e2n−2k−2

1 e2b)

= C(α) +
∑
i>1

si

∫
X
α · e2n−2k−2

1 e2i .

1More precisely, we have in this case C(1) =
∫
X ω2n

q(ω)n
= (2n)! volX

q(ω)n
and C(c2) =

(2n−2)! ∥R∥2
8π2q(ω)n−1 .



18 1. BASIC RESULTS

For each term e2n−2k−2
1 e2i , consider the function

t 7−→
∫
X
α · (e1 + tei)

2n−2k = C(α) · (1 + t2si)
n−k,

which is a polynomial in t. Comparing the coefficient before t2, we get the polarized Fujiki
relation (

2n− 2k

2

)∫
X
α · e2n−2k−2

1 e2i = C(α) · (n− k)si.

So we have

C(q ·α) = C(α)+
∑
i>1

si
C(α)si

2n− 2k − 1
= C(α)+(b−1)

C(α)

2n− 2k − 1
=
b+ 2n− 2k − 2

2n− 2k − 1
C(α),

where we used the fact that s2i = 1. □

Example 1.1.7.

• For X of K3[2]-type, we have C(1) = 3 and b2 = 23, hence C(q) = 25 and
C(q2) = 575 (these are first computed by O’Grady in [O’G08]).
• For X of Kum2-type, we have C(1) = 9 and b2 = 7, hence C(q) = 27 and
C(q2) = 189.

1.1.3. Riemann–Roch polynomial. Let td := tdX be the Todd class of X and let
td2k ∈ H4k(X,Q) be its degree-2k part (here we are referring to the degree in the Chow
ring to be consistent with the notation for Chern classes). The Riemann–Roch polynomial
of X is defined as

RRX(q) :=
n∑
i=0

C(td2n−2i)

(2i)!
qi

=
C(1)

(2n)!
qn +

C(td2)

(2n− 2)!
qn−1 + · · ·+ C(td2n)

1
.

The Hirzebruch–Riemann–Roch theorem, whence the name, together with the property of
the generalized Fujiki constants assert that this polynomial satisfies

RRX(qX(c1(L))) = χ(X,L)

for all line bundles L on X.

The Riemann–Roch polynomial is a very strong invariant for a hyperkähler manifold.
Among all known examples, there are only two types of Riemann–Roch polynomials

RRK3[n](q) =

(
q/2 + n+ 1

n

)
, RRKumn(q) = (n+ 1)

(
q/2 + n

n

)
,

see [EGL01, Lemma 5.1] and [NW03, Lemma 5.2]. Ríos Ortiz showed in [RO20] that
O’Grady’s sporadic examples satisfy RROG10 = RRK3[5] and RROG6 = RRKum3 .

We also recall the following result of Nieper-Wißkirchen [NW03], which replaces the
Todd class tdX with its square root td

1/2
X . This is a generalization of the Hitchin–Sawon

formula [HS01]. In particular, it produces many extra relations among generalized Fujiki
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constants. The proof uses the theory of Rozansky–Witten invariants (see also [BS22,
Section 5.3] for a conceptual proof).

Theorem 1.1.8 (Nieper-Wißkirchen). Let X be a hyperkähler manifold of dimension
2n. Consider the polynomial

RRX,1/2(q) :=
n∑
i=0

C(td
1/2
2n−2i)

(2i)!
qi

=
C(1)

(2n)!
qn +

C( 1
24c2)

(2n− 2)!
qn−1 +

C( 7
5760c

2
2 − 1

1440c4)

(2n− 4)!
qn−2 + · · ·+ C(td

1/2
2n )

1
.

There exists a positive constant rX such that this polynomial factorizes as

RRX,1/2(q) = C(td
1/2
2n )

(
1 +

1

2rX
q

)n
.

By comparing the first two coefficients, we can obtain the value of the constant rX

(1.1) rX =
(2n− 1)C(c2)

24C(1)
=

(2n− 1)2nn!C(c2)

24(2n)!cX

and also the Hitchin–Sawon formula2

C(td
1/2
2n ) =

C(1)(2rX)
n

(2n)!
= cX

rnX
n!
,

where cX is the small Fujiki constant. In the literature, the normalized quadratic form
1

2rX
qX is usually denoted by λX .

By comparing the rest of the coefficients, we get the following equivalent result, which
generalizes the Hitchin–Sawon formula to all degrees (cf. [Bec21, Lemma 3.3]).

Corollary 1.1.9. Let X be a hyperkähler manifold of dimension 2n with n ≥ 2. Let cX
be the small Fujiki constant and let rX be the constant defined in (1.1). Then the following
holds for all 0 ≤ k ≤ n

C(td
1/2
2k ) =

(2n− 2k)!

2n−k(n− k)!
· cX

rkX
k!
.

1.2. Period maps and Torelli theorems

1.2.1. Local Torelli theorem. The deformation theory for a Kähler manifold X

with trivial canonical bundle works very well thanks to the Bogomolov–Tian–Todorov
theorem, which states that the deformations of X are unobstructed. More precisely, when
X is hyperkähler, this means that the Kuranishi space Def(X) of deformations of X is
smooth of dimension h1,1(X) = b2(X)− 1, and there is a universal family π : X → Def(X)

where X0 ≃ X (see [Huy99, Section 1.12]). Note that up to replacing Def(X) with a
simply connected open neighborhood of 0, we may assume that the family π is a trivial
topological fibration, so all fibers Xt have the same topology. In particular, the local

2We may use Remark 1.1.5 to recover the original Hitchin–Sawon formula C(td
1/2
2n ) = ∥R∥2n

(192nπ2)n(volX)n−1 .
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system R2π∗Z is trivial, and we may use parallel transports to identify each H2(Xt,Z) with
H2(X0,Z) ≃ H2(X,Z).

We have the following local Torelli theorem, proved by Beauville in [Bea83, Théorème 5].

Theorem 1.2.1 (Local Torelli theorem). Let X be a hyperkähler manifold and let
X → Def(X) be the Kuranishi family of X. Consider the local period map

℘ : Def(X) −→ P(H2(X,C))

t 7−→ [H2,0(Xt)]

Its image is contained in the period domain

Ω :=
{
x ∈ P(H2(X,C))

∣∣ q(x) = 0, q(x, x̄) > 0
}
,

and the period map ℘ : Def(X)→ Ω is a local isomorphism.

Using the local Torelli theorem, we prove the following useful lemma concerning the
uniqueness of the Beauville–Bogomolov–Fujiki form qX .

Lemma 1.2.2. Let X be a hyperkähler manifold. Using parallel transport operators, a
quadratic form on H2(X,Q) can be transported to H2(X ′,Q) for any small deformation
X ′ of X. Then up to multiplying by a scalar, the Beauville–Bogomolov–Fujiki form qX is
the unique quadratic form q on H2(X,Q) satisfying the following property:

for any small deformation X ′ of X, H2,0(X ′) is
orthogonal to H2,0(X ′)⊕H1,1(X ′) with respect to q.

We have a similar uniqueness result for quadratic forms on H2(X,Q)prim for a polarized
hyperkähler manifold (X,H), where we consider all small deformations of the pair (X,H)

instead.

Proof. Clearly the Beauville–Bogomolov–Fujiki form q itself satisfies the desired
property by Proposition 1.1.2.

We prove the first uniqueness statement. Let q′ be another quadratic form satisfying the
desired property. We need to show that there exists λ such that q′ = λq. Let σ ∈ H2,0(X) be
the class of a holomorphic symplectic form on X. Then σ is orthogonal to H2,0(X)⊕H1,1(X)

with respect to both q and q′ by assumption. Since we also have q(σ, σ̄) > 0, we can consider
the following number

λ =
q′(σ, σ̄)

q(σ, σ̄)
.

We see that σ is also orthogonal to σ̄ with respect to the form q′ − λq, therefore σ lies in
the kernel ker(q′ − λq). In the projective setting, we write K for the kernel of the form
q′−λq, which is a linear subspace of P(H2(X,C)). We see that K contains the period point
[H2,0(X)]. Using parallel transport operators, the value of λ remains constant on all small
deformations of X. Since the properties of q and q′ also hold for all small deformations
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of X, the subspace K must contain all the period points [H2,0(X ′)]. By the local Torelli
theorem, these period points form an analytic open subset U of the period domain Ω,
which is itself a dense open subset inside the smooth quadric in P(H2(X,C)) defined by q.
Since the quadratic form q is non-degenerate, the open subset U cannot be contained in a
hyperplane, so K coincides with the entire P(H2(X,C)). In other words, the form q′ − λq
is identically zero on H2(X,C), so we may conclude that q′ = λq.

The uniqueness in the polarized case follows from the same argument. □

1.2.2. Global Torelli theorem. We can glue together the local period maps in-
troduced above to construct a global period map. More precisely, we know that the
isomorphism class of the lattice

(
H2(X,Z), qX

)
is a deformation invariant of X. So for

a fixed deformation type, we pick one fixed lattice Λ and consider marked pairs (X, η)

consisting of a hyperkähler manifold X of the given deformation type, and an isometry
η : H2(X,Z)

∼−→ Λ, which is called a marking of X. Denote byMmarked the moduli space
for marked hyperkähler manifolds (X, η) of the given deformation type. On each connected
componentM0

marked of the moduli spaceMmarked, we obtain the following period map

℘0
marked :M0

marked −→ Ωmarked

(X, η) 7−→ [η(H2,0(X))]

where
Ωmarked := {[x] ∈ P(ΛC) | q(x) = 0, q(x, x̄) > 0}

is the same period domain that we have seen above. We have the following global Torelli
theorem, proved by Verbitsky in [Ver13] (see also [Mar11, Theorem 2.2]).

Theorem 1.2.3 (Verbitsky). The period map ℘0
marked is surjective, generically injective,

and identifies pairwise inseparable points.

There is also a version of the period map and the global Torelli theorem for polarized
hyperkähler manifolds. We will discuss them in details in Chapter 3.

1.3. Looijenga–Lunts–Verbitsky algebra

The rational second cohomology group H2(X,Q) is also equipped with the Beauville–
Bogomolov–Fujiki form. Following [GKLR21], we consider the quadratic vector space

(V, q̃) :=
(
H2(X,Q)⊕Q2, qX ⊕ ( 0 1

1 0 )
)
.

This quadratic space is known as the Mukai completion, and is often also denoted by
H̃(X,Q). Let h ∈ EndH∗(X,Q) be the cohomological degree operator defined by

h|Hk(X,Q) = (k − dimX) Id,

such that the degrees are centered at the middle cohomology.
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The Looijenga–Lunts–Verbitsky algebra g := g(X) is the subalgebra of EndH∗(X,Q)

generated by sl2-triples (La, h,Λa) for all classes a ∈ H2(X,Q) satisfying the hard Lefschetz
property. Looijenga–Lunts [LL97] and Verbitsky [Ver96] determined the structure of this
Lie algebra.

Theorem 1.3.1 (Looijenga–Lunts, Verbitsky).

(1) The Lie algebra g is isomorphic to so(V, q̃).
(2) Consider the adjoint action of the operator h on g, then we have an eigenspace

decomposition g = g−2 ⊕ g0 ⊕ g2. In particular, the action of an element in g0

preserves the cohomological degree.
(3) We have a decomposition g0 = g′0 ⊕Qh where g′0 := [g0, g0]. The Lie subalgebra g′0

is isomorphic to so(H2(X,Q), qX).

The cohomology H∗(X,Q) is naturally a g-module by construction. Due to the
semisimplicity of the Lie algebra g, the cohomology splits into a direct sum of irreducible
g-submodules Vλ

H∗(X,Q) ≃
⊕
λ

V ⊕mλ
λ ,

where mλ ∈ N are the multiplicities of the components. We call this the LLV decomposition.
The LLV decompositions for all known examples are determined in [GKLR21].

One natural component of the LLV decomposition is the subalgebra of H∗(X,Q)

generated by H2(X,Q). It is denoted by SH(X,Q) and is referred to as the Verbitsky
component. Verbitsky [Ver96] and Bogomolov [Bog96] have determined its ring structure.

Theorem 1.3.2 (Verbitsky, Bogomolov). Consider the subalgebra SH(X,Q) of H∗(X,Q)

generated by H2(X,Q). It is an irreducible g-module and we have an isomorphism of algebras

SH(X,Q) ≃ Sym∗H2(X,Q)/
〈
αn+1 | qX(α) = 0

〉
.

Example 1.3.3. In the K3[2]-type case, by comparing the dimensions, we see that the
Verbitsky component coincides with the entire cohomology SH(X,Q) = H∗(X,Q).

Recall that q ∈ H4(X,Q) is the dual of the Beauville–Bogomolov–Fujiki form, so it
lies in Sym2H2(X,Q) ≃ SH4(X,Q). For a very general compact hyperkähler manifold X,
the special Mumford–Tate algebra of the Hodge structure on the cohomology H∗(X,Q) is
isomorphic to g′0 ≃ so(H2(X,Q), qX) [GKLR21, Proposition 2.38]. Using the branching
rules from g to g′0 (see for example Appendix B.2.1 of loc. cit.), one can verify that for such
X, the only Hodge classes in SH(X,Q) are multiples of the powers qk ∈ SH4k(X,Q) for
0 ≤ k ≤ n.



CHAPTER 2

Numerical aspects

In this chapter, we study some numerical aspects of hyperkähler manifolds. First, we
produce a conditional upper bound on the second Betti number, in terms of the generalized
Fujiki constants, or equivalently, in terms of the Riemann–Roch polynomial. Then we study
the cohomology class of a Lagrangian plane. We deduce a formula for the projection of the
cohomology class to the Verbitsky component. We also propose a conjectural formula for
the full class in the K3[n]-type case, which is verified for n up to 6.

2.1. Second Chern class and Riemann–Roch polynomial

In this section, we consider the question of whether the second Chern class c2 ∈ H4(X,Z)

lies in the Verbitsky component SH4(X). Since c2 is necessarily a Hodge class of type
(2, 2), this is the same as asking whether c2 is a multiple of q ∈ H4(X,Q), the dual of the
Beauville–Bogomolov–Fujiki form.

It turns out that the answer to this question provides an inequality involving the second
Betti number b2, which leads to a conditional bound on b2.

This is a joint work with Thorsten Beckmann, and has appeared in [BS22].

2.1.1. Second Chern class. We state the main result.

Theorem 2.1.1. Let X be a hyperkähler manifold of dimension 2n for n ≥ 2, with
second Betti number b2(X). If C(c22) > 2C(c4) or equivalently, C(ch4) > 0, then we have
the inequality

(2.1) b2(X) ≤ 10

C(c22)

C(c4)
− 2

− 2n+ 9,

with equality holds if and only if c2 lies in the Verbitsky component SH4(X), or equivalently,
if c2 is a multiple of q. If C(c22) ≤ C(c4), then c2 is not contained in SH4(X).

Note that when n = 2, the inequality C(c22) > 2C(c4) holds a posteriori by the bound
on b2 of Guan (see [OSV21, Lemma 4.6] and [Saw21, Theorem 7]). It is conjectured that
this inequality holds in all dimensions.

Proposition 2.1.2. For a hyperkähler fourfold X, the inequality C(c22) > 2C(c4) holds.
Equivalently, we have C(ch4) > 0.

23
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Proof. We first note that C(c22) and C(c4) are just Chern numbers, and C(c4) =

χtop(X) gives the topological Euler characteristic of X. By Hirzebruch–Riemann–Roch
formula, we have

3 = χ(OX) =
∫
X
tdX =

1

240
C(c22)−

1

720
C(c4).

Therefore the desired inequality is equivalent to C(c4) < 432. By Salamon’s relation on the
Betti numbers [Sal96], we have

b3 + b4 = 46 + 10b2.

So we may compute that

C(c4) = χtop(X) = 2 + 2b2 − 2b3 + b4 ≤ 2 + 2b2 + b3 + b4 = 48 + 12b2 ≤ 324,

where in the last inequality we used the bound b2 ≤ 23 by Guan. □

The key step to Theorem 2.1.1 is the following inequality.

Proposition 2.1.3. Let X be a hyperkähler manifold of dimension 2n for n ≥ 2. We
have the following inequality

(2.2) C(c22) ≥
C(c2)

2

C(q)2
C(q2),

where equality holds if and only if c2 ∈ SH4(X).

Proof. We write

c2 = aq+ z where a ∈ R, z ∈ SH(X,R)⊥.

In other words, we project c2 orthogonally to the Verbitsky component and let aq be its
image. Then we have

C(c2) = C(aq), so a =
C(c2)

C(q)
.

Now we consider the square c22 = a2q2 + 2aqz + z2 ∈ H8(X,R). Since the class z is in
SH(X,R)⊥, it is orthogonal to the image of Sym2n−2H2(X,R), so the class qz is orthogonal
to the image of Sym2n−4H2(X,R) and also lies in SH(X,R)⊥.

On the other hand, for any Kähler class ω ∈ H2(X,R), since z lies SH(X,R)⊥, the
class z · ω2n−3 ∈ H4n−2(X,R) is orthogonal to the entire H2(X,R) hence must vanish.
So the class z is primitive of type (2, 2) with respect to all Kähler classes on X. By the
Hodge–Riemann bilinear relations, for a Kähler class ω ∈ H2(X,R) we have∫

X
z2 · ω2n−4 ≥ 0, hence C(z2) ≥ 0,

where equality holds if and only if z = 0. In other words, the projection of z2 to the
Verbitsky component is non-trivial, unless z is itself trivial. Therefore we obtain the desired
inequality

C(c22) = a2C(q2) + C(z2) ≥ a2C(q2) = C(c2)
2

C(q)2
C(q2),
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where equality holds if and only if c2 ∈ SH4(X). □

Note that the inequality (2.2) implies that C(c22) is always positive.

Proof of Theorem 2.1.1. Using Proposition 1.1.6, we can compute the values of
C(q) and C(q2) and insert them into (2.2). We get

(2.3) C(c22) ≥
(2n− 1)(b2 + 2n− 4)C(c2)

2

(2n− 3)(b2 + 2n− 2)C(1)
.

On the other hand, by Corollary 1.1.9, we have the following relation in degree 4

(2.4) 7C(c22)− 4C(c4) =
5(2n− 1)C(c2)

2

(2n− 3)C(1)
.

We combine (2.3) and (2.4) to obtain

C(c22) ≥
b2 + 2n− 4

5(b2 + 2n− 2)

(
7C(c22)− 4C(c4)

)
,

which is equivalent to (
C(c22)− 2C(c4)

)
(b2 + 2n− 9) ≤ 10C(c4).

Hence if C(c22) > 2C(c4), then we can divide by C(c22) − 2C(c4) and obtain the bound
in (2.1).

By Proposition 2.1.3, we know that c2 ∈ SH4(X) if and only if equality holds in the above
inequality. We show that in this case we must have C(c22) > 2C(c4). By Proposition 2.1.2,
we may assume that n ≥ 3.

• Suppose that C(c22) = 2C(c4), then we get C(c4) = 0 so C(c22) = 0 as well, which
would contradict the positivity of C(c22) shown in (2.2).
• Suppose that C(c22) < 2C(c4), then again by the positivity of C(c22), we get
C(c4) > 0. This means that b2 + 2n− 9 < 0, which is impossible since b2 ≥ 3 and
n ≥ 3.

Therefore we may conclude that c2 ∈ SH4(X) if and only if C(c22) > 2C(c4) and the upper
bound for b2 is attained. □

The condition for c2 to be contained inside the Verbitsky component also gives an
equivalent condition for td

1/2
2n−2 to lie inside SH(X,R), by the following result.

Proposition 2.1.4. For a hyperkähler manifold X of dimension 2n, we have td
1/2
2k ∈

SH(X,R) if and only if td1/22n−2k ∈ SH(X,R). Moreover, for k′ < k ≤ n, the fact td1/22k ∈
SH(X,R) implies that td1/22k′ ∈ SH(X,R).
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Proof. For a class α ∈ H2(X,C), denote by Lα ∈ g(X)C the operator x 7→ x · α.
Define hp to be the holomorphic grading operator that acts on Hp,q(X) as (p−n) Id (which
is denoted by Π in [Jia20]). Recall that for the class σ of a symplectic form, the operator
Lσ has the Lefschetz property with respect to the grading given by hp: there exists a
dual Lefschetz operator Λσ ∈ g(X)C, such that together with the operator hp, we get an
sl2-triple (Lσ, hp,Λσ) in the LLV algebra g(X)C.

Jiang showed in [Jia20, Corollary 3.19] that there exists a constant µ = µσ ∈ R>0 such
that

(2.5) Λσ(td
1/2
2k ) = µ td

1/2
2k−2 ·[σ̄] = µLσ̄(td

1/2
2k−2).

Furthermore, the operators Lσ̄ and Λσ commute for degree reasons. Applying (2.5) repeat-
edly, we see that the following holds for all k ≤ n/2

(2.6) Λn−2k
σ (td

1/2
2n−2k) = µn−2kLn−2k

σ̄ (td
1/2
2k ) ∈ H2k,2n−2k(X).

On the other hand, Fujiki showed in [Fuj87] that the operators Lσ̄ and Λσ yield
isomorphisms

Laσ̄ : H
p,n−a(X)

∼−→ Hp,n+a(X), Λaσ : H
n+a,q(X)

∼−→ Hn−a,q(X).

In particular, we have the following isomorphisms

H2n−2k,2n−2k(X) H2k,2n−2k(X) H2k,2k(X).
Ln−2k
σ̄

∼
Λn−2k
σ

∼

Moreover, these isomorphisms are compatible with the decomposition of H∗(X,C) into
irreducible g(X)C-representations. In other words, for each irreducible representation
V ⊂ H∗(X,C), the isomorphism Laσ̄ restricts to an isomorphism

Laσ̄ : H
p,n−a(X) ∩ V ∼−→ Hp,n+a(X) ∩ V,

and similar for Λaσ. Combining this with (2.6), we get the first assertion.

The second statement follows from a similar argument. If td1/22k lies in the Verbitsky
component, then so is the class

Λk−k
′

σ (td
1/2
2k ) = µLk−k

′
σ̄ (td

1/2
2k′ ) ∈ H

2k′,2k(X).

The map Lk−k
′

σ̄ : H2k′,2k′(X)→ H2k′,2k(X) composed with Ln−k−k
′

σ̄ gives an isomorphism,
so Lk−k

′
σ̄ itself is at least injective. Thus we may conclude that td1/22k′ also lies in the Verbitsky

component. □

Corollary 2.1.5. For a hyperkähler manifold X of dimension 2n, the class td
1/2
2n−2

lies in the Verbitsky component if and only if C(c22) > 2C(c4) and equality holds in (2.1).

2.1.2. Riemann–Roch polynomial. We give an alternative formulation of the bound
on b2 in Theorem 2.1.1, in terms of the Riemann–Roch polynomial RRX .



2.1. SECOND CHERN CLASS AND RIEMANN–ROCH POLYNOMIAL 27

Theorem 2.1.6. Let X be a hyperkähler manifold of dimension 2n for n ≥ 2, with
second Betti number b2(X). Write the Riemann–Roch polynomial of X as

RRX(q) = A0q
n +A1q

n−1 +A2q
n−2 + · · ·

Then C(ch4) > 0 if and only if 2nA0A2 < (n− 1)A2
1. In this case, we have the inequality

(2.7) b2(X) ≤
(
1− 2nA0A2

(n− 1)A2
1

)−1

− (2n− 2),

with equality holds if and only if c2 lies in the Verbitsky component SH4(X).

This is an immediate consequence of the following lemma.

Lemma 2.1.7. All generalized Fujiki constants for characteristic classes of degree ≤ 4 are
determined by the Riemann–Roch polynomial, or more precisely, by its first three coefficients

RRX(q) = A0q
n +A1q

n−1 +A2q
n−2 + · · ·

Namely, we have
C(1) = (2n)!A0, C(c2) = 12(2n− 2)!A1,

C(c22) = 144(2n− 4)!

(
4A2 −

(n− 1)A2
1

nA0

)
,

C(c4) = 144(2n− 4)!

(
7A2 −

3(n− 1)A2
1

nA0

)
.

Proof. Clearly C(1) and C(c2) appear as coefficients of the Riemann–Roch polynomial.
For C(c22) and C(c4), we already have one linear relation (2.4)

7C(c22)− 4C(c4) =
5(2n− 1)C(c2)

2

(2n− 3)C(1)
= 720(2n− 4)!

(n− 1)A2
1

nA0
.

The third coefficient of the Riemann–Roch polynomial gives another one

3C(c22)− C(c4) = 720(2n− 4)!A2,

which allows us to uniquely determine their values. Hence we get all four generalized Fujiki
constants of degree ≤ 4. □

Remark 2.1.8. Suppose that the Riemann–Roch polynomial factorizes as a product of
linear factors

RRX(q) = A0

∏
i

(q + λi).

It was shown in [Jia20] that all the coefficients of RRX(q) are positive. Hence the λi must
all be positive. If, moreover, we assume that the λi are not all equal, then the condition
2nA0A2 < (n−1)A2

1 is satisfied by Cauchy–Schwarz, and the inequality (2.7) can be written
as

b2(X) ≤ n− 1

n
∑
λ2i

(
∑
λi)2

− 1

− (2n− 2).
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This is homogeneous with respect to the λi and measures in a certain sense the dispersion
of the roots.

We now examine the bound (2.7) for the known deformation types of smooth hyperkähler
manifolds. Recall from Section 1.1.3 that there are only two types of Riemann–Roch
polynomial known.

Example 2.1.9 (K3[n]-type). We compute the first three coefficients

RRK3[n](q) =

(
q/2 + n+ 1

n

)
=

1

2nn!
qn +

n+ 3

2n(n− 1)!
qn−1 +

3n2 + 17n+ 26

3 · 2n+1(n− 2)!
qn−2 + · · ·

Then by inserting the values A0, A1, A2 into (2.7), we get the following upper bound

b2(X) ≤ n+ 17 +
12

n+ 1
.

Alternatively, we could also have used Remark 2.1.8 to obtain the expression. When n = 2

or n = 3, it evaluates to 23 and is attained by K3[n]; when n = 5, it evaluates to 24 and is
attained by OG10.

Example 2.1.10 (Kumn-type). We compute similarly the first three coefficients

RRKumn(q) = (n+ 1)

(
q/2 + n

n

)
=
n+ 1

2nn!
qn +

(n+ 1)2

2n(n− 1)!
qn−1 +

(n+ 1)2(3n+ 2)

3 · 2n+1(n− 2)!
qn−2 + · · ·

and insert these three coefficients into (2.7). In this case, the upper bound we get is

b2(X) ≤ n+ 5.

When n = 2, it is attained by Kum2; when n = 3 it is attained by OG6.

We gather these examples in the following corollary.

Corollary 2.1.11. Among all known examples of hyperkähler manifolds of dimension
2n ≥ 4 (that is, K3[n], Kumn, OG6, and OG10), the second Chern class c2 of X lies in the
Verbitsky component SH4(X) if and only if X is one of the following types

K3[2], K3[3], Kum2, OG6, OG10.

In these cases, we have the following relations

c2(K3[2]) = 6
5q, c2(K3[3]) = 4

3q,

c2(Kum2) = 2q, c2(OG6) = 2q, c2(OG10) =
3
2q.

Proof. The first statement is the direct consequence of Theorem 2.1.6. To obtain
the coefficients, it suffices to compare the generalized Fujiki constants for c2 and q, which
are known for all these examples. (Alternatively, one can also compare the Chern number∫
X c

n
2 and the value of C(qn).) □
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2.2. Lagrangian plane

One important question on hyperkähler manifolds asked by Hassett–Tschinkel is to
determine the value of q(ℓ) when ℓ is the class of a line in a Lagrangian n-plane. In [HT09a,
Thesis 1.1], they proposed that this value is a universal constant that only depends on the
deformation type. Moreover, it should provide the lower bound for q(ρ), where ρ is any
primitive generator of an extremal ray of the cone of effective curves. Dually, the dual class
L ∈ H2(X,Q) (more precisely, an integral multiple of it) gives the example of a wall divisor
(see Section 3.4 for this notion). In the K3[n]-type case, Bakker gave a positive answer
in [Bak17]: we always have q(ℓ) = −n+3

2 .

More generally, one can ask for a description of the cohomology class [P ] of the
Lagrangian n-plane P . In the K3[n]-type case, this problem has been studied by several
authors and was answered in lower dimensions for n ≤ 4 [HT09b, HHT12, BJ14].
Moreover, Bakker showed that all the classes [P ] with primitive line class ℓ are in the same
monodromy orbit, so there should exist a universal formula for [P ], but there were no
candidates available starting from n = 5. The Kum2-type case was treated in [HT13].

In this section,1 we will first deduce a formula for the projection [P ] of the class [P ] to
the Verbitsky component (Theorem 2.2.4). Then we propose a conjectural formula for the
full class [P ] in the K3[n]-type case (Conjecture 2.2.10). In the case where the line class ℓ is
primitive, this formula can be verified via computer algebra for n ≤ 6. Finally, we propose
a conjectural behavior of the Mukai vector v(L) := exp(L) td

1/2
X (Conjecture 2.2.12), which

in particular would imply that q(ℓ) = −2rX , where rX is the constant given by (1.1).

2.2.1. Setup. Let X be a hyperkähler manifold of dimension 2n. By Poincaré duality,
we have H2(X,Z) ≃ H2(X,Z)∨. On the other hand, since H2(X,Z) is equipped with the
Beauville–Bogomolov–Fujiki form q which is non-degenerate, we may identify H2(X,Z)∨

as a subgroup of H2(X,Q). In particular, each curve class ℓ ∈ H2(X,Z) can be seen as an
element of H2(X,Q). To make the distinction, we will denote this class by L and refer to
it as the dual class of ℓ. In other words, it is the unique class in H2(X,Q) satisfying

∀α ∈ H2(X,Q) q(L,α) = ℓ · α.

We define q(ℓ) to be q(L), the Beauville–Bogomolov–Fujiki square of the class L.

Lemma 2.2.1. Let X be a hyperkähler manifold of dimension 2n containing a k-plane
Pk. Let ℓ be the class of a line contained in Pk and let L ∈ H2(X,Q) be the dual class.
For any αi ∈ H2(X,Q), we have

α1 · · ·αk · [Pk] = q(α1, L) · · · q(αk, L).

1The results of this section have benefited from inspiring discussions with Thorsten Beckmann and Georg
Oberdieck, to whom I express my sincere gratitude.
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Proof. Denote by ι the inclusion ι : Pk ↪→ X. Each restriction ι∗αi ∈ H2(Pk,Q) will
be a multiple of the hyperplane class, and the degree is precisely the intersection number
αi · ℓ, hence we have

α1 · · ·αk · [Pk] = ι∗α1 · · · ι∗αk = (α1 · ℓ) · · · (αk · ℓ) = q(α1, L) · · · q(αk, L),

so we get the desired relation. □

From now on, we let P ⊂ X be a Lagrangian n-plane and let ℓ be the class of a line in
P and L the dual class. If c2 lies in the Verbitsky component, we can use this lemma to
deduce the value of q(L).

Corollary 2.2.2. Let P ⊂ X be a Lagrangian n-plane and let ℓ be the class of a line
in P and L the dual class. If we assume moreover that c2 lies in the Verbitsky component
so it is a multiple of q, then we have

q(L) = −(n+ 1)
q

c2
.

In particular, we may compute the value of q(L) in the following cases.

K3[2] K3[3] Kum2 OG6 OG10

q(L) −5
2 −3 −3

2 −2 −4

Proof. By Lemma 2.2.1, for any αi ∈ H2(X,Q), we have the relation

α1 · · ·αn · [P ] = q(α1, L) · · · q(αn, L).

If we replace αn−1 and αn by the elements of a orthonormal basis of q, this gives

α1 · · ·αn−2 · q · [P ] = q(L) · q(α1, L) · · · q(αn−2, L).

On the other hand, using the normal sequence of P ⊂ X

0 −→ TP −→ TX |P −→ NP/X ≃ ΩP −→ 0,

we get c2(TX)|P = −(n+ 1)h2, so by a similar argument to Lemma 2.2.1, we have

α1 · · ·αn−2 · c2 · [P ] = −(n+ 1) · q(α1, L) · · · q(αn−2, L).

Comparing the two relations, we get

q(L) = −(n+ 1)
q

c2
,

where the quotient makes sense if and only if c2 is a multiple of q. To conclude for the five
cases, we use the values from Corollary 2.1.11. □

We also state the following useful fact.

Lemma 2.2.3. Let P ⊂ X be a Lagrangian n-plane, then we have

[P ]2 = (−1)n(n+ 1).
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Proof. Since P is Lagrangian, the normal bundle NP/X is isomorphic to the cotangent
bundle ΩP , so

[P ]2 =

∫
P
cn(NP/X) =

∫
P
cn(ΩP ) = (−1)n(n+ 1),

which gives the self-intersection number of P . □

2.2.2. Projection to the Verbitsky component. We deduce an explicit formula
for the projection [P ] of the class of P to the Verbitsky component SH. The advantage of
restricting to the Verbitsky component is that all information of a class can be retrieved by
pairing it with classes in H2(X,Q), and everything can be explicitly computed using the
Fujiki relations. Similar results have been obtained by Beckmann in [Bec21, Example 4.17].

Theorem 2.2.4. Let X be a hyperkähler manifold of dimension 2n containing a La-
grangian n-plane P ≃ Pn. Let ℓ be the class of a line contained in P and let L be the dual
class. Let [P ] ∈ SH2n(X,Q) be the orthogonal projection of [P ] to the Verbitsky component.
Then we have the formula

(2.8) [P ] =

[
µn

cX
exp(L/µ) td

1/2
X

]
n

with µ =

√
−q(L)
2rX

.

Here [−]n means the degree-n (cohomological degree-2n) part of a class.

Proof. By the result of Voisin [Voi92], since P is a Lagrangian subvariety, one
may deform P ⊂ X and assume that X is of Picard rank 1. In this case, all Hodge
classes in the Verbitsky component are generated by L and q. In particular, the classes
Ln, qLn−2, q2Ln−4, . . . form a Q-linear basis for Hodge classes of type (n, n). Hence we can
write [P ] as a linear combination

[P ] = a0L
n + a2L

n−2 + a4L
n−4 + · · ·+ a2kL

n−2k + · · ·

where a2k ∈ Qqk ⊂ SH4k(X,Q). Moreover, each class a2k is uniquely determined by its
generalized Fujiki constant C(a2k).

We will show that the generalized Fujiki constants C(a2k) are given by the following
formula

C(a2k) =
(2n− 2k)!

2nk!(n− 2k)!(n− k)!
(−q(L))k.

We will prove the formula by induction on k. Pick one class α ∈ H2(X,R) such that
q(α) = 0 but q(α,L) ̸= 0. By Lemma 2.2.1, we have

q(α,L)n = αn · [P ] = αn(a0L
n + a2L

n−2 + · · · ).

Using the polarized Fujiki relations and the fact that q(α) = 0, we get

αn · Ln =
2n(
2n
n

)C(1)q(α,L)n,
while for j ≥ 1 we have αn ·a2jLn−2j = 0. This shows that C(a0) =

(2nn )
2n , so we have proved

the case for k = 0.
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Now we assume the cases of 1, . . . , k − 1 and prove the case of k. We again use
Lemma 2.2.1

q(α,L)n−kq(L)k = αn−kLk · [P ] = αn−kLk(a0L
n + a2L

n−2 + · · ·+ a2kL
n−2k + · · · ).

Again, using the polarized Fujiki relations and q(α) = 0, for 0 ≤ j < k we get from the
induction hypothesis

αn−kLk · a2jLn−2j = a2j · αn−kLn−k+2(k−j)

=
2n−k

(
n−j
n−k
)(

2n−2j
n−k

) · C(a2j)q(α,L)n−kq(L)k−j

=
2n−k

(
n−j
n−k
)(

2n−2j
n−k

) · (2n− 2j)!

2nj!(n− 2j)!(n− j)!
(−1)jq(L)kq(α,L)n−k

=
(n− 2j + k)!

2kj!(k − j)!(n− 2j)!
(−1)jq(L)kq(α,L)n−k,

for j = k we get

αn−kLk · a2kLn−2k =
2n−k(
2n−2k
n−k

) · C(a2k)q(α,L)n−k,
and for j > k the terms αn−kLk · a2jLn−2j vanish. Putting all the terms together, we get

q(α,L)n−kq(L)k =
k−1∑
j=0

(n− 2j + k)!

2kj!(k − j)!(n− 2j)!
(−1)jq(L)kq(α,L)n−k

+
2n−k(
2n−2k
n−k

) · C(a2k)q(α,L)n−k,
so dividing out q(α,L)n−k, which we have assumed to be non-zero, we get

C(a2k) =

(
2n−2k
n−k

)
2n−k

q(L)k

1− 1

2k

k−1∑
j=0

(n− 2j + k)!

j!(k − j)!(n− 2j)!
(−1)j


=

(
2n−2k
n−k

)
2n−k

q(L)k
(−1)k

(
n−k
k

)
2k

,

which proves the case of k. Here, the last equality follows from the combinatorial identity

2k =
k∑
j=0

(n− 2j + k)!

j!(k − j)!(n− 2j)!
(−1)j =

k∑
j=0

(
k

j

)(
n− 2j + k

k

)
(−1)j ,

which, by expanding
(
n−2j+k

k

)
as a polynomial in j, can be obtained from the well-known

identities
k∑
j=0

(
k

j

)
ja(−1)j =

0 if 0 ≤ a ≤ k − 1,

(−1)kk! if a = k.
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Finally, recall from Corollary 1.1.9 that we have the following relation

C

(
td

1/2
2k

(n− 2k)!

)
=

(2n− 2k)!cX
2nk!(n− 2k)!(n− k)!

(2rX)
k.

Comparing with the generalized Fujiki constant C(a2k), we see that

a2k =
1

cX

(
−q(L)
2rX

)k
· 1

(n− 2k)!
td

1/2
2k ,

where td
1/2
2k is the projection of td1/22k to the Verbitsky component. We have thus obtained

the desired description of [P ]. □

We will present another proof in Remark 2.2.14. Note that one usually replaces the
class L with a suitable multiple that is integral and primitive.

In certain cases, the knowledge of [P ] provides enough information for us to determine
the class [P ]. In particular, we have the following result by Beckmann, which helps eliminate
some of the extra LLV components. It follows from the much stronger statement in [Bec22,
Proposition 3.5].

Proposition 2.2.5 (Beckmann). Let X be a hyperkähler manifold of dimension 2n

containing a Lagrangian n-plane P . Assuming that q(L) ̸= 0, where L is the dual class of a
line in P as usual. Then the class [P ] ∈ H2n(X,Q) (or more generally, the Mukai vector
v(OP )) only has non-zero terms in LLV components of type V(k) for k ≥ 0.

Example 2.2.6. In the K3[2]-type case, the Verbitsky component coincides with the
entire cohomology, hence we have

[P ] = [P ] = 1
2L

2 + 1
20q = 1

2L
2 + 1

24c2,

where q(L) = −5
2 . Using the values of C(q) and C(q2) from Example 1.1.7, we may verify

that the self-intersection number [P ]2 is indeed equal to 3.

The class L is not integral since q(L) is not an integer. On the other hand, the
discriminant of H2(X,Z) is 2, so the class λ := 2L is integral and primitive, and we may
also write

[P ] = 1
8λ

2 + 1
20q = 1

8λ
2 + 1

24c2.

This result was originally obtained by Hassett–Tschinkel in [HT09b, Section 5].

Example 2.2.7. In the K3[3]-type case, we obtain

[P ] = 1
6L

3 + 1
24c2L.

The LLV decomposition of the cohomology is given by

H∗(K3[3],Q) = V(3) ⊕ V(1,1) as so(3, 22)-modules.

Therefore by Proposition 2.2.5, we may conclude that [P ] = [P ]. Again, one can easily
verify that [P ]2 = −4 using the generalized Fujiki constants. This recovers the main result
of [HHT12], avoiding all the difficult Diophantine analysis.
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More generally, when X is of K3[n]-type, we have cX = 1 and rX = n+3
4 , while

q(L) = −n+3
2 by the result of Bakker [Bak17]. So Theorem 2.2.4 simplifies to [P ] =[

exp(L) td
1/2
X

]
n
. Note that starting from n = 4, the second Chern class hence also the

class td
1/2
2 no longer lie in the Verbitsky component, so the information of [P ] alone does

not suffice to recover [P ]. We will discuss the full cohomology class [P ] in the next section.

Example 2.2.8. In the Kum2-type case, we have

[P ] = 1
6L

2 + 1
72c2 + z,

where z is some class in SH(X,Q)⊥. Using the self-intersection number [P ]2 = 3, we may
deduce that z2 = 8

3 . Similarly, the class 2L is integral and primitive.

The class z is however not a monodromy invariant and can be different for different
planes. Namely, let X be the generalized Kummer variety of E1 × E2, a product of two
elliptic curves. Effective divisors of degree 3 on E1 together with a 3-torsion point on E2

provides a plane in X. In this case, the class z has been explicitly described in [HT13,
Proposition 7.1] (where it is denoted by Ẑ). We note that there are 81 Kummer surfaces
contained in X, parametrized by all the 3-torsion points of E1 × E2. Their classes Zi are
linearly independent in the cohomology and we have c2 = 1

3

∑
Zi. The class z is a linear

combination of the form 1
27(−8

∑9
i=1 Zi +

∑81
i=10 Zi), where the 9 distinguished Kummer

surfaces are those given by the chosen 3-torsion point on E2. So the class z depends on the
choice of the 3-torsion point on E2 and is therefore not a monodromy invariant.

Example 2.2.9. For the 10-dimensional example OG10, since cX = 1, the situation
is very similar to the K3[n]-type case: using Theorem 2.2.4 and the value q(L) = −4, we
obtain

[P ] = 1
120L

5 + 1
96qL

3 + 1
480q

2L.

The LLV decomposition of the cohomology was determined in [GKLR21, Theorem 3.26]

H∗(OG10,Q) = V(5) ⊕ V(2,2) as so(4, 22)-modules.

So by Proposition 2.2.5, we may conclude that [P ] = [P ].

The class L is integral and primitive in this case. To show this, we use the description
of the Beauville–Bogomolov–Fujiki form: H2(X,Z) ≃ ΛK3 ⊕

(−6 3
3 −2

)
. Write u and v for

the generators of the rank-2 sublattice, then we have H2(X,Z)∨ ≃ ΛK3 ⊕ 1
3Zu⊕Zv. Write

L = L0 +
a
3u+ bv for L0 ∈ ΛK3 and a, b ∈ Z, we have −4 = q(L) = q(L0)− 2

3a
2 +2ab− 2b2.

Hence 3 | a and L is integral. Since q(L) = −4 so q(L/2) = −1 is not an even number, we
see that L is also primitive.

2.2.3. K3[n]-type. When X is of K3[n]-type, the formula (2.8) simplifies to [P ] =[
exp(L) td

1/2
X

]
n
, which motivates the following conjecture on the full cohomology class [P ]

of a Lagrangian n-plane.
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Conjecture 2.2.10. Let X be a hyperkähler manifold of K3[n]-type containing a
Lagrangian n-plane P . Let ℓ be the class of a line contained in P and let L ∈ H2(X,Q) be
the dual class. Then the cohomology class of P is given by the degree-n part of exp(L) td1/2X

(2.9) [P ] =
[
exp(L) td

1/2
X

]
n
=

⌊n
2
⌋∑

k=0

Ln−2k

(n− 2k)!
td

1/2
2k .

Bakker proved in [Bak17] that for K3[n]-type, there is a unique monodromy orbit for the
class [P ] with primitive line class ℓ, that is, ℓ is indivisible in H2(X,Z). Hence in this case, a
universal formula as above must exist. In lower dimensions, the class [P ] has been explicitly
determined: n = 2 by Hassett–Tschinkel [HT09b], n = 3 by Harvey–Hassett–Tschinkel
[HHT12], and n = 4 by Bakker–Jorza [BJ14]. So the conjecture is verified for n ≤ 4,
although the above general formula has not been guessed before. Note that for n = 3, 4,
the proofs are done by considering linear combination of all possible Hodge classes and
then determining the coefficients through hardcore Diophantine analysis. If we use the
same strategy for larger dimensions, there will be more Hodge classes hence more variables
appearing, and each dimension would require a separate treatment.

We focus on the case where the line class ℓ is primitive. Since in this case the monodromy
orbit of [P ] is unique, to prove the conjecture, it suffices to exhibit a single pair (X,P )

for which the formula (2.9) holds. We thus look for the simplest example of a Lagrangian
n-plane. Consider a K3 surface S containing a smooth rational curve C. Then the
inclusion C [n] ↪→ S[n] provides a Pn in X := S[n]. The cohomology group H∗(S[n],Q) has
a nice description in terms of Nakajima operators (see [Nak99]), and Lehn–Sorger have
constructed in [LS03] an explicit algebraic model for the ring structure.2 Therefore one
could use computer algebra to explicitly compute the class [P ] and verify the formula. We
have done this for n up to 6.

Proposition 2.2.11. The Conjecture 2.2.10 holds for n ≤ 6 when the line class ℓ is
primitive.

Proof. We reduce the problem to the case of C [n] ↪→ S[n] using the uniqueness of the
monodromy orbit. Then we verify (2.9) in the Nakajima basis using computer algebra. □

It seems hard to generalize this method to all dimensions, hence we do not provide
further details. See Section 2.2.4 for some further discussions on the Mukai vector v(L) :=
exp(L) td

1/2
X that might lead to a proof. One could also ask if the same relation holds in

the Chow ring as well.
Because the formula (2.8) for the projection [P ] does not depend on the primitiveness of

the line class ℓ, we formulate the Conjecture 2.2.10 without the primitiveness condition. It
appears that one cannot exclude the possibility of a Lagrangian n-plane with an imprimitive
line class, see [Bak17, Remark 28].

2An implementation in Haskell is available (see [Kap16]), although it contains an error: the Euler class of
the algebra H∗(S,Z) as defined in [LS03] should be equal to −24pt, the minus of the actual Euler class
of S.
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2.2.4. Mukai vector. We propose a generalization for the results of previous sections
by considering the Mukai vector v(L) := exp(L) td

1/2
X in its entirety. Note that the class L

is not necessarily integral, so this may not be the Mukai vector of a genuine line bundle
(unless we consider twisted sheaves).

Conjecture 2.2.12. Let X be a hyperkähler manifold containing a Lagrangian n-plane
P , and let L be the dual class of a line in P . The Mukai vector v(L) = exp(L) td

1/2
X only

has non-zero terms in degree 0 to n. In other words, [v(L)]k ∈ H2k(X,Q) vanishes for
k ≥ n+ 1.

Note that this behavior closely resembles the case of a non-zero class α ∈ H2(X,Q)

with q(α) = 0: by Theorem 1.3.2, we have αk ̸= 0 if and only if 0 ≤ k ≤ n.

We prove some partial results on the projection of the Mukai vector to the Verbitsky
component, which provide evidence to the conjecture. In particular, the conjecture implies
that q(L) = −2rX , which is indeed a value depending only on the deformation type of
X, confirming the thesis of Hassett–Tschinkel. Moreover, the constant µ appearing in
Theorem 2.2.4 would simplify to 1.

Proposition 2.2.13. Let X be a hyperkähler manifold of dimension 2n and let α be a
class in H2(X,Q). Consider the Mukai vector v(α) := exp(α) td

1/2
X .

(1) The top-degree part [v(α)]2n ∈ H4n(X,Q) vanishes if and only if q(α) = −2rX .
(2) If q(α) = −2rX , then the projection [v(α)]k ∈ SH2k(X,Q) vanishes for k ≥ n+ 1.

In particular, when n = 2 and q(L) = −2rX , since the Verbitsky component spans
H6(X,Q), we have [v(L)]3 = [v(L)]3 = 0 and [v(L)]4 = 0. Hence for n = 2, Conjec-
ture 2.2.12 is equivalent to the numerical condition q(L) = −2rX .

Proof. The first point follows from Theorem 1.1.8, since we have∫
X
[v(α)]2n = RRX,1/2

(
q(α)

)
= C(td

1/2
X )

(
1 +

1

2rX
q(α)

)2

,

and C(td1/2X ) is non zero.

For the second point, we need to show that the class [v(α)]k lies in SH(X)⊥ for k ≥ n+1,
or equivalently, the following symmetric (2n− k)-form on H2(X,Q) vanishes

(β1, . . . , β2n−k) 7−→ [v(α)]k · β1 · · ·β2n−k.

It suffices to show that for k ≥ n+ 1,

∀β ∈ H2(X,Q) [v(α)]k · β2n−k = 0.

We introduce a formal variable t and consider the sum
2n∑
k=0

[v(α)]k · β2n−k ·
tk

(2n− k)!
.
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It suffices to show that this is a polynomial in t of degree ≤ n. We compute

2n∑
k=0

[v(α)]k · β2n−k ·
tk

(2n− k)!
=

2n∑
k=0

⌊ k
2
⌋∑

j=0

αk−2j

(k − 2j)!
td

1/2
2j ·β

2n−k · tk

(2n− k)!

=
n∑
j=0

2n∑
k=2j

αk−2j

(k − 2j)!
td

1/2
2j ·β

2n−k · tk

(2n− k)!

=

n∑
j=0

2n−2j∑
i=0

αi

i!
td

1/2
2j ·β

2n−2j−i · t2j+i

(2n− 2j − i)!
,

where we exchanged the two summations and took a change of variables by letting i = k−2j.
The factorials i! and (2n− 2j − i)! suggest that they come from the binomial coefficient(
2n−2j
i

)
, so we may rewrite the sum as

n∑
j=0

td
1/2
2j t2j

1

(2n− 2j)!
(tα+ β)2n−2j .

Then we use the Fujiki relations as well as the formula for C(td
1/2
2k ) from Corollary 1.1.9 to

obtain
n∑
j=0

t2j

(2n− 2j)!
C(td

1/2
2j )q(tα+ β)n−j =

n∑
j=0

t2jcXr
j
X

2n−jj!(n− j)!
q(tα+ β)n−j

=
cX
2nn!

(
2rXt

2 + q(tα+ β)
)n

=
cX
2nn!

(
2q(α, β)t+ q(β)

)n
,

where in the last equality we used the fact that q(α) = −2rX . Thus the polynomial is
indeed of degree ≤ n and this concludes the proof. □

Remark 2.2.14. The above method also provides an alternative proof for Theorem 2.2.4:
namely, by letting α = L/µ, the computation above shows that the class [v(L/µ)]n satisfies
the property

∀β ∈ H2(X,Q) [v(L/µ)]n · βn = cX · q(L/µ, β)n =
cX
µn
q(L, β)n,

which by Lemma 2.2.1 is equivalent to

[v(L/µ)]n · βn =
cX
µn

[P ] · βn.

So the difference [v(L/µ)]n − cX
µn [P ] lies in SH2n(X,Q)⊥, and we have

[P ] =
µn

cX
[v(L/µ)]n =

[
µn

cX
exp(L/µ) td

1/2
X

]
n

.

We also note that some similar analysis for α with q(α) = 0 using the Fujiki relations
can be found in [Mat99].

Example 2.2.15.
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• When X is a K3 surface containing a smooth rational curve C, L is just the class
[C] and L2 = −2. We have

v(L) = (1 + L+ 1
2L

2)(1 + pt) = 1 + L,

so [v(L)]2 indeed vanishes.
• When X is of K3[2]-type, we have q(L) = −5

2 = −2rX . By Proposition 2.2.13,
both [v(L)]3 and [v(L)]4 vanish so the conjecture holds.
• Similarly, when X is of Kum2-type, we have q(L) = −3

2 = −2rX so the conjecture
holds.
• For K3[n]-type, since the class L satisfies q(L) = −n+3

2 = −2rX by the result
of Bakker [Bak17], the projections [v(L)]k for k ≥ n+ 1 all vanish by Proposi-
tion 2.2.13. Moreover, by assuming that the line class ℓ is primitive, all classes L
are in the same monodromy orbit. Therefore, to verify the conjecture on the full
Mukai vector in this case, it suffices to provide one single example where it holds.
So again we may study the Lagrangian n-plane C [n] ↪→ S[n] for a K3 surface S
containing a smooth rational curve C. Using the Nakajima basis and computer
algebra, we have verified the conjecture for K3[n] with n ≤ 5.
• For the two O’Grady examples, Conjecture 2.2.12 also holds: on the one hand, we

have computed the value of q(L) in Corollary 2.2.2, which is indeed equal to −2rX
in both cases, so the projection v(L) has the desired form by Proposition 2.2.13;
on the other hand, all characteristic classes lie in the Verbitsky component for
these two examples (see Appendix 2.A), so we may conclude that v(L) = v(L)

also has the desired form.

2.A. Generalized Fujiki constants of known examples

In this appendix, we give an account for the generalized Fujiki constants C(cλ) of
characteristic classes cλ := cλ22 c

λ4
4 · · · c

λ2n
2n for all known deformation types of hyperkähler

manifolds.

2.A.1. K3[n] and Kumn. The results are classical for the two infinite families. In the
K3[n]-case, the method in Ellingsrud–Göttsche–Lehn [EGL01] can be used to compute all
the generalized Fujiki constants using a computer for small n. A similar algorithmic method
can be used to treat the Kumn-case, with some slight modifications based on the work of
Nieper-Wißkirchen [NW02].3 Closed formulae for the values C(c2k) for both families were
recently established in [COT22, Theorem 4.2].

3An implementation for both these algorithms in Sage is available here.

https://github.com/8d1h/bott
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2.A.2. OG6. By Lemma 2.1.7, the generalized Fujiki constants for characteristic classes
of degree ≤ 4 for OG6 are the same as those for Kum3, since they share the same Riemann–
Roch polynomial. Since the Chern numbers of OG6 are also known by [MRS18, Proposition
6.8], we can obtain all of them:

α 1 c2 c4 c22 c6 c4c2 c32

C(α) 60 288 480 1920 1920 7680 30720

Alternatively, since for OG6-type the second Chern class c2 lies in the Verbitsky component
(namely, c2(OG6) = 2q), Corollary 2.1.5 shows that the class td

1/2
4 also lies in SH(X,R).

Now td
1/2
4 is a linear combination of c22 and c4, so the same may be said for the class c4.

Then we can use Proposition 1.1.6 to determine that c4(OG6) = q2, which then allows
us to also compute C(c4c2) and C(c32). Finally we can use C(td6) = 4 to solve the Euler
characteristic C(c6).

Proposition 2.A.1. For hyperkähler manifolds of OG6-type, all Chern classes c2, c4, c6
lie in the Verbitsky component. We have

c2(OG6) = 2q, c4(OG6) = q2, c6(OG6) =
1
2q

3.

2.A.3. OG10. The question for OG10 might seem difficult at first, as there are many
more unknown Fujiki constants to determine. It turns out to be quite easy, due to the
following observation.

Proposition 2.A.2. For hyperkähler manifolds of OG10-type, all Chern classes c2k lie
in the Verbitsky component. We have

c2(OG10) =
3
2q, c4(OG10) =

15
16q

2, c6(OG10) =
21
64q

3,

c8(OG10) =
237
3328q

4, c10(OG10) =
27

2560q
5.

Proof. We use the LLV decomposition of the cohomology obtained in [GKLR21,
Theorem 3.26]

H∗(OG10,Q) = V(5) ⊕ V(2,2) as so(4, 22)-modules.

We are interested in the second component, which only contributes to cohomological degree
k for k ∈ {6, 8, 10, 12, 14}.

For a generic X in the moduli space, the (special) Mumford–Tate algebra is the
maximal possible and is isomorphic to so(3, 21). Using the branching rules, we get the
following decompositions of so(3, 21)-modules/Hodge structures (H12 and H14 are omitted
by symmetry)

H6(X,Q) = SH6(X,Q)⊕ V(2),

H8(X,Q) = SH8(X,Q)⊕ V(2,1) ⊕ V(1),

H10(X,Q) = SH10(X,Q)⊕ V(2,2) ⊕ V(2) ⊕ V(1,1) ⊕Q.
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In other words, up to multiplying by a non-zero scalar, there is only one Hodge class
η ∈ H10(X,Q) that lies in SH(X,Q)⊥ for a generic X. In particular, this means that all
the Chern classes c2, . . . , c10 lie in the Verbitsky component.

For a generic X, the only Hodge classes in the Verbitsky components are multiples of
powers of q, so each Chern class c2k is a multiple of qk. We explain how to determine the
scalars, starting from smaller k: we use Lemma 2.1.7 to determine C(c2) and C(c4). Since
the values of C(qk) are known by Proposition 1.1.6, we have therefore determined c2 and c4.
Once all c2i for i < k are known, we study the class td1/22k , whose generalized Fujiki constant
C(td

1/2
2k ) is known by Corollary 1.1.9 and whose only unknown term is a given multiple of

c2k. Therefore we will be able to uniquely determine C(c2k) and thus c2k itself. □

It is then straightforward to compute the generalized Fujiki constants, which we include
for the reader’s convenience.

α 1 c2 c4 c22 c6 c4c2 c32 c8 c6c2 c24 c4c
2
2 c42

C(α) 945 5040 13500 32400 26460 113400 272160 49770 343980 614250 1474200 3538080

c10 c8c2 c6c4 c6c
2
2 c24c2 c4c

3
2 c52

176904 1791720 5159700 12383280 22113000 53071200 127370880

Note that the Chern numbers for OG10 have already been computed by Cao–Jiang in the
appendix of [RO20].

It is remarkable that the knowledge of the Riemann–Roch polynomial together with the
assumption that all Chern classes lie in the Verbitsky component allow us to completely
determine the second Betti number as well as all the generalized Fujiki constants, in
particular all the Chern numbers including the Euler characteristic C(c2n) =

∫
X c2n.



CHAPTER 3

Image of the period map

In this chapter, we study the moduli spaces and period maps for projective hyperkähler
manifolds. In general, the moduli space for polarized hyperkähler manifolds with a fixed
polarization type is not necessarily connected. For K3[m]-type and Kumm-type, we deduce
a precise formula for the number of connected components, as well as the number of
polarization types with fixed square and divisibility. Then we study the image of the
polarized period map, focusing on the known examples. We show that when the moduli
space is not connected, the images of the period map restricted to different connected
components can be different.

The results of this chapter have appeared in [Son22].

3.1. Introduction

We fix a deformation type of compact hyperkähler manifolds. For a hyperkähler
manifold X, the integral cohomology group

(
H2(X,Z), qX

)
equipped with the Beauville–

Bogomolov–Fujiki form is a lattice of signature (3, b2 − 3). The isomorphism class of this
lattice depends only on the deformation type of X, so we will fix one such lattice and denote
it by Λ. We call an isometry η : H2(X,Z)

∼−→ Λ a marking of X. Denote byMmarked the
moduli space for marked hyperkähler manifolds (X, η) of the given deformation type. On
each connected component M0

marked of the moduli space Mmarked, the Hodge structures
provide a period map

℘0
marked :M0

marked −→ Ωmarked,

where
Ωmarked := {[x] ∈ P(ΛC) | (x, x) = 0, (x, x̄) > 0}

is a complex manifold called the period domain. The global Torelli theorem, proved by
Verbitsky, states that ℘0

marked is surjective, generically injective, and identifies pairwise
inseparable points.

On a projective hyperkähler manifold X, we may consider the extra datum of a
polarization, that is, a primitive ample class H ∈ H2(X,Z). Any marking η maps H to a
vector η(H) ∈ Λ, so it is reasonable to define the polarization type T of (X,H) as the O(Λ)-
orbit of η(H) in Λ, which does not depend on the choice of the marking η. There is a quasi-
projective moduli spaceMT for polarized hyperkähler manifolds (X,H) of fixed polarization
type T . For K3 surfaces, each polarization type T is uniquely determined by its square 2d and
each moduli spaceM2d is an irreducible quasi-projective variety of dimension 19. However,

41
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for their higher-dimensional analogues, the polarization types are more complicated to
describe: apart from the square, there is another invariant, the divisibility. Moreover,
Apostolov showed in [Apo14] that for some polarization types T on manifolds of K3[m]-
type, the moduli space MT may have several connected components. Onorati obtained
similar results for Kumm-type in [Ono16]. We shall review their results and give a
simplified expression for the exact number of components in Section 3.3 (Proposition 3.3.4
and Proposition 3.3.5).

One can also consider the period map for polarized hyperkähler manifolds and its
restriction to each connected componentM0

T of the polarized moduli spaceMT . We will
use the letter τ to denote a deformation type of polarizations of type T . Such deformation
types are in bijection with the connected components ofMT , so we will writeMτ instead
of M0

T . In order to get rid of the choice of a marking, we consider the quotient of the
corresponding period domain Ω, which is a hyperplane section inside Ωmarked, by the action
of the elements in the orthogonal group O(Λ) that stabilize Ω. In this way, we get a period
domain PT , depending only on the polarization type T . But the global Torelli theorem no
longer holds in this case, as the map from Mτ to PT might not be generically injective. In
fact, it factors through Pτ , the quotient of Ω by a smaller group Mon(Λ), the monodromy
group, which is a normal subgroup of O(Λ) for all the known deformation types (see Table 2).
Thus the correct global Torelli theorem says that the polarized period map

℘τ :Mτ Pτ

PT

/G

is an open immersion, where Pτ is a covering space of PT with finite deck transformation
group G. The complement of the image of this open immersion is a finite union of divisors
in Pτ . Intuitively, when the periods of the manifolds X in the family move towards the
boundary of the image, the polarization H on X will move towards the boundary of the
ample cone. Therefore, the determination of the divisors in the complement of the image is
intimately related to the geometry of the ample cone for manifolds X in the family.

In the K3[m]-type case, the description of the ample cone was given by Bayer–Hassett–
Tschinkel [BHT15], using the theory of Bayer–Macrì [BM14]. The description is based
on a canonical embedding of H2(X,Z) into a larger lattice Λ̃, known as the Mukai lattice.
The ample cone can then be described using some numerical conditions. The analogous
result for Kumm-type was obtained by Yoshioka [Yos16]. We will review this in Section 3.4
and give a simplified description, without explicitly referring to the larger Mukai lattice
(Proposition 3.4.5). We will use this description to characterize the divisors in the comple-
ment of the image of the period map. Note that the K3[2]-type case was completely treated
in [DM19] (see also [Deb18, Appendix B]).

A natural question arises of whether for a given polarization type T , different connected
components Mτ of MT have the same image in Pτ under their corresponding period map.
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This question in general is not well-posed, as there is no canonical way to identify the
period domains Pτ for different components, due to the action of the deck transformation
group G. Nevertheless, there is no problem of identification when G is trivial, and we
provide a negative answer in the K3[m]-type case: by using our numerical description of
the image, we construct in Section 3.5 an example where two connected components of
the sameMT have different images in PT . We will also give another example where the
group G is non-trivial and the image of the period map in Pτ is not G-invariant above PT .

Notation. In this chapter, we will use the letter 2m for the dimension of the hyperkähler
manifold and 2n for the Beauville–Bogomolov–Fujiki square qX(H) of the ample class H.

For a fixed deformation type of hyperkähler manifolds, we use Mmarked (resp. MT ) to
denote the marked (resp. polarized) moduli space. The notationM0 will be used to denote
a connected component of the corresponding moduli spaceM.

For a positive integer n, we denote by ρ(n) the number of distinct prime divisors of n
and by ρ̃(n) the number ρ(n) if n is odd and ρ(n/2) if n is even. For a prime number p, we
write vp(n) for the p-adic valuation of n.

To treat K3[m]-type and Kumm-type manifolds simultaneously, we let m̃ = m− 1 for
K3[m]-type and m̃ = m+ 1 for Kumm-type.

3.2. Setup

In this section, we review the construction of the polarized period map and its relation
with the monodromy group, following the work of Markman [Mar11, Section 4,7, and 8].
We reformulate some of the results to give a simpler presentation and to better suit our
needs for later sections. We will consider a fixed deformation type of hyperkähler manifolds
and denote by Λ the lattice defined by the Beauville–Bogomolov–Fujiki form on the second
cohomology group, which has signature (3, b2 − 3).

First we recall the following definitions (cf. [Mar11, Definition 1.1]).

Definition 3.2.1. Let X and X ′ be hyperkähler manifolds of the given deformation
type.

(i) An isomorphism f : H2(X,Z)
∼−→ H2(X ′,Z) is called a parallel transport operator

if there exist a smooth and proper family π : X → B of hyperkähler manifolds,
with points b, b′ ∈ B and a path γ : [0, 1] → B connecting b and b′, such that
X ≃ Xb, X ′ ≃ Xb′ , and f is given as the parallel transport in the local system
R2π∗Z along γ.

(ii) An automorphism f : H2(X,Z)
∼−→ H2(X,Z) that is a parallel transport operator

is called a monodromy operator. The subgroup of O(H2(X,Z)) generated by
monodromy operators is called the monodromy group of X and denoted by Mon(X).



44 3. IMAGE OF THE PERIOD MAP

(iii) If (X,H) and (X ′, H ′) are polarized hyperkähler manifolds, we define similarly a
polarized parallel transport operator f : H2(X,Z)

∼−→ H2(X ′,Z) to be one induced
by a path γ in a family of polarized hyperkähler manifolds. In other words, the
local system R2π∗Z admits a section h of ample classes, such that h(b) = H and
h(b′) = H ′.

In this paper, we will make the assumption that the monodromy group Mon(X) is a
normal subgroup of O(H2(X,Z)), in which case it can be identified as a subgroup Mon(Λ)

of O(Λ). This holds for all known deformation types of hyperkähler manifolds.

A first property of the monodromy group Mon(Λ) can be given in terms of the spinor
norm, which is the following homomorphism of groups

σ : O(ΛR) ≃ O(3, b2 − 3) −→ {±1},

given by the action on the orientation of a positive three-space W3 of ΛR. In a more
canonical way, we may consider the positive cone

C̃Λ := {x ∈ ΛR | (x, x) > 0}.

For any positive three-space W3 in ΛR, W3 ∖ {0} is a deformation retract of C̃Λ. So an
orientation of W3 determines a generator of H2(W3 ∖ {0},Z) ≃ H2(C̃Λ,Z) ≃ Z. The two
generators of H2(C̃Λ,Z) are called orientation classes of the positive cone C̃Λ and the spinor
norm can be defined by the action on them (cf. [Mar11, Section 4]). For any subgroup G
of O(Λ), we write G+ for the subgroup of G consisting of elements of trivial spinor norm.

Proposition 3.2.2. The monodromy group Mon(Λ) is contained in O+(Λ).

Proof. For a marked pair (X, η) with period [x] ∈ Ωmarked, we can take a Kähler
class H on X and consider the orientation on the positive three-space Cx⊕Rη(H) given
by the basis {Rex, Imx, η(H)}. This gives a distinguished orientation class of C̃Λ, which
is constant on each connected componentM0

marked of the marked moduli spaceMmarked.
Therefore every monodromy operator must have trivial spinor norm. □

From now on, we pick one connected componentM0
marked of the marked moduli space

Mmarked. Recall from the introduction that we have the period map

(3.1) ℘ = ℘0
marked :M0

marked −→ Ωmarked,

which is surjective by the global Torelli theorem. Let h ∈ Λ be a primitive element of
positive square. Consider the hyperplane section

Ωmarked ∩ h⊥ ={[x] ∈ Ωmarked | (x, h) = 0}

={[x] ∈ P(ΛC) | (x, x) = (x, h) = 0, (x, x̄) > 0}

inside the marked period domain Ωmarked. It has two connected components denoted by Ωh

and Ω−h. For any [x] ∈ Ωh ⊔ Ω−h, the real vector space Cx⊕Rh is a positive three-space
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in ΛR, but the orientation classes given by the basis {Rex, Imx, h} are opposite on the two
connected components. Since there is a distinguished orientation class for the connected
componentM0

marked, up to interchanging Ωh and Ω−h, we may suppose that it coincides
with {Rex, Imx, h} for [x] ∈ Ωh (and consequently it also coincides with {Rex, Imx,−h}
for [x] ∈ Ω−h).

Consider the preimages under the period map (3.1) of each of these two connected
components. We denote them byMh andM−h. Due to the surjectivity of the period map,
both are non-empty divisors inM0

marked. In fact, the unionMh ⊔M−h is exactly the locus
where the class η−1(h) is algebraic.

Proposition 3.2.3. For a very general (X, η) in Mh, the class η−1(h) is ample, while
for a very general (X, η) in M−h, the class η−1(−h) is ample.

Proof. For a very general element (X, η) in Mh with period [x] ∈ Ωh, the Néron–
Severi group is generated by the class H := η−1(h). In this case the Kähler cone coincides
with the positive cone [Huy99, Corollary 7.2]. Since h is primitive of positive square, this
implies that either H or −H is ample. On the other hand, [x] lies in Ωh, so the orientation
class given by {Rex, Imx, h} coincides with the distinguished one, which can be given
by {Rex, Imx, η(H ′)} for some Kähler class H ′. This implies that only H can be ample.
By symmetry, we get the result for −h. □

By removing the locus inside Mh where η−1(h) is not ample, which is a (possibly
infinite) union of subvarieties, we get the following result [Mar11, Corollary 7.3].

Proposition 3.2.4 (Markman). Let Mamp
h be the locus in Mh that consists of marked

pairs (X, η) such that η−1(h) is ample. Then Mamp
h is connected and Hausdorff, and the

marked period map ℘ restricts to an injective map from Mamp
h onto a dense open subset

of Ωh (in the analytic topology).

Remark 3.2.5. In Markman’s survey, the domains Ωh,Mh, andMamp
h are denoted

as Ω+
h⊥

, M+
h⊥

, and Ma
h⊥

. We believe our notation is simpler and better reflects the symmetry
between h and −h: we may identify Ω−

h⊥
= Ω+

(−h)⊥ as Ω−h, and M−
h⊥

= M+
(−h)⊥ asM−h.

The connectedness of the locusMamp
h implies the following result [Mar11, Corollary

7.4], which determines whether two polarized hyperkähler manifolds lie in the same connected
component of the polarized moduli space.

Proposition 3.2.6 (Markman). A parallel transport operator

f : H2(X,Z)
∼−→ H2(X ′,Z)

is a polarized parallel transport operator from (X,H) to (X ′, H ′) if and only if f(H) = H ′.
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Definition 3.2.7. We fix one connected component M0
marked of the marked moduli

spaceMmarked as before. Given a polarized pair (X,H), choose a marking η such that (X, η)
lies inM0

marked. We define the polarization type T of (X,H) to be the O(Λ)-orbit of η(H)

in Λ. We also denote by τ the Mon(Λ)-orbit of η(H) in Λ, which is contained in T . This
orbit is clearly constant on each connected componentM0

T ofMT , so we have a map

(3.2) {connected components ofMT } −→ {Mon(Λ)-orbits contained in T},

which may depend on the initial choice of the connected componentM0
marked. We will call

the orbit τ the deformation type of (X,H).

Proposition 3.2.6 can be used to show that the deformation type defined here is the
good notion. More precisely, we have the following result.

Proposition 3.2.8. Let T be a polarization type, in other words, an O(Λ)-orbit of a
primitive element of positive square. The map (3.2) above gives a bijection from the set of
connected components of MT to the set of Mon(Λ)-orbits contained in T .

Proof. For the injectivity, suppose that two polarized pairs (X,H) and (X ′, H ′) have
the same deformation type, which means that we may choose markings η and η′ such
that (X, η) and (X ′, η′) both lie in the fixed connected component M0

marked, and η(H)

and η′(H ′) have the same Mon(Λ)-orbit in Λ. We want to show that (X,H) and (X ′, H ′)

lie in the same connected component ofMT .

Suppose that there exists some ϕ ∈ Mon(Λ) such that ϕ ◦ η(H) = η′(H ′). By the
definition of Mon(Λ), the marking (X,ϕ◦η) is also inM0

marked. The isomorphism η′−1◦ϕ◦η
is a parallel transport operator that takes H to H ′ so, by Proposition 3.2.6, it is a polarized
one, that is, (X,H) and (X ′, H ′) are indeed connected by some path in the polarized
moduli spaceMT .

For the surjectivity, since the locus Mamp
h is non-empty for every h ∈ T , the class h

can always be realized as the image η(H) for some polarized pair (X,H) and a marking η
with (X, η) lying in the fixed connected componentM0

marked. This in particular means that
every Mon(Λ)-orbit can be realized as the deformation type of some polarized pair. □

So for a given polarization type T , once we picked a connected component M0
marked,

we can distinguish each connected componentM0
T ofMT by its deformation type τ . We

can thus writeMτ instead ofM0
T .

A first observation is that, if the group Mon(Λ) is a proper subgroup of O(Λ), an O(Λ)-
orbit may contain several Mon(Λ)-orbits and consequently, the corresponding polarized
moduli space MT may have several components. As the result of Apostolov [Apo14]
shows, this is indeed the case for certain polarization types of K3[m]-type manifolds. We
will give a simplified expression for the exact number of components in Proposition 3.3.4.

Finally, we explain the construction of the polarized period map and the statement of
the polarized global Torelli theorem, as mentioned in the introduction. For a polarization
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type T , we consider the connected componentM0
T =Mτ of the polarized moduli spaceMT

corresponding to a Mon(Λ)-orbit τ and pick some h ∈ τ . We consider the stabilizer groups

O(Λ, h) := {ϕ ∈ O(Λ) | ϕ(h) = h} and Mon(Λ, h) := Mon(Λ) ∩O(Λ, h).

For a polarized pair (X,H) of deformation type τ , if we pick a suitable marking η in the
connected componentM0

marked such that η(H) = h then, by the ampleness of the class H,
the marked pair (X, η) must lie inMamp

h . By quotienting out the action of the monodromy
group, we get the following result [Mar11, Lemma 8.1, Lemma 8.3, and Theorem 8.4].

Theorem 3.2.9 (Markman).

(i) The marked period map (3.1) descends to an open embedding of analytic spaces

Mamp
h /Mon(Λ, h) ↪−→ Ωh/Mon(Λ, h),

where the second quotient Ωh/Mon(Λ, h) is a normal quasi-projective variety by
Baily–Borel theory. We denote this quotient by Pτ , since if we choose another h′ ∈
τ , the two quotients are canonically isomorphic.

(ii) For each h ∈ τ , there is an isomorphism of analytic spaces

Mτ
∼−→Mamp

h /Mon(Λ, h).

The composition with the above embedding gives the polarized period map

℘τ :Mτ ↪−→ Pτ ,

which is an open immersion of algebraic varieties.

Notice that if τ and τ ′ are different Mon(Λ)-orbits contained in T , the quotients Pτ
and Pτ ′ are isomorphic but in general not canonically. This can be seen as follows. We
consider the quotient (Ωh ⊔ Ω−h)/O(Λ, h) ≃ Ωh/O

+(Λ, h), which is again a normal quasi-
projective variety. This quotient can be denoted by PT , since if another h′ ∈ T is chosen,
the two quotients are canonically isomorphic. We see that Pτ is a covering space of PT
and it admits an action of the group O+(Λ, h)/Mon(Λ, h), not necessarily free. The deck
transformation group G will be some quotient of this group. Thus we have a diagram

(3.3)
℘τ :Mτ Pτ = Ωh/Mon(Λ, h)

PT = Ωh/O
+(Λ, h)

/G

In particular, when G is non-trivial, for two deformation types τ and τ ′, there is no canonical
isomorphism between the period domains Pτ and Pτ ′ : any two such isomorphisms differ
by the action of an element in G (to be more precise, in this case we have two groups Gτ
and Gτ ′ that are non-canonically isomorphic).

Remark 3.2.10. For K3 surfaces, the monodromy group Mon(Λ) coincides with O+(Λ),
and each polarization is characterized by its square 2d. Each period domain PT = P2d is



48 3. IMAGE OF THE PERIOD MAP

given above as the quotient (Ωh ⊔Ω−h)/O(Λ, h). This is usually formulated in terms of the
orthogonal lattice h⊥: the hyperplane section (Ωh ⊔ Ω−h) can be identified as the following
space

Ωh⊥ :=
{
[x] ∈ P

(
(h⊥)C

) ∣∣∣ (x, x) = 0, (x, x̄) > 0
}
,

and by Proposition 3.2.13 below, the group O(Λ, h) restricts to a subgroup Õ(h⊥) of O(h⊥),
so P2d can also be given as the quotient Ωh⊥/Õ(h⊥).

Remark 3.2.11. Another subtlety is that the polarized period map depends on the
initial choice of the connected component M0

marked for the definition of deformation types:
if we choose another connected component by acting on the marking using an element
in Mon(Λ) ·O(Λ, h), the deformation type—the Mon(Λ)-orbit—ofM0

T is still τ , but the
period map is acted on by some element in G; if we choose another connected component
by acting on the marking using an element in the larger group O(Λ), the deformation type
of M0

T may change to an entirely different τ ′, in which case the period map maps the
componentM0

T to a different Pτ ′ that, as we already stated, can only be identified with Pτ
up to the action of some element in G. In Markman’s survey, this subtlety is handled by
taking disjoint copies of Mamp

h (resp. Ωh) and by quotienting out by the action of O(Λ)

to get a canonically defined polarized moduli space (resp. polarized period domain). This
approach is certainly more canonical as it does not depend on the particular choice of a
connected component M0

marked. However, it is more difficult to describe the connected
components ofMT in this setting.

Before ending this section, we review some lattice theoretical results that will be used
later. We first recall some basic definitions. Let Λ be a lattice with isometry group O(Λ).
The divisibility div(x) of a primitive element x in Λ is the positive generator γ of the
subgroup (x,Λ) of Z. The discriminant group of Λ is the finite abelian group D(Λ) := Λ∨/Λ.
We define x∗ := [x/ div(x)], which is an element of D(Λ) of order div(x). When Λ is even,
the quadratic form on Λ induces a (Q/2Z)-valued quadratic form on D(Λ), and there is
a natural homomorphism χ : O(Λ) → O(D(Λ)). In this case, we let Õ(Λ) and Ô(Λ) be
the respective preimages of {1} and {±1} by χ. We have the following results from lattice
theory.

Proposition 3.2.12 ([Nik79, Theorem 1.14.2]). For any even indefinite lattice Λ

of rank larger than or equal to the minimal number of generators of D(Λ) plus 2, the
homomorphism χ : O(Λ)→ O(D(Λ)) is surjective.

Proposition 3.2.13 ([GHS10, Lemma 3.2]). Let Λ be an even unimodular lattice and
let x be an element of Λ with non-zero square. Denote by x⊥ the orthogonal of x in Λ. We
have

O(Λ, x)|x⊥ = Õ(x⊥),

where O(Λ, x) is the stabilizer group of x in O(Λ).
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Proposition 3.2.14 (Eichler’s criterion, [GHS10, Lemma 3.5]). Let Λ be an even
lattice which contains at least two orthogonal copies of the hyperbolic plane U . The Õ(Λ)-
orbit of a primitive element x is determined by its square x2 and the class x∗ = [x/ div(x)]

in D(Λ).

The Eichler’s criterion can be slightly strengthened by replacing Õ(Λ) with smaller
subgroups.

Proposition 3.2.15. Under the same assumption for Λ as above, for a primitive
element x, the following three orbits coincide

Õ(Λ)x = S̃O(Λ)x = S̃O
+
(Λ)x.

In particular, all three orbits are determined by the square x2 and the class x∗ in D(Λ).

Proof. Write Λ = U1 ⊕ U2 ⊕ Λ0 where U1 and U2 are two copies of the hyperbolic
plane U . Since U is unimodular, by Eichler’s criterion, we may find ϕ ∈ Õ(Λ) such that
ϕ(x) ∈ U2 ⊕ Λ0. Take u, v ∈ U1 with u2 = 2 and v2 = −2, then the reflections Ru, Rv
lie in O(Λ, ϕ(x)) and they satisfy σ(Ru) = −1, σ(Rv) = 1, χ(Ru) = χ(Rv) = 1, and
det(Ru) = det(Rv) = −1.

Now for φ ∈ Õ(Λ) with det(φ) = −1, we have φ(x) = φ◦ϕ−1◦ϕ(x) = φ◦ϕ−1◦Ru◦ϕ(x),
and the element φ ◦ ϕ−1 ◦Ru ◦ ϕ has determinant 1, so φ(x) lies in the same S̃O(Λ)-orbit
as x and we get Õ(Λ)x = S̃O(Λ)x.

Similarly, for φ ∈ S̃O(Λ) with σ(φ) = −1, we have φ(x) = φ ◦ ϕ−1 ◦ ϕ(x) = φ ◦
ϕ−1 ◦ Ru ◦ Rv ◦ ϕ(x), and the element φ ◦ ϕ−1 ◦ Ru ◦ Rv ◦ ϕ lies in S̃O

+
(Λ), so we get

S̃O(Λ)x = S̃O
+
(Λ)x. □

3.3. Monodromy group and number of components

In this section, we will calculate the number of components of the moduli spaceMT

of a given polarization type T , for all known deformation types. The polarization type
determines the square and the divisibility of its elements, but the converse is in general not
true: we will calculate the number of T with given square and divisibility.

First we recollect the descriptions for the lattice Λ = H2(X,Z) and the monodromy
group Mon(Λ) for all known deformation types. The lattice structures for K3[m] and
Kumm are known by Beauville [Bea83], and for OG6 and OG10 they are computed by
Rapagnetta [Rap08]. The monodromy group is computed by Markman in the K3[m]-case,
Markman and Mongardi in the Kumm-case [Mar22, Mon16], Mongardi–Rapagnetta for
OG6 [MR21], and Onorati for OG10 [Ono22].
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Theorem 3.3.1. The descriptions for the lattice Λ = H2(X,Z) and the monodromy
group Mon(Λ) for all known deformation types are as follows.

Λ = H2(X,Z) D(Λ) Mon(Λ)

K3 U⊕3 ⊕ E8(−1)⊕2 0 O+(Λ)

K3[m] ΛK3 ⊕ ⟨−(2m− 2)⟩ Z/(2m− 2)Z Ô
+
(Λ)

Kumm U⊕3 ⊕ ⟨−(2m+ 2)⟩ Z/(2m+ 2)Z
{
g ∈ Ô

+
(Λ)

∣∣∣ χ(g) · det(g) = 1
}

OG6 U⊕3 ⊕ ⟨−2⟩⊕2 (Z/2Z)2 O+(Λ)

OG10 ΛK3 ⊕
(−6 3

3 −2

)
Z/3Z O+(Λ)

Table 2. Lattice and monodromy group for known deformation types

Here U is the hyperbolic plane, E8(−1) is the E8-lattice with negative definite form, and ⟨k⟩
is the lattice generated by one primitive element with square k.

We may compute the number of components for a given polarization type T using Propo-
sition 3.2.8. We first prove a lemma concerning the orthogonal group of the discriminant
group D(Λ).

Lemma 3.3.2. Let D be a cyclic group of order 2n with a quadratic form q : D → Q/2Z.
If there is a generator g ∈ D with q(g) = 1

2n , then

O(D) =

{
g 7−→ ag

∣∣∣∣∣ a ∈ Z/2nZ

a2 ≡ 1 (mod 4n)

}
≃ (Z/2Z)ρ(n),

where ρ(n) denotes the number of distinct prime divisors of n.

Proof. Write n = pα1
1 · · · pαr

r with r = ρ(n). If n is odd, a is determined by the
conditions a ≡ 1 (mod 2) and a ≡ ±1 (mod pαi

i ); if n is even, we let p1 = 2, then a is
determined by the conditions a ≡ ±1 (mod 2α1+1) and a ≡ ±1 (mod pαi

i ) for i ≥ 2. In
both cases, we have O(D) ≃ (Z/2Z)ρ(n). □

The Eichler’s criterion allows us to compute the number of Õ(Λ)-orbits.

Lemma 3.3.3. Let Λ be an even lattice containing at least two orthogonal copies of the
hyperbolic plane U , such that the discriminant group D(Λ) is cyclic of order 2n. Then for
each O(Λ)-orbit T of a primitive element with divisibility γ, the number of Õ(Λ)-orbits
contained in T is equal to 2ρ̃(γ), where ρ̃(n) is equal to ρ(n)—the number of distinct prime
divisors of n—if n is odd, and ρ(n/2) if n is even.
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Proof. Fix one element h ∈ T so T is the set {ϕ(h) | ϕ ∈ O(Λ)}. By Eichler’s criterion
(Proposition 3.2.14), as the square is fixed, the number of Õ(Λ)-orbits is the same as the
number of possible values of

(
ϕ(h)

)
∗ = χ(ϕ)(h∗) ∈ D(Λ) for all ϕ ∈ O(Λ). The lattice Λ

satisfies the condition in Proposition 3.2.12, so the homomorphism χ : O(Λ)→ O(D(Λ))

is surjective. Therefore it suffices to count the number of possible ah∗ ∈ D(Λ) for all a ∈
O(D(Λ)). Since h is primitive of divisibility γ, the class h∗ = [h/γ] is of order γ. Viewing
the isometry a as an element of Z/2nZ, we therefore need to count the number of possible
remainders of a modulo γ under the quotient map Z/2nZ→ Z/γZ.

Using a similar argument as in the proof of Lemma 3.3.2, we write γ = pα1
1 · · · pαr

r with
r = ρ(γ). If γ is odd, then a modulo γ can take all the values satisfying a ≡ ±1 (mod pαi

i ).
If γ is even, let p1 = 2; if γ is not divisible by 4, that is, α1 = 1, then a modulo γ can
take all the values satisfying a ≡ 1 (mod 2) and a ≡ ±1 (mod pαi

i ); if α1 ≥ 2, a modulo γ
can take all the values satisfying a ≡ ±1 (mod 2α1+1) and a ≡ ±1 (mod pαi

i ) for i ≥ 2.
Combining all three cases, the number of Õ(Λ)-orbits is equal to 2ρ̃(γ). □

Now we can compute the number of connected components.

Proposition 3.3.4. Let X be a hyperkähler manifold and T be a polarization type of
divisibility γ on X.

• If X is of K3[m]-type or Kumm-type, the number of connected components of the
polarized moduli space MT is equal to 2max(ρ̃(γ)−1,0).
• If X is of OG6-type or OG10-type, the polarized moduli space MT is connected.

Proof. As Proposition 3.2.8 shows, the number of connected components of MT

is equal to the number of Mon(Λ)-orbits contained in the O(Λ)-orbit T . We fix one
element h ∈ T , so T is the set {ϕ(h) | ϕ ∈ O(Λ)}.

Case K3[m]: The discriminant group D(Λ) is cyclic of order 2m−2, so Lemma 3.3.3 applies
and the number of Õ(Λ)-orbits contained in T is equal to 2ρ̃(γ).

Since the subgroup Ô(Λ) is generated by Õ(Λ) and − Id, we see that if h and −h are
in the same Õ(Λ)-orbit, that is, when γ is 1 or 2, the number of Ô(Λ)-orbits is the same as
the number of Õ(Λ)-orbits; otherwise it should be divided by 2. So this gives 2max(ρ̃(γ)−1,0)

as the number of Ô(Λ)-orbits.

To conclude, we show that the Ô(Λ)-orbits and the Ô
+
(Λ)-orbits are the same. Following

the proof of Proposition 3.2.15, there is an element R ∈ O(Λ, h) (namely Ru) with σ(R) = −1
and χ(R) = 1. Now for ϕ ∈ Ô(Λ) with σ(ϕ) = −1, we have ϕ(h) = ϕ ◦R(h), where ϕ ◦R
lies in Ô

+
(Λ). So ϕ(h) lies in the same Ô

+
(Λ)-orbit as h and therefore Ô(Λ)h = Ô

+
(Λ)h.

Case Kumm: The discriminant group D(Λ) is cyclic of order 2m+2, so again Lemma 3.3.3
applies and we get 2ρ̃(γ) as the number of Õ(Λ)-orbits. By Proposition 3.2.15, this is also
the number of S̃O

+
(Λ)-orbits.
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Moreover, following the proof of Proposition 3.2.15, there exists an element R ∈ O(Λ, h)

(namely Ru ◦Rv) such that σ(R) = −1, χ(R) = 1, det(R) = 1. On the other hand, we note
that σ(− Id) = −1, χ(− Id) = −1, det(− Id) = −1. This shows that Mon(Λ) is generated
by S̃O

+
(Λ) and −R. If h and −h = −R(h) are in the same S̃O

+
(Λ)-orbit, that is, when γ

is 1 or 2, then the number of Mon(Λ)-orbits is the same as the number of S̃O
+
(Λ)-orbits;

otherwise it should be divided by 2. So again we obtain 2max(ρ̃(γ)−1,0) as the number of
Mon(Λ)-orbits.

Case OG6 and OG10: In these two cases, the monodromy group is equal to O+(Λ). Again,
following the proof of Proposition 3.2.15, there exists a reflection R ∈ O(Λ, h) (namely Ru)
such that σ(R) = −1. So one may conclude that the O+(Λ)-orbit of h coincides with the
entire O(Λ)-orbit T . □

We also have the following result on the number of polarization types with given square
and divisibility on a hyperkähler manifold of K3[m]-type or Kumm-type. Together with
Proposition 3.3.4, this gives a refined version of Apostolov’s result [Apo14] for K3[m] and
Onorati’s [Ono16] result for Kumm (cf. also [GHS10, Proposition 3.6]).

Proposition 3.3.5. Let m, n, and γ be positive integers with m ≥ 2. Let m̃ be
m− 1 for the K3[m]-type and m+ 1 for the Kumm-type, so in both cases we have D(Λ) ≃
Z/2m̃Z. Moreover we assume that γ | gcd(2m̃, 2n). For a prime divisor p of γ, set
α := min(vp(m̃), vp(n)) and β := vp(γ), where vp is the p-adic valuation. Then there exists
a polarization type T of square 2n and of divisibility γ, if and only if the following conditions
are satisfied for all prime divisors p of γ:

• if vp(m̃) ̸= vp(n), then β ≤ α/2;
• if vp(m̃) = vp(n) = α, then either β ≤ α/2, or β > α/2 and −n/m̃ is a square

modulo p2β−α.

The total number of these T is given by the product
∏
p|γ Np, where for p ≥ 3

Np :=

1
2(p− 1)pβ−1 if β ≤ α/2;

pα−β if β > α/2;

and for p = 2

N2 :=


1 if β = 1;

2β−2 if β ≥ 2, β ≤ α/2 + 1;

2α+1−β if β > α/2 + 1.

Proof. For the K3[m]-type and the Kumm-type, we have Λ = Λ0 ⊕ Zδ, where Λ0 is
an even unimodular lattice containing three orthogonal copies of the hyperbolic plane U ,
and δ is of square −2m̃. The discriminant group is cyclic of order 2m̃, generated by δ∗.

We first study the existence of a polarization type with given square and divisibility.
Let h ∈ Λ be a primitive element of divisibility γ. If γ = 1, since Λ0 contains orthogonal
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copies of U , it is clear that a polarization type of square 2n exists for all n > 0. So we will
look at γ ≥ 2. We write

h = γax+ bδ,

where x ∈ Λ0 is primitive of square x2 = 2c, with a, b, c ∈ Z such that gcd(γa, 2m̃) = γ and
gcd(γa, b) = 1. Suppose that h is of square 2n. We obtain the relation

2n = h2 = 2ca2γ2 − b2 · 2m̃.

For such an h to exist, it is necessary and sufficient that there exist some integer b satisfying

γ2 | b2m̃+ n.

For each prime divisor p of γ, since gcd(γ, b) = 1, we see that b is not divisible by p. So if
vp(m̃) ̸= vp(n), then vp(b2m̃+ n) = min(vp(m̃), vp(n)) and we obtain the first condition; if
vp(m̃) = vp(n) = α, then for p2β | b2m̃+ n to hold we obtain the second condition.

Given the square and the divisibility, to count the number of such O(Λ)-orbits T ,
we first count the number of Õ(Λ)-orbits. Any such element h can again be expressed
as γax+ bδ. By Eichler’s criterion, since the square is fixed, the number of Õ(Λ)-orbits is
just the number of possible h∗ = b·2m̃

γ δ∗, or equivalently, the number of possible remainders
of b modulo γ. We thus express this number as the product

∏
p|γMp, where Mp is the

number of possible remainders of b modulo pβ .

For p ≥ 3, if β ≤ α/2, then we only need gcd(b, p) = 1, thus Mp is equal to (p− 1)pβ−1;
if β > α/2, then the equation b2 ≡ −n/m̃ (mod p2β−α) has two solutions, thus Mp is equal
to 2pα−β .

For p = 2, as gcd(b, p) = 1, we see first that b is necessarily odd. If β ≤ α/2 + 1, we
will show that this is also sufficient, so M2 is equal to 2β−1. To prove this, we distinguish
three cases: if β ≤ α/2, it is clear that b2m̃ + n is a multiple of 22β; if β = α/2 + 1/2,
then vp(m̃) = vp(n) = α and b2m̃ + n is a multiple of 2α+1 = 22β; if β = α/2 + 1, then
vp(m̃) = vp(n) = α and −n/m̃ ≡ 1 (mod 4), so b2m̃ + n is a multiple of 2α+2 = 22β. If
β > α/2 + 1, the equation b2 ≡ 1 (mod 22β−α) has two solutions modulo 22β−α−1, so M2

is equal to 2× 2α+1−β .

To conclude, as Lemma 3.3.3 shows that each O(Λ)-orbit T contains 2ρ̃(γ) different Õ(Λ)-
orbits, the number of T is given by

∏
p|γMP divided by 2ρ̃(γ). We let Np =Mp/2 for p ≥ 3,

N2 =M2/2 if v2(γ) ≥ 2, and N2 =M2 = 1 if v2(γ) = 1. This gives the desired formula. □

For completeness, we also provide the results for OG6 and OG10.

Proposition 3.3.6. Let n and γ be positive integers. For the OG6-type and the
OG10-type, a polarization type T is uniquely determined by its square 2n and divisibility γ.

• For the OG6-type, such T exists if and only if γ = 1, or γ = 2 and n ≡ 2, 3

(mod 4);
• for the OG10-type, such T exists if and only if γ = 1, or γ = 3 and n ≡ 6 (mod 9).
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Proof. In both cases, since the lattice Λ contains orthogonal copies of U , the existence
of a polarization type of square 2n and divisibility 1 is clear, and the uniqueness follows
from Eichler’s criterion.

For the OG6-type, we write u and v for the two generators with square −2 so Λ =

Λ0 ⊕ Zu⊕ Zv. Each primitive element h of divisibility 2 can be written as

h = 2ax+ bu+ cv,

where x ∈ Λ0 is primitive with x2 = 2d and a, b, c, d ∈ Z, such that gcd(2a, b, c) = 1. In
particular, b and c cannot be both even, and the class h∗ is given by (b̄, c̄) ∈ (Z/2Z)2.
Suppose that h is of square 2n. We obtain the relation

2n = h2 = 8a2d− 2b2 − 2c2,

and we may deduce that 4 | n+ b2 + c2. If n ̸≡ 2, 3 (mod 4) there are no integer solutions.
If n ≡ 2 (mod 4), then b and c must both be odd, so h∗ = (1̄, 1̄) and by Eichler’s criterion
all such h lie in the same Õ(Λ)-orbit, so the O(Λ)-orbit is also unique. If n ≡ 3 (mod 4),
then b and c must be one odd one even, so h∗ can either be (1̄, 0̄) or (0̄, 1̄), and by Eichler’s
criterion there are two Õ(Λ)-orbits, but the map that interchanges the coordinates u and v
is an isometry, so these two lie in the same O(Λ)-orbit, and again we get the uniqueness.

For the OG10-type, we similarly write u and v for the two generators with matrix(−6 3
3 −2

)
, so Λ = Λ0⊕Zu⊕Zv. Each primitive element h of divisibility 3 can be written as

h = 3ax+ bu+ 3cv,

where x ∈ Λ0 is primitive with x2 = 2d and a, b, c, d ∈ Z, such that gcd(3a, b, 3c) = 1. In
particular, b is not divisible by 3, and the class h∗ is given by b̄ ∈ Z/3Z. Suppose that h is
of square 2n. We obtain the relation

2n = h2 = 18ad − 6b2 + 18bc− 18c2,

and we may deduce that 9 | n+3b2, so we must have n ≡ 6 (mod 9). By Eichler’s criterion
there are two Õ(Λ)-orbits depending on the value h∗ ∈ D(Λ) = Z/3Z, but − Id interchanges
the two non-zero classes in D(Λ) so again the two lie in the same O(Λ)-orbit. □

3.4. Image of the period map

We will now study the image of the polarized period map. For all known deformation
types, the complement of the image in the period domain can be shown to be a finite union
of divisors: we will give explicit numerical conditions describing these divisors. The image
of the period map is closely related to the determination of the ample cone, which has been
settled for all known deformation types, so we first review the results.

Recall that on H1,1(X,R) the Beauville–Bogomolov–Fujiki form induces a quadratic
form of signature (1, b2 − 3), so the cone of positive classes has two connected components,
and we call the one containing a Kähler class the positive cone and denote it by CX .
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The cone of all Kähler classes sits inside CX and is denoted by KX . We also consider
the birational Kähler cone BKX , which is the union

⋃
f−1KX′ over all birational maps

f from X to some other hyperkähler manifold X ′. The Néron–Severi group NS(X) is a
sublattice H2(X,Z) ∩H1,1(X,R) inside H2(X,Z).

We have the following crucial notion: a divisor D on X is called a wall divisor, if D2 < 0

and f(D⊥) ∩ BKX = ∅ for all monodromy operators f (cf. [Mon15, Definition 1.2] and
[AV15, Definition 1.13]). The property of being a wall divisor is stable under parallel
transport operators [Mon15, Theorem 3.1].

Theorem 3.4.1 (Mongardi). Let (X, η) and (X ′, η′) be two marked hyperkähler man-
ifolds lying in the same connected component M0

marked of the marked moduli space. Let
D ∈ NS(X) and D′ ∈ NS(X ′) be divisors such that η−1 ◦ η(D) = D′. Then D is a wall
divisor on X if and only if D′ is a wall divisor on X ′.

Once we picked a connected componentM0
marked, we may extend this notion to elements

of the lattice Λ: a class κ ∈ Λ with κ2 < 0 is called a wall class, if for all (X, η) ∈M0
marked

such that the class η−1(κ) is of type (1, 1), it gives a wall divisor on X. Clearly the property
only depends on the Mon(Λ)-orbit of κ. Wall divisors give a chamber decomposition on
the positive cone CX , and the Kähler cone KX is given by one of the chambers.

For K3[m]-type and Kumm-type, a numerical characterization for wall divisors is known.
Write as before m̃ = m− 1 for K3[m]-type and m̃ = m+ 1 for Kumm-type. Recall that in
these two cases, the lattice Λ has the form Λ = Λ0 ⊕ Zδ, where Λ0 is an even unimodular
lattice containing three orthogonal copies of U , and δ is of square −2m̃. We also consider
the Mukai lattice

Λ̃ := Λ0 ⊕ U,

which is even and unimodular. For any vector v ∈ Λ̃ of square 2m̃, the sublattice v⊥ is
isomorphic to Λ. Since all such v are in the same O(Λ̃)-orbit due to the unimodularity
of Λ̃, we may fix v = u1 + m̃u2, where ⟨u1, u2⟩ is a copy of the hyperbolic plane U , and
identify Λ as the sublattice v⊥. In particular we set δ = u1 − m̃u2.

When X is of K3[m]-type or Kumm-type, there is an embedding of H2(X,Z) into Λ̃,
canonical up to the action of O(Λ̃) (see [Mar11, Corollary 9.5] for K3[m]-type, and [Wie18,
Theorem 4.9] for Kumm-type). For any such embedding, the orthogonal of its image
is generated by a vector of square 2m̃. So we can assume that the image is exactly Λ,
by mapping one of these generators to the fixed v using some element in O(Λ̃). In
this way, we get a distinguished marking η : H2(X,Z)

∼−→ Λ, canonical up to the action
of {± Id} ·O(Λ̃, v)|Λ. By Proposition 3.2.13, this group is equal to {± Id} · Õ(Λ) = Ô(Λ).
Therefore we get the following result.

Proposition 3.4.2. Let X be a hyperkähler manifold of K3[m]-type or Kumm-type.
There is a distinguished marking

η : H2(X,Z)
∼−→ Λ ⊂ Λ̃,
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canonical up to the action of Ô(Λ). It induces an isometry between the two discriminant
groups D(H2(X,Z)) and D(Λ) ≃ Z/2m̃Z, canonical up to a sign. In other words, there is
a canonical choice of a pair of generators ±g for D(H2(X,Z)), mapped to ±δ∗ under the
isometry.

Any monodromy operator must respect the choice of the pair of generators ±g, so the
monodromy group Mon(Λ) must lie in the subgroup Ô(Λ), which is indeed the case.

We now give the description of the Kähler cone KX for these two cases. The K3[m]-case
is due to the results of Bayer–Macrì, Bayer–Hassett–Tschinkel, and Mongardi (note that in
[BHT15], the manifold X is assumed to be projective; this assumption can be removed
using [Mon15] or [AV15, Theorem 1.17 and 1.19]). The Kumm-case is due to Yoshioka
[Yos16] (see also [Mon16]).

Theorem 3.4.3 (Bayer–Macrì, Bayer–Hassett–Tschinkel, Mongardi; Yoshioka). Let X
be a hyperkähler manifold of K3[m]-type or Kumm-type. Under the embedding

η : H2(X,Z)
∼−→ Λ ↪−→ Λ̃,

we denote by Λ̃alg the saturation of η(NS(X))⊕ Zv. Consider the set

S :=


{
s ∈ Λ̃

∣∣∣ s2 ≥ −2, |(s, v)| ≤ m̃ = m− 1
}
∖ {0} if X is of K3[m]-type;{

s ∈ Λ̃
∣∣∣ s2 ≥ 0, 0 < |(s, v)| ≤ m̃ = m+ 1

}
if X is of Kumm-type.

Then the Kähler cone KX is one of the connected components of the positive cone CX cut
out by the hyperplanes s⊥ in NS(X)R, for all s ∈ S ∩ Λ̃alg.

Note that the particular choice of the embedding η does not matter here: because η is
unique up to the action of O(Λ̃), and the set S is clearly O(Λ̃)-invariant.

This description depends on the larger lattice Λ̃, which is inconvenient to work with.
Note that each s ∈ S together with v span a rank-2 sublattice of Λ̃, so we may consider its
intersection with Λ, which is of rank 1, and pick a generator κ ∈ Λ. The hyperplane s⊥

can then also be expressed as κ⊥. Since the class κ lies in NS(X) if and only if s lies in
Λ̃alg, we may conclude that all wall classes arise this way from some s ∈ S. We now give a
lattice theoretical result, which will yield a numerical criterion for wall classes κ ∈ Λ that is
intrinsic to the smaller lattice Λ.

Proposition 3.4.4. Let Λ̃ be a lattice of the form Λ0 ⊕ U , where Λ0 is an even
unimodular lattice and U is the hyperbolic plane with basis u1, u2. Let v = u1 + m̃u2 and
δ = u1 − m̃u2, and let Λ be the sublattice v⊥ = Λ0 ⊕ Zδ. Let κ ∈ Λ be a primitive vector
and write κ2 = 2l and κ∗ = kδ∗ ∈ D(Λ) ≃ Z/2m̃Z, where |k| ≤ m̃. Set d := gcd(2m̃, k).

(i) There is a unique integer c such that

l = c

(
2m̃

d

)2

− m̃
(
k

d

)2

.
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(ii) Let a ∈ Z≥0 be a non-negative integer. There is a non-zero element s ∈ Λ̃ contained
in the saturation of the sublattice generated by κ and v, such that

s2 ≥ −2a, |(s, v)| ≤ m̃,

if and only if the integer c in (i) satisfies c ≥ −a. When this is the case, there is
one such element s with s2 = 2c and (s, v) = −k.

Proof. First we may assume that k ≥ 0 by changing κ to −κ if needed. Since κ∗ =
[κ/div(κ)] is equal to kδ∗ = [kδ/2m̃] in D(Λ), we may write

κ

div(κ)
= x+ bδ +

kδ

2m̃
,

where x ∈ Λ0 and b ∈ Z. Since κ is integral and primitive, we see that div(κ) = 2m̃
d . Now

we let
s :=

dκ− kv
2m̃

= x+ bδ − ku2,

which is an integral class in Λ̃∖ {0}, with |(s, v)| = |−k| ≤ m̃. Let s2 = 2c. We can easily
verify that c is the integer satisfying the equality in (i). Moreover, if c ≥ −a, the vector s
provides the element we need in (ii).

Conversely, suppose that there is some other vector s′ satisfying the condition in (ii),
then we will show that c ≥ −a so the vector s itself satisfies the condition. We let s′2 = 2c′

with c′ ≥ −a, and (s′, v) = −k′ with |k′| ≤ m̃. Since 2m̃s′ lies in the direct sum Zκ⊕ Zv,
there exists a unique integer d′ such that

2m̃s′ = d′κ− k′v or equivalently s′ =
d′κ− k′v

2m̃
.

As κ is of divisibility 2m̃
d in Λ, there is some y ∈ Λ such that (κ, y) = 2m̃

d . We then have
(s′, y) = d′

d , so d divides d′. Set d′ = λd. We must have λ ̸= 0: otherwise, s′ is equal
to − k′

2m̃v; but |k′| ≤ m̃, so s′ can only be 0, which contradicts our hypothesis. By changing
s′ to −s′ if needed, we may suppose that λ ≥ 1. Then by looking at the integral class s′−λs,
we have k′ ≡ λk (mod 2m̃). Write k′ = λk − µ · 2m̃. Since k′ ≤ m̃, we must have µ ≥ 0.
Then we have s′ = λs+ µv and thus

s′
2
= λ2s2 + 2λµ(s, v) + µ2v2

= λ2s2 − µ(2λk − µ · 2m̃))

= λ2s2 − µ(2k′ + µ · 2m̃) ≤ λ2s2,

where the last inequality is due to k′ ≥ −m̃ and µ ≥ 0. So we get −a ≤ c′ ≤ λ2c for some
λ ≥ 1, and we may conclude that c ≥ −a. □

Proposition 3.4.5. Let X be a hyperkähler manifold of K3[m]-type or Kumm-type.
Let g be one of the canonical generators of D(H2(X,Z)). The Kähler cone KX is one of the
components of the positive cone cut out by the hyperplanes κ⊥, for all classes κ ∈ NS(X)
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satisfying the following numerical condition: writing κ2 = 2l, κ∗ = kg with 0 ≤ k ≤ m̃,
and d = gcd(2m̃, k), then
(3.4)l = c

(
2m−2
d

)2 − (m− 1)
(
k
d

)2 for an integer − 1 ≤ c < k2

4(m−1) if X is of K3[m]-type;

l = c
(
2m+2
d

)2 − (m+ 1)
(
k
d

)2 for an integer 0 ≤ c < k2

4(m+1) if X is of Kumm-type.

Proof. The K3[m]-case is obtained by combining Theorem 3.4.3 and Proposition 3.4.4
for a = 1, and the upper bound for c comes from κ2 = 2l < 0. For the Kumm-case, we use
a = 0 and we note that k cannot take the value 0 because l needs to be negative. So we
will only consider κ with 1 ≤ k ≤ m̃ = m+ 1, and for such κ we indeed get an element s
with s2 ≥ 0 and 0 < |(s, v)| = |−k| ≤ m̃ = m+ 1. □

Remark 3.4.6.

• To enumerate all the wall divisors, we let k run from 0 to m̃ and for each k, we
let c run from −1 or 0 to

⌈
k2

4m̃

⌉
− 1 to get the corresponding l.

• As an example, for K3[2]-type, the pair (k, l) has three possibilities: (0,−1), (1,−5),
and (1,−1). Thus we get κ2 = −2 and div(κ) = 1, 2, or κ2 = −10 and div(κ) = 2.
This was first conjectured in [HT09b]. See also [Mon15], where the cases of
K3[m]-type for m ≤ 4 are worked out; and [HT09a], where some examples for
Kumm-type are given.
• Analogous results for OG6 and OG10 are also established: wall divisors on a

hyperkähler manifold X of OG6-type are given by elements κ ∈ NS(X) with
κ2 = −2, or κ2 = −4 and div(κ) = 2 [MR21]; wall divisors on a hyperkähler
manifold X of OG10-type are given by elements κ ∈ NS(X) with 0 > κ2 ≥ −4, or
0 > κ2 ≥ −24 and div(κ) = 3 [MO22].
• In particular, the Kawamata–Morrison conjecture holds for all known deformation

types of hyperkähler manifolds by a result of Amerik–Verbitsky [AV15, Theo-
rem 1.21]: for a given deformation type, since the square of a wall class is bounded
below, the automorphism group Aut(X) acts on the set of faces of KX with finitely
many orbits.

We will now describe the image of the period map. Let τ be the deformation type of
a polarization, and take an element h ∈ τ . For a vector u ∈ Λ with negative square and
linearly independent of h, the hyperplane u⊥ ⊂ P(ΛC) cuts a hyperplane section in the
subset Ωh and induces a divisor Hu in the period domain Pτ = Ωh/Mon(Λ, h) which is
called a Heegner divisor. By abuse of notation, its image in PT will also be denoted as Hu.

Proposition 3.4.7. Take a deformation type of hyperkähler manifolds for which the
Kawamata–Morrison conjecture holds. Let τ be the deformation type of a polarization and
take h ∈ τ . The complement of the image of the period map ℘τ in Pτ is the union of the
Heegner divisors Hκ induced by wall classes κ ∈ Λ that are orthogonal to h.
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Proof. For x ∈ κ⊥, if there is a polarized pair (X,H) of deformation type τ such
that ℘(X) = [x] ∈ Ωmarked, take a marking η such that η(H) = h. Then η−1(κ) is of
type (1, 1) and thus algebraic. The class H is contained in the wall η−1(κ)⊥ and thus not
ample by the description of the Kähler cone, a contradiction.

Conversely, we consider a point [x] ∈ Ωh not belonging to any Heegner divisor Hκ. By
Proposition 3.2.4, we know thatMamp

h can be identified as a dense open subset of Ωh by
the marked period map ℘. If [x] lies in this subset, then we know that [x] is the period for
some marked pair (X, η) ∈Mamp

h for which η−1(h) is ample; otherwise, since nefness is a
closed condition, we can choose (X, η) so that η−1(h) is strictly nef, that is, it lies on the
boundary of the Kähler cone KX . Since Kawamata–Morrison conjecture holds for X, we
may conclude that η−1(h) lies on a hyperplane D⊥ for some wall divisor D := η−1(κ). But
this means that the period [x] is contained in the Heegner divisor Hκ, where the wall class
κ is orthogonal to h, and this is not the case by assumption. □

Finally we give a criterion for the existence of a wall class κ in h⊥ for K3[m]-type and
Kumm-type.

Proposition 3.4.8. For K3[m]-type or Kumm-type, let h ∈ Λ be an element of divisibility
γ. Let k and l be integers satisfying the condition (3.4). Then there is a wall divisor
κ ∈ h⊥ with κ2 = 2l and κ∗ = kδ∗ if and only if we have γ | k. Equivalently, this is the
condition div h · div κ | 2m̃.

Proof. Recall that Λ = Λ0 ⊕ Zδ. Write h = γax + bδ with x ∈ Λ0 primitive,
gcd(γa, 2m̃) = γ, and gcd(γa, b) = 1. Write

κ =
2m̃

d
(y + eδ) +

k

d
δ,

with y ∈ Λ0. Thus κ being orthogonal to h is equivalent to

γa(x, y) = b(2m̃e+ k).

Since gcd(γ, b) = 1 and γ | 2m̃, the condition γ | k is clearly necessary. Conversely, if this
condition is met, we show that there exist a suitable vector y and an integer e that give the
desired κ. Since gcd(γa, 2m̃) = γ, we may choose e such that

a

∣∣∣∣2m̃γ e+
k

γ
.

Thus we only need to find y ∈ Λ0 with required y2 and (x, y). By Eichler’s criterion, this
can be done by taking ϕ ∈ O(Λ0) such that ϕ(x) = u′1 +

x2

2 u
′
2 and then choosing y such

that ϕ(y) = (x, y)u′2 + u′′1 +
y2

2 u
′′
2, where ⟨u′1, u′2⟩ and ⟨u′′1, u′′2⟩ are two copies of hyperbolic

plane U in Λ0. □

In the proof, since we have explicitly described the classes h and κ, if we look at the
sublattice ⟨h, κ, v⟩ in Λ̃, its saturation is generated by the three classes h−bv

γ , s = dκ−kv
2m̃ ,

and v. So for this particular choice of κ, the discriminant of the saturation is
∣∣∣2d2nlγ2m̃

∣∣∣, while
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in general the discriminant would be this number divided by some square. Since the Mukai
lattice Λ̃ is unimodular, this is also the discriminant of the orthogonal ⟨h, κ, v⟩⊥, which
can be identified with the orthogonal ⟨h, κ⟩⊥ in Λ. The latter is called the transcendental
lattice of the Heegner divisor Hκ. Its discriminant is also referred to as the discriminant of
the Heegner divisor Hκ. Therefore we have the following corollary.

Corollary 3.4.9. Let T be a polarization type of square 2n and divisibility γ on
hyperkähler manifolds of K3[m]-type or Kumm-type. Let k and l be integers satisfying
the condition (3.4) (which only depends on m) such that γ | k. For each connected
componentMτ ofMT , the period map ℘τ avoids at least one irreducible Heegner divisor Hκ
of discriminant

∣∣∣2d2nlγ2m̃

∣∣∣ in Pτ , where d = gcd(2m̃, k).

For example, for K3[2]-type, we have already seen that (k, l) can be (0,−1), (1,−5),
and (1,−1). For a polarization type T of square 2n, if the divisibility γ is equal to 2,
the only possible case is (0,−1) and we get a Heegner divisor of discriminant 2n; if the
divisibility γ is equal to 1, the three cases are all present and we get Heegner divisors of
discriminant 8n, 10n, and 2n. This result is however not exhaustive, since the sublattice
we used above to compute the discriminant might still not be primitive in general, and
the discriminant will be divided by some square. For example, when γ = 1, by [DM19,
Theorem 6.1] it is also possible to have a Heegner divisor of discriminant 2n/5 in the
complement. Note also that there might be several irreducible Heegner divisors with the
same discriminant while we have only obtained one of them.

Another simple example works for almost every polarization type T :

• If γ ≤ m̃ we may take (k, l) to be (γ,−m̃) (and c = 0), so the discriminant is
equal to 2n. In other words, for such a polarization type T , the restriction of
the period map to every connected component of MT will avoid an irreducible
Heegner divisor of discriminant 2n in the period domain
• For a polarization type T not satisfying γ ≤ m̃, γ is necessarily equal to the

maximal value 2m̃. For K3[m]-type, we may take (k, l) to be (0,−1) (so c = −1),
and the discriminant is then equal to 2n

m−1 , so we get a similar conclusion.

3.5. Two examples

Using the numerical condition (3.4), we can now compare the images by the period map
of various components. Recall the picture of the polarized period map from (3.3). We prove
the following result for K3[m]-type. Clearly the same idea can be adapted to Kumm-type.

Proposition 3.5.1. Let a be a positive integer.

(i) For hyperkähler manifolds of K3[144
a+1]-type, there is a unique polarization type T

of square 288 and divisibility 12, for which the polarized moduli space MT has
exactly two components, with different images in PT under the period map.
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(ii) For hyperkähler manifolds of K3[6
a+1]-type, there is a unique polarization type T of

square 2 and divisibility 1, for which the polarized moduli space MT is connected.
The group G is isomorphic to Z/2Z, and the image of the period map in Pτ is
not G-invariant above PT .

Proof. For (i), we may check by Proposition 3.3.5 that such polarization type is
unique and the polarized moduli space MT has exactly two components. Note that by
Proposition 3.3.4, γ = 12 is the smallest divisibility for the moduli spaceMT to have more
than one component.

As D(Λ) = Z/(2 · 144a)Z and ρ(2 · 144a) = 2, by Lemma 3.3.2 we have O(D(Λ)) =

{±1,±g}. For h ∈ T , the class h∗ is of order 12 in D(Λ). So for any ϕ ∈ O(Λ, h), we have
χ(ϕ) = 1 since 1 is the unique element in O(D(Λ)) that is ≡ 1 (mod 12). This shows that
O(Λ, h) ⊂ Õ(Λ) and consequently, the group O+(Λ, h)/Mon(Λ, h) is trivial. In this case,
both period domains Pτ are canonically isomorphic to PT .

SinceMT has two components, we may choose h, h′ ∈ T belonging to different Mon(Λ)-
orbits or equivalently, Ô(Λ)-orbits, as we have seen in the proof of Proposition 3.3.4 that
they are the same. There exists ψ ∈ O(Λ)∖ Ô(Λ) such that ψ(h) = h′. We may assume
that χ(ψ) = g. Consider the period domain PT realized as the quotient Ωh/O

+(Λ, h)

or Ωh′/O
+(Λ, h′). The automorphism ψ induces an identification between the two, which

maps each Heegner divisor Hκ to Hψ(κ).

We consider a wall class κ ∈ h⊥ with square 2l and κ∗ = kδ∗. The class κ′ = ψ(κ) has
the same square 2l while κ′∗ = k′δ∗ with k′ ≡ gk (mod 2 · 144a). For κ′ to also define a wall
class, we need

c′ = c+
k′2 − k2

4 · 144a
≥ −1

to hold. So the idea is to choose some suitable k, l for which this condition fails. We
let k = 12g0 such that k ≡ 12g (mod 2 · 144a) (so g0 is the residue of g modulo 24 · 144a−1).
Since g ̸= ±1 in O(D(Λ)), g0 cannot be ±1 hence we have g20 > 1. Then we can let c = −1
and find the value for l using (3.4). By Proposition 3.4.8, there exists indeed such a wall
class κ ∈ h⊥. On the other hand, the choice of k means k′ = 12, so c′ = −1+ 122−122g20

4·144a < −1,
and κ′ is not a wall class. This shows that the same Heegner divisor inside PT is avoided
by the period map for one component but not for the other. Thus their images in PT by
the period map are not the same.

For (ii), once again we may verify by Proposition 3.3.5 that there is a unique such
polarization type T with one connected component. And by Lemma 3.3.2, since D(Λ) =

Z/(2 · 6a)Z and ρ(2 · 6a) = 2, we have O(D(Λ)) = {±1,±g}.

Since this O(Λ)-orbit is unique, we may take h = u′1 + u′2, where ⟨u′1, u′2⟩ is a copy of
U . The group O(Λ, h) contains O(Λ, U) := {ϕ ∈ O(Λ) | ϕ|U = Id} as a subgroup, which
is isomorphic to O(U⊥) since U is a direct summand. Moreover, the inclusion O(U⊥) ≃
O(Λ, U) ↪→ O(Λ) induces an isometry between the two discriminant groups. We use
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Proposition 3.2.12 on O(U⊥) to deduce that the homomorphism χ : O(Λ) → O(D(Λ))

when restricted to O(Λ, U), is still surjective. In particular, there is ϕ ∈ O(Λ, h) such that
χ(ϕ) = g. On the other hand, following the proof of Proposition 3.2.15, there is an element
R ∈ O(Λ, h) such that σ(R) = −1 and χ(R) = 1. Let ψ be ϕ if σ(ϕ), and R ◦ ϕ otherwise.
Then ψ is in O+(Λ, h) with χ(ψ) = g. Consequently, the group O+(Λ, h)/Mon(Λ, h) is
isomorphic to Z/2Z.

As in the previous case, we consider a wall class κ ∈ h⊥ with square 2l and κ∗ = kδ∗, for
k = g and c = −1. Such a class exists by Proposition 3.4.8. However, the class κ′ = ψ(κ)

will have k′ = 1, so c′ = −1 + 12−g2
4·6a < −1 and κ′ is not a wall class. This shows that

there are two Heegner divisors in Pτ that can be mapped to each other under the action
of O+(Λ, h)/Mon(Λ, h), but one is avoided by the period map and the other is not. Thus
we see in particular that the group G is non-trivial and therefore also isomorphic to Z/2Z,
and the image of the period map is not G-invariant. □
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CHAPTER 4

Debarre–Voisin varieties

In this chapter, we study the general properties of Debarre–Voisin fourfolds. Such
manifolds are defined from a trivector, and there are two Fano varieties of K3-type that can
also be associated with it. We first deduce the smoothness criteria for these three varieties,
and provide a picture of the moduli space and the period map. Then we relate the integral
Hodge structures of the three varieties, and show that the two Fano varieties satisfy the
integral Hodge conjecture. This is obtained as a detailed analysis of the geometry of these
varieties along three special divisors in the moduli space.

This is a joint work with Vladimiro Benedetti, and has appeared in [BS21]. Section 4.8
appeared separately in [Obe21, Appendix C].

Some computations are carried out using the computer algebra system Macaulay2 [GS],
and particularly, the package Schubert2. We provide the code used in these cases. The
computer algebra system Singular [DGPS] is extensively used in complement, which we
also acknowledge.

4.1. Introduction

Let V10 be a 10-dimensional complex vector space and let σ ∈
∧

3V ∨
10 be a trivector,

that is, an alternating 3-form on V10. Consider the Grassmannian Gr(6, V10) and denote
by U6 the tautological subbundle. By viewing σ as a section of the vector bundle

∧
3U∨

6 ,
Debarre–Voisin showed in [DV10] that the zero locus Xσ

6 ⊂ Gr(6, V10) of σ is a smooth
hyperkähler fourfold for a general σ. Moreover, by varying σ, these fourfolds form a locally
complete family of projective hyperkähler varieties of K3[2]-type.

Along with Xσ
6 , there are several other degeneracy loci determined by the trivector σ

that have interesting Hodge theoretical and categorical properties. To get a slightly unified
notation, we will denote by Xσ

k a subvariety defined in the Grassmannian Gr(k, V10) as
follows.

• The variety Xσ
3 is the hyperplane section of Gr(3, V10) defined by σ

Xσ
3 := {[V3] ∈ Gr(3, V10) | σ|V3 = 0}.

• There is the variety Xσ
1 , a 6-dimensional degeneracy locus in P(V10), also known

as the Peskine variety. It is defined as

Xσ
1 := {[V1] ∈ P(V10) | rankσ(V1,−,−) ≤ 6}.

65
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First, we will prove the following criteria for the smoothness of Xσ
1 , Xσ

3 , and Xσ
6 .

Proposition 4.1.1. Consider the following two conditions on a trivector σ

(1) for all [V3] ∈ Gr(3, V10), σ(V3, V3,−) ̸= 0;
(2) for all [V1] ∈ P(V10), rankσ(V1,−,−) ≥ 6.

Then Xσ
3 and Xσ

6 are smooth of expected dimension if and only if condition (1) holds, and
Xσ

1 is smooth of expected dimension 6 if and only if conditions (1) and (2) both hold.

All these varieties associated with σ are expected to have some common Hodge structures.
One particularly interesting one is the second integral cohomology group of the hyperkähler
fourfold Xσ

6 , which carries the Beauville–Bogomolov–Fujiki quadratic form q. This provides
a polarized Hodge structure on the primitive part H2(Xσ

6 ,Z)prim. On the two Fano
varieties Xσ

3 and Xσ
1 , we can consider the middle degree vanishing cohomologies, which

are generated by cohomology classes not coming from the ambient space. Both Hodge
structures are polarized with the cup product as the polarization. Our main result is the
following, which relates these three pieces of Hodge structures.

Theorem 4.1.2 (see Theorem 4.5.3 and Theorem 4.5.11). We have Hodge isometries(
H20(Xσ

3 ,Z)van, ·
)
≃
(
H2(Xσ

6 ,Z)prim,−q
)
≃
(
H6(Xσ

1 ,Z)van, ·
)

given by algebraic correspondences between Xσ
3 and Xσ

6 , and between Xσ
6 and Xσ

1 , whenever
they are smooth of expected dimension.

The isometry between the integral Hodge structures of Xσ
3 and Xσ

1 was already estab-
lished using a different method by Bernardara–Fatighenti–Manivel [BFM21]. Our method
focuses on the geometry of these varieties along some special divisors in the moduli space
for σ: we use the extra algebraic classes they admit to perform computations in order to
show the isometries.

The two correspondences here closely resemble the correspondence between a cubic
fourfold and its variety of lines. In [MO20], Mongardi–Ottem proved the integral Hodge
conjecture for 1-cycles on hyperkähler manifolds of K3[n]-type, and used this to deduce the
integral Hodge conjecture for 2-cycles on cubic fourfolds. Following the same idea, we can
prove the integral Hodge conjecture for Xσ

3 and Xσ
1 .

Corollary 4.1.3 (see Theorem 4.6.11 and Theorem 4.6.19). The integral Hodge
conjecture holds for both Xσ

3 and Xσ
1 in all degrees, whenever they are smooth of expected

dimension.

We briefly review known results on the moduli space of Debarre–Voisin varieties. On
the one hand, there is a 20-dimensional irreducible quasi-projective GIT moduli space

M := P
(∧

3V ∨
10

)
//SL(V10)
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for the trivectors σ. On the other hand, there is a 20-dimensional irreducible quasi-projective
moduli space M(2)

22 for polarized hyperkähler varieties of K3[2]-type with square 22 and
divisibility 2. It parametrizes pairs (X,H) of hyperkähler varieties X equipped with a
primitive ample class H such that q(H) = 22 and q

(
H,H2(Xσ

6 ,Z)
)
= 2Z. The Torelli

theorem for polarized hyperkähler manifolds tells us that the period map

p :M(2)
22 ↪−→ P, [X] 7−→ [H2,0(X)]

is an open immersion into the quasi-projective period domain P that parametrizes the
corresponding Hodge structures. The Debarre–Voisin construction gives a rational map

m :M M(2)
22 ,

which was proved by O’Grady to be birational [O’G19, Theorem 1.9]. Therefore, divisors
in the moduli space can be studied from different points of view. Namely, we will be mostly
interested in the divisors in M coming from SL(V10)-invariant hypersurfaces in P

(∧
3V ∨

10

)
and Heegner divisors in P defined in terms of Hodge structures.

We will study three divisors D3,3,10, D1,6,10, and D4,7,7 in M coming from SL(V10)-
invariant hypersurfaces in P(

∧
3V ∨

10), which are mapped by the period map to Heegner
divisors D22, D24, and D28 respectively in the period domain. Here the SL(V10)-invariant
divisors are labelled using the degeneracy condition on σ, while the Heegner divisors are
labelled using their discriminant.

The first divisor D22 was studied in the original article [DV10]. Although the variety
Xσ

6 is not smooth in this case, its singular locus contains (and we will show that it coincides
with) a K3 surface S22 of degree 22. It was proved in [DV10] that Xσ

6 is birational to
the Hilbert square S[2]

22 . In particular, this means that S22 shares the same transcendental
Hodge structure with Xσ

6 .

For a very general member of the second divisor D24, we will give a geometric construc-
tion of a Brauer-twisted K3 surface (S6, β) and we show that the Hodge structure of (S6, β)
embeds in that of Xσ

6 . Moreover, we can recover Xσ
6 as a moduli space of β-twisted sheaves

on S6. This case bears a lot of similarities with the case of cubic fourfolds containing a
plane. In fact, both cases provide examples of Brill–Noether contractions with non-trivial
Brauer class on hyperkähler fourfolds, and their general theory has been thoroughly studied
in the recent [KvG21].

The third divisor D28 is related to the existence of Lagrangian planes on Xσ
6 and is

important for the study of the Hodge structures. There are however no associated K3
surfaces for very general members of this family.

We give a brief overview of the results. In Section 4.2, we introduce the three SL(V10)-
invariant hypersurfaces in P(

∧
3V ∨

10) as well as the divisors that they induce inM. They
are all defined using some degeneracy condition on the trivector σ with respect to some
special flag. In Section 4.3, we study the smoothness of the three varieties Xσ

1 , Xσ
3 , and

Xσ
6 , and we prove Proposition 4.1.1, which identifies the divisors D3,3,10 and D1,6,10 as the
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loci where these varieties turn singular. Then we provide a general picture for the moduli
space and the period map in Section 4.4.

In Section 4.5, we study the algebraic correspondences providing the Hodge isometries
in Theorem 4.1.2, but we postpone the proof to Section 4.6, where we study in detail the
geometry of the three varieties when one specializes to the divisor D28.

In Section 4.7, we study the divisor D24. For a general member in D24, we define a
twisted associated K3 surface (S6, β) of degree 6 (see Proposition 4.7.3), and we prove that
the hyperkähler variety Xσ

6 is isomorphic to a moduli space of twisted sheaves on (S6, β)

(see Theorem 4.7.17).

In Section 4.8, we give a description of the singularity of a general member in D22.

In the following table, we sum up the results obtained concerning these divisors.

SL(V10)-invariant hypersurface ∆3,3,10 ∆1,6,10 ∆4,7,7

degeneracy condition on σ σ(V3, V3, V10) = 0 σ(V1, V6, V10) = 0 σ(V4, V7, V7) = 0

degree in P
(∧

3V ∨
10

)
640 990 5500

induced divisor inM D3,3,10 D1,6,10 D4,7,7

Heegner divisor D22 D24 D28

singular locus of Xσ
1 P(V3) {[V1]} ∅

singular locus of Xσ
3 {[V3]} ∅ ∅

singular locus of Xσ
6 S22 ∅ ∅

degree of associated K3 22 6 with a Brauer class of order 2 none

birational model of Xσ
6 S

[2]
22 M(S6, v, β) -

Table 3. Divisors in the moduli spaces

Finally, we mention the recent results of Oberdieck in [Obe21] regarding invariants of
a generic pencil of Debarre–Voisin varieties, obtained using Gromov–Witten techniques and
modular forms. The three Heegner divisors D22,D24, and D28 that we study are precisely
the first three non-HLS divisors with lowest discriminants (see Section 4.4 for the definition
of an HLS divisor). Moreover, the corresponding Noether–Lefschetz numbers (see Theorem 2
of loc. cit.) indeed coincide with the degrees of the SL(V10)-invariant hypersurfaces that we
have computed.

Notation. Grassmannians. We will denote by Un, Vn, or Wn an n-dimensional
complex vector space. We denote by Flag(k1, . . . , kr, Vn) the flag variety parametrizing
nested subspaces of Vn of dimensions k1, . . . , kr. We will denote by Uki the tautological
vector subbundle of Vn ⊗OFlag(k1,...,kr,Vn) of rank ki. When r = 1, we recover the ordinary
Grassmannian, which we denote by Gr(k, Vn) (or P(Vn) if k = 1); when no confusion arises,
U ,Q will denote respectively the tautological and the quotient vector bundles on Gr(k, Vn).

For a trivector σ ∈
∧

3Vn, its rank is defined as the dimension of the smallest subspace
V ⊂ Vn such that σ ∈

∧
3V . The rank is a GL(Vn)-invariant. If σ ∈

∧
3V ∨

n and Vi ⊂ Vn, we
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will denote by σ(Vi, Vi, Vi) the restriction σ|Vi ∈
∧

3V ∨
i . Similarly, if Vi ⊂ Vj ⊂ Vk ⊂ Vn, we

use σ(Vi, Vj , Vk) to denote the image of σ in (Vi ∧ Vj ∧ Vk)∨ (seen as a quotient of
∧

3V ∨
k ).

The notation for Schubert varieties inside a Grassmannian Gr(k, Vn) is as follows. Let us
fix a complete flag 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn. For any sequence of integers λ = (λ1 ≥ · · · ≥ λk)
with λ1 ≤ n− k and λk ≥ 0, we define the Schubert variety

Σλ =
{
W ∈ Gr(k, Vn)

∣∣ dim(W ∩ Vn−k−λj+j) ≥ j for 1 ≤ j ≤ k
}
,

which is of codimension
∑

i λi inside Gr(k, Vn). We let σλ be the Schubert class representing
Σλ in cohomology.

Lattices. By a lattice we shall mean a finitely generated free Z-module L endowed with an
integral quadratic form q. The following basic properties can be found in [BHPVdV04,
Chapter I.2].

The discriminant group D(L) of L is defined as L∨/L, where L∨ := HomZ(L,Z) is the
dual. If M denotes the Gram matrix of q in an integral basis of L, its determinant det(M)

is independent of the choice of the basis and is called the discriminant of L and denoted by
disc(L). We have |D(L)| = | disc(L)|. A lattice L is called even if q(x) ∈ 2Z for all x ∈ L,
and unimodular if D(L) is trivial. Beware that the discriminant of a unimodular lattice
can either be 1 or −1. For a sublattice A ⊂ L with rank(L) = rank(A), its index [L : A] is
finite and satisfies [L : A]2 = | disc(A)/disc(L)|.

A sublattice A ⊂ L is called saturated if L/A is torsion-free. For any sublattice A ⊂ L,
one can define the orthogonal sublattice A⊥ ⊂ L with respect to q. If L is unimodular
and A is a saturated sublattice, A and A⊥ have isomorphic discriminant groups, hence the
same discriminant up to sign |disc(A)| = | disc(A⊥)|. In this case, the direct sum A⊕A⊥

has index |disc(A)| in L.

4.2. GIT quotient

In this section, we first study the moduli space of trivectors in
∧

3V ∨
10. We consider the

119-dimensional projective space P(
∧

3V ∨
10) and define the following GIT quotient

M := P
(∧

3V ∨
10

)
//SL(V10),

which is a projective variety of dimension 20 by a parameter count.

We introduce three SL(V10)-invariant hypersurfaces in P(
∧

3V ∨
10), each inducing an

irreducible divisor inM.
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4.2.1. Condition (3, 3, 10). The projective dual of the Grassmannian Gr(3, V10) in its
Plücker embedding defines a hypersurface in P(

∧
3V ∨

10) known as the discriminant hyper-
surface. It parametrizes singular hyperplane sections of Gr(3, V10) and can be characterized
as the set

(4.1) ∆3,3,10 :=
{
[σ] ∈ P(

∧
3V ∨

10)
∣∣ ∃V3 σ(V3, V3, V10) = 0

}
.

The superscript indicates the vanishing condition that defines this hypersurface. Its degree
is equal to 640, which was first calculated by Lascaux in [Las81, Section 3]. To compute
this degree, we may consider the incidence variety

Σ = {([σ], [V3]) | σ(V3, V3, V10) = 0} Gr(3, V10)

P(
∧

3V ∨
10)

pr2

pr1

where the map pr1 is a birational morphism onto the discriminant hypersurface ∆3,3,10, since
for a general [σ] ∈ ∆3,3,10, the hyperplane section it defines admits exactly one ordinary
double point. For a fixed point [V3], the condition on σ is linear. Therefore the second
projection pr2 identifies Σ with the projective bundle P(E) where E is the vector bundle

E := (
∧

2U3 ∧ V10)⊥ =
∧

2Q∨
7 ∧ V ∨

10.

We can verify that Σ is indeed of dimension 118. To compute the degree of its image under
pr1, we carry out some standard Schubert calculus on Gr(3, V10) and obtain the number
640. This can be easily done in Macaulay2.

needsPackage "Schubert2";

G = flagBundle{3,7}; (U,Q) = bundles G;

print integral chern dual(exteriorPower_3 U+exteriorPower_2 U*Q); -- 640

By a parameter count, the hypersurface ∆3,3,10 induces an irreducible divisor in M,
which we denote by

(4.2) D3,3,10 := {[σ] ∈M | ∃V3 σ(V3, V3, V10) = 0}.

This divisor is unirational since it is dominated by the projective bundle Σ.

4.2.2. Condition (1, 6, 10). Consider the following subvariety

(4.3) ∆1,6,10 :=
{
[σ] ∈ P(

∧
3V ∨

10)
∣∣ ∃V1 ⊂ V6 σ(V1, V6, V10) = 0

}
.

Similar to the case of the discriminant, we study the incidence variety

Σ = {([σ], [V1 ⊂ V6]) | σ(V1, V6, V10) = 0} Flag(1, 6, V10)

P(
∧

3V ∨
10)

pr2

pr1
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where the first projection maps Σ onto ∆1,6,10. For a fixed flag [V1 ⊂ V6], the condition
on σ is linear. Therefore the second projection pr2 identifies Σ with the projective bundle
P(E) where E is the vector bundle

E := (U1 ∧ U6 ∧ V10)⊥

We may verify that Σ is of dimension 118. We again use Schubert calculus on Flag(1, 6, V10)

to compute its degree with respect to the polarization on P(
∧

3V ∨
10) via pr1.

needsPackage "Schubert2";

G = flagBundle{1,5,4}; (U1,U61,Q) = bundles G;

print integral chern dual(U1*exteriorPower_2 U61+U1*U61*Q); -- 990

Since the degree is non-zero, we see that ∆1,6,10 is a hypersurface in P(
∧

3V ∨
10). We claim

that the projection map pr1 is birational onto its image, so the degree of the hypersurface
∆1,6,10 is exactly 990.

Proposition 4.2.1. The projection map pr1 : Σ→ ∆1,6,10 is birational onto its image.
In other words, for a general [σ] ∈ ∆1,6,10, the flag [V1 ⊂ V6] satisfying the vanishing
condition is unique. Consequently, ∆1,6,10 is a hypersurface of degree 990 in P(

∧
3V ∨

10).

For the proof, we exhibit an explicit trivector σ admitting a unique such flag [V1 ⊂ V6]
and then check that the fiber is reduced.

Proof. Consider the following randomly generated trivector

[067]+[089]+[143]+[145]+[149]+[172]+[183]+[193]+[217]+[235]+[246]+[257]+[374]+[379]+[685]+[687]

where [ijk] stands for the form e∨i ∧ e∨j ∧ e∨k . Note that a flag [V1 ⊂ V6] satisfying the
vanishing condition means that the skew-symmetric form σ(V1,−,−) has rank ≤ 4, so we
can determine the set of such [V1] by computing the 6× 6 Pfaffians.

F = QQ; S = F[x_0..x_9];

delta = (x,y,v) -> table(10,10,(i,j) -> if i==x and j==y then v else 0);

skew = (i,j,k) -> sum(delta \ {(i,j,x_k),(j,k,x_i),(k,i,x_j),

(j,i,-x_k),(k,j,-x_i),(i,k,-x_j)});

sigma = {(0,6,7),(0,8,9),(1,4,3),(1,4,5),(1,4,9),(1,7,2),(1,8,3),(1,9,3),

(2,1,7),(2,3,5),(2,4,6),(2,5,7),(3,7,4),(3,7,9),(6,8,5),(6,8,7)};

X = variety pfaffians_6 matrix sum(skew \ sigma);

print (dim X, degree X); -- (0, 1)

Therefore there exists a unique such V1, and one may easily check that it is given by ⟨e0⟩.
The subspace V6, being the kernel of the form σ(e0,−,−), is given by ⟨e0, . . . , e5⟩.1

Note that we cannot conclude yet, since this could be a ramification point for the
projection map pr1. To show that the schematic fiber pr−1([σ]) is reduced, we look inside
the flag variety Flag(1, 6, V10). Since we know that the set-theoretical fiber is just a point

1With this explicit example, one can compute the projectivized tangent cone of the Peskine variety Xσ
1 at

the point [V1]: it is isomorphic to a hyperplane section of the Grassmannian Gr(2, 5).
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[V1 ⊂ V6], we can take an affine chart of the flag variety at [V1 ⊂ V6], then compute the
ideal of pr−1([σ]) and check its smoothness at the origin using the Jacobian criterion.

More explicitly, we take an affine chart A29 with coordinates x0, . . . , x28 such that in
the basis e0, . . . , e9, each flag V1 ⊂ V6 has the following form

1 x0 x1 x2 x3 x4 x5 x6 x7 x8
0 1 0 0 0 0 x9 x14 x19 x24
0 0 1 0 0 0 x10 x15 x20 x25
0 0 0 1 0 0 x11 x16 x21 x26
0 0 0 0 1 0 x12 x17 x22 x27
0 0 0 0 0 1 x13 x18 x23 x28

.
Then we ask for the vanishing of σ(V1, V6, V10) which gives us the ideal defining pr−1

1 ([σ]).

R = QQ[x_0..x_28];

-- M is the affine chart of Flag(1,6,V_10) at [V_1,V_6]

M = id_(R^6)_{0}|(genericMatrix(R,1,9)||(1|genericMatrix(R,x_9,5,4)));

V = entries M;

eval = (trivector,u,v,w) -> (

d := (i,j,k) -> u#i*v#j*w#k;

skew := (i,j,k) -> d(i,j,k)+d(j,k,i)+d(k,i,j)-d(k,j,i)-d(j,i,k)-d(i,k,j);

sum(skew \ trivector));

-- ideal of the fiber, given by sigma(V1,V6,V10) = 0

I = ideal flatten for i in 1..5 list for j in 0..9 list (

eval(sigma, V#0, V#i, entries (id_(R^10))_j)); -- sigma is the trivector

print rank sub (jacobian I, for i in 0..28 list (x_i=>0)); -- 29

We see that the fiber pr−1
1 ([σ]) is indeed reduced, thus we may conclude that pr1 is

generically injective and birational onto its image, the latter being a hypersurface of degree
990. □

We also remark that each flag [V1 ⊂ V6] will provide some extra algebraic classes on
the Debarre–Voisin variety Xσ

6 , so the uniqueness of [V1 ⊂ V6] for a general [σ] ∈ ∆1,6,10

can also be obtained from Hodge theory.

Again, by a parameter count, the hypersurface ∆1,6,10 induces an irreducible divisor in
M, which we denote by

(4.4) D1,6,10 := {[σ] ∈M | ∃V1 ⊂ V6 σ(V1, V6, V10) = 0}.

It is unirational by the above analysis.

4.2.3. Condition (4, 7, 7). We consider

(4.5) ∆4,7,7 :=
{
[σ] ∈ P(

∧
3V ∨

10)
∣∣ ∃V4 ⊂ V7 σ(V4, V7, V7) = 0

}
.

We follow the exact same procedure as the above two cases. Schubert calculus on
Flag(4, 7, V10) gives 5500 as the degree of the incidence variety Σ, so we may deduce
that ∆4,7,7 is a unirational hypersurface in P(

∧
3V ∨

10).

needsPackage "Schubert2";

G = flagBundle{4,3,3}; (U4,U74,Q) = bundles G;

E = exteriorPower_3 U4+exteriorPower_2 U4*U74 +U4*exteriorPower_2 U74;

print integral chern dual E; -- 5500
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To conclude that this is also the degree of ∆4,7,7, we need to show that for a general
[σ] ∈ ∆4,7,7 there is a unique flag [V4 ⊂ V7] satisfying the vanishing condition. We will do
this later by showing that each flag [V4 ⊂ V7] provides some extra algebraic classes on the
Debarre–Voisin variety Xσ

6 and conclude using Hodge theory.

Again, by a parameter count, we get an induced irreducible divisor inM

(4.6) D4,7,7 := {[σ] ∈M | ∃V4 ⊂ V7 σ(V4, V7, V7) = 0},

which is unirational.

Note that by restricting to a subspace of dimension 7, we have the following result
which produces some equivalent degeneracy conditions.

Lemma 4.2.2. Let V7 be a complex vector space of dimension 7. For a non-zero trivector
σ ∈

∧
3V ∨

7 , the following conditions are equivalent

(1) σ is decomposable, that is, we can take a basis {ei}0≤i≤6 such that σ = e∨4 ∧e∨5 ∧e∨6 ;
(2) ∃V4 ⊂ V7 σ(V4, V7, V7) = 0, in other words, σ is of rank ≤ 3;
(3) ∃V3 ⊂ V7 σ(V3, V7, V7) = 0, in other words, σ is of rank ≤ 4;
(4) ∃V5 ⊂ V7 σ(V5, V5, V7) = 0.

Proof. The conditions (1) and (2) are clearly equivalent. The condition (3) says that
σ is of rank ≤ 4, but there exists no trivector with rank 4, so we deduce that σ is of rank 3

and thus decomposable.

For the implication (1) ⇒ (4), we simply take V5 = ⟨e0, . . . , e4⟩. Conversely, given V5
as in (4), we pick two vectors e5 and e6 not in V5 that generate V7/V5. Then we see that σ
is uniquely determined by the form σ(e5, e6,−), which show that σ is decomposable. □

This gives us some equivalent conditions to detect whether the ten dimensional trivector
σ ∈

∧
3V ∨

10 is decomposable along a subspace V7. Note however that in the above conditions,
the subspaces V3 and V5 are not uniquely determined.

More generally, a classification of GL(V7)-orbits in
∧

3V ∨
7 is known, which was first

carried out by Schouten (see [Gur64, Section 35.3]). The following diagram is taken from
[KW13, Section 3]. Here each Yk is an orbit closure of affine dimension k, and ∆ = Y34 is
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the discriminant hypersurface of degree 7.

Y35 [123] + [456] + [147] + [257] + [367]

Y34 [123] + [456] + [147] + [257]

Y31 [123] + [456] + [147]

Y28 [123] + [145] + [246] + [347]

Y26 [123] + [456]

Y25 [145] + [246] + [356]

Y21 [145] + [246] + [347]

Y20 [123] + [145]

Y13 [123]

Y0 0

We write as usual [ijk] for the form e∨i ∧ e∨j ∧ e∨k . The orbit closures Y0, Y13, Y20, Y25, Y26
correspond to trivectors with rank ≤ 6.

Note that similar to the dimension 10 case we saw in Section 4.2.1, a trivector σ
lies in the discriminant hypersurface ∆ = Y34 if and only if there exists a V3 such that
σ(V3, V7, V7) = 0.

For a general σ in the next orbit closure Y31, we can write σ = [123] + [456] + [147]. We
check that the subspaces V3 = ⟨e2, e3, e7⟩ and V6 = ⟨e2, . . . , e7⟩ satisfy σ(V3, V6, V6) = 0, in
other words, σ is decomposable along V6. A parameter count shows that the set of such σ
has dimension 31, so we conclude that a trivector σ lies in Y31 if and only if there exists a
flag V3 ⊂ V6 such that σ(V3, V6, V6) = 0.

4.2.4. Further degeneracy. We give some explicit conditions for a trivector σ ∈∧
3V ∨

10 to be unstable. For later studies, we will exclude such trivectors and only consider
semi-stable ones.

Lemma 4.2.3. For a trivector σ ∈
∧

3V ∨
10, the point [σ] ∈ P(

∧
3V ∨

10) is unstable in the
following cases:

(1) If there exists V7 such that σ(V7, V7, V7) = 0;
(2) If there exists V1 such that σ(V1, V10, V10) = 0;
(3) If there exists V4 such that σ(V4, V4, V10) = 0;
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(4) If there exist V1 ⊂ V6 such that σ(V1, V6, V10) = 0 and σ(V6, V6, V6) = 0;
(5) If there exist V5 ⊂ V8 such that σ(V5, V8, V8) = 0.

Proof. This can be easily verified using the Hilbert–Mumford criterion: in each case,
we consider a 1-parameter subgroup of SL(V10) acting with the following weights

(3, 3, 3, 3, 3, 3, 3,−7,−7,−7), (9,−1,−1,−1,−1,−1,−1,−1,−1,−1),

(3, 3, 3, 3,−2,−2,−2,−2,−2,−2), (13, 3, 3, 3, 3, 3,−7,−7,−7,−7),

and (5, 5, 5, 5, 5,−1,−1,−1,−11,−11).

The point [σ] would admit only negative weights with respect to the 1-parameter subgroup,
so it is indeed unstable. □

We also consider the following situation, where a family of very degenerate trivectors
are strictly semi-stable and are identified to a single point in the GIT quotientM.

Lemma 4.2.4. Consider the following special trivector σ0: decompose V10 as a direct
sum V10 = V7 ⊕ V3, and let

σ0 := α+ β, where α ∈
∧

3V ∨
7 is general and β is a generator of

∧
3V ∨

3 .

Consider a trivector σ satisfying the following vanishing condition

(4.7) ∃V1 ⊂ V8 σ(V1, V8, V10) = 0.

Then [σ] is semi-stable if and only if

(4.8) σ|V8/V1 ∈
∧

3(V8/V1)
∨ is general and σ(V1,−,−)|V10/V8 ̸= 0.

In this case, the class [σ] ∈M is given by the class [σ0] of the special trivector σ0.

Here α ∈
∧

3V ∨
7 being general means that α does not lie in the discriminant hypersurface,

or equivalently, there is no V3 such that α(V3, V7, V7) = 0.

We also note that the special trivector σ0 has been studied in [DHOV20, Section 5.2].
Namely, in Corollary 5.13 of loc. cit., it was proved that the point [σ0] ∈ P(

∧
3V ∨

10) is
polystable with respect to the SL(V10)-action, and its stabilizer is isomorphic to G2×SL(V3),
where G2 is the stabilizer of α and SL(V3) is the stabilizer of β. Moreover, it was shown
that the point [σ0] is the preimage in M of the HLS Heegner divisor D18 by the period
map.

Proof. Consider a trivector σ satisfying (4.7). We take a basis {ei}0≤i≤9 of V10 such
that V1 = ⟨e0⟩ and V8 = ⟨e0, . . . , e7⟩. Let V7 := ⟨e1, . . . , e7⟩. Then the trivector σ can be
written as

ω + u ∧ e∨8 + v ∧ e∨9 + f ∧ e∨8 ∧ e∨9 + b · e∨0 ∧ e∨8 ∧ e∨9 ,

where ω ∈
∧

3V ∨
7 , u, v ∈

∧
2V ∨

7 , f ∈ V ∨
7 , and b ∈ C. We note that the condition (4.8) is

equivalent to ω being general in
∧

3V ∨
7 and b ̸= 0.
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We consider the 1-parameter subgroup of SL(V10) acting with the following weights

(2, 0, 0, 0, 0, 0, 0, 0,−1,−1).

In other words, for each t ∈ C∗ we get a diagonal action on V10 given by

(x0, . . . , x9) 7−→ (t2x0, x1, . . . , x7, t
−1x8, t

−1x9).

The induced action on
∧

3V ∨
10 maps σ to

ω + t · u ∧ e∨8 + t · v ∧ e∨9 + t2 · f ∧ e∨8 ∧ e∨9 + b · e∨0 ∧ e∨8 ∧ e∨9 .

Letting t go to 0, we see that the trivector

σ′ := ω + b · e∨0 ∧ e∨8 ∧ e∨9

lies in the closure of the SL(V10)-orbit of σ. Therefore [σ] is semi-stable if and only if [σ′] is
semi-stable.

We show that if the condition (4.8) is not satisfied, then [σ′] is unstable. First, we
suppose that ω is not general. Then ω lies in the discriminant hypersurface, so there exists
a V3 ⊂ V7 such that

ω(V3, V3, V7) = 0.

In particular, by letting V4 := V1 ⊕ V3, we may verify that

σ′(V4, V4, V10) = 0.

So by Lemma 4.2.3, the point [σ′] is indeed unstable. Similarly, if we suppose that b = 0,
then we will have

σ′(V1, V10, V10) = 0,

so again [σ′] is unstable by Lemma 4.2.3.

Conversely, if the condition (4.8) is satisfied, that is, we have ω general and b ≠ 0,
then σ′ is SL(V10)-equivalent to the special trivector σ0, which is indeed semi-stable by
[DHOV20, Corollary 5.13]. So we may conclude that [σ] is semi-stable, and its class in
M is given by the class [σ0]. □

4.3. Smoothness criteria

In this section, we prove the criteria for the smoothness of the varieties Xσ
1 , X

σ
3 , and

Xσ
6 as stated in Proposition 4.1.1. The method is purely local and does not involve the

global geometry of these varieties.

Notably, these smoothness criteria recover two of the divisors in the GIT quotientM
that we defined in the last section. We will discuss the explicit geometry of the three
varieties in these cases in later sections.
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4.3.1. Smoothness of Xσ
3 and Xσ

6 . The smoothness of the hyperplane section Xσ
3 is

a well-known result, which we have already seen in Section 4.2.1.

Proposition 4.3.1. Set-theoretically, the singular locus Sing(Xσ
3 ) is given by

{[V3] ∈ Xσ
3 | σ(V3, V3, V10) = 0}.

Proof. The hyperplane section Xσ
3 is not smooth of dimension 20 at [V3] if and only

if the differential

dσ : TGr(3,V10),[V3] ≃ Hom(V3, V10/V3) −→
∧

3V ∨
3

vanishes. Here dσ maps an element f ∈ Hom(V3, V10/V3) to the 3-form

dσ(f) : (v1, v2, v3) 7−→ σ(f(v1), v2, v3) + σ(v1, f(v2), v3) + σ(v1, v2, f(v3)).

By varying v1, v2, v3 ∈ V3 and f , we get the desired vanishing condition. □

It turns out that the smoothness of Xσ
6 can be given by the same criterion.

Lemma 4.3.2. Let [V6] be a point in Xσ
6 . The Debarre–Voisin variety Xσ

6 is not smooth
of dimension 4 at [V6] if and only if there exists V3 ⊂ V6 such that σ(V3, V3, V10) = 0.

Proof. The Zariski tangent space TXσ
6 ,[V6]

of the Debarre–Voisin variety Xσ
6 at [V6] is

given as the kernel of the differential

dσ : TGr(6,V10),[V6] ≃ Hom(V6, V10/V6) −→
∧

3V ∨
6 ,

which maps f ∈ Hom(V6, V10/V6) to the 3-form

dσ(f) : (v1, v2, v3) 7−→ σ(f(v1), v2, v3) + σ(v1, f(v2), v3) + σ(v1, v2, f(v3)).

Therefore Xσ
6 is not smooth of dimension 4 if and only if the differential is not surjective,

or equivalently, if there exists some non-zero ω ∈ (
∧

3V ∨
6 )∨ ≃

∧
3V6 such that ω|Im(dσ) = 0,

that is, for any f ∈ Hom(V6, V10/V6) we have dσ(f)(ω) = 0.

Suppose that V3 ⊂ V6 is a subspace satisfying the vanishing condition σ(V3, V3, V10) = 0.
Then a non-zero ω ∈

∧
3V3 satisfies the above property, so Xσ

6 is not smooth of dimension
4 at [V6].

Conversely, the orbit closures for the GL(V6)-action on
∧

3V6 have long been classified
(attributed to Reichel, see [Gur64, Section 35.2]): there are five of them, including {0}. So
we study the four non-zero orbits case by case.

• If ω is completely decomposable, that is when ω = e1∧e2∧e3, consider a map f with
f(e1) = f(e2) = 0: the property of ω shows that σ(e1, e2, f(e3)) = 0, so by varying
f we get σ(e1, e2, V10) = 0. Similarly we have σ(e1, e3, V10) = σ(e2, e3, V10) = 0. So
the subspace V3 = ⟨e1, e2, e3⟩ satisfies the vanishing condition σ(V3, V3, V10) = 0.
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• If ω is of rank 5, it can be written as e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5. Let V1 = ⟨e1⟩ and
V4 = ⟨e2, e3, e4, e5⟩. We get σ(V1, V1 + V4, V10) = 0. Consider the map

φσ :
∧

2V4 −→ (V10/V6)
∨

induced by σ (note that σ|V6 = 0). The kernel of φσ is a subspace of dimension
at least 2. Note also that the subset in

∧
2V4 of decomposable elements is the

affine cone over the Grassmannian Gr(2, V4), which is a quadric hypersurface.
This shows that there is some decomposable element u ∧ v in the kernel of φσ.
The subspace ⟨e1, u, v⟩ thus provides the V3 we want. Moreover, without loss of
generality, we may suppose that u ∧ v = e2 ∧ e3; then ⟨e1, e4, e5⟩ gives another V3
satisfying the vanishing condition.
• If ω is of type e1 ∧ e2 ∧ e4 + e2 ∧ e3 ∧ e5 + e1 ∧ e3 ∧ e6, by considering a map f

with f(e1) = f(e2) = f(e3) = 0, we can see that ⟨e1, e2, e3⟩ gives a V3 such that
σ(V3, V3, V10) = 0.
• If ω is general, so of type e1 ∧ e2 ∧ e3+ e4 ∧ e5 ∧ e6, both ⟨e1, e2, e3⟩ and ⟨e4, e5, e6⟩

give a V3 such that σ(V3, V3, V10) = 0.

Therefore, the Zariski tangent space is not of dimension 4 if and only if there exists a V3
satisfying the vanishing condition. □

We summarize the above results as follows.

Proposition 4.3.3. The divisor D3,3,10 is the locus inM of SL(V10)-classes of trivectors
[σ] for which Xσ

3 and Xσ
6 become singular. Moreover, for a general element [σ] ∈ D3,3,10

admitting a unique V3 with σ(V3, V3, V10) = 0, we have

Sing(Xσ
3 ) = {[V3]},

Sing(Xσ
6 ) = S22 = {[V6] ∈ Xσ

6 | V6 ⊃ V3},

where S22 is a K3 surface of degree 22. For a very general [σ] ∈ D3,3,10, the K3 surface S22
is of Picard rank 1.

The claim on the Picard rank follows from the projective model for K3 surfaces of
degree 22 by Mukai (see [Muk06]). Note that in [DV10], it was only proved that the K3
surface S22 is contained in the singular locus, instead of an equality.

In fact, for a general [σ] ∈ D3,3,10, we can get a precise description of the type of
singularity along S22: similar to the nodal cubic case, by blowing up the singular locus, we
obtain a smooth hyperkähler fourfold of K3[2]-type, with the exceptional divisor being a
P1-bundle over the K3 surface. See Section 4.8 for the proof.
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4.3.2. Smoothness of Xσ
1 . We study the smoothness of the Peskine varietyXσ

1 . Recall
that this is the locus in P(V10) where the rank of the skew-symmetric form σ(V1,−,−)
drops to 6 or less.

We first remark that Xσ
1 is smooth for σ general, which follows from the general theory

of orbital degeneracy loci (ODL) from [BFMT20]. Consider the space of skew-symmetric
bilinear forms on a vector space Vn. The GL(Vn)-orbits are entirely determined by their
ranks, so we have the following filtration

{0} = Y0 ⊂ Y2 ⊂ · · · ⊂ Y2⌊n
2
⌋ =

∧
2V ∨

n ,

where Y2r consists of skew-symmetric bilinear forms of rank ≤ 2r. Moreover, we have
Sing(Y2r) = Y2r−2 for 1 ≤ r ≤ ⌊n2 ⌋ − 1. In our case, by viewing σ as a section of the
globally generated vector bundle

∧
2Q(1), the Peskine variety Xσ

1 can be defined as the
orbital degeneracy locus DY6(σ), where Y6 ⊂

∧
2C9 consists of skew-symmetric forms of

rank ≤ 6 on a 9-dimensional vector space. By the Bertini theorem for orbital degeneracy
loci [BFMT20, Proposition 2.3], for general σ we have

Sing(DY6(σ)) = DSing(Y6)(σ) = DY4(σ) = {[V1] ∈ P(V10) | rankσ(V1,−,−) ≤ 4},

Since the codimension of Y4 in
∧

2C9 is equal to 10, we may conclude that for a general σ,
DY4(σ) is empty and therefore Xσ

1 = DY6(σ) is smooth.

Now we remove the assumption of σ being general. We relate the Peskine variety to a
certain zero locus in a flag variety. Namely, by viewing σ as a section of the vector bundle
(U1 ∧ U4 ∧ V10)∨ on Flag(1, 4, V10), we may consider the zero locus Z(σ). The natural
projection π : Flag(1, 4, V10) → V10 restricts to a proper map π : Z(σ) → Xσ

1 . One can
easily see that the fiber of this morphism at a point [V1] is the set of V4 contained in the
kernel of the skew-symmetric form σ(V1,−,−). In particular, we get an isomorphism by
restricting π to the open locus where the rank of σ(V1,−,−) is exactly 6.

We first study the smoothness of Z(σ).

Lemma 4.3.4. We view σ as a section of the vector bundle (U1 ∧ U4 ∧ V10)∨ on
Flag(1, 4, V10) and consider its zero-locus Z(σ). A point [V1 ⊂ V4] ∈ Z(σ) is not smooth of
dimension 6 if and only if either σ(V1,−,−) is of rank ≤ 4 or there exists V3 containing V1
such that σ(V3, V3, V10) = 0.

Proof. The variety Z(σ) being not smooth of dimension 6 at [V1 ⊂ V4] means that
the differential

dσ : TFlag(1,4,V10),[V1⊂V4] ≃ Hom(V1, V10/V1)⊕Hom(V4/V1, V10/V4) −→ (V1 ∧ V4 ∧ V10)∨,

which maps f ∈ Hom(V1, V10/V1)⊕Hom(V4/V1, V10/V4) to the 3-form

dσ(f) : (v1, v2, v3) 7−→ σ(f(v1), v2, v3) + σ(v1, f(v2), v3) + σ(v1, v2, f(v3)),

is not surjective (notice that f can be seen as a class of maps from V4 to V10 mod-
ulo those maps that preserve V1 and V4). Equivalently, there exists a non-zero ω ∈
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((V1 ∧ V4 ∧ V10)∨)∨ = V1 ∧ V4 ∧ V10 such that ω|Im(dσ) = 0, that is, for any f as above, we
have dσ(f)(ω) = 0.

Modulo a change of coordinates, one can always take a suitable basis {ei}0≤i≤9 such
that V1 = ⟨e0⟩ and V4 = ⟨e0, . . . , e3⟩, and that

ω = e0 ∧
(
a(e1 ∧ e2) + b(e1 ∧ e4) + c(e2 ∧ e5) + d(e3 ∧ e6)

)
for certain coefficients a, b, c, d ∈ C. The proof is divided into three cases:

• If d ̸= 0, consider a morphism f sending e0, e1, e2 to 0. Then dσ(f)(ω) = 0 shows
that σ(e0, e6, f(e3)) = 0. By varying f , one gets σ(V1, V4 +Ce6, V10) = 0, which
implies that σ(V1,−,−) has rank at most 4.
• If d = 0 and b ̸= 0, consider a morphism f sending e0, e2, e3 to 0. Then dσ(f)(ω) =
0 shows that σ(e0, e4, f(e1)) = 0. By varying f , one gets σ(V1, V4 +Ce4, V10) = 0,
again implying that σ(V1,−,−) has rank at most 4. Similarly one can treat the
case when d = 0 and c ̸= 0.
• If b = c = d = 0, consider a morphism f sending e1, e2, e3 to 0. Then dσ(f)(ω) = 0

shows that σ(f(e0), e1, e2) = 0. By varying f and setting V3 = ⟨e0, e1, e2⟩, one
gets σ(V3, V3, V10) = 0.

Therefore, we may conclude that for a singular point [V1 ⊂ V4] in Z(σ), either σ(V1,−,−)
is of rank ≤ 4, or there exists V3 ⊃ V1 with σ(V3, V3, V10) = 0. □

Proposition 4.3.5. The locus of trivectors [σ] for which Xσ
1 ⊂ P(V10) becomes singular

is the union of two divisors D1,6,10 ∪ D3,3,10 in M. Moreover, we have the following set-
theoretical descriptions of the singular locus.2

• If [σ] ∈ D1,6,10 is general such that σ(V1, V6, V10) = 0, then Sing(Xσ
1 ) = {[V1]}.

• If [σ] ∈ D3,3,10 is general such that σ(V3, V3, V10) = 0, then Sing(Xσ
1 ) = P(V3).

Proof. If [σ] ̸∈ D1,6,10, then the projection π : Z(σ)→ Xσ
1 is an isomorphism. So by

Lemma 4.3.4, we may conclude that Xσ
1 is smooth if [σ] ̸∈ D3,3,10 ∪ D1,6,10, while for a

general [σ] ∈ D3,3,10 ∖D1,6,10 such that there exists a unique V3 with σ(V3, V3, V10) = 0, we
have Sing(Xσ

1 ) = P(V3).

For a general [σ] ∈ D1,6,10 ∖ D3,3,10, there exists a unique flag [V1 ⊂ V6] with
σ(V1, V6, V10) = 0. In this case, the zero-locus Z(σ) is reducible: it contains a com-
ponent Z0 that dominantes Xσ

1 , as well as the Grassmannian G := Gr(3, V6/V1) that is
contracted to the point [V1] by π. Moreover, the projection π restricted to Z0 ∖G is an
isomorphism onto the image Xσ

1 ∖ [V1]. Again by Lemma 4.3.4, we see that Xσ
1 is smooth

away from [V1].

2It is in theory possible to analyze the type of the singularities in these two cases. We have chosen some
random trivectors and computed the tangent cones at the singular points: in the first case, the tangent cone
at the singular [V1] is isomorphic to a hyperplane section of Gr(2, 5), which is a Fano 5-fold of degree 5 (one
explicit example was given in (4.2.2)); in the second case, the tangent cone at a general point in P(V3) is a
smooth 5-dimensional quadric. One would expect these descriptions to hold for a general σ in both cases.
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It remains to show that Xσ
1 is indeed singular at [V1]. Since Xσ

1 is a degeneracy
locus defined by the vanishing of Pfaffians, we have the following resolution (see [Han15,
Section 2.3])

0 −→ O(−7) −→ Q(−4) f−→ Q∨(−3) −→ IXσ
1
−→ 0,

where at each point [V1] = [Cv], the map f is given by

f : V10/V1 −→ V ⊥
1 ⊂ V ∨

10, v′ 7−→ σ(v, v′,−).

Therefore, if σ(V1,−,−) ≤ 4, the cokernel of f at [V1] will have rank ≥ 5, so the conormal
bundle N∨

Xσ
1 /P(V10)

≃ I/I2 would not be locally free of rank 3 at [V1]. In other words, Xσ
1

is indeed singular at [V1].

Finally, since smoothness is an open condition, one may conclude that Xσ
1 is singular

not just for general members of D3,3,10 ∪ D1,6,10, but for all of them. □

4.4. Moduli space and period map

4.4.1. Stable trivectors. Before we study the moduli space of Debarre–Voisin four-
folds, we first show that a trivector [σ] ∈ P(

∧
3V ∨

10) defining a smooth Debarre–Voisin
fourfold Xσ

6 is stable with respect to the SL(V10)-action. This is based on the following
result.

Proposition 4.4.1. Write G for the Grassmannian Gr(6, V10) and X := Xσ
6 for a

smooth Debarre–Voisin fourfold. Let U and Q be the tautological subbundle and quotient
bundle on the Grassmannian Gr(6, V10). The restrictions U|X and Q|X are both simple,
that is, End(U|X) ≃ End(Q|X) ≃ C.

Proof. We write F for the 20-dimensional vector bundle
∧

3U∨ on G. Consider the
Koszul complex

(4.9) 0 −→
∧

20F∨ −→ · · · −→
∧

2F∨ −→ F∨ −→ OG −→ OX −→ 0

which gives a free resolution of the structure sheaf of OX . For a vector bundle E on G, we
can tensor the Koszul complex with E and obtain a spectral sequence

E−q,p
1 = Hp(G, E ⊗

∧
qF) =⇒ Hp−q(X, E|X).

In our case, we consider E := U∨⊗U . The cohomologies of the vector bundle U∨⊗U ⊗
∧
qF

on the Grassmannian Gr(6, V10) can be computed using the Borel–Weil–Bott theorem
(see [BCP20, Appendix A] for a detailed account). One may verify that there are only
three terms that are non-zero

h0(G, E) = h24(G, E ⊗ detF) = 1, h12(G, E ⊗
∧

10F) = 101.

In particular, the spectral sequence degenerates at the first page, so we can conclude that

h0
(
X, E|X

)
= h4

(
X, E|X

)
= 1, h2

(
X, E|X

)
= 101,

while h1 = h3 = 0. The computation for the bundle Q|X is similar. □
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Remark 4.4.2. In [O’G19, Corollary 8.5], O’Grady showed that for a very general Xσ
6 ,

the bundles U|Xσ
6

and Q|Xσ
6

are slope-stable with respect to the Plücker polarization, so in
particular they are simple. The above result shows that the simpleness holds whenever Xσ

6

is smooth, without the hypothesis on Xσ
6 being very general.

Corollary 4.4.3. Consider a trivector [σ] ∈ P(
∧

3V ∨
10)∖∆3,3,10. Denote by Stab(σ) ◁

SL(V10) the stabilizer of σ and consider the natural homomorphism

Φ: Stab(σ) −→ Aut(Xσ
6 ),

which maps each φ ∈ SL(V10) to the induced automorphism Φ(φ) on Xσ
6 . The kernel of the

map is equal to {± Id},

Proof. By Proposition 4.3.3, if [σ] does not lie in the discriminant hypersurface ∆3,3,10,
then it defines a smooth Debarre–Voisin fourfold Xσ

6 . Suppose that φ ∈ SL(V10) induces
the trivial automorphism on Xσ

6 , then it will also induce an automorphism

fφ ∈ End(U|Xσ
6
),

which acts fiberwise. But since the vector bundle U|Xσ
6

is simple by Proposition 4.4.1, up
to multiplying by a non-zero scalar, fφ must be the identity map. In other words, φ acts as
the identity on each P(V6) for [V6] ∈ Xσ

6 .

To conclude, we claim that all the six-dimensional vector spaces [V6] ∈ Xσ
6 span the

entire V10. For example, this can be deduced from the fact that h0(Xσ
6 ,U∨) = 10 (see

Proposition 4.4.6 below). So φ acts as the identity on V10, and we may conclude that
ker(Φ) = {± Id}. □

Since Xσ
6 is hyperkähler, the automorphism group Aut(Xσ

6 ) is always finite. So we may
deduce that the stabilizer Stab(σ) is also finite, whenever [σ] does not lie in the discriminant
∆3,3,10.

Corollary 4.4.4. Let [σ] ∈ P(
∧

3V ∨
10) be semi-stable with respect to the SL(V10)-action.

If [σ] does not lie in the discriminant hypersurface ∆3,3,10, then [σ] admits a finite stabilizer
and is stable.

Remark 4.4.5. To show that the [V6] ∈ Xσ
6 span the entire V10, we can also consider

the following incidence variety

Σ = {([V1], [V6]) | V1 ⊂ V6, σ|V6 = 0} Xσ
6

P(V10)

pr2

pr1

The second projection pr2 realizes Σ as a projective bundle P(U) over Xσ
6 , where U is

the tautological subbundle. So Σ is smooth of dimension 9. Using Schubert calculus,
one may compute that the degree of the first projection pr1 is equal to 9 (which is the
top Chern class of a suitable vector bundle on Gr(5, 9)). In other words, for a general
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point [V1] ∈ P(V10), there are exactly 9 six-dimensional subspaces in Xσ
6 containing V1. In

particular, the projection pr1 is surjective and generically finite. However, it is not the case
that the 9 six-dimensional subspaces intersect along V1.

The method used in Proposition 4.4.1 is very standard, and can be adapted to the
computation of the cohomologies for many other vector bundles on Xσ

6 (for example, it was
used in [DV10, Remark 2.6] to give another simple proof of the fact that Xσ

6 is hyperkähler).
We recollect some computations here.

Proposition 4.4.6. Let U and Q be the tautological subbundle of rank 6 and 4 on
Gr(6, V10) respectively, and let X = Xσ

6 be a smooth Debarre–Voisin fourfold. We have the
following descriptions of the cohomologies of vector bundles on Xσ

6 (where blank means the
corresponding cohomology vanishes).

E O U∨ Sym2 U∨ ∧
3U∨ Q

∧
2Q Sym2Q Sym3Q U∨ ⊗ U Q∨ ⊗Q

h0(E|X) 1 10 55 119 10 45 55 230 1 1

h1(E|X) 9

h2(E|X) 1 10 55 20 1 101 1

h3(E|X)
h4(E|X) 1 1 1

Note that since X has trivial canonical bundle, one can obtain the cohomologies of the dual
vector bundles using the Serre duality.

Proof. In each case, we tensor the Koszul complex (4.9) with the vector bundle E and
obtain a spectral sequence. In most cases, the spectral sequence degenerates at the first
page, and we obtain directly the cohomologies of E|X . This does not happen for the two
vector bundles

∧
3U∨ and Sym2Q, so we provide some further details in these two cases.

For the vector bundle E = Sym2Q, the only non-zero terms in the first page of the
spectral sequence are given by

dimE0,0
1 = h0(G, E) = 55, dimE−6,6

1 = h6(G, E ⊗
∧

6F∨) = 1,

dimE−9,10
1 = h10(G, E ⊗

∧
9F∨) = 10.

This gives the vanishing of hk(X, E|X) for k ≥ 2 as well as the holomorphic Euler char-
acteristic χ(X, E|X) = 46, so it suffices to show that h0(X,Sym2Q|X) = 55. We use the
resolution

0 −→
∧

2U −→ U ⊗ V10 −→ Sym2 V10 ⊗OG −→ Sym2Q −→ 0.

Using again the same method, one may check that h1(X,
∧

2U|X) = h0(X,U|X) = 0. So
the spectral sequence of the above resolution shows that

Sym2 V10 ≃ H0(X,Sym2 V10 ⊗OX) −→ H0(X,Sym2Q|X)

is injective. This concludes the case of Sym2Q.
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Now we consider the case of
∧

3U∨. Note that this is the globally generated vector
bundle F used in the definition of Xσ

6 , and we have a short exact sequence

(4.10) 0 −→ TX −→ TG|X −→ F|X −→ 0.

The non-zero terms in the first page of the spectral sequence for F|X are given by

dimE0,0
1 = h0(G,F) = 120, dimE−1,0

1 = h0(G,F ⊗ F∨) = 1,

dimE−11,12
1 = h11(G,F ⊗

∧
11F∨) = 100, dimE−10,12

1 = h12(G,F ⊗
∧

10F∨) = 120.

So we may deduce that h3(X,F|X) = h4(X,F|X) = 0. Similarly, we can tensor the Koszul
complex with TG to compute the cohomologies of TG|X : the only non-zero terms in the
first page of the spectral sequence are give by

dimE0,0
1 = h0(G, TG) = 99, dimE−10,11

1 = h11(G, TG ⊗
∧

10F∨) = 1,

dimE−20,23
1 = h23(G, TG ⊗

∧
20F∨) = 1,

and we can deduce that h2(X, TG|X) = h4(X, TG|X) = 0, while h3(X, TG|X) = 1. Finally,
since X is hyperkähler of K3[2]-type, using the knowledge of the Hodge diamond in this
case, we deduce that

h0(X, TX) = h2(X, TX) = h4(X, TX) = 0, h1(X, TX) = h3(X, TX) = 21.

Using the long exact sequence for (4.10), we get the following dimensions

TX TG|X F|X
h2 0 0 ?

h3 21 1 0

h4 0 0 0

from which we may deduce that h2(X,F|X) = 20. In particular, the differential map
d1 : E

−11,12
1 → E−10,12

1 must be injective, otherwise we would have dimE−10,12
2 > 20. This

means that the spectral sequence degenerates at the second page, so we may compute that
h0(X,F|X) = 119 and h1(X,F|X) = 0, which concludes the proof. □

We have the following corollary.

Corollary 4.4.7. Consider a smooth Debarre–Voisin fourfold X ⊂ Gr(6, V10) defined
by some trivector σ. Then [σ] is the unique class in P(

∧
3V ∨

10) such that Xσ
6 = X.3

Proof. We consider the incidence variety

Iσ3,6 = {([V3], [V6]) | V3 ⊂ V6, σ|V6 = 0} Xσ
6

Xσ
3

p6

p3

3Note that we are talking about an exact equality of zero sets in Gr(6, V10) instead of an isomorphism as
polarized hyperkähler manifolds. An arbitrary automorphism of Xσ

6 might not come from an element of
SL(V10), hence the latter question is more difficult, and is solved by O’Grady (see Theorem 4.4.11).
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The map p6 is a Grassmannian fibration with fibers isomorphic to Gr(3, 6), so Iσ3,6 is of
dimension 13, and the map p3 is not surjective. However, we claim that the image p3(Iσ3,6)
spans a hyperplane of dimension 118 in P(

∧
3V10), which would then allow us to uniquely

determine σ up to a constant.

To show that the image spans a hyperplane, it suffices to show that the map

(4.11) φ :
∧

3V ∨
10 −→ H0(Iσ3,6,O(1)) ≃ H0(Xσ

6 ,
∧

3U∨|Xσ
6
) ≃ C119

is surjective. Here O(1) is the relative ample bundle for the Grassmannian fibration p6,
so its direct image by p6 is

∧
3U∨|Xσ

6
. The space of global sections is of dimension 119 by

Proposition 4.4.6.

We consider the resolution

0 −→ Sym3Q∨ −→ Sym2Q∨ ⊗ V ∨
10 −→ Q∨ ⊗

∧
2V ∨

10 −→
∧

3V ∨
10 ⊗OG −→

∧
3U∨ −→ 0.

The cohomologies of these bundles restricted to Xσ
6 have been computed in Proposition 4.4.6.

We treat the first three terms as a resolution F• of the kernel K of
∧

3V ∨
10 ⊗OG →

∧
3U∨.

Using the spectral sequence

Eq,p1 = hp(X,Fq) =⇒ Hp+q(X,K)

whose first page looks like

h0 h1 h2 h3 h4

F0 Q∨ ⊗
∧

2V ∨
10 0 0 0 0 450

F−1 Sym2Q∨ ⊗ V ∨
10 0 0 0 90 550

F−2 Sym3Q∨ 0 0 1 0 230

we may compute that h0(X,K) = 1. So the kernel of the map φ in (4.11) is of dimension 1
and φ is indeed surjective. □

4.4.2. Moduli space. For a general trivector σ, the variety Xσ
6 was shown to be a

smooth hyperkähler fourfold of K3[2]-deformation type in [DV10]. The Plücker polarization
coming from the ambient Grassmannian provides an ample class H on Xσ

6 of square 22

and divisibility 2. We recall some basic properties for such manifolds.

The second cohomology groupH2(Xσ
6 ,Z) is equipped with the the Beauville–Bogomolov–

Fujiki quadratic form q. The lattice (H2(Xσ
6 ,Z), q) is isomorphic to the following

Λ := U⊕3 ⊕ E8(−1)⊕2 ⊕ ⟨−2⟩,

where U is the hyperbolic plane, E8(−1) is the E8 lattice with negative definite form, and
⟨−2⟩ is the lattice generated by one element with square −2. The discriminant of Λ is equal
to 2. The polarization H on Xσ

6 is of square 22 and divisibility 2.

By the general discussion of the moduli spaces and period maps from Chapter 3, we
have a moduli spaceM(2)

22 as well as a polarized period map

p :M(2)
22 −→ P



86 4. DEBARRE–VOISIN VARIETIES

which is an open immersion of algebraic varieties.

For the reader’s convenience, we briefly recall the construction: the two invariants
q(H) = 22 and div(H) = 2 together determine a unique O(Λ)-orbit, so we may fix one
element h ∈ Λ in this orbit. By the property of the quadratic form q, the primitive
cohomology H2(Xσ

6 ,Z)prim can be identified with H⊥, the sublattice orthogonal to H with
respect to q. This is a lattice of signature (2, 20) and discriminant 11. It carries a polarized
integral Hodge structure of type (1, 20, 1). The period domain that parametrizes such
Hodge structures is the normal quasi-projective variety

P := Ωh⊥/O(Λ, h) where Ωh⊥ := {[x] ∈ P(ΛC) | q(x, x) = q(x, h) = 0, q(x, x̄) > 0}.

In other words, we consider the domain of period points Ωh⊥ , and take its quotient by the
group O(Λ, h) := {φ ∈ O(Λ) | φ(h) = h}.4 There exists also an irreducible coarse moduli
spaceM(2)

22 for polarized hyperkähler fourfolds of K3[2]-type with a polarization of degree 22

and divisibility 2, and the polarized period map

p :M(2)
22 ↪−→ P, [X] 7−→ [H2,0(X)]

is an open immersion by the polarized global Torelli theorem [Mar11, Theorem 1.10].

For each saturated sublattice K ⊂ Λ of rank 2 and signature (1, 1) containing h,
its orthogonal complement K⊥ defines a codimension 2 subspace P(K⊥ ⊗C) ⊂ P(ΛC),
whose image in P is an irreducible algebraic hypersurface DK called a Heegner divisor.
The discriminant of K⊥ is a negative even integer, and we refer to |disc(K⊥)| as the
discriminant of the Heegner divisor. Following Hassett and Debarre–Macrì, we will label
each Heegner divisor using its discriminant. In our case, [DM19, Proposition 4.1] shows
that each Heegner divisor D2e with given discriminant 2e is irreducible if non-empty (in
loc. cit., the divisor D2e is denoted by D(2)

22,2e, referring to the fact that we are working with

the moduli space M(2)
22 of hyperkähler fourfolds with a divisibility-2 polarization of square

22). Since the lattice Λ is of discriminant 2, a priori the discriminant disc(K) can either be
2 disc(K⊥) or 1

2 disc(K
⊥). But by assuming that K contains the class h, we are always in

the first case. This very useful fact is obtained in the proof of [DM19, Proposition 4.1].
We extracted it as a lemma.

Lemma 4.4.8 (Debarre–Macrì). Let n be an positive integer with n ≡ −1 (mod 4), and
let h ∈ Λ = ΛK3[2] be a class of square 2n and divisibility 2. Let K ⊂ Λ be a saturated
sublattice of rank 2 and signature (1, 1) containing h. Then we have disc(K) = 2 disc(K⊥).

As mentioned in the introduction, we also have the GIT quotient

M := P(
∧

3V ∨
10)//SL(V10)

4Note that in general, Ωh⊥ admits two connected components Ωh and Ω−h, and to define the period
domain P, one need to pick one of the connected components and take its quotient by a smaller group
Mon(Λ, h) := Mon(Λ) ∩ O(Λ, h), which consists of all monodromy operators fixing the class h. But for
K3[2]-type, the two descriptions of P are equivalent. See Section 3.2 for more details.
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for the trivectors σ. The class of a trivector σ is denoted by [σ] ∈ M, and we denote by
Msmooth :=M∖D3,3,10 the open locus of classes [σ] such that Xσ

6 is smooth of dimension
4. Therefore we get the following diagram.

(4.12)

P(
∧

3V ∨
10)

M M(2)
22 P

[σ] [Xσ
6 ] [X] [H2,0(X)]

π

m p

Here π is the GIT quotient map, and m is the modular map given by the Debarre–Voisin
construction. It is dominant by the following crucial lemma from [DV10, Lemma 4.6],
which shows that the differential of m ◦ π is surjective everywhere.

Lemma 4.4.9 (Debarre–Voisin). Write (X,L) for the pair
(
Xσ

6 ,OXσ
6
(1)
)
. Whenever X

is of dimension 4, any first-order deformation of the pair (X,L) is given by a deformation
of σ. More precisely, the Kodaira–Spencer map

KS:
∧

3V ∨
10/⟨σ⟩ −→ Def(X,L)(C[ε]) ≃ Ext1

(
PX,L,OX

)
is surjective, where the bundle PX,L is the extension

0 −→ ΩX −→ PX,L −→ OX −→ 0

given by c1(L) ∈ Ext1(OX ,ΩX).

Corollary 4.4.10. The map m restricted to the open locus Msmooth is quasi-finite
and dominant.

Proof. This essentially follows from the surjectiveness of the differential of the map
m ◦ π and the fact that bothM andM(2)

22 are of dimension 20.

More precisely, suppose that a curve C insideMsmooth is contracted by the map m. Since
all elements inMsmooth are stable with respect to the SL(V10)-action by Corollary 4.4.4,
each orbit is of codimension 20 in P(

∧
3V ∨

10). So the preimage of the curve C in P(
∧

3V ∨
10)

has codimension 19 and is contracted to a point in M(2)
22 . This would contradict the

surjectiveness of the differential of the map m ◦ π given in Lemma 4.4.9. □

The modular map m is also birational, which was proved by O’Grady in [O’G19,
Theorem 1.9].

We recollect the results concerning the moduli spaces and period maps in the following
theorem.

Theorem 4.4.11. Consider the diagram (4.12).

(1) The modular map m is dominant and birational. Moreover, when restricted to the
open locus Msmooth, the map m is an open immersion.
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(2) The polarized period map p is an open immersion. The complement of the image
of p is an irreducible Heegner divisor D22.

Proof. For the second point, the period map p is an open immersion by the polarized
global Torelli theorem of Markman (see [Mar11, Theorem 1.10]), and the complement of
the image of p is always a union of Heegner divisors. In the K3[2]-case, the set of these
Heegner divisors has been completely determined by Debarre–Macrì in [DM19, Theorem
6.1].

For the first point, we already know that the restriction of m to the open locusMsmooth

is quasi-finite and dominant by Corollary 4.4.10. The birationality of m has been proved by
O’Grady in [O’G19, Theorem 1.9]. Since the period domain P is normal, so is the moduli
spaceM(2)

22 , and we may conclude using the Zariski Main Theorem. □

To relate the divisors ofM and P, we state the following useful lemma.

Lemma 4.4.12. Let f : X → Y be a birational morphism of varieties. Assume that Y is
regular in codimension 1. Let D be an irreducible divisor of X that is not contracted by f ,
that is, f(D) is a divisor of Y . Then D is mapped birationally onto its image. Conversely,
let D′ be an irreducible divisor of Y such that the preimage f−1(D′) is non-empty, then f

restricts to a birationl morphism from f−1(D′) to D′.

Proof. Since f is a birational morphism, it induces an isomorphism between the
function fields

f ♯ : k(Y )
∼−→ k(X).

If f(D) is a divisor of Y , since Y is regular in codimension 1, the local ring at the generic point
of f(D) is a discrete valuation ring and therefore integrally closed in k(Y ). For dimension
reasons, the morphism f ♯ : OY,ηf(D)

→ OX,ηD is finite. So this gives an isomorphism of local
rings and induces also an isomorphism of function fields k(f(D))

∼−→ k(D). The converse
follows from the same argument. □

In Section 4.3.1, we have seen that the complement in M of the locus Msmooth is
given by an irreducible divisor D3,3,10, and this divisor is induced by the SL(V10)-invariant
discriminant hypersurface ∆3,3,10 in P

(∧
3V ∨

10

)
. We can extend the period map p ◦ m so

that it is defined in codimension 1. We denote this extension by

p̃ :M P.

Lemma 4.4.13. The extended period map p̃ maps the divisor D3,3,10 birationally onto
the Heegner divisor D22.
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Proof. In Proposition 4.3.3, we have seen that for a very general [σ] ∈ D3,3,10, the
singular locus of Xσ

6 is a very general K3 surface S22 of degree 22 and Picard rank 1.
In [DV10], it was shown that Xσ

6 is birational to the Hilbert square S[2]
22 . Hence the

extended period map p̃ is defined over an open set of D3,3,10 by mapping [σ] to the period
of S[2]

22 . In this case, the fourfold S[2]
22 has Picard rank 2, and the Picard group is generated

by the classes H and δ, where H is induced by the polarization on S22, and δ is half the
class of the diagonal. Hence the Picard group has intersection matrix(

22 0

0 −2

)
which is of discriminant −44. So we may use Lemma 4.4.8 to deduce that the extended
period map p̃ maps the divisor D3,3,10 onto the Heegner divisor D22. We conclude that p̃

restricts to a birational map between D3,3,10 and D22 using Lemma 4.4.12. □

Combining these facts, we get the following picture of the moduli spaces

P(
∧

3V ∨
10)∖∆3,3,10 M P
⊔ q q

∆3,3,10 Msmooth M(2)
22 Im(p)

⊔ ⊔
D3,3,10 D22.

π

π

m p
∼

p̃

bir.

In particular, each irreducible divisor of M is mapped birationally onto its image, and
conversely, for each irreducible divisor of P with non-empty preimage, the preimage will be
an irreducible divisor ofM, and the two divisors are birational via p̃. Divisors of P with
empty preimage are called Hassett–Looijenga–Shah divisors (HLS for short) and they are
the main focus of the paper [DHOV20]. These divisors correspond to SL(V10)-orbits of
higher codimension inM that need to be blown up in order to resolve the indeterminacy
of p̃. Such loci are necessarily contained in the divisor D3,3,10.

We will study the other two divisors D1,6,10 and D4,7,7 in M coming from SL(V10)-
invariant hypersurfaces. Via the extended period map p̃, they are birationally mapped onto
some Heegner divisors D2e in P . We shall determine the discriminants by studying in detail
the geometry of the three varieties Xσ

1 , X
σ
3 , and Xσ

6 in these cases. In principle, for each
Heegner divisor in P that is not HLS, we could try to describe it in terms of a divisor inM.
In the case of the three divisors that we study, this is done by imposing various degeneracy
conditions on σ. Such descriptions also allow us to characterize these Heegner divisors as
the loci where the varieties Xσ

k become singular.

Finally, we call the preimage p−1(D2e) in M(2)
22 of each Heegner divisor D2e a Noether–

Lefschetz divisor, and we denote it by C2e. Thanks to Theorem 4.4.11, Noether–Lefschetz
divisors and Heegner divisors give almost the same notion: C2e can be identified with
D2e∖D22 via the period map, and in particular C22 is empty. A very general member X of
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each Noether–Lefschetz divisor has Picard rank 2, and the Picard group can be identified
with the sublatticeK ⊂ Λ of rank 2 via the identificationH2(X,Z) ≃ Λ. The transcendental
sublattice H2(X,Z)trans is defined as the orthogonal complement of the Picard group inside
H2(X,Z), and can be identified with K⊥ ⊂ Λ. By Lemma 4.4.8, the discriminant 2e of a
Noether–Lefschetz divisor C2e/a Heegner divisor D2e is equal to |12 disc(Pic(X))| for a very
general member X. A Noether–Lefschetz C2e is called HLS if the corresponding Heegner
divisor D2e is HLS. Such a divisor parametrizes polarized hyperkähler fourfolds in M(2)

22

that do not arise from the Debarre–Voisin construction.

4.5. Hodge structures

4.5.1. Hodge structures of Xσ
3 . In this section, we suppose that [σ] lies in the open

locus Msmooth =M∖D3,3,10, so that Xσ
3 and Xσ

6 are both smooth of respective expected
dimensions 20 and 4. We study the Hodge structures of Xσ

3 . We first note that the integral
cohomology ring H∗(Xσ

3 ,Z) is torsion-free, due to the following lemma.

Lemma 4.5.1. Let Y ⊂ X be a smooth hyperplane section of a smooth projective variety
X of dimension n. Suppose that the integral cohomology ring H∗(X,Z) is torsion-free, then
so is H∗(Y,Z).

Proof. This is an application of the Lefschetz hyperplane theorem, the Poincaré
duality, and the universal coefficient theorem.

Write T k and Tk for the torsion part of Hk(Y,Z) and Hk(Y,Z) respectively. Let
i : Y ↪→ X be the inclusion. By Lefschetz hyperplane theorem, we get isomorphisms
i∗ : Hk(X,Z) → Hk(Y,Z) for 0 ≤ k ≤ n − 2. So T 0, . . . , Tn−2 are all zero. Similarly,
i∗ : Hk(Y,Z)→ Hk(X,Z) are isomorphisms for 0 ≤ k ≤ n− 2, so T0, . . . , Tn−2 are all zero.
By Poincaré duality, this means that Tn, . . . , T 2n−2 are all zero. Finally, for the middle
term Tn−1, we have Tn−1 ≃ Tn−2 by the universal coefficient theorem, so we may conclude
since we have already shown that Tn−2 is zero. □

We introduce one interesting Hodge structure on Xσ
3 . Denote by j : Xσ

3 → Gr(3, V10)

the inclusion. For a given coefficient ring R, the vanishing cohomology, studied in the
original work [DV10], is defined as

H20(Xσ
3 , R)van := ker

(
j∗ : H

20(Xσ
3 , R) −→ H22(Gr(3, V10), R)

)
.

When the coefficient ring is Q, the vanishing cohomology can also be characterized as
the orthogonal complement of j∗H20(Gr(3, V10),Q) with respect to the cup-product on
H20(Xσ

3 ,Q); indeed, for β ∈ H20(Gr(3, V10),Q) and α ∈ H20(X3,Q), we have that
α · j∗β = j∗α · β, and moreover j∗ is injective in degree 20 by the Lefschetz hyperplane
theorem. Hence there is an orthogonal decomposition

(4.13) H20(Xσ
3 ,Q) = H20(Xσ

3 ,Q)van
⊥
⊕ j∗H20(Gr(3, V10),Q).
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This decomposition does not work for Z-coefficients, as the sum of the two sublattices is not
saturated. In fact, H20(Xσ

3 ,Z) is a unimodular lattice and the lattice j∗H20(Gr(3, V10),Z)

is generated by ten Schubert classes

j∗σ730, j
∗σ721, j

∗σ640, j
∗σ631, j

∗σ622, j
∗σ550, j

∗σ541, j
∗σ532, j

∗σ442, j
∗σ433,

with intersection product given by j∗α · j∗β = α · β · σ100. Thus we can explicitly write out
the intersection matrix of j∗H20(Gr(3, V10),Z) as

1 0 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0

1 1 0 1 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0

0 1 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 1 1


which has determinant 11.5 Therefore, j∗H20(Gr(3, V10),Z) is a saturated sublattice of
discriminant 11, and so is its orthogonal H20(Xσ

3 ,Z)van. The whole lattice H20(Xσ
3 ,Z) is

not even (for example (j∗σ730)
2 = 1), while the vanishing cohomology is, as it is generated

by the vanishing cycles, whose self-intersection is always 2 (see [Voi03, Chapter 2.3.3,
Lemma 2.26 and Remark 3.21]).

The Hodge structure on the vanishing cohomology H20(Xσ
3 ,Z)van has been described

in [DV10, Theorem 2.2]: it is of K3-type, that is, it has Hodge numbers h9,11 = h11,9 = 1,
h10,10 = 20, and the other Hodge numbers are all zero; moreover, for very general σ (those
outside the union of all Noether–Lefschetz divisors), there are no Hodge classes of type
(10, 10), so this Hodge structure is simple.

To relate the varieties Xσ
3 and Xσ

6 , we consider the diagram

(4.14)
Iσ3,6 := {[V3 ⊂ V6] ∈ Flag(3, 6, V10) | σ|V6 = 0}

Xσ
3 Xσ

6 ,

p3 p6

where p6 is a fibration with fibers isomorphic to Gr(3, 6).6 It is clear that the incidence
variety Iσ3,6 is smooth of expected dimension 13 whenever Xσ

6 is smooth of dimension 4.
Note that the projection p3 is not surjective since Xσ

3 has dimension 20, although we have
seen in Corollary 4.4.7 that the image of p3 does span the hyperplane in P(

∧
3V10) given

by σ, which allows us to uniquely determine Xσ
3 .

5See also the proof of Proposition 4.7.2, where the Macaulay2 code for computing the intersection matrix is
available.
6Usually the two projections are denoted by p and q. The notation of p3 and p6 is slightly cumbersome,
but it allows us to easily distinguish the two. The same applies for the correspondence Iσ1,6 below.
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This correspondence induces a morphism

p6∗p
∗
3 : H

20(Xσ
3 , R) −→ H2(Xσ

6 , R).

When R = Q, it was proven in [DV10] that p6∗p∗3 gives an isomorphism between the
two Q-Hodge structures H20(Xσ

3 ,Q)van and H2(Xσ
6 ,Q)prim. We briefly recall the idea of

the proof: the first step is to prove that the morphism is not identically 0. Then, since
the Hodge structure on H2(Xσ

6 ,Q)prim is simple for σ very general, the map p6∗p
∗
3 is an

isomorphism for such σ. Finally, since the topology does not change when we deform σ,
the isomorphism holds whenever Xσ

3 and Xσ
6 are smooth.

We will show that p6∗p∗3 also gives a Hodge isometry with Z-coefficients. This is
analogous to the result of Beauville–Donagi for cubic fourfolds in [BD85]. Let us first state
a lemma over Q-coefficients.

Lemma 4.5.2. The isomorphism of rational Hodge structures p6∗p∗3 is a constant multiple
of an isometry.

Proof. We will compare the two quadratic forms on H2(Xσ
6 ,Q)prim and conclude

using the uniqueness of qX shown in Lemma 1.2.2.

Consider the intersection form onH20(Xσ
3 ,Q)van. The subspaceH11,9(Xσ

3 ) is orthogonal
to H11,9(Xσ

3 ) ⊕ H10,10(Xσ
3 )van for degree reasons. Since p6∗p∗3 is a morphism of Hodge

structures, the intersection form transports to a second quadratic form q′ on H2(Xσ
6 ,Q)prim

which satisfies the desired orthogonal condition:

H2,0(Xσ
6 ) is orthogonal to H2,0(Xσ

6 )⊕H1,1(Xσ
6 )prim with respect to q′.

Now by varying σ we get a locally complete family of polarized hyperkähler manifolds, so
we may conclude that q′ is a constant multiple of q using Lemma 1.2.2. □

Therefore we know that p6∗p∗3 is a constant multiple of an isometry. If we can show
that this constant is −1, then since the discriminants of the two lattices are the same, this
isometry will also be onto, which proves the following theorem.

Theorem 4.5.3. When σ is such that Xσ
3 and Xσ

6 are both smooth (that is, when [σ] /∈
D3,3,10), the morphism p6∗p

∗
3 gives an isomorphism of polarized integral Hodge structures

(4.15) p6∗p
∗
3 : H

20(Xσ
3 ,Z)van

∼−→ H2(Xσ
6 ,Z)prim(−1),

where the (−1) means that H2(Xσ
6 ,Z)prim is endowed with the quadratic form −q.

To show that the constant is −1, we will use the argument of continuity: the constant
is the same over the moduli space, so it suffices to compute its value over the Heegner
divisor D28, where we have some explicit Hodge classes to work with. We postpone the
proof of Theorem 4.5.3 to Section 4.6, where we study in detail the divisor D28. We will also
prove the integral Hodge conjecture on H20(Xσ

3 ,Z) as a corollary (see Corollary 4.6.10).



4.5. HODGE STRUCTURES 93

4.5.2. Hodge structures of Xσ
1 . In this section, we will suppose that the trivector σ

does not lie in D3,3,10∪D1,6,10, so all three varieties Xσ
1 , Xσ

3 , and Xσ
6 are smooth of expected

dimension. The Peskine variety Xσ
1 ⊂ P(V10) has many interesting geometric aspects. First,

it is a Fano sixfold of degree 15 and index 3. One way to compute these invariants is by
using a resolution of the structure sheaf, for example see [Han15, Section 2.3] or [BFM21,
Section 4.3]. An alternative way is to identify Xσ

1 as the zero-locus Z(σ) ⊂ Flag(1, 4, V10)

when σ is general (see Section 4.3.2), then use Schubert calculus on the flag variety.

needsPackage "Schubert2";

F = flagBundle{1,3,6}; (U1,U41,Q) = F.Bundles;

-- construct X1 as the zero-locus of a general section

X1 = sectionZeroLocus dual (U1*(exteriorPower_2 U41+U41*Q));

h = chern_1 (dual U1*OO_X1);

print integral h^6; -- degree of X1 is equal to 15

assert (chern_1 tangentBundle X1 == 3*h); -- index is equal to 3

Denote by h the natural polarization on Xσ
1 . We have the following result from [Han15].

Proposition 4.5.4 (Han). Let σ be a general trivector. For [V6] general in the Debarre–
Voisin variety Xσ

6 , the intersection of P(V6) and Xσ
1 inside P(V10) is a Palatini threefold,

that is, a smooth threefold in P5 of degree 7, which is a scroll over a smooth cubic surface.
Otherwise stated, there is a 7-dimensional incidence variety Iσ1,6 called the universal Palatini
variety and a diagram

(4.16)

Iσ1,6 := {[V1 ⊂ V6] ∈ Flag(1, 6, V10) | [V1] ∈ Xσ
1 , [V6] ∈ Xσ

6 }

Xσ
1 Xσ

6 ,

p1 p6

where the general fiber of p6 is a Palatini threefold.

Remark 4.5.5. The general fiber of p1 is a smooth curve of genus 13 and degree 33
(with respect to the Plücker embedding). This can be checked by either explicitly computing
the fiber for some given trivector σ and [V1] ∈ Xσ

1 , or by realizing the fiber as a certain
degeneracy locus inside the Grassmannian Gr(5, V10/V1) and using a Bertini-type argument.
We omit the details since we will not need this fact.

We would like to use this correspondence to relate the Hodge structures of Xσ
1 and Xσ

6 .
However, unlike the case of Iσ3,6, there are some subtleties. The Proposition 4.5.4 only holds
for σ general, in which case the fiber of p6 is a Palatini threefold only for general [V6] ∈ X6.
A priori the incidence variety Iσ1,6 might not be smooth, or not have the expected dimension
at all. It turns out that it is not smooth but has the expected dimension generically,
and more precisely whenever Xσ

1 and Xσ
6 are smooth. Therefore we can still use the

correspondence p6∗p∗1 in families. More precisely, we view Iσ1,6 as a subvariety of Xσ
1 ×Xσ

6 ,
so when it has the expected dimension, it gives a well-defined cohomology class [Iσ1,6] ∈
H6(Xσ

1 ×Xσ
6 ). Then by abuse of notation, we will write p6∗p∗1 for pr2∗

(
[Iσ1,6] · pr∗1(−)

)
and

similarly p1∗p∗6 for pr1∗
(
[Iσ1,6] · pr∗2(−)

)
.
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First we show that Iσ1,6 is not smooth for a general σ. We introduce a resolution of Iσ1,6
that can be realized as the zero-locus of some section on a flag variety, whose smoothness
can then be deduced for general σ. Consider the diagram

(4.17)

Ĩσ1,6 :=

{
[V1 ⊂ V3 ⊂ V6]
∈ Flag(1, 3, 6, V10)

∣∣∣∣∣ σ(V1, V3, V10) = 0,

σ|V6 = 0

}

Iσ1,6

Xσ
1 Xσ

6 .

s

p1 p6

In other words, apart from the pair [V1 ⊂ V6], we introduce the extra information of a
subspace V3 contained in both V6 and the kernel of the form σ(V1,−,−) (which immediately
ensures that rankσ(V1,−,−) ≤ 6).

Proposition 4.5.6. Let σ be a general trivector with both Xσ
1 and Xσ

6 smooth. Then the
variety Ĩσ1,6 defined in (4.17) is smooth of expected dimension 7. The projection s : Ĩσ1,6 → Iσ1,6
obtained by forgetting the subspace V3 contracts a 5-dimensional subvariety of Ĩσ1,6 to the
following 3-dimensional subvariety

Z :=
{
[V1 ⊂ V6] ∈ Iσ1,6

∣∣ ∃K4 ⊂ V6 σ(V1,K4, V10) = 0
}
.

On the complement of s−1(Z), the projection s is an isomorphism. In particular, we have
Sing(Iσ1,6) = Z.

Proof. The variety Ĩσ1,6 is defined inside Flag(1, 3, 6, V10) as the zero-locus of σ viewed
as a section of the vector bundle (

∧
3U6 + U1 ∧ U3 ∧ V10)∨. This vector bundle is a quotient

of
∧

3V ∨
10 and is therefore globally generated. So Ĩσ1,6 is smooth of expected dimension 7 for

a general σ.

The locus where the projection Ĩσ1,6 → Iσ1,6 is not an isomorphism is precisely above
those [V1 ⊂ V6] where the kernel K4 of σ(V1,−,−) is contained in V6, in which case the
fiber is a projective plane P2 = P

(
(K4/V1)

∨) parametrizing V3 with V1 ⊂ V3 ⊂ K4. We
may look at the locus of such [V1 ⊂ K4 ⊂ V6] inside the flag variety Flag(1, 4, 6, V10): this
is again the zero-locus of σ viewed as a section of a certain homogeneous bundle, so for
general σ we get the 3-dimensional smooth subvariety

Z ′ := {[V1 ⊂ K4 ⊂ V6] | σ(V1,K4, V10) = 0, [V6] ∈ Xσ
6 } ⊂ Flag(1, 4, 6, V10).

Since the kernel K4 is uniquely determined by V1, the subvariety Z ′ projects injectively
onto its image in Iσ1,6, which is given by the subvariety Z. The preimage s−1(Z) in Ĩσ1,6
therefore has dimension 5. This means that the projection Ĩσ1,6 → Iσ1,6 is a small contraction
for general σ, so Iσ1,6 cannot be smooth. □

Remark 4.5.7. For general σ, the 3-dimensional subvariety Z dominates a divisor
in Xσ

6 . This divisor has class 10H, which can be shown by computing the degree of the
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pullback of the polarization H. Note that this is a canonically defined effective divisor
in Xσ

6 , which could be useful in constructing compactifications of the moduli space.

Next, we will show that Iσ1,6 always has the expected dimension 7. We need some results
on 4-dimensional families of skew-symmetric forms, studied by Fania–Mezzetti in [FM02].

Consider a six-dimensional complex vector space V6. Inside P(
∧

2V ∨
6 ), there are

two SL(V6)-invariant orbits given by the discriminant hypersurface Gr(2, V6)
∗—which is the

Pfaffian cubic—and the Grassmannian Gr(2, V ∨
6 ) ≃ Gr(4, V6), representing skew-symmetric

forms of ranks ≤ 4 and ≤ 2 respectively. For a general 4-dimensional family ∆ ⊂
∧

2V ∨
6

(which gives a 3-dimensional linear system, or a web), the degeneracy locus defines a Palatini
scroll in P(V6), so one obtains a rational map

ρ : Gr(4,
∧

2V ∨
6 ) 99K H,

where H is the irreducible component of the Hilbert scheme containing the Palatini scroll.
We have the following theorem (see [FM02, Theorem 1.1, 4.3 and 4.9], and also the
erratum).

Theorem 4.5.8 (Fania–Mezzetti). The map ρ is birational. Moreover, it is not regular
at a point [∆] ∈ Gr(4,

∧
2V ∨

6 ) if and only if ∆ belongs to one of the following cases, where
we view ∆ as a 3-dimensional projective subspace in P(

∧
2V ∨

6 ).

• ∆ is entirely contained in the discriminant hypersurface Gr(2, V6)
∗ and not con-

tained in the tangent space to Gr(2, V ∨
6 ) at a point;

• ∆ is not contained in the discriminant hypersurface Gr(2, V6)
∗, but its intersection

with the Grassmannian Gr(2, V ∨
6 ) contains a line or a conic.

We prove the following lemma.

Lemma 4.5.9. Let [σ] ∈M. If the fiber of p6 above [V6] is not of dimension 3, there is
a flag V4 ⊂ V6 ⊂ V7 such that σ(V4, V7, V7) = 0. This gives a plane P

(
(V7/V4)

∨) contained
in Xσ

6 , necessarily Lagrangian.

Proof. For each [V6] ∈ Xσ
6 , since σ vanishes on V6, we get an induced linear map

φσ : V10/V6 −→
∧

2V ∨
6 .

This map is injective: if some V7/V6 is mapped to 0, the trivector σ would vanish on V7,
which implies that σ is unstable by Lemma 4.2.3 so not possible.

Therefore σ defines a 4-dimensional subspace ∆ ⊂
∧

2V ∨
6 , and the fiber of p6 above [V6]

is precisely the union of degeneracy loci in P(V6) for the family of skew-symmetric forms
parametrized by ∆. If the fiber p−1

6 ([V6]) is not of dimension 3, the rational map ρ is not
defined at [∆], so ∆ must satisfy one of the two conditions in Theorem 4.5.8.

Moreover, by a result of Manivel–Mezzetti [MM05, Corollary 11], there does not exist
a P3-family of skew-symmetric forms on V6 with constant rank 4. In other words, if the
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projective 3-space ∆ is entirely contained in the discriminant hypersurface Gr(2, V6)
∗, it

will necessarily intersect the Grassmannian Gr(2, V ∨
6 ) where the rank drops to 2. So we may

conclude that in both cases, the projective 3-space ∆ intersects the Grassmannian Gr(2, V ∨
6 ),

which means that there is a V7 ⊃ V6 whose image is decomposable: we have φσ(V7/V6) =
f1 ∧ f2 where f1, f2 ∈ V ∨

6 are linear forms. The common kernel V4 ⊂ V6 of f1 and f2

therefore satisfies the desired property σ(V4, V7, V7) = 0. □

Proposition 4.5.10. Let [σ] ∈M be a trivector such that Xσ
1 and Xσ

6 are both smooth
(that is, [σ] /∈ D3,3,10 ∪ D1,6,10). The variety Iσ1,6 defined in (4.16) has only one irreducible
component of expected dimension 7, and this component is reduced.

Proof. For a trivector σ /∈ D3,3,10 ∪ D1,6,10, since Xσ
6 is hyperkähler of dimension 4,

it contains only finitely many planes of the form P
(
(V7/V4)

∨), because any such plane
is necessarily Lagrangian hence rigid. We saw that for any [V6] away from these planes,
the fiber of p6 is of expected dimension 3 and is generically smooth, so the irreducible
component of Iσ1,6 that dominates Xσ

6 is reduced of expected dimension 7.

On the other hand, for each Lagrangian plane P = P
(
(V7/V4)

∨), the preimage p−1
6 (P )

is a subvariety inside the projective bundle P(U6) over P , which is of dimension 7. We
claim that p−1

6 (P ) must be of dimension ≤ 6: otherwise, for any [V6] ∈ P
(
(V7/V4)

∨) and
any V1 ⊂ V6, we have [V1] ∈ Xσ

1 . Then P(V7) = P6 would be entirely contained in Xσ
1 ,

which is impossible because Xσ
1 is assumed to be smooth of dimension 6. □

Therefore whenever Xσ
1 and Xσ

6 are both smooth, the variety Iσ1,6 has one unique reduced
component of expected dimension 7. It defines a class on the product Xσ

1 ×Xσ
6 with correct

codimension, and we can thus consider the morphisms between Hodge structures given by
this correspondence.

Note that the degeneracy condition σ(V4, V7, V7) = 0 from Lemma 4.5.9 gives precisely
the divisor D4,7,7 from Section 4.2.3 and is related to Lagrangian planes contained in Xσ

6 ,
which we will study in Section 4.6.

We now begin the study of the Hodge structures of Xσ
1 . The Hodge numbers of Xσ

1

were computed in [BFM21, Table 4.1] (there it is denoted by P ). The integral cohomology
H∗(Xσ

1 ,Z) is also shown to be torsion-free. Since all the cohomologies in odd degree vanish,
we list only the even degree ones:

(4.18)

h0 1

h2 0 1 0

h4 0 1 22 1 0

h6 0 0 1 22 1 0 0

h8 0 1 22 1 0

h10 0 1 0

h12 1
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We see that there are three Hodge structures of K3-type on different levels. They are
related by the Lefschetz operator (see Lemma 4.6.18) and there is a polarization given by
the cup product on H6(Xσ

1 ,Z). In [BFM21], the authors showed that the Hodge structure
of H20(Xσ

3 ,Z)van can be mapped into each of the three Hodge structures of Xσ
1 by using

certain geometric constructions called jumps between the Grassmannians P(V10), Gr(2, V10),
and Gr(3, V10). Here we show that this can also be done by using the incidence variety Iσ1,6.

As in the case of Xσ
3 , we first determine the suitable Hodge structure to study: we define

the vanishing cohomology H6(Xσ
1 ,Z)van to be the orthogonal of the sublattice generated

by h3 and the class π of a Palatini threefold in Xσ
1 (see Proposition 4.5.4). To check that

these two classes generate a sublattice of rank 2, one can compute their intersection matrix
as follows:

• The self-intersection number h3 · h3 is the degree of Xσ
1 , which is 15;

• The intersection number h3 · π is the degree of the Palatini threefold, which is 7;
• To compute the self-intersection number π · π, we take two general points [V6] and
[V ′

6 ] from Xσ
6 . Their intersection V6 ∩ V ′

6 is a 2-dimensional subspace V2, and the
sum V6 + V ′

6 is the whole V10. So one obtains σ(V2, V2, V10) = 0. Such a V2 defines
a 4-secant line P(V2) of the variety Xσ

1 (see [Han14, Section 3.1]). As the class π
of the Palatini threefolds can be represented by both P(V6) ∩X1 and P(V ′

6) ∩X1,
its self-intersection number is 4.

The intersection matrix for Zh3 + Zπ is therefore(
15 7

7 4

)
.

This is a saturated sublattice of rank 2 and discriminant 11. Its orthogonal complement,
the vanishing cohomology H6(Xσ

1 ,Z)van—a polarized integral Hodge structure of type
(1, 20, 1)—therefore also has discriminant 11.

For cohomologies in degree k = 4, 8, we first use the Lefschetz operator Lh over Q

to identify Hk(Xσ
1 ,Q)van, then define the corresponding intersection with the integral

cohomology to be Hk(Xσ
1 ,Z)van. A priori, the Lefschetz operators might not remain

isomorphisms over integral coefficients. We will clarify this in Lemma 4.6.18.

The following is the analogue of Theorem 4.5.3.

Theorem 4.5.11. When σ is such that Xσ
1 and Xσ

6 are both smooth (that is, when [σ] /∈
D3,3,10 ∪ D1,6,10), the morphism

(4.19) p6∗p
∗
1Lh : H

6(Xσ
1 ,Z)van

∼−→ H2(Xσ
6 ,Z)prim(−1)

is an isomorphism of polarized integral Hodge structures. Here p6∗p∗1 is the correspondence
defined by Iσ1,6 in the diagram (4.16), Lh is the Lefschetz operator given by cup product with
h, and the (−1) means that H2(Xσ

6 ,Z)prim is endowed with the quadratic form −q.
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The proof is essentially the same as the proof of Theorem 4.5.3 and involves the study
of D28, so again we postpone it to Section 4.6.

Remark 4.5.12. One can also derive Theorem 4.5.11 directly from Theorem 4.5.3
and [BFM21, Theorem 19], where the Hodge isometries between Xσ

1 and Xσ
3 has already

been established.

4.6. The Heegner divisor of degree 28

4.6.1. The discriminant. In Section 4.2.3, we defined the divisor D4,7,7 inM given
by the degeneracy condition

∃[V4 ⊂ V7] σ(V4, V7, V7) = 0.

Moreover, we have seen in Section 4.3.1 that if [σ] ̸∈ D1,3,10 then σ defines a smooth fourfold
Xσ

6 . So we will consider the case when [σ] lies in D4,7,7 ∖D3,3,10, where the corresponding
Xσ

6 is a smooth hyperkähler fourfold. For the given flag [V4 ⊂ V7], we see that every V6 in
Gr(2, V7/V4) = P

(
(V7/V4)

∨) is in Xσ
6 . So the hyperkähler fourfold Xσ

6 contains a plane P ,
necessarily Lagrangian.

We will first determine the discriminant of the corresponding Noether–Lefschetz/Heegner
divisor. In fact, we will show that a Debarre–Voisin fourfold Xσ

6 containing a linearly
embedded Lagrangian plane (with respect to the Plücker polarization) is always in the
family C28. This shows in particular that the divisor D4,7,7 is mapped onto C28 via the
modular map m, and that any Lagrangian plane contained in a Debarre–Voisin fourfold is
of the above form.

Recall from Example 2.2.6 that we have the following general description of a Lagrangian
plane P contained in a hyperkähler fourfold X of K3[2]-type, in terms of the dual class L
of a line ℓ in P (first obtained by Hassett–Tschinkel in [HT09b, Section 5]). As already
explained there, we work with λ := 2L ∈ H2(X,Z) instead of L.

Proposition 4.6.1. Let X be a smooth hyperkähler fourfolds of K3[2]-type and let P be
a Lagrangian plane contained in X. Let ℓ ∈ H6(X,Z) be the class of a line contained in
the plane P and let λ ∈ H2(X,Z) be the unique class satisfying the property

(4.20) ∀α ∈ H2(X,Z) q(λ, α) = 2ℓ · α,

where q is the Beauville–Bogomolov–Fujiki form. The class λ is of square q(λ, λ) = −10
and divisibility 2, and we have the following relation

[P ] = 1
8λ

2 + 1
20q,

where q ∈ H4(X,Q) is the dual of q.

By Example 1.1.7, we have the generalized Fujiki constants C(q) = 25 and C(q2) =

q2 = 575, which means that q · α1 · α2 = 25 · q(α1, α2) for all α1, α2 ∈ H2(X,Z). By
Corollary 2.1.11, we know that q = 5

6c2(X).

We prove an extra lemma.
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Lemma 4.6.2. Let X be a smooth hyperkähler fourfolds of K3[2]-type and λ ∈ H2(X,Z)

be a class of square −10 and divisibility 2. Moreover, let H be a polarization on X. Then
there is at most one linearly embedded plane P (with respect to H) whose associated (−10)-
class is equal to λ.

Proof. For two distinct linearly embedded planes P and P ′, their intersection can be
empty, a point, or a line L. We show that the last case is not possible in general: we have
an exact sequence

0 −→ TP −→ TX |P −→ NP/X ≃ ΩP −→ 0,

which, when restricted to L, gives

0 −→ TP |L ≃ OL(1)⊕OL(2) −→ TX |L −→ OL(−1)⊕OL(−2) −→ 0.

If P ∩ P ′ = L, the other normal bundle NP ′/L ≃ OL(1) should be a subbundle of the
quotient, which is not possible. In conclusion, the intersection number [P ] · [P ]′ is either 0
or 1.

If we now assume that the (−10)-classes associated with P and P ′ are both λ, then we
may compute the intersection number using

[P ] · [P ′] = (18λ
2 + 1

20q)
2 = [P ]2 = 3,

which leads to a contradiction. □

Theorem 4.6.3.

(1) A smooth Debarre–Voisin fourfold Xσ
6 containing a Lagrangian plane P is always

in the family C28.
(2) Consequently, for [σ] very general in the divisor D4,7,7, the corresponding tran-

scendental sublattice H2(Xσ
6 ,Z)trans is of discriminant −28. The divisor D4,7,7 is

mapped birationally onto the Noether–Lefschetz divisor C28 by the modular map m,
and then onto the Heegner divisor D28 ⊂ P by the period map p.

(3) A very general Xσ
6 in the family C28 contains exactly one Lagrangian plane.

(4) Finally, any Lagrangian plane P contained in a smooth Debarre–Voisin fourfold is
of the form P

(
(V7/V4)

∨), for a flag [V4 ⊂ V7] satisfying the degeneracy condition
σ(V4, V7, V7) = 0.

Proof. For statement (1), let σ be such that Xσ
6 is smooth of dimension 4 and contains

a Lagrangian plane P . Let H be the polarization on Xσ
6 induced by the Plücker polarization,

which is primitive with square q(H) = 22 and divisibility 2. Let ℓ be the class of a line
contained in the plane P . Consider the class λ ∈ H2(Xσ

6 ,Z) given by Proposition 4.6.1
with q(λ) = −10. Since H · ℓ = 1, we have q(H,λ) = 2. Therefore the intersection matrix
between H and λ is (

22 2

2 −10

)
,
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with determinant −224 = −7 · 25.

We study the saturation of the sublattice ZH+Zλ. Since the discriminant of the lattice
H2(Xσ

6 ,Z) is 2, and since both H and λ are primitive of divisibility 2, the images of 1
2H

and 1
2λ in the discriminant group are equal. The class 1

2(H + λ) is therefore integral. We
may consider the sublattice generated by 1

2(H + λ) and λ, which has intersection matrix

(4.21)

(
4 −4
−4 −10

)
.

The discriminant of this lattice is equal to −56 = −7 · 23. Suppose that it is not saturated,
then we can find a class a · 12(H + λ) + bλ = 2x with gcd(a, b) = 1, where x is still integral.
We may compute that q(x) = a2 − 2ab − 5

2b
2 which is an integer, so b is even, a is odd,

and the square q(x) is an odd number. This contradicts the fact that H2(Xσ
6 ,Z) is an

even lattice, so we may conclude that Z1
2(H + λ) + Zλ is the saturation of ZH + Zλ and

has discriminant −56. Since its discriminant is always twice that of its orthogonal by
Lemma 4.4.8, we get a member of the family C28. Note that if such Xσ

6 is of Picard rank 2,
then its Picard lattice coincides with Z1

2(H + λ) + Zλ.

We argue thatD4,7,7 is distinct fromD3,3,10 by comparing the degree of the corresponding
SL(V10)-invariant hypersurface ∆4,7,7 and ∆3,3,10 in P(

∧
3V ∨

10). Therefore, a very general
[σ] in D4,7,7 ∖D3,3,10 defines a smooth Xσ

6 . Since there exists a distinguished flag [V4 ⊂ V7]
such that σ(V4, V7, V7) = 0, the corresponding Debarre–Voisin variety Xσ

6 contains a
Lagrangian plane P

(
(V7/V4)

∨) and therefore is a member of the family C28 by (1). Thus
the divisor D4,7,7 is mapped to C28 in the moduli space. By Theorem 4.4.11, we conclude
that m restricts to a birational map from D4,7,7 to C28. This shows the statement (2).

The divisor D4,7,7 being mapped birationally onto C28 shows that a very general
member Xσ

6 of the family C28 indeed contains a plane. Moreover, for such Xσ
6 , the

Picard group is of rank 2 and has intersection matrix as in (4.21), so there is only one
class λ satisfying q(H,λ) = 2 and q(λ, λ) = −10.7 By Lemma 4.6.2, this shows that
a very general Xσ

6 in C28 contains exactly one Lagrangian plane, which must be of the
form P

(
(V7/V4)

∨).
Finally, for each Lagrangian plane P contained in a smooth Debarre–Voisin fourfold,

we may consider a generic deformation which preserves the Lagrangian plane, using the
results of Voisin [Voi92] on deformations of Lagrangian subvarieties. In this case, a very
general members of the deformation has Picard rank 2, and the Lagrangian plane it contains
is indeed of the form P

(
(V7/V4)

∨) for a certain flag [V4 ⊂ V7]. As this is a deformation
of the pair (Xσ

6 , P ), the original plane P in the central fiber is necessarily also of this
form: this follows from the properness of the flag variety Flag(4, 7, V10) and the fact that
σ(V4, V7, V7) = 0 is a closed condition. This concludes the proof. □

7Let λ′ = aH + bλ be a class satisfying 2 = q(H,λ′) = 22a+ 2b and −10 = q(λ′, λ′) = 22a2 + 4ab− 10b2,
then we may solve that (a, b) = ( 2

11
,−1) or (0, 1). For λ′ to be integral, only the second case is possible, so

λ′ is indeed equal to λ.
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Remark 4.6.4. Here are a few remarks regarding this result.

• The uniqueness of the Lagrangian plane for a very general member of the family
C28 shows that a very general [σ] ∈ D4,7,7 admits a unique flag [V4 ⊂ V7] satisfying
the vanishing condition σ(V4, V7, V7) = 0. This shows that the SL(V10)-invariant
hypersurface ∆4,7,7 in P(

∧
3V ∨

10) is indeed of degree 5500 (see Section 4.2.3).
• Moreover, since any Lagrangian plane contained in a smooth Xσ

6 is of the given
form, all such Lagrangian planes are in the same polarized monodromy orbit. In
other words, any two pairs (Xσ

6 , P ) and (Xσ′
6 , P

′) are deformation equivalent, that
is, there is a family π : X → B of Debarre–Voisin fourfolds and a subvariety Π flat
over B such that Πt ⊂ Xt is a Lagrangian plane, and the two pairs are isomorphic
to some fibers (Xb,Πb) and (Xb′ ,Πb′) for b, b′ ∈ B. This also implies that the
classes λ and λ′ are in the same polarized monodromy orbit, as well as the classes
[P ] and [P ′].
• The last statement of Theorem 4.6.3 has an alternative proof: a plane contained

in Gr(6, V10) is either of the form P
(
(V7/V4)

∨) for a flag V4 ⊂ V7, or P(V8/V5) for
a flag V5 ⊂ V8 (this is a general fact for Grassmannians, see for example [Har92,
Exercise 6.9]). So it suffices to show that a Debarre–Voisin variety Xσ

6 containing
a plane of the second type is not smooth. In this case, the trivector σ satisfies the
degeneracy condition σ(V5, V5, V8) = 0. To show that Xσ

6 is singular, we look for
a V3 contained in V5 satisfying the extra degeneracy condition σ(V3, V3, V10/V8) = 0.
Equivalently, we take the Grassmannian Gr(3, V5) and consider the section of the
rank-6 bundle

(∧
2U∨

3

)⊕2 induced by σ. Since Gr(3, V5) is of dimension 6 and the
vector bundle has top Chern class 1, any section has a non-empty zero-locus, so
such V3 indeed exists.
• Concerning the possibility of associated K3 surfaces, the lattice in (4.21) does not

represent 28,8 so there is no associated K3 surface of degree 28.

4.6.2. The correspondence Iσ3,6. We proceed to the proof of the Hodge isometries
in Theorem 4.5.3 and Theorem 4.5.11. In order to prove Theorem 4.5.3, we will use the
correspondence Xσ

3
p3←− Iσ3,6

p6−→ Xσ
6 from (4.14). The key point is to show that p6∗p∗3 sends

the intersection product to −q, as explained by Lemma 4.5.2 and the remarks thereafter.
For this, it is enough to prove

∃x ∈ H20(Xσ
3 ,Z)van ∖ {0} x2 = −q(p6∗p∗3x),

where we write q = qXσ
6

for the Beauville–Bogomolov–Fujiki form. By a continuity argument,
we may specialize to the case of a general [σ] in the divisor D4,7,7, for which Xσ

3 and Xσ
6

remain smooth.

8Suppose that there exist a, b ∈ Z satisfying 4a2 − 8ab− 10b2 = 28, by modulo 7 we may verify that a ≡ b
(mod 7). So we can write a = 7a′ + r and b = 7b′ + r. By modulo 49 we get r2 ≡ 5 (mod 7), which is
impossible.



102 4. DEBARRE–VOISIN VARIETIES

Let us begin with some preliminary results. For [σ] ∈ D4,7,7 with σ(V4, V7, V7) = 0,
denote by ℓ the class of a line contained in the plane P = P

(
(V7/V4)

)∨. Such a line can be
expressed as

{[V6] ∈ Xσ
6 | V5 ⊂ V6 ⊂ V7},

where V5 is a subspace such that V4 ⊂ V5 ⊂ V7. The class z := p3∗p6
∗ℓ ∈ H20(Xσ

3 ,Z) is
represented by the subvariety

(4.22) Z := {[V3] ∈ Xσ
3 | V3 ⊂ V7, dim(V3 ∩ V5) ≥ 2}.

We may decompose the class z as the sum of its vanishing part z0 ∈ H20(Xσ
3 ,Q)van and its

Schubert part z1 ∈ j∗H20(Gr(3, V10),Q) according to the decomposition (4.13).

Lemma 4.6.5. In the notation above, the Schubert part z1 of the class z ∈ H20(Xσ
3 ,Z)

has square z21 = 5
11 .

Proof. The class j∗z is the Schubert class σ443 on Gr(3, V10) represented by Z. We
can compute z · j∗σ433 = 1 while z · j∗σabc = 0 for the rest of the Schubert classes. The
intersection numbers allow us to completely determine z1 in terms of the basis j∗σabc: we
get

(4.23)
z1 =

1
11(j

∗σ730 − 3j∗σ721 − j∗σ640 + 2j∗σ631 + 3j∗σ622

+j∗σ550 − j∗σ541 − 5j∗σ532 + 6j∗σ442 + 5j∗σ433).

We may then compute its self-intersection number and find 5
11 . □

To compute z20 , we will specialize the trivector further so that Xσ
6 , while still smooth,

contains two disjoint planes P and P ′. Denote by λ and λ′ their corresponding (−10)-classes
as defined in Proposition 4.6.1. We have the following result.

Lemma 4.6.6. If Xσ
6 is smooth and contains two disjoint planes P, P ′, then either

q(λ, λ′) = 2 or q(λ, λ′) = −2.

Proof. As the two planes P, P ′ are disjoint, we use Proposition 4.6.1 to obtain

0 = [P ] · [P ′] =
(
1
8λ

2 + 1
20q
)
·
(
1
8λ

′2 + 1
20q
)
,

= 1
64λ

2 · λ′2 + 1
160q · λ

2 + 1
160q · λ

′2 + 1
400q

2

= 1
64

(
2q(λ, λ′)2 + q(λ)q(λ′)

)
+ 1

160q · λ
2 + 1

160q · λ
′2 + 1

400q
2.

Using q2 = 575, q(λ) = q(λ′) = −10, and q · λ2 = q · λ′2 = 25 · (−10) = −250, we find
q(λ, λ′)2 = 4, therefore q(λ, λ′) = ±2. □

Following [DV10, Section 2], we will consider the following two situations for two
disjoint planes P, P ′ contained in Xσ

6 :

Case 1. We have V4 ⊂ V7 and V ′
4 ⊂ V ′

7 with dim(V7 ∩ V ′
7) = 4 and V4 ∩ V ′

4 = {0}.
For a suitable choice of basis (e0, . . . , e9), we may set V7 = ⟨e0, . . . , e6⟩, V ′

7 =

⟨e3, . . . , e9⟩, V4 = ⟨e1, e2, e3, e4⟩, and V ′
4 = ⟨e5, e6, e7, e8⟩. Note that dim(V4 ∩

V ′
7) = dim(V ′

4 ∩ V7) = 2.
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Case 2. We have V4 ⊂ V7 and V ′
4 ⊂ V ′

7 with dim(V7∩V ′
7) = 4 but V4∩V ′

4 one-dimensional.
In this case, we may set V7 = ⟨e0, . . . , e6⟩, V ′

7 = ⟨e3, . . . , e9⟩, V4 = ⟨e0, e1, e2, e3⟩,
and V ′

4 = ⟨e3, e7, e8, e9⟩.

In both cases, the planes P := P
(
(V7/V4)

∨) and P ′ := P
(
(V7/V

′
4)

∨) are disjoint.

Remark 4.6.7. Note that the existence of such σ was not proved in [DV10], although
it can be verified using a computer: we choose random trivectors σ that satisfy the vanishing
conditions as above, and check the smoothness of the hyperplane section Xσ

3 . For example,
the following trivectors with coefficients in {0,±1} suffice in the two cases:

[056]+[037]−[237]+[047]+[157]+[257]+[267]−[018]−[128]−[148]

−[058]+[258]+[168]−[078]−[129]+[249]+[349]+[059]+[269]−[289]

and

[456]+[017]+[027]+[147]−[057]+[067]+[167]−[267]+[018]

+[138]+[238]−[148]−[258]+[039]+[149]+[169]+[189],

where [ijk] stands for the form e∨i ∧ e∨j ∧ e∨k .

We are now ready to prove Theorem 4.5.3.

Proof of Theorem 4.5.3. For [σ] very general in the divisor D4,7,7, the Debarre–
Voisin fourfold Xσ

6 has Picard rank 2. Therefore the space H2(Xσ
6 ,Z)prim ∩ H1,1(Xσ

6 )

of primitive algebraic classes has rank 1. Using the intersection matrix (4.21), we see
that it is generated by the integral class 1

2(H − 11λ). Recall that we consider the class
z := p3∗p

∗
6ℓ ∈ H20(Xσ

3 ,Z) which has a vanishing part z0 and a Schubert part z1. As proved
in [DV10], the map

p6∗p
∗
3 : H

20(Xσ
3 ,Q)van −→ H2(Xσ

6 ,Q)prim

is an isomorphism of rational Hodge structures. Since z0 is a Hodge class of type (10, 10),
there is some non-zero rational number c ∈ Q such that p6∗p∗3z0 = c(H − 11λ). We can
then express the self-intersection number z20 in terms of c: namely, we transport it to the
side of Xσ

6 using the correspondence

z20 = z · z0 = p3∗p
∗
6ℓ · z0 = ℓ · c(H − 11λ) = c · 12q(λ,H − 11λ) = 56c.

We now specialize the trivector σ so that Xσ
6 contains two disjoint planes P and P ′. We

have two (−10)-classes λ, λ′ in H2(Xσ
6 ,Z), and two classes z, z′ in H20(Xσ

3 ,Z) represented
by the subvarieties Z and Z ′ defined in (4.22). Since both Z and Z ′ are Schubert varieties
of type Σ443, the two classes z and z′ share the same Schubert part z1 = z′1, which can be
determined explicitly as in (4.23) of Lemma 4.6.5 and has square 5

11 .

Let us suppose that we are in Case 1 above. Recall that Z is defined as the set of [V3]
with dim(V3 ∩ V5) ≥ 2 for a given V5 sitting between [V4 ⊂ V7], and Z ′ is similarly defined
by a V ′

5 sitting between [V ′
4 ⊂ V ′

7 ]. We may pick V5 and V ′
5 so that V5 ∩ V ′

5 = 0, then no V3
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can satisfy dim(V3 ∩ V5) ≥ 2 and dim(V3 ∩ V ′
5) ≥ 2. So the two subvarieties Z and Z ′ are

disjoint, and we have 0 = z · z′ = z0 · z′0 + z21 . Therefore we obtain

z0 · z′0 = −z21 = − 5
11 .

On the other hand, we can also compute this intersection number using the same method
that we used to compute z20 :

z0 · z′0 = z · z′0 = p3∗p
∗
6ℓ · z′0 = ℓ · c(H − 11λ′) = c

(
1− 11

2 q(λ, λ
′)
)
.

By Lemma 4.6.6, q(λ, λ′) has two possible values ±2. We use it to find the value of c: if
q(λ, λ′) = 2, we get c = 1

22 , while if q(λ, λ′) = −2, we get c = − 5
132 . So we can compute

that
z2 = z20 +

5
11 = 56c+ 5

11 = 3 or −5
3 ,

in the two cases respectively. Since z is the class of the subvariety Z, the intersection
number z2 should be an integer, so we may conclude that q(λ, λ′) = 2, c = 1

22 , and z2 = 3.
Finally, we get

z20 = 28
11 , q(p6∗p

∗
3z0) = q

(
1
22(H − 11λ)

)
= −28

11 ,

which proves what we need. □

Remark 4.6.8. By Lemma 4.6.6, we know that q(λ, λ′) = ±2. The proof of the theorem
showed that we must have q(λ, λ′) = 2 when we specialize to Case 1. We could also
have specialized to Case 2 to prove the theorem, in which case one obtains q(λ, λ′) = −2
instead.

In the proof, we showed that z2 = 3. Since we also know that j∗z = σ443, this allows
us to write out the full intersection matrix of the sublattice Zz + j∗H20(Gr(3, V10),Z),
whose discriminant group can then be computed to be Z/28Z.9 Since the middle coho-
mology H20(Xσ

3 ,Z) is a unimodular lattice, the orthogonal complement H20(Xσ
3 ,Z)

⊥z
van

has the same discriminant group. This last lattice is mapped via p6∗p
∗
3 onto the tran-

scendental sublattice H2(Xσ
6 ,Z)trans, so we may again conclude that H2(Xσ

6 ,Z)trans is of
discriminant 28.

Another consequence of the theorem is the integral Hodge conjecture for H20(Xσ
3 ,Z),

following ideas of Mongardi–Ottem [MO20] for cubic fourfolds.
We first state a basic lemma on abelian groups.

Lemma 4.6.9. Let L and M be two abelian groups and let φ : L → M be a homo-
morphism. Let L1 be a saturated subgroup of L (that is, L/L1 is torsion-free). Moreover,
we suppose that φ|L1 : L1 → M is injective with saturated image (that is, cokerφ|L1 is
torsion-free). Then writing φ∨ for the dual homomorphism φ∨ : M∨ → L∨, we have

φ∨(M∨) + L⊥
1 = L∨,

where L⊥
1 := {f ∈ L∨ | f |L1 = 0} is the orthogonal of L1 in L∨.

9See the proof of Proposition 4.7.2 where we perform the analogous computation in the case of D24. The
Macaulay2 code there can be modified accordingly to compute the case of D28.
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Proof. Since L1 is saturated in L, we have a surjective map p : L∨ ↠ L∨
1 where the

kernel is precisely L⊥
1 . So we get an induced isomorphism

p : L∨/L⊥
1

∼−→ L∨
1 .

On the other hand, since φ|L1 : L1 →M is injective with saturated image, we get similarly
a surjective map φ∨ : M∨ ↠ L∨

1 , which factorizes as the composition of φ∨ : M∨ → L∨ and
the natural map p : L∨ ↠ L∨

1 . Comparing with the isomorphism that we obtained above,
we get a surjective map

φ∨ : M∨ −↠ L∨/L⊥
1 .

We may thus conclude that φ∨(M∨) and L⊥
1 generate L∨. □

Corollary 4.6.10. The integral Hodge conjecture holds for H20(Xσ
3 ,Z).

Proof. The maps in diagram (4.14) define an injective morphism

p6∗p
∗
3 : H

20(Xσ
3 ,Z)van

∼−→ H2(Xσ
6 ,Z)prim ↪−→ H2(Xσ

6 ,Z)

of abelian groups. By definition of the primitive cohomology, this has saturated image,
therefore we may apply Lemma 4.6.9 by letting L = H20(Xσ

3 ,Z) and L1 = H20(Xσ
3 ,Z)van

and obtain that
(p6∗p

∗
3)

∨(H2(Xσ
6 ,Z)

∨) + L⊥
1 = L∨.

The group L equipped with the intersection product is a unimodular lattice, so we can
identify L∨ with L itself. By the construction of the vanishing cohomology, we have
L⊥
1 = j∗H20(Gr(3, V10),Z). Using the Poincaré duality, we may identify H2(Xσ

6 ,Z)
∨ with

H6(Xσ
6 ,Z) and (p6∗p

∗
3)

∨ with p3∗p∗6. So we obtain

p3∗p
∗
6H

6(Xσ
6 ,Z) + j∗H20(Gr(3, V10),Z) = H20(Xσ

3 ,Z).

Since the integral Hodge conjecture holds for H6(Xσ
6 ,Z) by [MO20, Theorem 0.1], and

since the map p3∗p6∗ is given by an integral correspondence, every integral (10, 10)-class on
Xσ

3 is therefore algebraic. □

Theorem 4.6.11. When σ is such that Xσ
3 is smooth (that is, when [σ] /∈ D3,3,10), the

integral Hodge conjecture holds for Xσ
3 in all degrees.

Proof. Since Xσ
3 is a hyperplane section of the Grassmannian Gr(3, V10), the coho-

mology classes in degrees 2 to 18 all come from Schubert classes thanks to the Lefschetz
hyperplane theorem.

The degree 20 case is settled in Corollary 4.6.10.

For degree 22 to degree 38, by using Poincaré duality, we can verify that the Schubert
classes also produce all the cohomology classes, except in degree 22, where they only
generate a subgroup of H22(Xσ

3 ,Z) of index 3.
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More precisely, in each degree 2k for 11 ≤ k ≤ 19, by the Lefschetz hyperplane
theorem, we already know that the pullback of Schubert classes {j∗σabc}a+b+c=20−k gen-
erate H40−2k(Xσ

3 ,Z) ≃ H2k(Xσ
3 ,Z)

∨. We then consider the pullback of Schubert classes
{j∗σdef}d+e+f=k and pair them with {j∗σabc}a+b+c=20−k. Using

j∗α · j∗β = [Xσ
3 ] · α · β = σ100 · α · β,

we can explicitly compute the intersection matrix and then reduce it to Smith normal form.
This gives us the desired description of the quotient group H2k(Xσ

3 ,Z)/j
∗H2k(Gr(3, V10),Z).

To conclude for degree 22, we note that there is an extra algebraic class g represented
by the Grassmannian Gr(3, U6) for any [U6] ∈ Xσ

6 . It is easy to see that the class g only
intersects the Schubert class j∗σ333 ∈ H18(Xσ

3 ,Z) with intersection number 1. This allows us
to extend the intersection matrix computed above and verify that j∗H22(Gr(3, V10),Z)+Zg

generates H18(Xσ
3 ,Z)

∨ ≃ H22(Xσ
3 ,Z). □

Remark 4.6.12. The extra algebraic class g can be seen as p3∗p∗6[∗], where [∗] ∈
H8(Xσ

6 ,Z) is the class of a point in Xσ
6 . We see that Schubert classes only produce the

class 3g. This phenomenon reappears below for the variety Xσ
1 : if π = p1∗p

∗
6[∗] is the

class of a Palatini threefold, Schubert classes—in particular the Lefschetz operator—only
produce the class 3π.

4.6.3. The correspondence Iσ1,6. We will now prove the second Hodge isometry
stated in Theorem 4.5.11. We will use the correspondence Xσ

1
p1←− Iσ1,6

p6−→ Xσ
6 from (4.16).

Recall that h ∈ H2(Xσ
1 ,Z) is the polarization on Xσ

1 , the class π ∈ H6(Xσ
1 ,Z) is the

class of a Palatini threefold, and H6(Xσ
1 , R)van is defined as

〈
h3, π

〉⊥ for R = Q,Z. Note
that the Lefschetz operators Lh from H4(Xσ

1 ,Q) to H6(Xσ
1 ,Q) and from H6(Xσ

1 ,Q) to
H8(Xσ

1 ,Q) both define an isomorphism of Q-vector spaces.

Proof of Theorem 4.5.11. We will first show that

p6∗p
∗
1Lh : H

6(Xσ
1 ,Q)van −→ H2(Xσ

6 ,Q)prim

is an isomorphism of Q-vector spaces. In fact, it suffices to show that the map is non-zero.
This is because that for a very general σ, the Hodge structure H2(Xσ

6 ,Q)prim is simple, so
the map must be an isomorphism by comparing the dimensions. But this is a topological
property, so it will also suffice to show that the map is non-zero for some particular σ,
not necessarily very general. Once we know that p6∗p∗1Lh is an isomorphism of Q-vector
spaces, we can use Lemma 1.2.2 to deduce that it is an isometry up to a scalar, and we will
conclude by showing that the scalar is equal to −1.

As in the proof of Theorem 4.5.3, we consider a general [σ] in the divisor D4,7,7, so
that Xσ

6 contains a unique plane P = P
(
(V7/V4)

∨). Denote by ℓ the class of a line
contained in P , and consider the class z := p1∗p

∗
6ℓ ∈ H4(Xσ

1 ,Z). We would like to study
the intersection

P(V7) ∩Xσ
1 ⊂ Xσ

1
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and find a subvariety that represents the class z. It is easy to see that P(V4) is always
contained in Xσ

1 , therefore this intersection is not irreducible, so we will use Z to denote
the other component of P(V7) ∩Xσ

1 and show that when it is of expected dimension 4, it
represents the class z.

We first describe the geometry of the incidence variety Iσ1,6. Fibers of the map p6

above [V6] ∈ P are degenerate Palatini threefolds having P(V4) as one irreducible component.
The preimage p−1

6 (P ) therefore consists of two components Y and Y ′: the map p1 projects
the first component Y onto P(V4) ⊂ Xσ

1 , and the second component Y ′ onto Z. The fibers
of p1 : Y → P(V4) are just copies of the plane P , while the fibers of p1 : Y ′ → Z away
from P(V4) can be described as follows: each [V1] not lying in P(V4) spans a 5-dimensional
subspace V1 ⊕ V4, and since σ(V4, V7, V7) = 0, each [V6] in the line P(V7/(V1 ⊕ V4)) lies
in Xσ

6 . Therefore the generic fibers of p1 : Y ′ → Z are lines contained in P . For a fixed
line ℓ ⊂ P , the generic fibers of p1 : p−1

6 (ℓ) ∩ Y ′ → Z are therefore intersections of two lines
in P , so this is a birational map, and we may conclude that the class p1∗p∗6ℓ ∈ H4(Xσ

1 ,Z) is
indeed represented by the class of Z with multiplicity 1. The geometry can be summarized
in the following diagram

Y ∪ Y ′ Iσ1,6

P(V4) ∪ Z Xσ
1 P Xσ

6 .

p1
p6

By intersecting z with h we get a class z · h ∈ H6(Xσ
1 ,Z) which we can write as a sum

z · h = x0 + x1, where x0 ∈ H6(Xσ
1 ,Q)van and x1 ∈ Qh3 + Qπ. For σ very general in

the divisor D4,7,7, Xσ
6 has Picard rank 2 and 1

2(H − 11λ) generates the space of primitive
algebraic classes H2(Xσ

6 ,Z)prim ∩H1,1(Xσ
6 ), so there is a rational number c ∈ Q such that

p6∗p
∗
1(x0 · h) = c(H − 11λ). We may compute

x20 = z · h · x0 = p1∗p
∗
6ℓ · h · x0 = ℓ · p6∗p∗1(h · x0) = ℓ · c(H − 11λ) = 56c.

If c is non-zero, then the map p6∗p∗1Lh will also be non-zero.

To deduce the value of c, we consider again the two special cases where Xσ
6 contains

two planes P and P ′, and get two subvarieties Z and Z ′ and their classes z and z′. Recall
from Remark 4.6.4 that the two planes P and P ′ are in the same polarized monodromy
orbit, hence so are the classes ℓ and ℓ′ for the two lines. The correspondence p1∗p∗6 is clearly
monodromy equivariant, therefore the two classes z and z′ are also in the same monodromy
orbit. In particular, this means that the components x1 and x′1 are the same, since both
classes h3, π ∈ H6(Xσ

1 ,Z) are monodromy invariant. We can then conclude that z · z′ · h2

is equal to x0 · x′0 + x21.

On the other hand, we may similarly compute

x0 · x′0 = z · h · x′0 = p1∗p6
∗ℓ · h · x′0 = ℓ · p6∗p1∗(h · x′0) = ℓ · c(H − 11λ′) = c− c · 112 q(λ, λ

′).
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By Remark 4.6.8, we know that q(λ, λ′) equals to 2 in Case 1 and −2 in Case 2. So x0 ·x′0
is equal to −10c and 12c in the two cases respectively.

Now we compute the intersection number z · z′ · h2 in an alternative way, using the
geometry. It suffices to determine the intersection P(V7) ∩P(V ′

7) ∩Xσ
1 : we will show that

in Case 1, it is a quadric surface and some lower-dimensional components, and in Case 2,
it is a cubic surface and some lower-dimensional components.

More precisely, in the basis (e0, . . . , e9) of Case 1 described above, the intersection is
defined inside P(V7∩V ′

7) = P(⟨e3, e4, e5, e6⟩) as the locus where the 10×10 skew-symmetric
matrix

a056x6 −a056x5 f07 f08 f09

f17 f18 f19

f27 f28 f29

−a349x4
a349x3

−a056x6
a056x5

−f07 −f17 −f27
−f08 −f18 −f28
−f09 −f19 −f29 a349x4 −a349x3


has rank ≤ 6. Here we only write down the non-zero entries: each aijk := σ(ei, ej , ek) is
a constant, and each fij is the restriction of the linear form σ(ei, ej ,−) to ⟨e3, e4, e5, e6⟩,
a polynomial in x3, x4, x5, x6 of degree 1. Note that the constants a056 and a349 are both
non-zero: otherwise σ would vanish entirely on V7 = ⟨e0, . . . , e6⟩ or V ′

7 = ⟨e3, . . . , e9⟩, which
is not possible by Lemma 4.2.3. Similarly, the quadratic form f17f28 − f27f18 cannot be
zero: otherwise one easily verifies that there exists a suitable 7-dimensional subspace of
⟨e1, . . . , e8⟩ on which σ vanishes entirely. So the locus where the rank drops is the union
of the quadric surface defined by f17f28 − f27f18 and the two lines x3 = x4 = 0 and
x5 = x6 = 0.

In Case 2, the matrix is instead the following

f07 f08 f09

f17 f18 f19

f27 f28 f29

0

ax6 −ax5
−ax6 ax4

ax5 −ax4
−f07 −f17 −f27
−f08 −f18 −f28
−f09 −f19 −f29



.

Again a = a456 = σ(e4, e5, e6) is a constant and each fij is the restriction of the linear
form σ(ei, ej ,−) to ⟨e3, e4, e5, e6⟩. Similarly, the constant a and the determinant det(fij)
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are both non-zero, because otherwise σ would vanish entirely on a 7-dimensional subspace.
Therefore the locus where the rank is ≤ 6 is the union of the cubic surface defined by
det(fij) = 0 and the point x4 = x5 = x6 = 0.

Consequently, we see that z · z′ · h2 equals to 2 or 3 in the two cases respectively.
Therefore we obtain the equations

−10c+ x21 = 2, 12c+ x21 = 3,

from which we deduce that c = 1
22 and x21 =

27
11 . Since c is non-zero, the map p6∗p

∗
1Lh is

indeed an isomorphism of Q-vector spaces.
Once we know the isomorphism over Q, we automatically get a Hodge isometry up to a

scalar following the same argument as in Lemma 4.5.2: essentially we use the uniqueness
of the Beauville–Bogomolov–Fujiki form q showed in Lemma 1.2.2. So it remains to show
that the scalar is −1. We consider the class x0 which satisfies

x20 = 56c = 28
11 while q (p6∗p

∗
1(x0 · h)) = q

(
1
22(H − 11λ)

)
= −28

11 .

This allows us to conclude the proof. □

In the proof, we have seen that if we consider the class z := p1∗p
∗
6ℓ ∈ H4(Xσ

1 ,Z), the
class z · h admits components x0 ∈ H6(Xσ

1 ,Q)van and x1 ∈ Qh3 +Qπ, with x20 =
28
11 and

x21 =
27
11 . Hence (z · h)2 = x20 + x21 = 5, which is an integer as one would expect. This also

allows us to determine the class x1.

Lemma 4.6.13. In the above notation, we have x1 = 3
11(h

3 + π).

Proof. The direct sum H6(Xσ
1 ,Z)van⊕ (Zh3+Zπ) is of index 11 in H6(Xσ

1 ,Z). Since
the class z · h is integral, we see that 11x1 ∈ Zh3 + Zπ, so we may write 11x1 = ah3 + bπ.
The value x21 =

27
11 leads to the equation

15a2 + 14ab+ 4b2 = 297,

from which one may deduce that

b = −7
4a±

1
4

√
11(108− a2).

The only integer solutions are (a, b) = (3, 3) or (−3,−3), so x1 = ± 3
11(h

3 + π). Finally,
since the class z is given by the subvariety Z and therefore is effective, we may conclude
that x1 = 3

11(h
3 + π). □

We can then compute the intersection matrix for h3, π, and z · h, and find

(4.24)

15 7 6

7 4 3

6 3 5

 .

In particular, the discriminant group of the lattice generated by these three classes is Z/28Z.
So this is also the discriminant group of the orthogonal H6(Xσ

1 ,Z)
⊥z·h
van and that of the

transcendental lattice H2(Xσ
6 ,Z)trans, again confirming that we are in the Heegner divisor

D28.
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Corollary 4.6.14. When σ is such that Xσ
1 is smooth (that is, when [σ] /∈ D3,3,10 ∪

D1,6,10), we have
p6∗p

∗
1(h

4) = 6H, p6∗p
∗
1(π · h) = 3H,

where H ∈ H2(Xσ
6 ,Z) is the Plücker polarization on Xσ

6 .

If moreover, [σ] lies in D4,7,7 so we have a Lagrangian plane P = P
(
(V7/V4)

∨) with
(−10)-class λ ∈ H2(Xσ

6 ,Z). Write ℓ ∈ H6(Xσ
6 ,Z) for the class of a line in P and consider

the class z := p1∗p
∗
6ℓ ∈ H4(Xσ

1 ,Z). We have

p6∗p
∗
1(z · h2) = 1

2(5H − λ).

Proof. By the simplicity of the Hodge structure H2(Xσ
6 ,Z)prim for a very general σ,

we deduce that there exists constants a, b such that p6∗p∗1(h4) = aH and p6∗p∗1(π · h) = bH.
To determine their values, we specialize to the case [σ] ∈ D4,7,7 that we studied above. For
ℓ the class of a line, we use the intersection numbers in (4.24) to compute

a = p6∗p
∗
1(h

4) · ℓ = h4 · p1∗p∗6ℓ = h4 · z = 6,

and
b = p6∗p

∗
1(π · h) · ℓ = π · h · p1∗p∗6ℓ = π · h · z = 3.

For the class z = p1∗p
∗
6ℓ, we have the decomposition z · h = x0 + x1, where we have

shown that p6∗p∗1Lh(x0) =
1
22(H − 11λ) and x1 = 3

11(h
3 + π). We may thus conclude that

p6∗p
∗
1(z · h2) = 1

22(H − 11λ) + 3
11(6H + 3H) = 1

2(5H − λ),

where we used the images for h4 and π · h that we just obtained. □

Remark 4.6.15. As a side note, since the projective space P(V4) is contained in Xσ
1 ,

its class should be a linear combination of the three classes h3, π, and z · h. One may check
that [P(V4)] = π − z · h using the intersection numbers.

As in the case of Xσ
3 , we can obtain the integral Hodge conjecture for Xσ

1 . From the
Hodge diamond (4.18) and the fact that Xσ

1 contains lines, we see that the only non-trivial
cases are in degrees 4, 6, and 8. First we treat the case of the middle cohomology.

Corollary 4.6.16. When σ is such that Xσ
1 is smooth (that is, when [σ] /∈ D3,3,10 ∪

D1,6,10), the integral Hodge conjecture holds for H6(Xσ
1 ,Z).

Proof. The proof is similar to that of Corollary 4.6.10: namely, we apply Lemma 4.6.9
with L = H6(Xσ

1 ,Z) and L1 = H6(Xσ
1 ,Z)van to get

(p6∗p
∗
1Lh)

∨(H2(Xσ
6 ,Z)

∨) + L⊥
1 = L∨,

which, since L has the structure of a unimodular lattice, translates into

Lhp1∗p6
∗H6(Xσ

6 ,Z) + (Zh3 + Zπ) = H6(Xσ
1 ,Z).

So we may again conclude from the integral Hodge conjecture for H6(Xσ
6 ,Z). □
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The proof for degrees 4 and 8 is a bit more involved, due to the fact that the Lefschetz
operator Lh is not an isomorphism over Z-coefficients. We first construct some extra
algebraic classes on Xσ

1 .

Recall that when Xσ
1 is smooth so [σ] does not lie in the divisor D1,6,10, we can identify

Xσ
1 as the zero-locus Z(σ) inside the 27-dimensional flag variety F := Flag(1, 4, V10) (see

Section 4.3.2). Write j : Xσ
1 ↪→ F = Flag(1, 4, V10) for the inclusion. For k = 4, 6, 8 and a

coefficient ring R = Z or Q, we can imitate the case of Xσ
3 and consider the kernel

(4.25) ker(j∗)
k
R := ker

(
j∗ : H

k(Xσ
1 , R) −→ Hk+42(F,R)

)
=
(
j∗H12−k(F,R)

)⊥
.

The last equality holds due to the Poincaré duality and the projective formula j∗α · β =

j∗(α · j∗β). Namely, if α ∈ ker(j∗)
k
R, then indeed for any β ∈ H12−k(F,R) we have

α · j∗β = 0; conversely, if α ∈ j∗H12−k(F,R)⊥, then for any β ∈ H12−k(F,R), the class
j∗α ∈ H42+k(F,R) satisfies j∗α · β = 0, so it vanishes by the Poincaré duality.

We show that this construction gives us an alternative description of the vanishing
cohomologies, in other words, Hk(Xσ

1 , R)van coincides with the kernel ker(j∗)
k
R, which

justifies the name of vanishing cohomology.

Lemma 4.6.17. We have

j∗H6(F,Z) = Zh3 + 3Zπ.

Consider the Chern classes c2(Q) and c4(Q) of the tautological quotient bundle Q of rank 6.
We have

j∗c2(Q) = 6h2 − 3L−1
h π, j∗c4(Q) = (173 h

3 − 7π) · h.

In particular, the class 1
3h

4 ∈ H8(Xσ
1 ,Z) is integral and algebraic.

Consequently, we can identify the vanishing cohomologies for k = 4, 6, 8 with the kernel
of the map j∗

Hk(Xσ
1 , R)van = ker(j∗)

k
R,

defined as in (4.25).

Proof. First, we may consider a very general σ in the moduli space. Theorem 4.5.11
shows that in this case, the Hodge structure H6(Xσ

1 ,Z)van is simple so there are no Hodge
classes. Therefore, we may deduce that j∗H6(F,Z) lies in Zh3 + Zπ.

The cohomology ring H∗(F,Z) of the flag variety F = Flag(1, 4, 10) is generated by
the Chern classes of the three tautological vector bundles U1, U4/1 ≃ U4/U1, and Q6. Since
Xσ

1 is realized as the zero-locus Z(σ) with σ viewed as a section of the vector bundle
F := (U1 ∧ U4 ∧ V10)∨ of rank 21, we have

[Xσ
1 ] = c21(F) ∈ H42(F,Z).

Therefore we can compute intersection products on Xσ
1 using

j∗α · j∗β = [Xσ
1 ] · α · β.
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We then take an integral basis {βi} of H6(F,Z) and compute the intersection matrix
(j∗βa · j∗βb)ab and reduce it to Smith normal form. This shows that j∗H6(F,Z) is of
discriminant 99, hence is a sublattice of Zh3 + Zπ of index 3. The class h is clearly in the
image since it is the pullback of c1(U∨

1 ), so we may conclude that the image j∗H6(F,Z) is
Zh3 + 3Zπ.

needsPackage "Schubert2";

F = flagBundle{1,3,6}; (U1,U41,Q) = F.Bundles;

HF = intersectionRing F; -- the ring H^*(F)

X1 = ctop dual (U1*(exteriorPower_2 U41+U41*Q)); -- the class [X_1]

beta = first entries basis_3 HF; -- an integral basis given by Chern classes

M = matrix (for b1 in beta list for b2 in beta list integral(X1*b1*b2));

print first smithNormalForm M; -- rank 2 with discriminant 99=11*3^2

h = chern_1 dual U1; c2 = chern_2 Q; c4 = chern_4 Q;

print (integral \ (X1*c2*h^4, X1*c2^2*h^2)); -- (69, 324)

print (integral \ (X1*c4*h^2, X1*c4*c2)); -- (36, 181)

We prove the statement on the pullback of the Chern classes. For a very general σ in
the moduli space, the Hodge structure on Hk(Xσ

1 ,Q)van is simple, so we have

j∗H4(F,Q) ⊂ Qh2 +QL−1
h π, j∗H8(F,Q) ⊂ Qh4 +Qπ · h.

To determine the pullback of the Chern classes, it suffices to compute the corresponding
intersection numbers. We first consider the class j∗c2(Q) · h which lies in Zh3 + 3Zπ: we
have

j∗c2(Q) · h · h3 = 69, (j∗c2(Q) · h)2 = 324.

Writing j∗c2(Q) · h = ah3 − 3bπ with a, b ∈ Z, we get (a, b) = (6,−1) or (165 , 1), so only the
first solution is possible. For j∗c4(Q), we similarly compute that

j∗c4(Q) · h2 = 36, j∗c4(Q) · j∗c2(Q) = 181.

Writing j∗c4(Q) = ah4 + bπ · h with a, b ∈ Q, we get (a, b) = (173 ,−7).

We note that the space j∗Hk(F,Q) is therefore of rank exactly 2 for k ∈ {4, 6, 8}. All
three are related by the Lefschetz operators Lh. This shows that the vanishing cohomologies
Hk(Xσ

1 , R)van can indeed be identified with the kernel ker(j∗)kR =
(
j∗H12−k(F,R)

)⊥. □

Now we study the Lefschetz operators Lh over Z-coefficients.

Lemma 4.6.18. Suppose that Xσ
1 is smooth. The image of the Lefschetz operator

Lh : H
6(Xσ

1 ,Z) −→ H8(Xσ
1 ,Z)

is a subgroup of index 3. By duality, the same is true for

Lh : H
4(Xσ

1 ,Z) −→ H6(Xσ
1 ,Z).

When restricted to the vanishing parts, both Lefschetz operators become isomorphisms.
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Proof. The Lefschetz operator Lh is an isomorphism over Q-coefficients. Using
Lemma 4.6.17, we get

(4.26) LhH
6(Xσ

1 ,Z) +
1
3Zh

4 ⊂ H8(Xσ
1 ,Z).

Since 1
3h

3 /∈ H6(Xσ
1 ,Z), the index of the image of Lh in H8(Xσ

1 ,Z) is at least 3. We prove
that it is equal to 3 by showing that the inclusion in (4.26) is an equality.

We will do this by studying the image of p6∗p∗1. Since this is a topological property,
we can specialize to the case of a general σ in the divisor D4,7,7, so we retain the notation
of ℓ ∈ H2(X

σ
6 ,Z), z ∈ H4(Xσ

1 ,Z), and z · h = x0 + x1, where we have already shown that
the algebraic part x1 is equal to 3

11(h
3 + π). Note that since z · h does not lie in the direct

sum H6(Xσ
1 ,Z)van ⊕ (Zh3 +Zπ) which is a sublattice of H6(Xσ

1 ,Z) of index 11, by adding
the class z · h we get the entire lattice so

H6(Xσ
1 ,Z) = H6(Xσ

1 ,Z)van + Zz · h+ (Zh3 + Zπ),

and thus

LhH
6(Xσ

1 ,Z) +
1
3Zh

4 = LhH
6(Xσ

1 ,Z)van + Zz · h2 + (13Zh
4 + Zπ · h).

By Theorem 4.5.11, we see that H6(Xσ
1 ,Z)van is mapped isomorphically onto H2(Xσ

6 ,Z)prim

via p6∗p∗1Lh. Also, in Corollary 4.6.14, we have obtained the images of the classes z · h2, h4,
and π · h under the map p6∗p∗1. So we have a complete description of the image of p6∗p∗1

p6∗p
∗
1

(
LhH

6(Xσ
1 ,Z) +

1
3Zh

4
)
= H2(Xσ

6 ,Z)prim + Z1
2(H + λ) + ZH.

On the other hand, since we have q
(
1
2(H + λ), H

)
= 12 from the intersection numbers

(4.21), the class 1
2(H +λ) does not lie in the direct sum H2(Xσ

6 ,Z)prim⊕ZH. The latter is
a sublattice of index 11 in H2(Xσ

6 ,Z), so we may conclude that the image is the full lattice

p6∗p
∗
1

(
LhH

6(Xσ
1 ,Z) +

1
3Zh

4
)
= H2(Xσ

6 ,Z).

On the other hand, we also have

p6∗p
∗
1

(
H8(Xσ

1 ,Z)
)
= H2(Xσ

6 ,Z).

So to check that LhH6(Xσ
1 ,Z) +

1
3Zh

4 generates H8(Xσ
1 ,Z), it suffices to check this on the

kernel of p6∗p∗1. By comparing the dimensions, the kernel is of rank 1, and one generator
(over Q-coefficients) is given by h4 − 2π · h = Lh(h

3 − 2π). This class is clearly an element
of LhH6(Xσ

1 ,Z) +
1
3Zh

4; but it is also primitive in H8(Xσ
1 ,Z) since (h4 − 2π · h) · h2 = 1.

We may thus conclude that LhH6(Xσ
1 ,Z) +

1
3Zh

4 indeed generates H8(Xσ
1 ,Z).

We note that for degree 4, the class j∗c2(Q) is primitive, since by Lemma 4.6.17 we
have

j∗c2(Q) · (−13
3 h

4 + 10π · h) = (6h3 − 3π) · (−13
3 h

3 + 10π) = 1.

But its image Lhj∗c2(Q) = 6h3−3π is divisible by 3. Therefore Zh2+Zj∗c2(Q) is saturated
in H4(Xσ

1 ,Z).
Finally, for both Lefschetz operators, the extra 3-divisible class lies in the algebraic

part. So when we restrict to the vanishing parts, we get isomorphisms. □



114 4. DEBARRE–VOISIN VARIETIES

Theorem 4.6.19. When σ is such that Xσ
1 is smooth (that is, when [σ] /∈ D3,3,10 ∪

D1,6,10), the integral Hodge conjecture holds for Xσ
1 in all degrees.

Proof. It remains to show the cases of k ∈ {4, 8}.

For H4(Xσ
1 ,Z), we see that the subgroup Zh2 + Zj∗c2(Q) is saturated in H4(Xσ

1 ,Z).
As before, we apply Lemma 4.6.9 to L = H8(Xσ

1 ,Z), L1 = H8(Xσ
1 ,Z)van, and the map

p6∗p
∗
1 to get

p1∗p
∗
6H

6(Xσ
6 ,Z) +

(
Zh2 + Zj∗c2(Q)

)
= H4(Xσ

1 ,Z),

which allows us to conclude.

For H8(Xσ
1 ,Z), we could proceed similarly as above. But since we have already obtained

the integral Hodge conjecture for H6(Xσ
1 ,Z), and we have also seen that 1

3h
4 is algebraic,

we can directly conclude that all integral Hodge classes in H8(Xσ
1 ,Z) are algebraic. □

4.7. The Heegner divisor of degree 24

In the GIT moduli spaceM of trivectors, we have defined the divisor D1,6,10 given by
trivectors satisfying the degeneracy condition σ(V1, V6, V10) = 0 as in (4.4), which is also
the locus where the Peskine variety Xσ

1 becomes singular and generically admits an isolated
singularity at [V1]. In this section, we will study the geometry along this divisor. Notably
we will give the geometric construction of a K3 surface S of degree 6 and a divisor D in Xσ

6

ruled over S.

4.7.1. The discriminant. First we show that the divisor D1,6,10 is mapped to the
Noether–Lefschetz divisor C24 under the modular map m and to the Heegner divisor D24

by the period map p. We state a lemma which gives an alternative description for D1,6,10.

Lemma 4.7.1. For a trivector σ, there is a flag [V1 ⊂ V6] such that σ(V1, V6, V10) = 0 if
and only if there is a flag [V1 ⊂ V8] such that σ(V1, V8, V8) = 0. Moreover, in this case, the
flags [V1 ⊂ V8] are parametrized by a 3-dimensional quadric.

Proof. If we have a flag V1 ⊂ V8 as above, the skew-symmetric 2-form σ(V1,−,−) is
of rank at most 4, so there is a 6-dimensional V6 in the kernel.

Conversely, if we have a flag V1 ⊂ V6 as in the lemma, the set of V8 in Gr(2, V10/V6)

such that σ(V1, V8, V8) = 0 is exactly the set of subspaces which are isotropic with respect
to σ(V1,−,−), which is a linear section of the quadric Gr(2, V10/V6). □

Proposition 4.7.2. The divisor D1,6,10 is mapped birationally onto the Noether–
Lefschetz divisor C24 via the moduli map m, and then to the Heegner divisor D24 via
the period map p.
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Proof. As with the other two divisors, it suffices to compute the discriminant. We
pick a very general [σ] in the divisor D1,6,10. In particular, we assume that [σ] /∈ D3,3,10 so
Xσ

3 is smooth.

The degeneracy condition σ(V1, V8, V8) = 0 shows that there is a Grassmannian
Gr(2, 7) = Gr(2, V8/V1) contained in Xσ

3 . Notice that the choice of V8 is not canoni-
cal, as generally these V8 are parametrized by a 3-dimensional quadric for a fixed flag
V1 ⊂ V6, and so are the Grassmannians Gr(2, 7) contained in Xσ

3 .

If we fix one Z = Gr(2, 7) contained in Xσ
3 and look at its class z ∈ H20(Xσ

3 ,Z), we
may compute the self-intersection number

z2 = c10(NZ/Xσ
3
) = 2.

Indeed, using the two normal sequences

0 −→ TZ −→ TXσ
3
|Z −→ NZ/Xσ

3
−→ 0,

0 −→ TXσ
3
−→ TGr(3,V10)|Xσ

3
−→ OXσ

3
(1) −→ 0,

the normal bundle NZ/Xσ
3

can be expressed in terms of homogeneous vector bundles U2
and Q5 on Z = Gr(2, 7), so we may calculate explicitly its Chern classes using the splitting
principle and Schubert calculus.

needsPackage "Schubert2";

(U,Q) = bundles flagBundle{2,5}; N = dual(U+1)*(Q+2)-det Q-dual U*Q;

print integral chern_10 N; -- 2

Moreover, we see that j∗z = σ722 is a Schubert class. So we can compute the full
intersection matrix for the lattice Zz + j∗H20(Gr(3, V10),Z) and find that its determinant
is 24. We can also compute the Smith normal form of the intersection matrix to show that
the discriminant group is Z/24Z.

needsPackage "Schubert2";

G = flagBundle {3,7};

-- enumerate all the Schubert classes in codimension k

classes = k -> for p in partitions(k,7) list (

if #p <= 3 then (p = toList p; while #p < 3 do p = p|{0}; schubertCycle(p, G))

else continue);

jz = schubertCycle({7,2,2}, G); -- the class j_*z

X3 = schubertCycle({1,0,0}, G); -- the class [X_3]

H20G = classes 10; -- the classes in H^20(G)

-- V: the intersection numbers of z with j^*H^20(G)

V = matrix {for a in H20G list integral(a*jz)};

-- M: the intersection matrix of j^*H^20(G); we have det(M)=11

M = matrix for a in H20G list for b in H20G list integral(a*b*X3);

MM = (matrix{{2}} | V) || (transpose V | M); -- the full intersection matrix

print det MM; -- 24

print first smithNormalForm MM; -- the discriminant group is Z/24Z

print prune cokernel MM; -- an alternative way to obtain Z/24Z
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This concludes the proof. □

We also remark that the above code can be modified accordingly to compute the D28

case, as mentioned in Remark 4.6.8 (namely, we change σ722 to σ443 and z2 = 2 to z2 = 3).

4.7.2. Review: cubic fourfolds containing a plane. Before studying the geometry
of the Debarre–Voisin hyperkähler manifold Xσ

6 along the divisor D1,6,10, we first briefly
review results for cubic fourfolds containing a plane, originally considered by Voisin in her
thesis [Voi86] and by Hassett in [Has00], with later studies on their derived aspects by
Kuznetsov [Kuz10], and moduli aspects by Macrì–Stellari [MS12] and Ouchi [Ouc17].
We will see that analogous results hold in our case.

Let X be a cubic fourfold in P(V6) that contains a plane P(V3) for some V3 ⊂ V6.
As shown in [Voi86], the blow up BlP(V3)X projects onto the plane P2 = P(V6/V3) and
the fibers are quadric surfaces which are generically smooth. The discriminant locus,
that is, the locus where the quadrics are singular, is a sextic curve in P2. Let S be the
variety parametrizing rulings of lines in these fibers: as the fibers are quadric surfaces, the
projection S → P2 is a generically 2-to-1 morphism, ramified along the discriminant curve,
and S is therefore a K3 surface of degree 2.

The variety F ⊂ Gr(2, V6) of lines contained in X is a hyperkähler fourfold of K3[2]-type
by [BD85]. The lines in the fibers of BlP(V3)X → P2 form a uniruled divisor D in F .
Alternatively, it can also be defined as the closure of the set of lines in X that intersect
P(V3) at one point. Clearly, D admits a P1-fibration over S. In [Voi86], it was shown that
the transcendental part H2(F,Z)trans (of discriminant 8 and Hodge type (1, 19, 1)) embeds
as a sublattice of index two into the primitive cohomology H2(S,Z)prim (of discriminant 2).
This sublattice is closely related to the Brauer class β induced by the P1-fibration D → S,
so it should be considered as the “primitive cohomology” of the twisted K3 surface (S, β)

(see [vG05]). For a general X containing a plane, the class β is non-trivial and is related to
rationality questions (see [Has00]). Finally, it was proved in [MS12] that for a general X
containing a plane, the hyperkähler variety F can be recovered (birationally) as a moduli
space of β-twisted sheaves on S.

4.7.3. Associated K3 surface. From now on, we consider a general [σ] ∈ D1,6,10, so
there is a unique distinguished flag [V1 ⊂ V6] such that σ(V1, V6, V10) = 0. We study the
geometry of the Debarre–Voisin variety Xσ

6 , which resembles a lot that of a cubic fourfold
containing a plane. Notably, we will construct a K3 surface S of degree 6 and a uniruled
divisor D in Xσ

6 that admits a P1-fibration over S. In the next section, we will compare
the Hodge structures of Xσ

6 and of the K3 surface S. The P1-fibration defines a non-trivial
Brauer class β ∈ Br(S), and we will show that Xσ

6 can be recovered as a moduli space of
β-twisted sheaves on S (which is proved in a purely Hodge theoretical way).

Let W7 be a complex vector space of dimension 7. We begin by recalling some properties
on GL(W7)-orbit closures inside

∧
3W7. Let Y ⊂

∧
3W∨

7 be the unique GL(W7)-invariant
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hypersurface. It can also be characterized as the affine cone over the projective dual variety
Gr(3,W7)

∗ embedded in P(
∧

3W∨
7 ), which is a hypersurface of degree 7. In other words, the

polynomial f defining Y lives inside Sym7(
∧

3W∨
7 )

∨ ≃ Sym7∧3W7, and is usually referred
to as the discriminant or the hyperdeterminant. Equivalently, Cf can be characterized
as the unique one-dimensional GL(W7)-subrepresentation of Sym7∧3W7. Since all one-
dimensional representations of GL(W7) are of the form det(W7)

⊗i for i ∈ Z, weight
invariance with respect to the torus C∗ Id ⊂ GL(W7) implies that we have Cf ≃ det(W7)

⊗3.
This also means that we can canonically define the discriminant disc y of each y ∈

∧
3W∨

7

as an element of det(W∨
7 )

⊗3.

Let us now return to our trivector σ.

Proposition 4.7.3. Suppose the trivector σ ∈
∧

3V ∨
10 is general in the divisor D1,6,10,

that is, we have σ(V1, V6, V10) = 0 for a unique flag V1 ⊂ V6 ⊂ V10. Then it defines a
smooth K3 surface S of degree 6 inside Gr(2, V10/V6), where the polarization is given by the
Plücker line bundle.

Proof. The Grassmannian Gr(2, V10/V6) is a 4-dimensional quadric. The K3 surface S
will be the intersection of a linear section and a cubic section of this quadric, hence the
Plücker line bundle will be of degree 6. For clarity, we denote by U8/6 the tautological
subbundle and by Q10/8 the quotient bundle on Gr(2, V10/V6) respectively.

The linear section is given by the condition σ(V1, V8, V8) = 0: since σ(V1, V6, V10) = 0,
this is equivalent to the condition σ(V1, V8/V6, V8/V6) = 0, which can be seen as the
vanishing of a general section of the line bundle

∧
2U∨

8/6 ≃ O(1). The zero-locus is therefore
a 3-dimensional quadric S′.

Now for each [V8/V6] ∈ S′, since we have σ(V1, V8, V8) = 0, the form σ induces an
element of

∧
3(V8/V1)

∨. In the relative setting, by letting W7 := V6/V1 ⊕ U8/6 where V6/V1
is the trivial bundle (V6/V1)⊗OS′ , we get a global section σ′ of the vector bundle

∧
3W∨

7 .
So we may define the orbital degeneracy locus

S := DY (σ
′) =

{
[V8/V6] ∈ S′

∣∣∣ σ′|V8/V1 ∈ Y ⊂ ∧3(V8/V1)
∨ ≃

(∧
3W∨

7

)
[V8/V6]

}
.

As we have already seen, the hypersurface Y is defined in
∧

3W∨
7 by the vanishing of the

discriminant. Therefore S is the hypersurface in S′ defined by the vanishing of discσ′,
which is a section of det(W∨

7 )
⊗3 ≃ OS′(3).

As σ is general, so is σ′ among sections of
∧

3W∨
7 . Moreover, the hypersurface Y

is smooth in codimension 2, so by a Bertini-type theorem for orbital degeneracy loci
(see [BFMT20, Proposition 2.3]), the zero-locus S is also smooth. In other words, we
obtain a smooth surface defined as the intersection of a quadric and a cubic, that is, a K3
surface of degree 6. □
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Remark 4.7.4. A general element y ∈ Y admits a unique point [W3] ∈ Gr(3,W7) for
which we have the vanishing condition y(W3,W3,W7) = 0. In the relative setting, this
implies that a general point [V8/V6] of S defines a unique 3-dimensional subspace of V8/V1,
in other words a 4-dimensional subspace V4 with V1 ⊂ V4 ⊂ V8 such that

σ′(V4/V1, V4/V1, V8/V1) = 0 or equivalently, σ(V4, V4, V8) = 0.

In conclusion, having fixed the flag V1 ⊂ V6 and the trivector σ ∈ D1,6,10, the K3 surface S
can also be defined as the set

(4.27) Z(σ) :=

{
[V4 ⊂ V8]

∣∣∣∣∣ V1 ⊂ V4, V6 ⊂ V8, σ(V1, V8, V8) = 0,

and σ(V4, V4, V8) = 0

}
⊂ Flag(4, 8, V10).

The advantage of this description is that K3 surface can now be characterized as the
zero-locus of a section of some vector bundle on a flag variety.

There is a natural projection map from Z(σ) to S ⊂ Gr(2, V10/V6) by forgetting [V4]. We
claim that this is an isomorphism if [σ] /∈ D4,7,7. Suppose that the map is not an isomorphism
at a point [V8] ∈ S, this means that the form σ′ = σ|V8/V1 ∈

∧
3(V8/V1)

∨ admits at least 2
three-dimensional subspaces V4/V1 and V ′

4/V1 such that σ(V4, V4, V8) = σ(V ′
4 , V

′
4 , V8) = 0.

In particular, it cannot be a general point of the discriminant hypersurface Y and must
further degenerate. Using the description of the GL(W7)-orbits in

∧
3W∨

7 in Section 4.2.3,
we conclude that σ′ ∈ Y31, and there exists a flag W3 ⊂W6 such that σ′(W3,W6,W6) = 0.
But W3 and W6 are subspaces of W7 = V8/V1, hence we get a flag V4 ⊂ V7 such that
W3 = V4/V1, W6 = V7/V1, and σ(V4, V7, V7) = 0, so we conclude that [σ] ∈ D4,7,7.

Note that the Picard group of Flag(4, 8, V10) is of rank 2, generated by the first Chern
classes of the two tautological bundles U4/1 := U4/V1 and U8/4 := U8/U4. By construction,
the first Chern class of the bundle U∨

8/6 gives the polarization h of degree 6 on S. One may
check that c1(U4/1|S) = −3h and c1(U8/4|S) = 2h, so no new polarizations are produced
this way.

needsPackage "Schubert2";

(U86,Q) = bundles flagBundle{2,2}; -- first choose V8/V6 in V10/V6

(U41,U84) = bundles flagBundle({3,4},U86+5); -- then choose V4/V1 in V8/V1

S = sectionZeroLocus dual(det U86+det U41+exteriorPower_2 U41*U84);

h = chern_1(dual U86*OO_S);

-- verify the Chern classes

assert(chern_1(U41*OO_S) == -3*h and chern_1(U84*OO_S) == 2*h);

In fact, we will see later that the family of polarized K3 surfaces of degree 6 parametrized
by D24 is a locally complete family, as a consequence of the study of their Hodge structures.
Hence a very general member S of the family has Picard rank 1.

Next, we construct a uniruled divisor D in Xσ
6 .
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Proposition 4.7.5. For a general [σ] ∈ D1,6,10 ∖D3,3,10, the set

D := {[U6] ∈ Xσ
6 | ∃[V4 ⊂ V8] ∈ S V4 ⊂ U6 ⊂ V8}

defines a divisor in Xσ
6 which has a smooth conic fibration π : D → S over the K3 surface S.

Proof. First we construct the morphism π : D → S by showing that for each [U6] ∈ D,
the corresponding [V4 ⊂ V8] ∈ S is unique. Since U6 and V6 are both subspaces of V8, we
have dim(U6 ∩ V6) ≥ 4. We claim that the equality always holds. Otherwise, suppose that
there exists some U6 with dim(U6 ∩ V6) ≥ 5. For any V3 with V1 ⊂ V3 ⊂ U6 ∩ V6, we have
the vanishing σ(V1, V3, V10) = 0 as well as σ(V3, V3, U6) = 0, and we claim that there exists
a such V3 with σ(V3, V3, V10) = 0. This is equivalent to study inside Gr(2, (U6 ∩V6)/V1) the
zero locus of σ seen as a section of the vector bundle

∧
2U∨

2 ⊗(V10/V6)
∨, which is a condition

of codimension 4 so such a V3 must exist. This would contradict the hypothesis on [σ], so
we may conclude that dim(U6 ∩ V6) = 4. We may then recover V8 as the sum U6 + V6 and
get a morphism π : D → S (recall that for σ general, we have two equivalent descriptions
of S, as a degeneracy locus in Gr(2, V10/V6) or one in Flag(4, 8, V10); in particular, the
subspace V4 can be uniquely determined from V8).

Now we show that this morphism π : D → S is a smooth conic fibration. We first study
the fiber {[U6] ∈ Xσ

6 | V4 ⊂ U6 ⊂ V8} above each [V4 ⊂ V8] ∈ S. This fiber can be seen as
the locus

{[U6] ∈ Gr(2, V8/V4) | σ|U6 = 0}.

The trivector σ, when restricted to V8, becomes a section of (V4/V1)∨ ⊗
∧

2U∨
2 = O(1)⊕3.

So we get three hyperplane sections, whose intersection in Gr(2, V8/V4) is generically a
conic.

In the relative setting, the fibers are defined inside the projectivization PS(E) of a
vector bundle E of rank 3 over S, which is realized as the kernel

E
∧

2U8/4 U∨
4/1 0.σ

Here the last arrow is surjective for a general σ: otherwise we would get a subspace U2 ⊃ V1
such that σ(U2, V8, V8) = 0; then all the U1 contained in U2 will have rankσ(U1,−,−) ≤ 4

which does not happen for σ general. The quadratic form q on E is given by

Sym2 E Sym2∧2U8/4 L := detU8/4
q

where it takes value in the line bundle L. We have det E ≃ OS(3) while L ≃ OS(2). The
discriminant locus is defined by a section of the line bundle (det E∨)⊗2 ⊗ L⊗ rank E ≃ OS
and is therefore empty. Thus the conic fibration is everywhere smooth. □

We also have an alternative description of D.

Proposition 4.7.6. For a general σ in the divisor D1,6,10, let [V1 ⊂ V6] be the distin-
guished flag. A point [U6] ∈ Xσ

6 is contained in D if and only if U6 contains V1. In other
words, we have

D = {[U6] ∈ Xσ
6 | U6 ⊃ V1}.
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Proof. Since any [U6] in D contains a subspace V4 ⊃ V1, one direction is evident.

Suppose now that U6 contains V1 and σ|U6 = 0. Then U6 is isotropic with respect to
σ(V1,−,−) and is contained inside a maximal isotropic subspace V8 of dimension eight. Let
us consider a point [V4] ∈ Gr(3, U6/V1). As [U6] ∈ Xσ

6 , any such V4 satisfies σ(V4, V4, U6) = 0.
Therefore, the condition σ(V4, V4, V8) = 0 is a codimension-6 condition, and there exists
exactly one point [V4] ∈ Gr(3, U6/V1) satisfying it since the bundle (

∧
2U∨

3 )⊗ (V8/U6)
∨ has

top Chern class 1. This tells us that [V4 ⊂ V8] is a point of S as in (4.27) and therefore
[U6] ∈ D. □

4.7.4. Hodge structures. Denote by i : D ↪→ Xσ
6 the embedding of the divisor D

constructed above. By abuse of notation, we denote the class [D] ∈ H2(Xσ
6 ,Z) also by

D. We first compute the intersection matrix for the classes H and D under the Beauville–
Bogomolov–Fujiki form q. Note that for [σ] very general in D1,6,10, the Debarre–Voisin
fourfold Xσ

6 is of Picard rank 2, so H and D generate a subgroup of Pic(Xσ
6 ) of finite index.

Lemma 4.7.7. The intersection matrix between H and D with respect to the Beauville–
Bogomolov–Fujiki form q is (

22 2

2 −2

)
,

which has determinant 48. For [σ] ∈ D1,6,10 very general, the Picard group Pic(Xσ
6 ) is

generated by H and D.

Proof. By the adjunction formula and the fact that Xσ
6 has trivial canonical bundle,

the canonical class KD of the divisor D is the restriction i∗D. One can then compute
explicitly the intersection numbers using Schubert calculus in Macaulay2 and obtain:

D4 = 12, D3 ·H = −12, D2 ·H2 = −36, D ·H3 = 132, H4 = 1452.

needsPackage "Schubert2";

(U1,Q1) = bundles flagBundle{3,2}; -- first choose U4/V1 in V6/V1

(U2,Q2) = bundles flagBundle({2,4},Q1+4); -- then choose U6/U4 in V10/U4

D = sectionZeroLocus dual((1+U1)*det U2+det U1+exteriorPower_2 U1*U2);

h = chern_1(dual(1+U1+U2)*OO_D);

d = chern_1 cotangentBundle D;

(U,Q) = bundles flagBundle{6,4};

X = sectionZeroLocus dual exteriorPower_3 U;

h' = chern_1 OO_X(1);

print (integral \ (d^3,d^2*h,d*h^2,h^3,h'^4)); -- (12, -12, -36, 132, 1452)

Then we use the property of the Beauville–Bogomolov–Fujiki form and the fact that
q(H) = 22 to obtain the desired numbers

132 = D ·H3 = 3q(D,H)q(H) =⇒ q(D,H) = 2,

−12 = D3 ·H = 3q(D)q(D,H) =⇒ q(D) = −2.
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Since the divisors D1,6,10 is mapped to the Heegner divisor D24 by the period map, we may
use the fact that the discriminant of the algebraic lattice is twice that of its orthogonal
from Lemma 4.4.8 to conclude that the Picard group is generated by H and D. □

We have the following useful result.

Corollary 4.7.8. The class D has divisibility 1, that is, there exists C ∈ H2(Xσ
6 ,Z)

such that q(C,D) = 1.

Note that the class C is not algebraic for a very general σ in the family D24.

Proof. We recall that the lattice Λ = H2(Xσ
6 ,Z) has discriminant group Z/2Z.

Suppose that D has divisibility 2, then the class [D/2] ∈ D(Λ) gives the non-trivial element.
Since H is also of divisibility 2, the class [12(H +D)] is then trivial in D(Λ), so 1

2(H +D)

is integral. This contradicts the fact that the sublattice ZH + ZD is saturated in Λ. □

Now we would like to compare the Hodge structures on H2(Xσ
6 ,Z) and H2(S,Z).

Consider the diagram
H2(Xσ

6 ,Z) H2(D,Z)

H2(S,Z).

i∗

π∗

The idea is to make the comparison inside H2(D,Z). As we saw in Proposition 4.7.5, the
natural projection π : D → S is a smooth conic fibration over the K3 surface S. We denote
by ℓ ∈ H2(D,Z) the class of a fiber of π.

Lemma 4.7.9. For σ general in the divisor D1,6,10, there exists a class ζ ∈ H2(D,Z)

with ζ · ℓ = 1 such that
H2(D,Z) = π∗H2(S,Z)⊕ Zζ.

Let H2(Xσ
6 ,Z)

⊥D ⊂ H2(Xσ
6 ,Z) denote the orthogonal of D with respect to q. Then

i∗(H2(Xσ
6 ,Z)

⊥D) ⊂ π∗H2(S,Z).

Proof. Since π is a conic fibration and ℓ ∈ H2(D,Z) is the class of a fiber of π, we
have i∗H · ℓ = 2. We can also compute i∗D · ℓ: by the adjunction formula and the fact
that Xσ

6 has trivial canonical class, we see that i∗D = KD is the canonical divisor of D; on
the other hand, π : D → S being a conic fibration together with the fact that S has trivial
canonical class shows that KD is also the relative canonical class of π, which restricts to
the canonical class on each fiber. So i∗D · ℓ = −2.

Consider i∗ℓ ∈ H2(X
σ
6 ,C) as the class of a rational curve on Xσ

6 which is of type (3, 3).
There exists a unique element y ∈ H2(Xσ

6 ,Q) such that

∀x ∈ H2(Xσ
6 ,Z) q(x, y) = x · i∗ℓ.
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Moreover y must be of type (1, 1) so it is a Q-linear combination of H and D. Since

q(D,D) = −2 = i∗D · ℓ = D · i∗ℓ,

q(H,D) = 2 = i∗H · ℓ = H · i∗ℓ,

we see that y = D. By Corollary 4.7.8, there exists a class C ∈ H2(Xσ
6 ,Z) such that

q(C,D) = 1. We have i∗C · ℓ = C · i∗ℓ = q(C,D) = 1, so the class i∗C restricts to O(1) on
each fiber ℓ of π. By the Leray–Hirsch theorem, the classes 1 and i∗C generate H∗(D,Z)

as a H∗(S,Z)-module, hence we have

H∗(D,Z) = π∗H∗(S,Z)⊕ π∗H∗(S,Z)(i∗C),

and in particular
H2(D,Z) = π∗H2(S,Z)⊕ Zi∗C.

We may therefore choose i∗C as the class ζ that we want. For each class in H2(D,Z), its
coefficient before i∗C is simply its intersection number with the fiber ℓ.

Any class x ∈ H2(Xσ
6 ,Z) with q(x,D) = 0 must satisfy i∗x · ℓ = x · i∗ℓ = 0. This shows

that i∗(H2(Xσ
6 ,Z)

⊥D) is indeed contained in π∗H2(S,Z). □

The intersection product on S can be pulled back to π∗H2(S,Z) via π∗. By the previous
lemma, this also induces a form on H2(Xσ

6 ,Z)
⊥D via i∗, which we denote by qS . In other

words, for each x ∈ H2(Xσ
6 ,Z)

⊥D, there exists a unique u ∈ H2(S,Z) such that i∗x = π∗u,
and we define

qS(x) := qS(u) =

∫
S
u · u.

We can compare this form with the Beauville–Bogomolov–Fujiki form q.

Proposition 4.7.10. Let σ be general in the divisor D1,6,10. For any x ∈ H2(Xσ
6 ,Z)

⊥D,
we have

q(x) = qS(x),

where q is the Beauville–Bogomolov–Fujiki form. As a consequence, the morphism i∗ is
injective.

Proof. By Lemma 4.7.9, for each x ∈ H2(Xσ
6 ,Z)

⊥D, there exists a unique u ∈ H2(S,Z)

such that i∗x = π∗u. We have i∗x · i∗x = π∗u · π∗u = qS(u)ℓ = qS(x)ℓ.

Consider the class i∗D ∈ H2(D,Z) and the class ℓ of a fiber of π : D → S. By
Lemma 4.7.9, since i∗D · ℓ = −2, we can write i∗D = −2ζ + π∗v for some v ∈ H2(S,Z).
We then compute the intersection number using the fact that ζ · ℓ = 1∫

D
i∗D · i∗x · i∗x =

∫
D
(−2ζ + π∗v) · qS(x) · ℓ = −2qS(x).

On the other hand, we have∫
D
i∗D · i∗x · i∗x =

∫
Xσ

6

D2x2 = q(D,D)q(x, x) + 2q(x,D)2.
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Since q(x,D) = 0 and q(D,D) = −2, we get the desired equality q(x) = qS(x).

This shows that i∗ is injective when restricted to H2(Xσ
6 ,Z)

⊥D. But any x such that
i∗x = 0 will satisfy i∗x · ℓ = 0 so we have q(x,D) = 0 and hence x = 0. Thus i∗ itself is
injective. □

We see that the lattice
(
H2(Xσ

6 ,Z)
⊥D, q

)
embeds isometrically inside

(
H2(S,Z), ·

)
. It

remains to determine the index of the embedding.

Theorem 4.7.11. For σ very general in the divisor D1,6,10, there is an embedding of
integral Hodge structures

ι :
(
H2(Xσ

6 ,Z)
⊥D, q

)
↪−→

(
H2(S,Z), ·

)
as a sublattice of index 2. We have

ι(H +D) = 2h,

where h is the polarization on S of degree 6. Restricted to the transcendental part, we get

ι :
(
H2(Xσ

6 ,Z)trans, q
)
↪−→

(
H2(S,Z)prim, ·

)
again of index 2.

Proof. By Corollary 4.7.8, the class D is of divisibility 1 in H2(Xσ
6 ,Z). As its

orthogonal, the sublattice H2(Xσ
6 ,Z)

⊥D is of discriminant 4. On the other hand, H2(S,Z)

is unimodular. Hence by comparing discriminants, the first statement follows.

Since the (1, 1) part of H2(Xσ
6 ,Z)

⊥D is generated by the class H + D with square
q(H +D) = 24, while the negative generator −(H +D) is not effective, it is clear that
i∗(H +D) must be equal to 2π∗h, so ι(H +D) = 2h.

Finally, the second embedding follows by looking at the respective orthogonals of these
two classes, while the index 2 is again obtained by comparing discriminants. □

It is possible to get a more precise description of the sublattice of index 2. We first
define a class A in H2(S,Z) as follows. Consider the class C as in Corollary 4.7.8. Since
q(H − 2C,D) = 0, we define

(4.28) A := ι(H − 2C) ∈ H2(S,Z).

Note that, since q(H) = 22 and q(C) is even, we have

A ·A = q(H − 2C,H − 2C) ≡ 6 (mod 8),

so A is not divisible by 2. Also, for a very general [σ] ∈ D1,6,10 such that Xσ
1 has Picard

rank 2, we saw that the Picard lattice is generated by H and D, both having an even
intersection number with D, so the class C is not algebraic. Since ι is a map of Hodge
structures, the class A is also not algebraic.
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Proposition 4.7.12. For a very general [σ] ∈ D1,6,10, there exists a class A ∈ H2(S,Z)

not divisible by 2 and not algebraic, that is, not a multiple of the polarization h, such that
the lattice H2(Xσ

6 ,Z)
⊥D can be identified via the embedding ι as the sublattice

Λ 1
2
A :=

{
u ∈ H2(S,Z)

∣∣ u ·A ∈ 2Z
}
,

while the sublattice H2(Xσ
6 ,Z)trans can be identified as the sublattice

Λ 1
2
A,prim :=

{
u ∈ H2(S,Z)prim

∣∣ u ·A ∈ 2Z
}
.

Proof. For each class x ∈ H2(Xσ
6 ,Z)

⊥D, the intersection number

ι(x) ·A = q(x,H − 2C) = q(x,H)− 2q(x,C)

is always even, because div(H) = 2. So we get the inclusion in one direction. For the other
direction: since the index is 2, it suffices to show that Λ 1

2
A,prim is a proper sublattice of

H2(S,Z)prim, and the sublattice Λ 1
2
A will then also be proper in H2(S,Z).

Thus we search for a class v ∈ H2(S,Z)prim with v ·A odd. First we claim that h ·A is
odd: this is equivalent to

2h ·A = q(H +D,H − 2C) = 22− 2q(C,H) ≡ 2 (mod 4),

which follows from the fact that the divisibility of H is 2.

Now since H2(S,Z) is unimodular, all classe of square 6 are in the same O
(
H2(S,Z)

)
-

orbit. Hence we may assume that h = e1 + 3f1 for (e1, f1) a standard basis for a copy
of the hyperbolic plane U in H2(S,Z), and take v := e1 − 3f1 ∈ H2(S,Z)prim. Since
(h+ v) ·A = 2e1 ·A is even, the intersection number v ·A is odd as desired. □

We explain in the next section the interpretation of the class A in terms of a B-field
lifting of a Brauer class β ∈ Br(S).

4.7.5. Moduli space of twisted sheaves. We first recall the notions of Brauer group
and B-field lifting. We will only be interested in the case of K3 surfaces. We follow [Huy16,
Chapter 18] (see also [vG05]).

The Brauer group of a K3 surface S can be characterized as the cohomology groups

Br(S) ≃ H2
ét(S,Gm) ≃ H2(S,O∗

S)tors

in the algebraic and analytic context respectively. Since H3(S,Z) = 0, the exponential
sequence allows us to have another description

Br(S) ≃
(
H2(S,Z)/Pic(S)

)
⊗ (Q/Z) ≃ Hom(Pic(S)⊥,Q/Z).

For an element β of Br(S), a representative B ∈ H2(S,Q) is called a B-field lifting of β.

Each β of order n in the Brauer group gives a morphism from the transcendental part
Pic(S)⊥ (when S is of Picard rank 1, this coincides with H2(S,Z)prim) to Q/Z, and the
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kernel is a sublattice of index n, which in particular does not depend on the choice of the
B-field lifting.

In a more geometric setting, each class β gives a Brauer–Severi variety π : X → S,
which is a Pn−1-fibration that is locally trivial in the étale topology. Equivalently, it is the
projectivization P(E) of some β-twisted vector bundle E on S. We refer to [HS05] for the
definitions of β-twisted coherent sheaves as well as the twisted Chern classes cBi (E) and the
twisted Chern character chB(E). We only emphasize that the definition of twisted Chern
classes depends not just on β but also on the choice of a B-field lifting B.

Back to the situation of Section 4.7.4. In Proposition 4.7.12, we showed the existence
of a class A ∈ H2(S,Z) not divisible by 2 and not algebraic. Hence the class 1

2A gives a
Brauer class β of order 2, and the lattice Λ 1

2
A,prim gives the index-2 sublattice defined by β,

as explained above. This is the reason why we adopted the notation Λ 1
2
A instead of ΛA.

We first find another B-field lifting that is easier to work with.

Lemma 4.7.13. There exists another B-field lifting B of the same Brauer class β such
that B ·B = B · h = 1

2 .

Proof. Recall that 1
2A ·

1
2A ≡

1
2A · h ≡

1
2 ∈ Q/Z. We try to find B by adding integral

classes to 1
2A.

Take (e1, f1) and (e2, f2) to be the standard bases of two copies of U inside H2(S,Z).
Since H2(S,Z) is unimodular, we may assume that h = e1+3f1 and A = ae1+bf1+ce2+df2.
By adding e1 and f1, we can reduce the coefficients of e1 and f1 in 1

2A to 0 or 1
2 . The

condition 1
2A · h ≡

1
2 ∈ Q/Z shows that we have either 1

2e1 + 0f1 or 0e1 +
1
2f1. We may

do the same for e2 and f2, and the condition 1
2A ·

1
2A ≡

1
2 ∈ Q/Z shows that we always

get 1
2e2 +

1
2f2. In the two possible situations, we may choose B to be equal to either

1
2e1 − f1 +

1
2e2 +

3
2f2 or 0e1 +

1
2f1 +

1
2e2 +

1
2f2. □

So the identifications in Proposition 4.7.12 become

ι : H2(Xσ
6 ,Z)

⊥D ∼−→ ΛB :=
{
u ∈ H2(S,Z)

∣∣ u ·B ∈ Z
}

and
ι : H2(Xσ

6 ,Z)trans
∼−→ ΛB,prim :=

{
u ∈ H2(S,Z)prim

∣∣ u ·B ∈ Z
}
.

We remark that when we write B = 1
2A+ u, with u ∈ H2(S,Z), we have

2 = 2B · 2B = A ·A+ 4A · u+ 4u · u.

Since A ·A ≡ 6 (mod 8) while u · u is always even, we see that A · u is odd. In particular
u ̸= 0, so B ̸= 1

2A. Also, the intersection number A · B is even. This gives the following
lemma that we will need shortly.

Lemma 4.7.14. Since 2B ·B = 1 ∈ Z, or equivalently 2B ∈ ΛB, we may set 2B = ι(x0)

for some x0 ∈ H2(Xσ
6 ,Z)

⊥D. The class D − x0 is divisible by 2 in H2(Xσ
6 ,Z).
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Proof. It is equivalent to show that D − x0 + 2C is divisible by 2. We have

ι(D − x0 + 2C) = ι((D +H)− x0 − (H − 2C)) = 2(h−B − 1
2A).

Now the class h−B− 1
2A is integral and the intersection number (h−B− 1

2A) ·B = −1
2A ·B

is also integral since A ·B is even. So h−B − 1
2A lies in ΛB and thus comes from a class

in H2(Xσ
6 ,Z)

⊥D, and D − x0 + 2C is indeed divisible by 2. □

We now show that, for σ very general in D1,6,10, the projective bundle π : D → S is
precisely the Brauer–Severi variety for the Brauer class β, which means that the Brauer
class that we obtained Hodge-theoretically actually comes from geometry. In particular, for
σ very general, the bundle π : D → S has a non-trivial Brauer class.

Proposition 4.7.15. For σ very general in the divisor D1,6,10, the P1-fibration π : D →
S is the Brauer–Severi variety for the Brauer class β.

Proof. Recall that KD/S = KD ⊗ π∗K−1
S = i∗D, since Xσ

6 and S both have trivial
canonical bundles.

Denote by β′ the Brauer class defined by π : D → S. We may suppose that D = P(E)
with E a β′-twisted vector bundle on S of rank 2. The relative O(1) is a (−π∗β′)-twisted line
bundle onD, and its square O(2) is a non-twisted line bundle. Moreover, O(2) = ω∨

D/S⊗π
∗L

for some line bundle L on S. We may set c1(L) = kh for k ∈ Z, since for very general σ in
the divisor, the K3 surface S has Picard number 1. So the first Chern class c1(O(2)) is
equal to −i∗D + k(π∗h).

Consider a B-field lifting B′ of β′. We compute the twisted Chern class

2c−π
∗B′

1 (O(1)) = c
−2(π∗B′)
1 (O(2)) = c1(O(2))− 2(π∗B′) = −i∗D + k(π∗h)− 2(π∗B′).

The class c−π
∗B′

1 (O(1)) is necessarily integral, so the last term in the equality is divisible
by 2. On the other hand, i∗(D − x0) = i∗D − 2π∗B is also divisible by 2 by Lemma 4.7.14.
Thus the class k

2h−B
′ −B is integral in H2(S,Z), which shows that β′ = β−1 = β. □

Finally, we consider the moduli space of twisted sheaves on S, following [MS12,
Section 3]. From now on we will always assume that S is of Picard rank 1. We recall the
definition of the twisted Mukai lattice. Consider the map

ηB : H2(S,C) −→ H∗(S,C)

u 7−→ (0, u, u ·B).

The twisted Mukai lattice H̃(S,B,Z) is given by the usual Mukai lattice H∗(S,Z) :=

H0(S,Z)⊕H2(S,Z)⊕H4(S,Z), equipped with the Hodge structure given by ηB, that is,
its (2, 0)-part is the image of H2,0(S) under ηB. We recall that the Mukai pairing is given
by

−χ
(
(r1, c1, s1), (r2, c2, s2)

)
:= c1 · c2 − r1s2 − r2s1.
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Assuming that S is of Picard rank 1, the twisted Picard lattice Pic(S,B) ⊂ H̃(S,B,Z)

is generated by the classes (2, 2B, 0), (0, h, 0), and (0, 0, 1). For a β-twisted sheaf E, its
twisted Mukai vector is defined as

vB(E) := chB(E) ·
√
td(S),

where chB is the twisted Chern character. Let M = M(S, v,B) be the moduli space of
stable β-twisted sheaves E on S with Mukai vector vB(E) = v := (2, 2B, 0). Here v2 = 2,
so by the general theory for moduli of twisted sheaves on K3 surfaces, M is a hyperkähler
fourfold, with H2(M,Z) isometric to v⊥ ⊂ H̃(S,B,Z), the orthogonal of v in the twisted
Mukai lattice.

Proposition 4.7.16. For very general [σ] ∈ D1,6,10, there exists a Hodge isometry
between H2(Xσ

6 ,Z) and H2(M,Z).

Proof. We take σ to be very general so that the K3 surface S is of Picard rank 1. In
this case, the twisted Picard lattice Pic(S,B) is generated by the classes (2, 2B, 0), (0, h, 0),
and (0, 0, 1). Therefore the lattice H2(M,Z)trans = Pic(S,B)⊥ consists of elements (a, u, b)

satisfying

−χ
(
(a, u, b), (2, 2B, 0)

)
= 2u ·B − 2b = 0

−χ
(
(a, u, b), (0, h, 0)

)
= u · h = 0

−χ
(
(a, u, b), (0, 0, 1)

)
= −a = 0

which are precisely those in the image of ΛB,prim by the map ηB : u 7→ (0, u, u ·B). Since
we have identified ΛB,prim with H2(Xσ

6 ,Z)trans via the isometry ι, we can thus define a map

ϕ : H2(Xσ
6 ,Z)trans −→ H2(M,Z)trans

x 7−→ ηB(ι(x)) = (0, ι(x), ι(x) ·B)

This is a Hodge isometry onto its image, since

q(x) = ι(x) · ι(x) = −χ
(
ϕ(x), ϕ(x)

)
,

where the first equality is proved in Theorem 4.7.11.

For the algebraic part, we may set ϕ(H) = (−2, 2h − 2B, 0) and ϕ(D) = (2, 2B, 1).
It suffices now to extend ϕ to the full lattice. First we notice that the direct sum
H2(M,Z)trans ⊕ (Zϕ(H) +Zϕ(D)) is of index 24 in H2(M,Z). We claim that the quotient
is Z/24Z by finding a primitive class in the direct sum which becomes divisible by 24 in the
full lattice. Consider the integral class h − 12B ∈ H2(S,Z)prim. Its intersection number
with B is not integral, so it is not in ΛB,prim. Thus u1 := 2h− 24B is primitive in ΛB,prim.
We have ηB(u1) = (0, 2h − 24B,−11) so ηB(u1) − ϕ(H) + 11ϕ(D) = (24, 0, 0) is indeed
divisible by 24 in the full lattice.

Denote by x1 ∈ H2(Xσ
6 ,Z)trans the preimage ι−1(u1) of u1. Recall from Lemma 4.7.14

that there exists a class x0 ∈ H2(Xσ
6 ,Z)

⊥D with ι(x0) = 2B. Moreover, the class D− x0 is
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divisible by 2. Since ι(H +D) = 2h by Theorem 4.7.11, we have

x1 = ι−1(u1) = ι−1(2h− 24B) = (H +D)− 12x0.

So the class
x1 −H + 11D = 12(D − x0)

is also divisible by 24, and we may extend the map ϕ to the full lattice by mapping 1
2(D−x0)

to (1, 0, 0). □

Now that we have defined a Hodge isometry between the second cohomologies of the
hyperkähler fourfolds Xσ

6 and M , we may take advantage of the powerful machinery of the
Torelli theorem to obtain the following result.

Theorem 4.7.17. A very general Debarre–Voisin fourfold Xσ
6 in the family C24 is

isomorphic to the moduli space M = M(S, v,B) of twisted sheaves with Mukai vector
(2, 2B, 0) on the twisted K3 surface (S, β).

Proof. By the Torelli theorem, the existence of a Hodge isometry between second
cohomologies shows that Xσ

6 and M are birationally isomorphic. Moreover, the number of
birational models is given by the number of chambers contained in the movable cone. These
chambers are cut out by hyperplanes of the type κ⊥, where κ ∈ Pic(Xσ

6 ) is a primitive
class of square −10 and divisibility 2 (see Remark 3.4.6). We show that for a very general
Xσ

6 with Picard group generated by H and D, there is no such class κ: we may write
κ = aH + bD and get the equation 22a2 + 4ab − 2b2 = −10. By reduction modulo 5,
we verify that this equation has no integral solutions, so no such κ exists. Thus we may
conclude that there is only one birational model, and in particular Xσ

6 ≃M . □

Remark 4.7.18. As already pointed out in the introduction, the Heegner divisor D24

provides an explicit example for the divisor denoted by D(1)
24,24,β in [KvG21] (see their

Table 1 for the notation): we have B · B = B · h = 1
2 , as shown in Lemma 4.7.13. The

intersection matrix appearing in Lemma 4.7.7 is diagonalized in the basis ⟨H + D,D⟩,
where it becomes

(
24 0
0 −2

)
; therefore the class H + D gives the contraction of the conic

bundle D → S by loc. cit. Proposition 3.5. Then our Theorem 4.7.17 could also have
been deduced by combining loc. cit. Proposition 3.5 and Theorem 4.2. Notice finally that
a crucial element for our result is Theorem 4.7.11, which is a particular case of loc. cit.
Proposition 4.6.

4.8. The Heegner divisor of degree 22

We give a description for the singularities of a general singular Debarre–Voisin variety.
In Section 4.3.1, we have seen that the class of the trivector σ defining a general such
Debarre–Voisin variety Xσ

6 lies in the divisor D3,3,10: there exists a unique 3-dimensional
subspace V3 ⊂ V10 such that σ satisfies the degeneracy condition σ(V3, V3, V10) = 0. Under
the period map, this divisor is mapped birationally to the Heegner divisor D22 in the
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period domain. We also obtained a set-theoretical description of the singular locus of Xσ
6

in Proposition 4.3.3.

We prove the following stronger result, following the idea in [Has00, Lemma 6.3.1],
where a similar result is proved for the variety of lines of a nodal cubic hypersurface. We
shall see that the two cases share some surprising similarities.

Proposition 4.8.1. Consider a general [σ] ∈ D3,3,10. For the associated Debarre–
Voisin variety Xσ

6 , the singularities along the degree 22 K3 surface S are codimension-2
ordinary double points. More precisely, by blowing up the singular locus S, we get a smooth
hyperkähler fourfold of K3[2]-type, and the exceptional divisor is a conic fibration over S.

Proof. We briefly recall the argument for the nodal cubic: for a cubic X ⊂ P5 = P(V6)

containing a node p := [V1], the projectivized tangent cone PTpX is a quadric hypersurface
Q in PTpP5 = P(V6/V1), and the varieties of lines F ⊂ Gr(2, V6) is singular along a K3
surface S parametrizing lines in X passing through p. Instead of blowing up S in F , Hassett
considered studying the ambient Grassmannian Gr(2, V6) and blowing up the Schubert
variety Σ := P(V6/V1) ⊂ Gr(2, V6), which parametrizes all lines in P(V6) passing through
p. This gives the following Cartesian diagram

F̃ := BlS F BlΣGr(2, V6)

F Gr(2, V6).

For a given point x := [V2] ∈ S, we get one distinguished point y := [V2/V1] in P4 = P(V6/V1)

that lies on the quadric Q. The projectivized normal space PNΣ/Gr(2,V6),x can be identified
with P(V6/V2), which parametrizes lines in P4 = P(V6/V1) passing through the point
y, and the projectivized normal cone PCS,xF is given by the subscheme parametrizing
such lines that are also entirely contained in the quadric threefold Q, in other words, lines
in Q passing through a given point. This condition gives a smooth conic curve, so the
singularities of F along S are indeed codimension-2 ordinary double points.

We use a similar argument to study the singular Debarre–Voisin variety Xσ
6 . By

assumption, the hyperplane section Xσ
3 admits an ordinary double point at [V3], so its

tangent cone at [V3] is a smooth quadric hypersurface Q in the projectivization of the
tangent space

PT[V3]Gr(3, V10) ≃ PHom(V3, V10/V3) =: P(T21) = P20.

For a given x := [V6] ∈ S, the projective space PHom(V3, V6/V3) := P(T9) = P8 gives a
distinguished linear subspace contained in Q.

Following the proof of Hassett, instead of blowing up S in Xσ
6 , we consider the ambient

Grassmannian Gr(6, V10) and blow up the entire Schubert variety

Σ := {[V6] ∈ Gr(6, V10) | V6 ⊃ V3} ≃ Gr(3, V10/V3),
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which is smooth of codimension 12. We have the following description for its normal bundle
in Gr(6, V10):

NΣ/Gr(6,V10) = Hom(U6,Q10/6)/Hom(U6/V3,Q10/6) ≃ Hom(V3,Q10/6),

where we denote by U6 and Q10/6 the restrictions to Σ of the two tautological bundles on
Gr(6, V10). For the given point x ∈ S, the projectivization of the normal space is therefore
an 11-dimensional projective space

PNΣ/Gr(6,V10),x ≃ PHom(V3, V10/V6) ≃ P(T21/T9),

where we recall that T21 is the tangent space of Gr(3, V10) at [V3], and T9 is the tangent
space of Gr(3, V6) at [V3], viewed as a subspace of T21.

Consider the proper transform of Xσ
6 denoted by X̃σ

6 . We have the following Cartesian
diagram

X̃σ
6 BlΣGr(6, V10)

Xσ
6 Gr(6, V10).

Consequently we get a natural closed embedding of the projectivized normal cone

PCS,xX
σ
6 ↪−→ PNΣ/Gr(6,V10),x ≃ P(T21/T9).

The total projective space P(T21/T9) parametrizes 9-dimensional linear subspaces of P(T21)

that contains the distinguished P8 = P(T9), and the projectivized normal cone PCS,xX
σ
6

can then be identified with the subscheme that parametrizes such P9 that are also contained
in the quadric Q. In other words, it parametrizes 9-dimensional linear subspaces in a
19-dimensional quadric containing a fixed P8. This is again a smooth conic curve, just like
in the nodal cubic case. Thus the singularities of Xσ

6 along S are indeed codimension-2
ordinary double points, and X̃σ

6 is smooth.

Finally, we show that the resolution X̃σ
6 that we obtained has trivial canonical class.

Since Xσ
6 is birational to the Hilbert square S[2], this will then force X̃σ

6 to be a smooth
hyperkähler fourfold of K3[2]-type.

We denote by E the exceptional divisor for the blowup BlΣGr(6, V10) → Gr(6, V10),
and by D the exceptional divisor for the blowup X̃σ

6 → Xσ
6 . The divisor D can be identified

with the projectivized normal cone PCSX
σ
6 , so the morphism D → S is a conic fibration by

the above analysis. By construction, the Zariski open subset X̃σ
6 ∖D is isomorphic to the

smooth locus Xσ
6 ∖S. The latter has trivial canonical class since it is the regular zero-locus

of σ viewed as a section of the vector bundle
∧

3U∨
6 . Therefore, the canonical divisor K

X̃σ
6

is linearly equivalent to some multiple of D. We write K
X̃σ

6
= mD, and it remains to show

that m = 0.

Since D → S is a smooth conic fibration in the projectivized normal bundle E → Σ,
the relative O(−1) of E → Σ restricts to the relative canonical bundle of D → S. Note
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that by the Leray–Hirsch theorem, this bundle is necessarily non-trivial. Since E is the
exceptional divisor, the relative O(−1) on E is given by OE(E), so we have

ωD/S ≃ OE(E)|D.

Using the fact that S is a K3 surface and that OE(E)|
X̃σ

6
≃ O

X̃σ
6
(D), this gives

ωD ≃ ωD/S ≃ OX̃σ
6
(D)|D.

Hence we obtain
KD = D|D,

which in particular must be non-trivial since ωD/S is non-trivial.

On the other hand, by the adjunction formula we have

KD ≃ (K
X̃σ

6
+D)|D = (m+ 1)D|D.

Thus we may conclude that m = 0, and K
X̃σ

6
is indeed trivial. □

Remark 4.8.2. Contrary to the nodal cubic case, the resolution X̃σ
6 obtained is not

isomorphic to the Hilbert scheme S[2], even for a generic member of the family. This can
be seen by studying the chamber decomposition for a generic S[2] with Picard rank 2: one
may find exactly two chambers in the movable cone, corresponding to S[2] and a second
birational model; the Plücker polarization pulled back to S[2] via the birational map is equal
to 10H − 33δ and is not nef (see for example [DHOV20, Table 1]), so we may conclude
that X̃σ

6 is the second birational model. The two models are related by a Mukai flop. It
would be interesting to see this flop geometrically.





CHAPTER 5

A special Debarre–Voisin variety

In this chapter, we study a special Debarre–Voisin fourfold with a large automorphism
group, using the general results obtained in Chapter 4.

The results of this chapter have appeared in [Son21].

5.1. Introduction

Let G be the finite simple group PSL(2,F11). Mongardi discovered a special Eisenbud–
Popescu–Walter sextic with a faithful G-action, from which one can construct a double
EPW sextic that is a smooth hyperkähler fourfold of K3[2]-type and is highly symmetric
(see [Mon13] and [DM21]).

One can ask the same question for hyperkähler fourfolds of Debarre–Voisin type. Let V10
be a 10-dimensional complex vector space. We recall that a Debarre–Voisin variety Xσ

6

is defined inside the Grassmannian Gr(6, V10) from the datum of a trivector σ ∈
∧

3V ∨
10.

By studying the representations of the group G, it is not hard to find a candidate for σ:
denote by V10 one of the two 10-dimensional irreducible representations of G; there exists a
unique (up to multiplication by a scalar) trivector σ0 ∈

∧
3V ∨

10 that is G-invariant.

Using the general results obtained in Chapter 4 on the geometry of Debarre–Voisin
varieties and associated Peskine varieties, one can study in detail the geometry of this
special Debarre–Voisin variety Xσ0

6 . We prove the following results.

Theorem 5.1.1. Let σ0 ∈
∧

3V ∨
10 be the special G-invariant trivector.

(1) (Proposition 5.3.1) The Debarre–Voisin variety Xσ0
6 ⊂ Gr(6, V10) is smooth of

dimension 4.
(2) (Proposition 5.4.1) The associated Peskine variety Xσ0

1 ⊂ P(V10) has 55 isolated
singular points. The group G acts transitively on them.

(3) (Proposition 5.5.5) The group AutsH(X
σ0
6 ) of symplectic automorphisms that fix

the polarization H on Xσ0
6 is isomorphic to G.

(4) One can give an explicit description of the Picard lattice of Xσ0
6 , which has maximal

rank 21 (see (5.4) for the Gram matrix and Proposition 5.5.8 for the isomorphism
type).

Notation. We use σ to denote a general trivector and σ0 to denote the special G-
invariant trivector.

133
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5.2. The special trivector

We first give the construction of the special trivector σ0 ∈
∧

3V ∨
10.

The finite simple group G := PSL(2,F11) of order 660 admits 8 different irreducible
complex representations: two of them are of dimension 5 and will be denoted by V5 and V ∨

5 .
They are the dual to each other.

A classical result is that the symmetric power Sym3 V ∨
5 —the space of cubic polynomials

on V5—admits an irreducible subrepresentation of dimension 1: for a suitable choice of
basis (y0, . . . , y4) of V ∨

5 , this corresponds to the Klein cubic with equation

y20y1 + y21y2 + y22y3 + y23y4 + y24y0 ∈ Sym3 V ∨
5 .

Adler showed in [Adl78] that the automorphism group of this smooth cubic is precisely
the group G.

The wedge product
∧

2V5 gives another irreducible representation, of dimension 10, which
is self-dual and will be denoted by V10. We consider elements of

∧
3V ∨

10. A computation of
characters tells us that this representation of G also admits one irreducible subrepresentation
of dimension 1, generated by a G-invariant trivector σ0.

Below we provide the character table for the irreducible complex representations of G.1

Note that the other irreducible representation V ′
10 of dimension 10 does not provide G-

invariant trivectors.

Conj. class [Id] [( 1 1
0 1 )] [( 1 2

0 1 )]
[(

0 −1
1 0

)] [(
0 1
−1 −1

)] [(
2 −2
2 4

)]
[( 4 0

0 3 )] [( 5 0
0 9 )]

Size 1 60 60 55 110 110 132 132

C 1 1 1 1 1 1 1 1

V5 5 1
2

√
−11− 1

2 −1
2

√
−11− 1

2 1 −1 1 0 0

V ∨
5 5 −1

2

√
−11− 1

2
1
2

√
−11− 1

2 1 −1 1 0 0

V10 10 −1 −1 −2 1 1 0 0

V ′
10 10 −1 −1 2 1 −1 0 0

V11 11 0 0 −1 −1 −1 1 1

V12 12 1 1 0 0 0 1
2

√
5− 1

2 −1
2

√
5− 1

2

V ′
12 12 1 1 0 0 0 −1

2

√
5− 1

2
1
2

√
5− 1

2∧
3V ∨

10 120 −1 −1 8 3 −1 0 0

Table 4. Character table of G = PSL(2,F11)

We now give a concrete description of the special trivector σ0 in terms of coordinates
in a suitable basis. The subgroup B of G of upper triangular matrices can be generated by
the elements

P =

(
1 1

0 1

)
and R =

(
4 0

0 3

)
,

1The character table can be easily computed using Sage or GAP.
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of respective orders 11 and 5. Write ζ = e2πi/11 and ρ : G→ GL(V ∨
5 ) for the representa-

tion V ∨
5 . In a suitable basis (y0, . . . , y4) of V ∨

5 , the matrices of P and R are

(5.1) ρ(P ) =


ζ1 0 0 0 0

0 ζ9 0 0 0

0 0 ζ4 0 0

0 0 0 ζ3 0

0 0 0 0 ζ5

 and ρ(R) =


0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 .

Note that one can already identify the equation of the G-invariant Klein cubic using only
these two elements, instead of the whole group G.

The elements yij := yi ∧ yj form a basis of V ∨
10. In this basis, we see that P acts

diagonally and R as a permutation (see Table 5; note that we have chosen a particular
order in which the action of R is very simple).

y01 y12 y23 y34 y40 y02 y13 y24 y30 y41

Eigenvalues of
∧

2ρ(P ) ζ10 ζ2 ζ7 ζ8 ζ6 ζ5 ζ1 ζ9 ζ4 ζ3

Action of
∧

2ρ(R) y12 y23 y34 y40 y01 y13 y24 y30 y41 y02

Table 5. The action of P and R in the basis (yij)

We may easily verify that the space of trivectors invariant under the action of P and R
is of dimension 2 and is spanned by the B-invariant trivectors

σ1 := y01 ∧ y23 ∧ y02 + y12 ∧ y34 ∧ y13 + y23 ∧ y40 ∧ y24 + y34 ∧ y01 ∧ y30 + y40 ∧ y12 ∧ y41,

σ2 := y01 ∧ y41 ∧ y24 + y12 ∧ y02 ∧ y30 + y23 ∧ y13 ∧ y41 + y34 ∧ y24 ∧ y02 + y40 ∧ y30 ∧ y13.

To identify the unique G-invariant trivector, we must look at some elements in G ∖B.
Since the explicit description for the representation V5 is available at the ATLAS of finite
group representations [ATLAS], we will pick one such element and compute explicitly its
matrix.

The group G admits a presentation with two generators a, b and relations a2 = b3 =

(ab)11 = [a, babab]2 = 1, which can be take to be a =
(
0 −1
1 0

)
and b =

(
0 1
−1 −1

)
. One may

check that ab = P while bbabababbabababb = R. Matrices for ρ(a) and ρ(b) are provided
by the ATLAS, so the representation is completely determined. Choose a suitable basis
of V ∨

5 consisting of eigenvectors of ρ(ab) = ρ(P ). In this basis, the matrices of P and R are
as in (5.1). Since the element a does not lie in the subgroup B, we use its matrix in this
new basis to verify that the unique (up to multiplication by a scalar) G-invariant trivector
is σ0 := σ1 + σ2.

From now on, we will rewrite the basis (yij) as (x0, . . . , x9) in the order chosen in
Table 5, so the trivector σ0 is given by

σ0 = x0 ∧ x2 ∧ x5 + x1 ∧ x3 ∧ x6 + x2 ∧ x4 ∧ x7 + x3 ∧ x0 ∧ x8 + x4 ∧ x1 ∧ x9
+x0 ∧ x9 ∧ x7 + x1 ∧ x5 ∧ x8 + x2 ∧ x6 ∧ x9 + x3 ∧ x7 ∧ x5 + x4 ∧ x8 ∧ x6,
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or more succinctly,

(5.2) σ0 = [025] + [136] + [247] + [308] + [419] + [097] + [158] + [269] + [375] + [486].

We have therefore shown the following result.

Proposition 5.2.1. Up to multiplication by a scalar, the trivector σ0 in (5.2) is
the unique G-invariant trivector in

∧
3V ∨

10, where V10 is the 10-dimensional irreducible
G-representation given in Table 4.

5.3. The Debarre–Voisin fourfold

The Debarre–Voisin variety associated with a non-zero trivector σ is the scheme

Xσ
6 := {[V6] ∈ Gr(6, V10) | σ|V6 = 0}

in the Grassmannian Gr(6, V10) parametrizing those [V6] on which σ vanishes. Its expected
dimension is 4. For σ general, it is shown in [DV10] that Xσ

6 is a smooth hyperkähler
fourfold of K3[2]-type. The Plücker polarization on Gr(6, V10) induces a polarization H on
Xσ

6 , which is primitive and of Beauville–Bogomolov–Fujiki square 22 and divisibility 2.

The variety
Xσ

3 := {[V3] ∈ Gr(3, V10) | σ|V3 = 0}

is the Plücker hyperplane section associated with σ. It has dimension 20. Recall that we
have obtained the criterion for the smoothness of Xσ

3 and Xσ
6 in Proposition 4.1.1.

In the case of σ0, the smoothness of Xσ0
3 can be verified directly using computer algebra

(thanks to Frédéric Han for his help with this computation).

Proposition 5.3.1. For the special trivector σ0 defined in (5.2), the hyperplane section
Xσ0

3 and hence the special Debarre–Voisin Xσ0
6 are both smooth.

Proof. A direct check of the smoothness of Xσ0
3 using its ideal is not feasible, since

there are too many variables and equations. Instead, we can check the smoothness on each
chart of Gr(3, V10) where it is defined by one single cubic polynomial in an affine space A21,
using the Jacobian criterion. We provide the Macaulay2 code.

-- the trivector has ten components

comps = {(0,2,5),(1,3,6),(2,4,7),(3,0,8),(4,1,9),

(0,9,7),(1,5,8),(2,6,9),(3,7,5),(4,8,6)};

sigma = (u,v,w) -> sum(for idx in comps list det submatrix(u||v||w, idx));

-- check that the hyperplane section is smooth on each chart of Gr(3,10)

S = QQ[g_0..g_20]; -- each chart has 21 coordinates

I3 = id_(S^3); M = genericMatrix(S,3,7);

-- generate the coordinates matrix for the chart ijk

chart = (i,j,k) ->

M_{0..i-1}|I3_{0}|M_{i..j-2}|I3_{1}|M_{j-1..k-3}|I3_{2}|M_{k-2..6};

isSmooth = true;

for ijk in subsets(10,3) do (Mijk = chart toSequence ijk;
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if dim singularLocus ideal sigma(Mijk^{0},Mijk^{1},Mijk^{2}) >= 0

then isSmooth = false;);

assert(isSmooth);

Since Xσ
3 is smooth, there is no V3 satisfying the degeneracy condition σ(V3, V3, V10) = 0,

hence Xσ
6 is smooth as well by Proposition 4.1.1, which concludes the proof. □

The action of G on V10 induces an action of G on Xσ0
6 that preserves the polarization H,

and hence a homomorphism of groups G→ AutH(Xσ0
6 ). Since G is simple and non-abelian,

we may deduce that the image is contained in the subgroup AutsH(X
σ0
6 ) of symplectic

automorphisms. We shall see that this is an isomorphism onto AutsH(X
σ0
6 ).

5.4. The Peskine variety

With a trivector σ, we can associate yet another variety: the Peskine variety

Xσ
1 := {[V1] ∈ P(V10) | rankσ|V1 ≤ 6}.

More precisely, for each [V1] ∈ P(V10), the skew-symmetric 2-form σ(V1,−,−) generically
has rank 8, and the Peskine variety Xσ

1 is the locus where this rank drops to 6 or less.
Equivalently, given a basis (ei) of V10, we can identify σ with a 10× 10 skew-symmetric
matrix with entries fij := σ(ei, ej ,−). Then Xσ

1 is defined in P(V10) by all the 8×8-Pfaffians
of this matrix. It has expected dimension 6 and degree 15. We showed in Proposition 4.3.5
that Xσ

1 is singular if and only if σ lies in the union of the two divisors D1,6,10 and D3,3,10.
In the case of the special trivector σ0, since Xσ0

3 was shown to be smooth, the second
case does not happen by Proposition 4.3.3. Therefore, the singular locus of Xσ0

1 is precisely
the locus where the rank of σ0 drops even less. Equivalently, it is defined by all the 6× 6

Pfaffians of σ0 seen as a skew-symmetric matrix. This allows us to explicitly compute the
ideal of the singular subscheme. In particular, we may verify that the rank-4 locus Sing(Xσ

1 )

is a subscheme of dimension 0 and length 55, while the rank-2 locus is empty. Also, the
rank-6 locus Xσ0

1 is indeed of expected dimension 6 and degree 15.
Here is the Macaulay2 code that verifies these claims. The variables I2, I4, and I6 are

the ideals generated by 4× 4, 6× 6, and 8× 8 Pfaffians respectively, hence they give the
loci of rank 2, 4, and 6.

comps = {(0,2,5),(1,3,6),(2,4,7),(3,0,8),(4,1,9),

(0,9,7),(1,5,8),(2,6,9),(3,7,5),(4,8,6)};

-- we study the singular locus of the Peskine X1 in P^9

S = QQ[x_0..x_9];

-- compute the skew-symmetric matrix of sigma

delta = (x,y,ex) -> (table(10,10,(i,j) -> if i==x and j==y then ex else 0));

skew = (i,j,k) -> (delta(i,j,x_k)+delta(j,k,x_i)+delta(k,i,x_j)

-delta(j,i,x_k)-delta(k,j,x_i)-delta(i,k,x_j));

sigmaskew = matrix sum(for idx in comps list skew(idx));

(I2,I4,I6) = toSequence for k in {4,6,8} list pfaffians_k sigmaskew;

print (dim I2-1, degree I2); -- (-1, 11) irrelevant ideal

print (dim I4-1, degree I4); -- (0, 55) 55 points

print (dim I6-1, degree I6); -- (6, 15) the Peskine X1
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We now show that Sing(Xσ
1 ) is reduced.

Proposition 5.4.1. For the special trivector σ0, the singular locus of the Peskine
variety Xσ0

1 consists of the 55 distinct points

(pi,j)0≤i≤4,0≤j≤10

where the rank of σ0 is equal to 4 instead of 6. The group G acts transitively on these 55

points.

Proof. Since we have already obtained the ideal of the rank-4 locus, to verify that
there are 55 distinct points, we can compute the radical in Macaulay2 to check that it is
indeed reduced. Here the variable I4 is the ideal that we have already obtained above.
Since it is a homogeneous ideal, we dehomogenize it by letting the first coordinate to be 1.

print(radical(I4 + (x_0-1)) == I4 + (x_0-1)); -- true

Alternatively, we can use a Gröbner bases computation to obtain the explicit coordinates
for the underlying points, and verify that there are 55 distinct solutions over the splitting
field (the author wrote a Macaulay2 package, RationalPoints2, that can perform this
computation to produce the explicit coordinates).

needsPackage "RationalPoints2";

assert(#unique rationalPoints(I4, Projective=>true, Split=>true) == 55);

But to better understand the action of the group G on these points, we will explain
another step-by-step procedure to solve the system using this group action.

We first consider the hyperplane x0 + x1 + x2 + x3 + x4 = 0. The intersection of this
hyperplane with the singular locus is a subscheme of length 5. To compute the coordinates
of these 5 points, we can use elimination and obtain a degree-5 equation for X := x1/x0

1− 4X + 2X2 + 5X3 − 2X4 −X5 = 0.

This polynomial splits in the cyclotomic field Q(ζ) and all the roots are real, so its splitting
field is the real subextension of Q(ζ)/Q of degree 5. We take one real root ζ7+ ζ6+ ζ5+ ζ4,
which allows us to recover the coordinates of one point p0,0. The action of the order-5 element
R now recovers all the five points on the hyperplane. We denote these by p0,0, . . . , p4,0.
They are all real points.

We then consider the action of the order-11 element P , which acts as in Table 5. This
allows us to recover the other 50 points which have coordinates in Q(ζ) and are complex
points. We write pi,j for P j(pi,0). One may then verify that all 55 points are distinct and
thus the subgroup B generated by P and R acts transitively on them.

Here is the Macaulay2 code. The variable I4 is the ideal that we obtained above.
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-- use the hyperplane x_0+x_1+x_2+x_3+x_4 to identify 5 points

fivePts = trim(I4 + (x_0+x_1+x_2+x_3+x_4));

-- get a degree 5 polynomial in x_0 and x_1 using elimination

pol5 = (gens gb sub(fivePts, QQ[x_0..x_9, Weights=>(2:0)|(8:1)]))_(0,0);

-- the polynomial will split in Q(zeta) so we take a field extension

F = toField(QQ[z]/((z^11-1)//(z-1))); S' = F[x_0..x_9];

root = ideal(x_1 - (z^7+z^6+z^5+z^4) * x_0); -- take a root

assert zero(sub(pol5, S') % root); -- verify that it is a root

fivePts' = sub(fivePts, S');

-- ideal of one of the points, saturated at the irrelevant ideal

Ip = saturate(trim(fivePts' + root), ideal gens S');

-- recover the coordinates of p by solving a linear system in x_0,...,x_9

coeffs = f->first entries transpose(coefficients(f, Monomials=>gens S'))_1;

mat = matrix({{1,9:0}}|apply(first entries gens Ip, coeffs));

p = first entries transpose sub((inverse mat)_{0}, F);

-- finally compute the orbit of p

coord = p -> apply(p, x->x//p_0); -- compute the coordinate (1:x_1:x_2:...:x_9)

Peigen = (for a in (10,2,7,8,6,5,1,9,4,3) list z^a);

P = (j, p) -> coord apply(10, i->p_i*Peigen_i^j); -- P acts by scaling

R = p -> coord{p_1,p_2,p_3,p_4,p_0,p_6,p_7,p_8,p_9,p_5}; -- R acts by permuting

pts = flatten apply({p, R p, R R p, R R R p, R R R R p}, p->apply(11, j -> P_j p));

assert(#unique pts == 55); -- G acts transitively on all 55 singular points

Here the variable pts contains the coordinates of all 55 singular points. □

5.5. Automorphism group and Picard group

We consider again the general case. In Section 4.3.2, we showed that for a trivector σ
such that Xσ

6 is smooth, each isolated singular point p = [V1] of Xσ
1 where σ(V1,−,−) has

rank 4 leads to a divisor
D := {[U6] ∈ Xσ

6 | U6 ⊃ V1}

in Xσ
6 . Then we showed in Lemma 4.7.7 that the intersection matrix between the Plücker

polarization H and the class D with respect to the Beauville–Bogomolov–Fujiki form q is(
22 2

2 −2

)
.

Moreover, the class D has divisibility 1 by Corollary 4.7.8.

Divisors induced by distinct isolated singular points are also distinct. This can be
proved by computing their intersection numbers as follows.

Proposition 5.5.1. Let σ be a trivector such that Xσ
6 is a smooth hyperkähler fourfold.

Let p = [V1] and p′ = [V ′
1 ] be two different isolated singular points on Xσ

1 . Write D and D′

for the divisors on Xσ
6 that they define. If σ(V1, V ′

1 ,−) = 0, then q(D,D′) = 1; otherwise
we have q(D,D′) = 0. In particular, the classes D and D′ are distinct.



140 5. A SPECIAL DEBARRE–VOISIN VARIETY

Proof. The Beauville–Bogomolov–Fujiki form q has the property

(5.3) H2 ·D ·D′ = q(H,H)q(D,D′) + 2q(H,D)q(H,D′) = 22q(D,D′) + 8.

So we shall calculate the degree of the intersection D∩D′ with respect to the polarization H.

If σ(V1, V ′
1 ,−) = 0, the intersection D ∩ D′ can be identified with the locus in

Gr(2, V6/(V1 + V ′
1))×Gr(2, V ′

6/(V1 + V ′
1)) where σ vanishes. A simple computation with

Macaulay2 shows that its degree is 30: in fact when D ∩D′ is smooth it is a K3 surface
admitting (at least) two polarizations with intersection matrix ( 6 9

9 6 ) and the class H is their
sum which has degree 30. We may then conclude that q(D,D′) = 1 using the relation (5.3).

needsPackage "Schubert2";

G = flagBundle{2,2}; U1 = first bundles G;

GxG = flagBundle({2,2}, 4*OO_G); U2 = first bundles GxG;

X = sectionZeroLocus dual(det U1*(1+U2) + det U2*(1+U1));

(h1, h2) = chern_1 \ (dual U1*OO_X, dual U2*OO_X);

print (integral \ (h1^2, h1*h2, h2^2)); -- (6, 9, 6)

If σ(V1, V ′
1 ,−) ̸= 0, the kernel of this linear form is a subspace V9 such that V6+V ′

6 ⊂ V9.
We first show that we have V6+V ′

6 = V9. If the inclusion were strict, we would get a subspace
V6∩V ′

6 of dimension ≥ 4 which satisfies the vanishing condition σ(V1+V ′
1 , V6∩V ′

6 , V10) = 0.
But the condition σ(V1, V

′
1 ,−) ̸= 0 shows that V1 ̸⊂ V ′

6 and V ′
1 ̸⊂ V6 so the intersection

of V1 + V ′
1 and V6 ∩ V ′

6 is 0. This means that for every V ′′
1 contained in V1 + V ′

1 , the
kernel of σ(V ′′

1 ,−,−) contains both V ′′
1 and V6 ∩ V ′

6 and is therefore of dimension at least
5. In particular, we have rankσ|V ′′

1
≤ 4 so the entire line P(V1 + V ′

1) is singular in Xσ
1 ,

contradicting the hypothesis that [V1] and [V ′
1 ] are isolated singular points.

So we get V6 + V ′
6 = V9 and therefore dimV6 ∩ V ′

6 = 3. A point [U6] in the intersection
D∩D′ can be given by the following data: first choose a 2-plane U2 in V6∩V ′

6 , then choose a
1-dimensional subspace of V6/(V1+U2) and another 1-dimensional subspace of V ′

6/(V
′
1+U2).

In other words, the intersection D ∩D′ can be identified as a certain zero-locus in the fiber
product of two projective bundles over Gr(2, V6 ∩ V ′

6). A computation with Macaulay2
shows that this is a surface of degree 8 with respect to the polarization H. We can thus
conclude that q(D,D′) = 0 in the second case, again using the relation (5.3).

needsPackage "Schubert2";

G = flagBundle{2,1}; (U,Q) = bundles G;

P1 = flagBundle({1,2}, 2+Q); (U1,Q1) = bundles P1;

P2 = flagBundle({1,2}, 2+Q*OO_P1); (U2,Q2) = bundles P2;

X = sectionZeroLocus dual(det U*(U1+U2)+U*U1*U2);

h = chern_1 (dual(U+U1+U2)*OO_X);

print integral h^2; -- 8

Since q(D,D) = −2, we immediately see that different isolated singular points p induce
different divisor classes D. □



5.5. AUTOMORPHISM GROUP AND PICARD GROUP 141

In the case of the special trivector σ0, we get 55 distinct divisors Di,j on Xσ0
6 , where

Di,j is induced by the isolated singular point pi,j as given in Proposition 5.4.1. Since
the subgroup B acts transitively on the 55 singular points, we see that B injects into
AutsH(X

σ0
6 ). By the simplicity of G, this holds for the whole group G. Alternatively, the

injectivity also follows from the more general result in Corollary 4.4.3.

Corollary 5.5.2. The automorphism group AutsH(X
σ0
6 ) admits G as a subgroup.

In particular, the element P ∈ G gives a symplectic automorphism of Xσ0
6 of order 11.

We now study the Picard group of Xσ0
6 . We will write Pic(Xσ0

6 ) for the Picard group
and Tr(Xσ0

6 ) for the transcendental lattice, which is the orthogonal complement of Pic(Xσ0
6 )

in H2(Xσ0
6 ,Z). We mention that Mongardi studied the Picard group of a hyperkähler

fourfold of K3[2]-type that admits a symplectic birational automorphism of order 11 and
proved the following general result (see [DM21, Theorem A.3]).

Theorem 5.5.3 (Mongardi). Let X be a hyperkähler fourfold of K3[2]-type that admits
a symplectic birational automorphism g of order 11. The Picard rank of such a fourfold is
equal to the maximal value 21. There are two possibilities for the g-invariant sublattice of
H2(X,Z) 2 1 0

1 6 0

0 0 22

 or

6 2 2

2 8 −3
2 −3 8

 .

However, we will not use this result directly. Instead, we will compute explicitly the
Picard group of Xσ0

6 and confirm these statements.
Since we have the explicit coordinates for the 55 singular points, Proposition 5.5.1 allows

us to compute the Gram matrix between their corresponding divisors. In fact, it suffices to
consider the first 21 singular points p0,0, . . . , p0,10, p1,0, . . . , p1,9, that is, the entire ⟨P ⟩-orbit
of p0,0 plus another 10 points in the ⟨P ⟩-orbit of p1,0. We compute the 21×21 Gram matrix
for the corresponding classes D0,0, . . . , D0,10, D1,0, . . . , D1,9 using Proposition 5.5.1.

sigma = (u,v,w) -> sum(for idx in comps list det submatrix(u||v||w, idx));

M21 = matrix table(21,21,(i,j)->(if i == j then -2 else

if sigma(matrix{pts_i},matrix{pts_j},genericMatrix(S',1,10))==0 then 1 else 0));

We obtain the following

(5.4)



−2 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1
1 −2 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 −2 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
1 0 1 −2 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 1 −2 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 1 −2 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 −2 1 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 −2 1 0 1 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 −2 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 1 −2 1 1 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0 1 −2 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1 0 −2 0 1 0 0 1 1 0 0 1
0 0 0 1 0 0 0 0 0 0 1 0 −2 0 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0 0 0 0 1 0 −2 0 1 0 0 1 1 0
0 1 0 0 0 1 0 0 0 0 0 0 1 0 −2 0 1 0 0 1 1
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 −2 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 −2 0 1 0 0
0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 −2 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 −2 0 1
0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 −2 0
1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 −2



.
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This matrix is of determinant 22, a square-free integer, hence the given 21 classes are
linearly independent and generate the whole Picard group. So Xσ0

6 indeed has maximal
Picard rank 21. Using the condition q(H,D) = 2, we may express H in terms of the classes
Di,j : we obtain

H = D0,0 + · · ·+D0,10.

In other words, the polarization H is the sum of the class of 11 divisors obtained using the
cyclic action of P .

Write H⊥ for the orthogonal complement of H in Pic(Xσ0
6 ), which is of rank 20. Its

Gram matrix (in a suitable basis) can be explicitly computed.

H = matrix{(11:{1})|(10:{0})}; K = gens gb ker(transpose H*M21);

M = sub(transpose K*M21*K, ZZ); print M; -- the Gram matrix of H^perp

Again using computer algebra, we can verify the following.

Lemma 5.5.4. The lattice H⊥ is of discriminant 121 and Õ(H⊥)—the subgroup of
isometries of H⊥ acting trivially on the discriminant group D(H⊥)—is isomorphic to G.

Moreover, as a G-representation, H⊥ is isomorphic to (V ′
10)

⊕2, where V ′
10 is the other

10-dimensional irreducible representation of G (see Table 4).

Proof. We use Sage to check directly that the group of isometries Õ(H⊥) is isomorphic
to G. We use the variable M for the Gram matrix of H⊥, which has determinant 121 and is
negative definite.

M = matrix([

[-6,-2,-4,-2,-3,-3,-3,-4,-2,-4,-3,-3,-4,-2,-3,-3,-3,-3,-3,-4],

[-2,-4,-2,-2,-1,-2,-2,-3,-2,-2,-1,-2,-3,-2,-1,-2,-2,-2,-2,-3],

[-4,-2,-6,-2,-3,-2,-3,-4,-3,-4,-3,-2,-4,-3,-3,-2,-3,-3,-3,-4],

[-2,-2,-2,-4,-1,-2,-1,-3,-2,-3,-2,-2,-2,-2,-2,-2,-1,-2,-2,-3],

[-3,-1,-3,-1,-4,-1,-2,-2,-2,-3,-2,-2,-3,-1,-2,-2,-2,-1,-2,-3],

[-3,-2,-2,-2,-1,-4,-1,-3,-1,-3,-2,-2,-3,-2,-1,-2,-2,-2,-1,-3],

[-3,-2,-3,-1,-2,-1,-4,-2,-2,-2,-2,-2,-3,-2,-2,-1,-2,-2,-2,-2],

[-4,-3,-4,-3,-2,-3,-2,-6,-2,-4,-3,-3,-4,-3,-3,-3,-2,-3,-3,-4],

[-2,-2,-3,-2,-2,-1,-2,-2,-4,-2,-1,-2,-3,-2,-2,-2,-2,-1,-2,-3],

[-4,-2,-4,-3,-3,-3,-2,-4,-2,-6,-3,-2,-4,-3,-3,-3,-3,-3,-2,-4],

[-3,-1,-3,-2,-2,-2,-2,-3,-1,-3,-4,-2,-2,-2,-2,-1,-1,-2,-2,-2],

[-3,-2,-2,-2,-2,-2,-2,-3,-2,-2,-2,-4,-3,-1,-2,-2,-1,-1,-2,-3],

[-4,-3,-4,-2,-3,-3,-3,-4,-3,-4,-2,-3,-6,-3,-2,-3,-3,-2,-2,-4],

[-2,-2,-3,-2,-1,-2,-2,-3,-2,-3,-2,-1,-3,-4,-2,-1,-2,-2,-1,-2],

[-3,-1,-3,-2,-2,-1,-2,-3,-2,-3,-2,-2,-2,-2,-4,-2,-1,-2,-2,-2],

[-3,-2,-2,-2,-2,-2,-1,-3,-2,-3,-1,-2,-3,-1,-2,-4,-2,-1,-2,-3],

[-3,-2,-3,-1,-2,-2,-2,-2,-2,-3,-1,-1,-3,-2,-1,-2,-4,-2,-1,-3],

[-3,-2,-3,-2,-1,-2,-2,-3,-1,-3,-2,-1,-2,-2,-2,-1,-2,-4,-2,-2],

[-3,-2,-3,-2,-2,-1,-2,-3,-2,-2,-2,-2,-2,-1,-2,-2,-1,-2,-4,-3],

[-4,-3,-4,-3,-3,-3,-2,-4,-3,-4,-2,-3,-4,-2,-2,-3,-3,-2,-3,-6]])
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We first compute the full orthogonal group O(H⊥) of the lattice H⊥, which is a matrix
group of order 15840 = 24× 660 given by 5 generators.2 Then we compute Õ(H⊥) as the
kernel of the natural homomorphism χ : O(H⊥)→ O(D(H⊥)).3

L = IntegralLattice(M)

OL = L.automorphisms()

D = L.discriminant_group()

OD = D.orthogonal_group()

a, b = L.dual_lattice().gens()[0:2]

# we choose u,v so that r(u),r(v) generate the discriminant group D

u, v = (4*a+9*b, 9*a+8*b)

r = L.dual_lattice().hom(D) # r(u)=(1,0), r(v)=(0,1)

chi = OL.Hom(OD)([matrix((r(u*g), r(v*g))) for g in OL.gens()])

G = chi.kernel()

print(G.structure_description()) # PSL(2,11)

One may then proceed to compute the character of this G-representation and use the
character table (see Table 4) to deduce that (H⊥)C = (V ′

10)
⊕2 (which is in fact defined over

Q).

ch = G.character(matrix(x).trace() for x in G.conjugacy_classes_representatives())

[(m,c.values()) for (m,c) in ch.decompose()] # [(2, [10, 2, 1, 0, 0, -1, -1, -1])]

A geometric interpretation of this last fact would be interesting. □

We now show that the group AutsH(X
σ0
6 ) of symplectic automorphisms fixing the

polarization H is exactly G.

Proposition 5.5.5. We have AutsH(X
σ0
6 ) ≃ G.

Proof. The second cohomology group Λ := H2(Xσ0
6 ,Z) is a lattice with discriminant 2.

The Picard group is a primitive sublattice of Λ of discriminant 22, which contains the
sublattice H⊥ of discriminant 121. The orthogonal complement T of H⊥ in Λ must then
have discriminant 242. It is the saturation lattice of the direct sum Tr(Xσ0

6 ) ⊕ ⟨H⟩. In
particular, we have

∣∣Λ/(T ⊕H⊥)
∣∣ = 121 which is equal to |D(H⊥)|.

The transcendental lattice Tr(Xσ0
6 ) is of rank 2 and is contained in H2,0(Xσ0

6 ) ⊕
H0,2(Xσ0

6 ). Therefore, each symplectic automorphism of Xσ0
6 fixes Tr(Xσ0

6 ), and an element
of AutsH(X

σ0
6 ) fixes the sublattice T . Denote by O(Λ, T ) the subgroup of isometries of Λ

fixing the sublattice T , that is,

O(Λ, T ) := {ϕ ∈ O(Λ) | ϕ|T = IdT }.

We get homomorphisms

G ↪−→ AutsH(X
σ0
6 ) ↪−→ O(Λ, T )

res−→ O(H⊥).

2Internally, this is computed by the library PARI/GP.
3Internally, this is computed by GAP.
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In the last homomorphism, since we have the equality
∣∣Λ/(T ⊕H⊥)

∣∣ = |D(H⊥)|, we may
apply [GHS10, Corollary 3.4] to show that the image is contained in the subgroup Õ(H⊥),
which is isomorphic to G by Lemma 5.5.4. So all the inclusions are equalities. □

Remark 5.5.6.

(1) By viewing ΛQ := H2(Xσ0
6 ,Q) as a rational G-representation, we just saw that it

decomposes into

ΛQ = Tr(Xσ0
6 )Q ⊕QH ⊕ (H⊥)Q,

where G acts trivially on the first two components. For the third component, we
have seen that it is the direct sum of two copies of V ′

10 by Lemma 5.5.4.
(2) Mongardi defined a rank-20 lattice S with explicit Gram matrix and he showed

that for a hyperkähler fourfold of K3[2]-type admitting a symplectic birational
automorphism g of order 11, the orthogonal of the g-invariant sublattice is iso-
morphic to S (see [Mon13, Example 2.5.9] or [DM21, Appendix A.3]). One may
verify that the lattice H⊥ in our case is indeed isomorphic to S.

(3) Mongardi also showed that the fixed locus of such an automorphism g consists
of 5 isolated points, by using the holomorphic Lefschetz–Riemann–Roch formula.
As an example, for the automorphism on Xσ0

6 given by the element P , using the
eigenvalues of

∧
2ρ(P ) given in Table 5, we can explicitly determine the fixed locus

as the 5 points

[024568], [235679], [125689], [015789], [046789],

where the symbol [abcdef ] means the 6-dimensional subspace V6 = ⟨ea, . . . , ef ⟩ of
V10.

We would now like to determine the structures of the various lattices: the Picard
group Pic(Xσ0

6 ), the transcendental lattice Tr(Xσ0
6 ) and the G-invariant sublattice T which

is the saturation of the direct sum Tr(Xσ0
6 ) ⊕ ⟨H⟩. We recall the following results from

lattice theory [Nik79, Corollary 1.13.3 and Corollary 1.13.5].

Proposition 5.5.7 (Nikulin). Let L be an even lattice of signature (p, q). Let l be the
minimal number of generators of the discriminant group D(L).

(1) If p ≥ 1, q ≥ 1, and p+q ≥ l+2, then L is uniquely determined by its discriminant
form.

(2) If p ≥ 1, q ≥ 1, and p+ q ≥ l + 3, then L decomposes into U ⊕ L′.
(3) If p ≥ 1, q ≥ 8, and p+ q ≥ l + 9, then L decomposes into E8(−1)⊕ L′.

Here, U denotes the hyperbolic plane, and E8(−1) denotes the E8-lattice with negative
definite form.



5.5. AUTOMORPHISM GROUP AND PICARD GROUP 145

Proposition 5.5.8. Consider the lattice

L11 :=

(
2 1

1 6

)
.

We have the following isomorphisms of lattices

Tr(Xσ0
6 ) ≃ L11, T = Tr(Xσ0

6 )⊕ ⟨H⟩ ≃ L11 ⊕ (22),

Pic(Xσ0
6 ) ≃ U ⊕ E8(−1)⊕2 ⊕ L(−1),

where we can take the component L to be
(

2 1 0
1 2 1
0 1 8

)
or L11 ⊕ (2) (by this we mean the

isomorphism holds for both values of L).

Proof. Since Pic(Xσ0
6 ) has discriminant 22, its orthogonal Tr(Xσ0

6 ) has discriminant
either 11 or 44. In the second case, the direct sum Tr(Xσ0

6 )⊕ ⟨H⟩ would have index 2 in
its saturation T , so there would exist a class x ∈ Tr(Xσ0

6 ) such that 1
2(H + x) is integral.

But then we would have q
(
H, 12(H + x)

)
= 11, contradicting the fact that div(H) = 2.

So Tr(Xσ0
6 ) has discriminant 11. Every rank-2 positive definite lattice has a reduced

form (see for instance [CS98, Chapter 15.3.2]). For discriminant 11, the lattice L11 is the
only one that is even. Thus we may conclude that Tr(Xσ

6 ) is isomorphic to L11. Since the
direct sum Tr(Xσ0

6 )⊕ ⟨H⟩ is primitive, we have T = Tr(Xσ0
6 )⊕ ⟨H⟩ ≃ L11 ⊕ (22).

Finally we determine the structure of Pic(Xσ0
6 ). By using (2) and (3) of Proposition 5.5.7,

it decomposes into a direct sum

(5.5) Pic(Xσ0
6 ) ≃ U ⊕ E8(−1)⊕2 ⊕ L(−1),

where L is positive definite of rank 3 and discriminant 22 and also even. There are two
possibilities: either L is indecomposable, then by [CS98, Table 15.6] it is unique and is
given by 2 1 0

1 2 1

0 1 8

 ;

or L is decomposable, then it must be the direct sum L11⊕ (2). By comparing discriminant
forms and using (1) of Proposition 5.5.7, we may conclude that the isomorphism (5.5) holds
for both values of L. □

Remark 5.5.9.

(1) We determined the sublattice T that is G-invariant. In particular, for a given
element g ∈ G of order 11, T is contained in the g-invariant sublattice. Notice
that this is indeed one of the two possibilities listed in Theorem 5.5.3.

(2) In [DM21], it is shown that for a double EPW sextic with a symplectic birational
automorphism of order 11, its transcendental lattice is isomorphic to (22)⊕2. So
the special Debarre–Voisin fourfold Xσ0

6 is not isomorphic to the special double
EPW studied in [DM21].
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(3) When σ is such that Xσ
1 admits a unique singular point [V1], there is an associated

K3 surface S of degree 6, and the divisor D admits a P1-fibration over S. In the
case of σ0, if the K3 surface associated to one Di,j is still smooth of dimension 2
(which we were not able to prove), then all 55 are isomorphic under the action of
G. Moreover, the Picard number of this K3 surface would be the maximal value
20, and we can obtain its Gram matrix using Pic(Xσ0

6 ) (in particular, the period
of this K3 surface is uniquely determined).
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