Übungsaufgaben zur Vorlesung

Lineare Algebra und Analytische Geometrie I*

Prof. Dr. J. Kramer

Abgabetermin: 30.01.2006 nach der Vorlesung oder bis 11.00 Uhr im Raum RUD 25, 2.302, Sekretariat Prof. Kramer

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben. JEDES Blatt mit Namen, Matrikelnummer und Übungsgruppe versehen.

Serie 12 (40+10 Punkte)

Aufgabe 1 (10 Punkte)

Beweisen Sie die Assoziativität des Matrixprodukts (vgl. Skript, Seite 42, Beispiel (iv)) durch explizite Berechnung, d.h. ohne Verwendung der Assoziativität der Verknüpfung von Abbildungen.

Aufgabe 2 (10 Punkte)

Wir betrachten den reellen Vektorraum $V=\mathbb{R}^3$ mit der Standardbasis $\mathfrak B$ sowie der Basis

$$\mathfrak{B}' = \left\{ \begin{pmatrix} -1\\0\\2 \end{pmatrix}, \begin{pmatrix} 2\\-1\\2 \end{pmatrix}, \begin{pmatrix} 2\\-2\\1 \end{pmatrix} \right\}.$$

Weiterhin betrachten wir den reellen Vektorraum $W=\mathbb{R}^2$ mit der Standardbasis \mathfrak{C} sowie der Basis

$$\mathfrak{C}' = \left\{ \left(\begin{array}{c} 5 \\ 7 \end{array} \right), \left(\begin{array}{c} 7 \\ 10 \end{array} \right) \right\}.$$

- a) Geben Sie die Basistransformationsmatrizen für den Basiswechsel von $\mathfrak B$ nach $\mathfrak B'$ und von $\mathfrak C$ nach $\mathfrak C'$ an.
- b) Geben Sie die Basistransformationsmatrix für den Basiswechsel von \mathfrak{C}' nach \mathfrak{C} an.
- c) Die lineare Abbildung $f:V\longrightarrow W$ sei bezüglich $\mathfrak B$ und $\mathfrak C$ durch die Matrix

$$A = \left(\begin{array}{ccc} 4 & 2 & 3 \\ 8 & -1 & 2 \end{array}\right)$$

gegeben. Berechnen Sie mittels der Basistransformationsformel die Matrix von f bezüglich der Basen \mathfrak{B}' und \mathfrak{C}' .

Aufgabe 3 (10 Punkte)

- a) Berechnen Sie alle natürlichzahligen Potenzen der Matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- b) Finden Sie alle $(n \times n)$ -Matrizen, die mit allen anderen $(n \times n)$ -Matrizen kommutieren.

Aufgabe 4 (10 Punkte)

Es sei K ein Körper und $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K)$ eine beliebige Matrix.

- a) Geben Sie eine notwendige und hinreichende Bedingung an $a, b, c, d \in K$ an, so dass A invertierbar ist.
- b) Berechnen Sie in diesem Fall die inverse Matrix A^{-1} .

Aufgabe 5* (10 Punkte)

Es sei \mathbb{H} die Menge aller Matrizen der Form $\begin{pmatrix} a & -b \\ \bar{b} & \bar{a} \end{pmatrix}$ mit $a,b\in\mathbb{C}$. Zeigen Sie:

- a) H ist mit der Addition und Multiplikation von Matrizen ein nicht-kommutativer Ring.
- b) Jede von der Nullmatrix verschiedene Matrix in $\mathbb H$ besitzt eine Inverse in $\mathbb H$, d.h. $\mathbb H$ ist ein Schiefkörper.
- c) Jedes Element aus \mathbb{H} lässt sich eindeutig als Summe $\alpha E + \beta I + \gamma J + \delta K$ mit $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ und

$$E = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \quad I = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right), \quad J = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \quad K = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right)$$

schreiben.

Bemerkung: Man nennt H die Hamiltonschen Quaternionen.