HU Berlin

Problems for BMS Basic Course "Commutative Algebra" Prof. Dr. J. Kramer

Hand in Jan 24th, after the 2nd lecture 4.45 p.m.

Please solve each problem on a different sheet of paper, and sign each sheet with your name and student ID

12th Problem Set (30+10 points)

Problem 1 (10 pts)

- (a) Compute the primary decomposition of the ideal $(XZ Y^2, YW Z^2)$ in the ring k[X, Y, Z, W], where k is a field. Determine the associated prime ideals and determine the isolated and the embedded prime ideals.
- (b) Solve (a) for the ideal $(XW YZ, X^3 Y^2, Z^3 W^2)$.

Problem 2 (10 pts)

- (a) Consider the sheaf $\mathcal{F} := (\mathbb{Z}/17\mathbb{Z})^{\sim}$ on $\operatorname{Spec}(\mathbb{Z})$ (see set 11, problem 4). Compute the stalks $\mathcal{F}_{\mathfrak{p}}$ for $\mathfrak{p} \in \operatorname{Spec}(\mathbb{Z})$.
- (b) Find a sheaf \mathcal{F} on Spec(\mathbb{Z}) such that $\mathcal{F}_{(17)} = 0$, but $\mathcal{F}_{\mathfrak{p}} \neq 0$ for all $\mathfrak{p} \neq (17)$.

Problem 3 (10 + 10 pts)

Let A be a commutative ring with 1 and M an A-module. We call $\mathfrak{p} \in \text{Spec}(A)$ an associated prime of M if there exists an $x \in M$ such that $\mathfrak{p} = \text{Ann}(x)$, and denote the set of such primes as $\text{Ass}_A(M)$.

- (a) Let $\mathfrak{a} \subseteq A$ be an ideal. Show that the associated primes of the A-module A/\mathfrak{a} are precisely the associated primes of \mathfrak{a} in the sense of a primary decomposition.
- (b) Let M be a finitely generated abelian group. Describe the set $Ass_{\mathbb{Z}}(M)$.
- (c) Let

 $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$

be a short exact sequence of A-modules. Show that $\operatorname{Ass}_A(M) \subseteq \operatorname{Ass}_A(M') \cup \operatorname{Ass}_A(M'')$.

(d*) Show that $\overline{\operatorname{Ass}_A(M)} = \operatorname{supp}(M) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M_{\mathfrak{p}} \neq 0 \}$, where $\overline{\operatorname{Ass}_A(M)}$ is the closure of $\operatorname{Ass}_A(M)$ with respect to the Zariski topology.