Übungsaufgaben zur Vorlesung

Algebra I

Prof. Dr. J. Kramer

Abgabetermin: 01.11.2006 nach der Vorlesung oder bis 11.00 Uhr, Sekretariat Prof. Kramer

Bitte beachten:

JEDE Aufgabe auf einem neuen Blatt abgeben, und JEDES Blatt mit Namen und Matrikelnummer versehen!

Serie 2 (50+0 Punkte)

Aufgabe 1 (10 Punkte)

Der Quotient G/Z(G) einer Gruppe nach ihrem Zentrum sei zyklisch. Zeigen Sie, dass G abelsch ist.

Aufgabe 2 (10 Punkte)

Sei G eine Gruppe und $H \leq G$ eine Untergruppe. Zeigen Sie:

- a) Das Zentrum Z(G) von G ist ein Normalteiler von G.
- b) Der Normalisator $N_G(H)$ von H in G ist eine Untergruppe von G.
- c) Die Untergruppe H ist Normalteiler in $N_G(H)$.
- d) Falls es eine Untergruppe $H' \leq G$ gibt, so dass $H \leq H'$ Normalteiler ist, so gilt $H' \leq N_G(H)$.

Aufgabe 3 (10 Punkte)

Sei G eine Gruppe. Für $x,y\in G$ nennen wir das Gruppenelement $[x,y]:=x\circ y\circ x^{-1}\circ y^{-1}$ den $Kommutator\ von\ x\ und\ y.$

- a) Beweisen Sie: Für beliebige $x, y \in G$ ist $[x, y]^{-1} = [y, x]$.
- b) Beweisen Sie: Für beliebige $x, y, z \in G$ gilt $[x \circ y, z] = x \circ [y, z] \circ x^{-1} \circ [x, z]$.
- c) Überprüfen Sie, ob in der Permutationsgruppe S_3 für alle Elemente x, y, z die Gleichung [[x, y], z] = id erfüllt ist.

Aufgabe 4 (10 Punkte)

Zeigen Sie, dass jede endliche Gruppe G der Ordnung n isomorph ist zu einer Untergruppe von S_n .

(**Hinweis:** Es bezeichne \underline{G} die Menge der Elemente von G. Für $g \in G$ sei $f_g : \underline{G} \longrightarrow \underline{G}$ die (bijektive) Abbildung, welche durch die Zuordnung $x \mapsto g \circ x \ (x \in \underline{G})$ gegeben ist. Man zeige, dass durch $g \mapsto f_g$ ein injektiver Homomorphismus von G in die Gruppe der Permutationen von \underline{G} definiert wird.)

Aufgabe 5 (10 Punkte)

- a) Geben Sie alle Gruppen der Ordnung 10 bis auf Isomorphie an.
- b) Geben Sie alle Gruppen der Ordnung 8 bis auf Isomorphie an. (**Hinweis**: Es gibt drei abelsche Gruppen sowie die

Diedergruppe
$$D_4 = \langle r, s \mid r^4 = s^2 = e, sr = r^3 s \rangle$$

und die

Quaternionengruppe
$$Q = \langle \pm 1, \pm i, \pm j, \pm k \mid i^2 = j^2 = k^2 = -1, ij = k = -ji \rangle$$
.)