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Prelude

Example 1: Finite dimensions

Say a smooth map f : R2 — R? is Zo-equivariant if it satisfies

f(xa _y) = —f(.il?, y)'
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Prelude

Example 1: Finite dimensions
Say a smooth map f : R? — R? is Zy-equivariant if it satisfies
[, —y) = —f(z,y).

Exercise: Try to prove that every such map admits C'*°-close
Zo-equivariant perturbations for which 0 is a regular value.
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Prelude

Example 1: Finite dimensions

Say a smooth map f : R? — R? is Zy-equivariant if it satisfies

f(xa _y) - —f(il?, y)'

Exercise: Try to prove that every such map admits C'*°-close
Zo-equivariant perturbations for which 0 is a regular value.

Hint: Do not try too hard. Notice R x {0} C f~1(0) for all f.
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Prelude
Example 1: Finite dimensions
Say a smooth map f : R? — R? is Zy-equivariant if it satisfies

f(xa _y) - —f({l?, y)'

Exercise: Try to prove that every such map admits C'*°-close
Zo-equivariant perturbations for which 0 is a regular value.

Hint: Do not try too hard. Notice R x {0} C f~1(0) for all f.

Best case scenario: generic f intersect zero cleanly, i.e. all components of
f71(0) are submanifolds with

T, (f7'(0)) = ker df ().
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Prelude
Example 1: Finite dimensions
Say a smooth map f : R? — R? is Zy-equivariant if it satisfies

f(xa _y) - —f({l?, y)'

Exercise: Try to prove that every such map admits C*°-close
Zo-equivariant perturbations for which 0 is a regular value.

Hint: Do not try too hard. Notice R x {0} C f~1(0) for all f.

Best case scenario: generic f intersect zero cleanly, i.e. all components of
f71(0) are submanifolds with

T, (f7'(0)) = ker df ().

Moral: You cannot have transversality and symmetry at the same time. ..
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Prelude

... unless you can:
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Prelude

... unless you can:

Example 2: Dynamics

Consider a T-periodic orbit v : R — M of a smooth time-independent
vector field X on M. Say v is nondegenerate if

1 ¢ Spectrum (linearized first-return map along )
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... unless you can:

Example 2: Dynamics
Consider a T-periodic orbit v : R — M of a smooth time-independent

vector field X on M. Say v is nondegenerate if

1 ¢ Spectrum (linearized first-return map along )

Standard theorem: For generic X, all periodic orbits are nondegenerate.
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Prelude

... unless you can:

Example 2: Dynamics

Consider a T-periodic orbit v : R — M of a smooth time-independent
vector field X on M. Say v is nondegenerate if

1 ¢ Spectrum (linearized first-return map along )

Standard theorem: For generic X, all periodic orbits are nondegenerate.

In other words, for generic X, the Sl-equivariant section
ox :B—=E&:(y,7) =y —1X(y)

of the Banach space bundle & — B with B = H'(S', M) x (0,00) and

Eyry = L?(y*T M) is transverse to zero.
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Prelude

Question: What happens to orbits under deformations { Xs}c(0,1)?
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:
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Prelude

Question: What happens to orbits under deformations { Xs}c(0,1)?
(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

o> D

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

© D

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
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Question: What happens to orbits under deformations { Xs}c(0,1)?
(1) Birth-death bifurcations:
_/./

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

O

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
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Question: What happens to orbits under deformations { Xs}c(0,1)?

N

S

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}

(1) Birth-death bifurcations:
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
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Prelude

Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:

O C O =
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:

&> ==~
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:

U
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:
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(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:

OO =
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Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
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Prelude

Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:

OO =~

Theorem: For generic deformations, birth-death and period doubling
are the only bifurcations.
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Prelude

Question: What happens to orbits under deformations { Xs}c(0,1)?

(1) Birth-death bifurcations:

M Xs}) :={(s,7) | s €[0,1] and v is an orbit of X}
(2) Period doubling bifurcations:

OO =~

Theorem: For generic deformations, birth-death and period doubling
are the only bifurcations. (i.e. “walls” of codim. 1 comes in two types)
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Prelude

Example 3: Gromov-Witten theory
(X, J) a symplectic Calabi-Yau 3-fold,

N4(X) = “#My(A,J)' € Q

Chris Wend| (HU Berlin) Transversality and Symmetry September 21, 2018 4 /23



Prelude

Example 3: Gromov-Witten theory
(X, J) a symplectic Calabi-Yau 3-fold,

NA(X) = "#My(4,J)" € Q,
where M, (A4, J) = 5;1(0) is the moduli space of (unparametrized)

J-holomorphic curves v : (3, 7) — (X, J) of genus g > 0 homologous
to A € Ha(X). Here, c1(TX) =0 and dim X = 6 imply

vir-dim M, (A, J) = ind D(9;) = 0.

v
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Prelude

Example 3: Gromov-Witten theory
(X, J) a symplectic Calabi-Yau 3-fold,

N{(X) = "#My(A,J)" € Q,

where M, (A4, J) = 3;1(0) is the moduli space of (unparametrized)
J-holomorphic curves v : (3, 7) — (X, J) of genus g > 0 homologous
to A € Ha(X). Here, c1(TX) =0 and dim X = 6 imply

vir-dim M, (A, J) = ind D(9;) = 0.

Trouble: If v € Mp(A,J) and d > 2, then

My(dA,J) D {u =voyp ‘ @ : X 41,5, a holomorphic branched cover}

which has dimension 2#{branch points} > 0 in general
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Example 3: Gromov-Witten theory
(X, J) a symplectic Calabi-Yau 3-fold,

N{(X) = "#My(A,J)" € Q,

where M, (A4, J) = 3;1(0) is the moduli space of (unparametrized)
J-holomorphic curves v : (3, 7) — (X, J) of genus g > 0 homologous
to A € Ha(X). Here, c1(TX) =0 and dim X = 6 imply

vir-dim M, (A, J) = ind D(9;) = 0.

Trouble: If v € Mp(A,J) and d > 2, then

My(dA,J) D {u =vogp ‘ @ : X 41, %), a holomorphic branched cover}

which has dimension 2#{branch points} > 0 in general, = J; f 0.
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Prelude

Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.
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Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.

= For generic J, each N%(X) € Q is a sum of Euler numbers of
obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.
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Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.

= For generic J, each N%(X) € Q is a sum of Euler numbers of
obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.

A history of the conjecture
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Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.

= For generic J, each N%(X) € Q is a sum of Euler numbers of
obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.

A history of the conjecture (with names redacted):
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Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.

= For generic J, each N%(X) € Q is a sum of Euler numbers of
obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.

A history of the conjecture (with names redacted):

o July 2008: First wrong proof, later withdrawn and abandoned
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Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.

= For generic J, each N%(X) € Q is a sum of Euler numbers of
obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.

A history of the conjecture (with names redacted):

o July 2008: First wrong proof, later withdrawn and abandoned
@ Oct. 2008: Second wrong proof, later published as a weaker result
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Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.

= For generic J, each N%(X) € Q is a sum of Euler numbers of
obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.

A history of the conjecture (with names redacted):

@ July 2008: First wrong proof, later withdrawn and abandoned
@ Oct. 2008: Second wrong proof, later published as a weaker result
@ July 2014: Third wrong proof, later published as a weaker result
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Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.

= For generic J, each N%(X) € Q is a sum of Euler numbers of
obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.

A history of the conjecture (with names redacted):

July 2008: First wrong proof, later withdrawn and abandoned
Oct. 2008: Second wrong proof, later published as a weaker result
July 2014: Third wrong proof, later published as a weaker result
Sept. 2016: Fourth wrong proof, survived almost 2 years but
withdrawn last month
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Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.

= For generic J, each N%(X) € Q is a sum of Euler numbers of
obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.

A history of the conjecture (with names redacted):

July 2008: First wrong proof, later withdrawn and abandoned
Oct. 2008: Second wrong proof, later published as a weaker result
July 2014: Third wrong proof, later published as a weaker result
Sept. 2016: Fourth wrong proof, survived almost 2 years but
withdrawn last month

Those last two were both by me.

Chris Wend| (HU Berlin) Transversality and Symmetry September 21, 2018 5/23



Prelude

Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, 9, intersects
zero cleanly.

= For generic J, each N%(X) € Q is a sum of Euler numbers of
obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.

A history of the conjecture (with names redacted):

July 2008: First wrong proof, later withdrawn and abandoned
Oct. 2008: Second wrong proof, later published as a weaker result
July 2014: Third wrong proof, later published as a weaker result
Sept. 2016: Fourth wrong proof, survived almost 2 years but
withdrawn last month

Those last two were both by me. (Oops. Math is hard.)
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Outline

For the rest of the talk, | will tell you about:

© The finite-dimensional setting.
(Mostly elementary, no claim of originality.)
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© The holomorphic curve setting.
(No claim of a proof of super-rigidity.)
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For the rest of the talk, | will tell you about:

© The finite-dimensional setting.
(Mostly elementary, no claim of originality.)

© The holomorphic curve setting.
(No claim of a proof of super-rigidity.)

The ideas are based mainly on the paper

C. Wend|, Transversality and super-rigidity for multiply covered
holomorphic curves (preprint 2016, arXiv:1609.09867)
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For the rest of the talk, | will tell you about:

© The finite-dimensional setting.
(Mostly elementary, no claim of originality.)

© The holomorphic curve setting.
(No claim of a proof of super-rigidity.)

The ideas are based mainly on the paper withdrawn preprint

C. Wend|, Transversality and super-rigidity for multiply covered
holomorphic curves (preprint 2016, arXiv:1609.09867)
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Outline

For the rest of the talk, | will tell you about:

© The finite-dimensional setting.
(Mostly elementary, no claim of originality.)

© The holomorphic curve setting.
(No claim of a proof of super-rigidity.)

The ideas are based mainly on the paperwithdrawn—preprint withdrawn

but still 90% correct preprint

C. Wend|, Transversality and super-rigidity for multiply covered
holomorphic curves (preprint 2016, arXiv:1609.09867)
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Outline

For the rest of the talk, | will tell you about:

© The finite-dimensional setting.
(Mostly elementary, no claim of originality.)

© The holomorphic curve setting.
(No claim of a proof of super-rigidity.)

The ideas are based mainly on the paperwithdrawn—preprint withdrawn
but still 90% correct preprint

C. Wend|, Transversality and super-rigidity for multiply covered
holomorphic curves (preprint 2016, arXiv:1609.09867)

(I'll talk a bit about the other 10% too.)
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Part 1: Equivariant transversality in finite dimensions

Fix an n-dimensional orbifold M and an orbibundle £ — M of rank m.
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Part 1. Equivariant transversality in finite dimensions

Fix an n-dimensional orbifold M and an orbibundle £ — M of rank m.

Every x € M has a finite group G, and a neighborhood U, C M such
that

Ely, = (O % Rm)/Gm

for some linear action of G, on R™ and a neighborhood O C R" of 0.
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Part 1. Equivariant transversality in finite dimensions

Fix an n-dimensional orbifold M and an orbibundle £ — M of rank m.

Every x € M has a finite group G, and a neighborhood U, C M such
that

Ely, = (O % Rm)/GI

for some linear action of G, on R™ and a neighborhood O C R" of 0.

Question: Do generic o € I'(E) intersect the zero-section transversely
(or at least cleanly)?
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Part 1. Equivariant transversality in finite dimensions

Fix an n-dimensional orbifold M and an orbibundle £ — M of rank m.

Every x € M has a finite group G, and a neighborhood U, C M such
that

Ely, = (O % Rm)/GI

for some linear action of G, on R™ and a neighborhood O C R" of 0.

Question: Do generic o € I'(E) intersect the zero-section transversely
(or at least cleanly)?

Sample theorem 1: If dim M = rank E and |G| < 3 for all z, then
generic sections of F intersect zero cleanly.

Chris Wend| (HU Berlin) Transversality and Symmetry September 21, 2018

7/23



Part 1. Equivariant transversality in finite dimensions

Fix an n-dimensional orbifold M and an orbibundle £ — M of rank m.

Every x € M has a finite group G, and a neighborhood U, C M such
that

Blu, = (0 xR™) /G,

for some linear action of G, on R™ and a neighborhood O C R" of 0.

Question: Do generic o € I'(E) intersect the zero-section transversely
(or at least cleanly)?

Sample theorem 1: If dim M = rank E and |G| < 3 for all z, then
generic sections of F intersect zero cleanly.

Sample theorem 2: Generic smooth functions on an orbifold are Morse.

(cf. Wasserman '69, Hepworth '09)
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Part 1: Equivariant transversality in finite dimensions
Ingredient A: Stratification via symmetry

For any finite group G and representations p : G — GL(n, R),

7: G — GL(m,R), define the submanifold

M,;={zeM |G, =G, acting on T, M as p and on E, as 7}
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Part 1. Equivariant transversality in finite dimensions

Ingredient A: Stratification via symmetry
For any finite group G and representations p : G — GL(n, R),
7: G — GL(m,R), define the submanifold

M,;={zeM |G, =G, acting on T, M as p and on E, as 7}
and subbundle

B, = {v € Ely,,

G acts trivially on v } .
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Part 1. Equivariant transversality in finite dimensions

Ingredient A: Stratification via symmetry
For any finite group G and representations p : G — GL(n, R),
7: G — GL(m,R), define the submanifold
M,;={zeM |G, =G, acting on T, M as p and on E, as 7}
and subbundle
B, = {v € Ely,,

Let {0; : G — Autg(W;)}Y, denote the real irreps of G, with 6; as the
trivial representation, and let m;(p) := multiplicity of 8; in p. Then

dim M, » = mi(p), rank E, - = mq (7).

G acts trivially on v } .
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Part 1. Equivariant transversality in finite dimensions

Ingredient A: Stratification via symmetry

For any finite group G and representations p : G — GL(n, R),
7: G — GL(m,R), define the submanifold

M,;={zeM |G, =G, acting on T, M as p and on E, as 7}
and subbundle
Eva = {U E E|MP77'

Let {0; : G — Autg(W;)}, denote the real irreps of G, with 8, as the
trivial representation, and let m;(p) := multiplicity of 8; in p. Then

G acts trivially on v } .

dim M, » = mi(p), rank E, - = mq (7).

The orbifold M is thus a countable union of disjoint smooth
submanifolds M, ; with distinguished subbundles £, C E|MM.
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Part 1. Equivariant transversality in finite dimensions

Ingredient A: Stratification via symmetry
For any finite group G and representations p : G — GL(n, R),
7: G — GL(m,R), define the submanifold
M,;={zeM |G, =G, acting on T, M as p and on E, as 7}
and subbundle
B, = {v € Ely,,

Let {0; : G — Autg(W;)}, denote the real irreps of G, with 8, as the
trivial representation, and let m;(p) := multiplicity of 8; in p. Then

G acts trivially on v } .

dim M, » = mi(p), rank E, - = mq (7).

The orbifold M is thus a countable union of disjoint smooth
submanifolds M, ; with distinguished subbundles £, C E|MM.
Notice: For all 0 € T'(E), o(M, ;) C E, -,

= o (10 at x € M, unless 7 is trivial.
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Part 1: Equivariant transversality in finite dimensions

Lemma (standard transversality arguments)

For generic o € I'(E), 0|y, , is transverse to the zero-section of
E,; — M, for every G, p,T.
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Part 1: Equivariant transversality in finite dimensions

Lemma (standard transversality arguments)

For generic o € I'(E), 0|y, , is transverse to the zero-section of
E,; — M, for every G, p,T.

= for generic o € T'(E), M(0) := o~1(0) is a countable union of disjoint
smooth manifolds
M, (o) = M(o)N M, ,

of dimension m1(p) — my (7).
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For generic o € I'(E), 0|y, , is transverse to the zero-section of
E,; — M, for every G, p,T.

= for generic o € T'(E), M(0) := o~1(0) is a countable union of disjoint
smooth manifolds
M, (o) = M(o)N M, ,

of dimension mi(p) —mi(7). (= M,-(0) =0 if mi(p) < mi(7).)
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Part 1: Equivariant transversality in finite dimensions

Lemma (standard transversality arguments)

For generic o € I'(E), 0|y, , is transverse to the zero-section of
E,; — M, for every G, p,T.

= for generic o € T'(E), M(0) := o~1(0) is a countable union of disjoint

smooth manifolds
M, (o) = M(o)N M, ,

of dimension m1(p) — mi(7). (= M,-(0) =0 if mi(p) < mi(7).)
We still cannot conclude from this that M (o) is anything as nice as a

smooth orbifold. The aim is to show that for certain applications, it is
“nice enough”.
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Part 1: Equivariant transversality in finite dimensions

Ingredient B: Splitting the linearization

At x € M, (o), there is a linearization

D, :=Do(z): T,M — E,.
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Part 1: Equivariant transversality in finite dimensions

Ingredient B: Splitting the linearization
At x € M, (o), there is a linearization
D, :=Do(z): T,M — E,.

Recall the irreps {0; : G, — Autg(W;)}Y,, and denote d; := dim W;.
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Part 1. Equivariant transversality in finite dimensions

Ingredient B: Splitting the linearization

At x € M, (o), there is a linearization
D, :=Do(z): T,M — E,.
Recall the irreps {0; : G, — AutR(Wi)}f\;l, and denote d; := dim W;.

Since D, is G, -equivariant, Schur’s lemma implies that it splits with
respect to the isotypic decompositions T, M = @Z]\Ll T,M?* of p and
E, = @Y Ei of 7, giving

D,=D!ao...oDY, where D. :T,M' — EL.

Chris Wend| (HU Berlin) Transversality and Symmetry September 21, 2018

10 / 23



Part 1. Equivariant transversality in finite dimensions

Ingredient B: Splitting the linearization

At x € M, (o), there is a linearization
D, :=Do(z): T,M — E,.
Recall the irreps {0; : G, — AutR(Wi)}f\;l, and denote d; := dim W;.

Since D, is G, -equivariant, Schur’s lemma implies that it splits with
respect to the isotypic decompositions T, M = @Z]\Ll T,M?* of p and
E, = @Y Ei of 7, giving

D,=D!ao...oDY, where D. :T,M' — EL.
These operators have Fredholm indices

ind D!, = d; [m;(p) — m(7)]
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Part 1. Equivariant transversality in finite dimensions

Ingredient B: Splitting the linearization

At x € M, (o), there is a linearization

D, :=Do(z): T,M — E,.
Recall the irreps {0; : G, — AutR(Wi)}f\;l, and denote d; := dim W;.
Since D, is G, -equivariant, Schur’s lemma implies that it splits with

respect to the isotypic decompositions T, M = @Z]\Ll T,M?* of p and
E, = @Y Ei of 7, giving

D,=D!ao...oDY, where D. :T,M' — EL.
These operators have Fredholm indices
ind Dj, = d; [mi(p) — my(7)],

and we know D! is surjective if o is generic.
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Part 1: Equivariant transversality in finite dimensions

Ingredient C: Building walls
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Part 1. Equivariant transversality in finite dimensions

Ingredient C: Building walls (in the sense of “crossing™)

G acts on ker D% and coker DY as the irrep 6; with some multiplicities,
so their dimensions are divisible by d;.
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Part 1. Equivariant transversality in finite dimensions

Ingredient C: Building walls (in the sense of “crossing™)

G acts on ker D% and coker DY as the irrep 6; with some multiplicities,
so their dimensions are divisible by d;.

For nonnegative integers k = (ki,...,kn) and ¢ = (c1,...,cn), let

M, -(0:k, €) = {2 € M, (0)| dimker D}, = d;k;, dim coker D, = d;c; Vi}
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Part 1. Equivariant transversality in finite dimensions

Ingredient C: Building walls (in the sense of “crossing™)

G acts on ker D% and coker DY as the irrep 6; with some multiplicities,
so their dimensions are divisible by d;.

For nonnegative integers k = (ki,...,kn) and ¢ = (c1,...,cn), let

M, -(0:k, €) = {2 € M, (0)| dimker D}, = d;k;, dim coker D, = d;c; Vi}

Workhorse theorem

For generic 0 € T'(E), for all choices G, p, 7, k, c,
M, (o:k,c) C M, -(0)

is a smooth submanifold with codimension ZZ]\L] tik;c;, where
t; := dimg Endg(W;) € {1, 2,4}.

v
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Part 1: Equivariant transversality in finite dimensions

Sketch of proof:
Replace I'(E') with a suitable Banach manifold of sections.
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Part 1. Equivariant transversality in finite dimensions

Sketch of proof:
Replace I'(E') with a suitable Banach manifold of sections.
The Sard-Smale theorem = it suffices to prove
M, ;(k,c) :={(0,2) | 0 €T(E) and x € M, -(0;k, )}

is a smooth Banach submanifold of M, := {(0,2) | x € M, (o)}
with the right codimension.
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Part 1. Equivariant transversality in finite dimensions

Sketch of proof:

Replace I'(E') with a suitable Banach manifold of sections.
The Sard-Smale theorem = it suffices to prove

M, ;(k,c) :={(0,2) | 0 €T(E) and x € M, -(0;k, )}
is a smooth Banach submanifold of M, := {(0,2) | x € M, (o)}

with the right codimension. Choose (09, z¢) € M, (k,c) and consider
nearby elements (o, z) € M, ;.
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Part 1. Equivariant transversality in finite dimensions

Sketch of proof:

Replace I'(E') with a suitable Banach manifold of sections.
The Sard-Smale theorem = it suffices to prove

M, (k,c) = {(0,2) ‘ o €T(E) and z € M, (0;k,c)}

is a smooth Banach submanifold of M, . := {(0,2z) | v € M, (o)}
with the right codimension. Choose (09, z¢) € M, (k,c) and consider
nearby elements (o,z) € M, -. The splittings

N
Do(x) = @ D!
i=1

vary continuously with (o, z), so we have

(0,2) € M, ;(k,c) < dimker Do(z) = dimker Dog(zo)
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Part 1. Equivariant transversality in finite dimensions

Sketch of proof:

Replace I'(E') with a suitable Banach manifold of sections.
The Sard-Smale theorem = it suffices to prove

M, (k,c) = {(0,2) ‘ o €T(E) and z € M, (0;k,c)}

is a smooth Banach submanifold of M, . := {(0,2z) | v € M, (o)}
with the right codimension. Choose (09, z¢) € M, (k,c) and consider
nearby elements (o,z) € M, -. The splittings

N
Do(z) = @ D!
i=1
vary continuously with (o, z), so we have
(0,2) € M, +(k,c) < dimker Do(z) = dimker Dog(zg) < ®(0,2) =0
for a smooth function

®(0,x) € Homg (ker Dog(zg), coker Dog(zg))
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Part 1. Equivariant transversality in finite dimensions

Sketch of proof:

Replace I'(E') with a suitable Banach manifold of sections.
The Sard-Smale theorem = it suffices to prove

M, (k,c) = {(0,2) ‘ o €T(E) and z € M, (0;k,c)}

is a smooth Banach submanifold of M, . := {(0,2z) | v € M, (o)}
with the right codimension. Choose (09, z¢) € M, (k,c) and consider
nearby elements (o,z) € M, -. The splittings

N
Do(z) = @ D!
i=1
vary continuously with (o, z), so we have
(0,2) € M, +(k,c) < dimker Do(z) = dimker Dog(zg) < ®(0,2) =0
for a smooth function

®(0,z) € Homg (ker Dog(z), coker Dog(z)) = RZatikic
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Part 1: Equivariant transversality in finite dimensions

We need to prove D®(oy, z¢) is surjective, then apply the implicit
function theorem.
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Part 1: Equivariant transversality in finite dimensions

We need to prove D®(oy, z¢) is surjective, then apply the implicit
function theorem. Consider s € T,,,I'(E) with s(xo) =0, so
(87 O) € T(UO,IO)MPJ'
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Part 1. Equivariant transversality in finite dimensions

We need to prove D®(oy, z¢) is surjective, then apply the implicit
function theorem. Consider s € T,,,I'(E) with s(xo) =0, so
(5,0) € T{y,20)Mp,r, and

D®(0g,x0)(s,0) : ker Dog(xg) — coker Dog(xp)
takes the form

ker Dog(z) Dstzg) E, Prl coker Doy(zp).
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Part 1. Equivariant transversality in finite dimensions

We need to prove D®(oy, z¢) is surjective, then apply the implicit
function theorem. Consider s € T,,,I'(E) with s(xo) =0, so
(5,0) € T{y,20)Mp,r, and

D®(0g,x0)(s,0) : ker Dog(xg) — coker Dog(xp)

takes the form

ker Dog(z) Dstzg) E, Prl coker Doy(zp).

Is every G-equivariant linear map ker Do (z) — coker Dog(zg) equal to

D® (¢, x0)(s,0) for some s € T,,,I'(E)?
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Part 1. Equivariant transversality in finite dimensions

We need to prove D®(oy, z¢) is surjective, then apply the implicit
function theorem. Consider s € T,,,I'(E) with s(xo) =0, so
(5,0) € T{y,20)Mp,r, and

D®(0g,x0)(s,0) : ker Dog(xg) — coker Dog(xp)

takes the form

ker Dog(z) Dstzg) E, Prl coker Doy(zp).

Is every G-equivariant linear map ker Do (z) — coker Dog(zg) equal to
D® (¢, x0)(s,0) for some s € T,,,I'(E)?
Workhorse lemma (trivial)

Given D : T, M — E,, everxlinear map A : ker D — coker D can be
lifted/extended to a map A : T, M — E,.
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Part 1. Equivariant transversality in finite dimensions

We need to prove D®(oy, z¢) is surjective, then apply the implicit
function theorem. Consider s € T,,,I'(E) with s(xo) =0, so
(5,0) € T{y,20)Mp,r, and

D®(0g,x0)(s,0) : ker Dog(xg) — coker Dog(xp)

takes the form

ker Dog(z) Dstzg) E, Prl coker Doy(zp).

Is every G-equivariant linear map ker Do (z) — coker Dog(zg) equal to
D® (¢, x0)(s,0) for some s € T,,,I'(E)?
Workhorse lemma (trivial)

Given D : T, M — E,, everxlinear map A : ker D — coker D can be
lifted/extended to a map A : T, M — FE,.

If A is G-equivariant, we can symmetrize to assume A also is, then set
s such that Ds(zg) = A. O
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Part 1: Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dim M = rank E and |G| < 3 for all z,
then generic sections of E intersect zero cleanly.
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Part 1: Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dim M = rank E and |G| < 3 for all z,
then generic sections of E intersect zero cleanly.

Proof for |G| < 2:
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dim M = rank E and |G| < 3 for all z,
then generic sections of E intersect zero cleanly.

Proof for |G| < 2:

For x € M, (o) with G; = Z3, we have two irreps 0+ with d+ =1, so
write D, = D} & D,
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dim M = rank E and |G| < 3 for all z,
then generic sections of E intersect zero cleanly.

Proof for |G| < 2:

For x € M, (o) with G = Zs, we have two irreps 0+ with d+ =1, so
write D, = D} @ D . If o is generic, M, ;(o) is a manifold of dimension
mi(p) — m1(7) = dimker D}, so it will suffice to prove

dim M, -(o) = dimkerD,, ie. D is injectivel.

xT
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dim M = rank E and |G| < 3 for all z,
then generic sections of E intersect zero cleanly.

Proof for |G| < 2:

For x € M, (o) with G = Zs, we have two irreps 0+ with d+ =1, so
write D, = D} @ D . If o is generic, M, ;(o) is a manifold of dimension
mi(p) — m1(7) = dimker D}, so it will suffice to prove

dim M, -(o) = dimkerD,, ie. D is injectivel.

xT

Useful observation: ind D; = —ind D} = —[m(p) — m4(7)] <O0.
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dim M = rank E and |G| < 3 for all z,
then generic sections of E intersect zero cleanly.

Proof for |G| < 2:

For x € M, (o) with G = Zs, we have two irreps 0+ with d+ =1, so
write D, = D} @ D . If o is generic, M, ;(o) is a manifold of dimension
mi(p) — m1(7) = dimker D}, so it will suffice to prove

dim M, -(o) = dimkerD,, ie. D is injectivel.

Useful observation: ind D; = —ind D} = —[m(p) — m4(7)] <O0.
Now suppose k_ := dimker D, > 0, and write c_ := dim coker D as
ko + [my(p) —my(7)].
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dim M = rank E and |G| < 3 for all z,
then generic sections of E intersect zero cleanly.

Proof for |G| < 2:
For x € M, (o) with G = Zs, we have two irreps 0+ with d+ =1, so
write D, = D} @ D . If o is generic, M, ;(o) is a manifold of dimension
mi(p) — m1(7) = dimker D}, so it will suffice to prove

dim M, -(o) = dimkerD,, ie. D is injectivel.
Useful observation: ind D, = —ind D} = —[m(p) — m4(7)] <0.
Now suppose k_ := dimker D, > 0, and write c_ := dim coker D as
k_ + [my(p) —my(7)]. Then z € M, -(o;k, c) with

dim M, - (o;k,c) = my(p) —mq4(7) — k_c_
= k2 = (b — Dl (p) — me ()] < 0.
L]
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dim M = rank E and |G| < 3 for all z,
then generic sections of E intersect zero cleanly.

Proof for |G| < 2:

For x € M, (o) with G = Zs, we have two irreps 0+ with d+ =1, so
write D, = D} @ D . If o is generic, M, ;(o) is a manifold of dimension
mi(p) — m1(7) = dimker D}, so it will suffice to prove

dim M, -(o) = dimkerD,, ie. D is injectivel.

Useful observation: ind D, = —ind D} = —[m(p) — m4(7)] <0.
Now suppose k_ := dimker D, > 0, and write c_ := dim coker D as
k_ + [my(p) —my(7)]. Then z € M, -(o;k, c) with
dim M, - (o;k,c) = my(p) —mq4(7) — k_c_
= k2 = (b — Dl (p) — me ()] < 0.

]
What makes this work?
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dim M = rank E and |G| < 3 for all z,
then generic sections of E intersect zero cleanly.

Proof for |G| < 2:

For x € M, (o) with G = Zs, we have two irreps 0+ with d+ =1, so
write D, = D} @ D . If o is generic, M, ;(o) is a manifold of dimension
mi(p) — m1(7) = dimker D}, so it will suffice to prove

dim M, -(o) = dimkerD,, ie. D is injectivel.

Useful observation: ind D, = —ind D} = —[m(p) — m4(7)] <0.
Now suppose k_ := dimker D, > 0, and write c_ := dim coker D as
k_ + [my(p) —my(7)]. Then z € M, -(o;k, c) with
dim M, - (o;k,c) = my(p) —mq4(7) — k_c_
= k2 = (b — Dl (p) — me ()] < 0.

O]
What makes this work? Only 2 irreps = can compute ind D} .
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Part 1: Equivariant transversality in finite dimensions

Recall Sample theorem 2: Generic smooth functions on M are Morse.
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 2: Generic smooth functions on M are Morse.

Proof:

Let E =T*M, then we need to show that for generic f : M — R,
df € T(E) is transverse to zero. There are two new features:
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 2: Generic smooth functions on M are Morse.

Proof:

Let E =T*M, then we need to show that for generic f : M — R,
df € T(E) is transverse to zero. There are two new features:

@ For x € df ~1(0), the operator D(df)(x) is always symmetric, so the
previous codimension formula changes to

codim M, ;(df; k, c) = dim EndZ™ (ker D(df )(x))
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 2: Generic smooth functions on M are Morse.

Proof:

Let E =T*M, then we need to show that for generic f : M — R,
df € T(E) is transverse to zero. There are two new features:

@ For x € df ~1(0), the operator D(df)(x) is always symmetric, so the
previous codimension formula changes to

codim M, ;(df; k, c) = dim EndgZ™ (ker D(df )(x)),

which is generally smaller, but still positive.
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 2: Generic smooth functions on M are Morse.

Proof:

Let E =T*M, then we need to show that for generic f : M — R,
df € T(E) is transverse to zero. There are two new features:

@ For x € df ~1(0), the operator D(df)(x) is always symmetric, so the
previous codimension formula changes to

codim M, ;(df; k, c) = dim EndgZ™ (ker D(df )(x)),

which is generally smaller, but still positive.

@ We have p = 7 always, and the symmetry of Df(x) = EBZ]L D¢,
implies ind D!, = 0 always.
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Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 2: Generic smooth functions on M are Morse.

Proof:

Let E =T*M, then we need to show that for generic f : M — R,
df € T(E) is transverse to zero. There are two new features:

@ For x € df ~1(0), the operator D(df)(x) is always symmetric, so the
previous codimension formula changes to

codim M, ;(df; k, c) = dim EndgZ™ (ker D(df )(x)),

which is generally smaller, but still positive.
@ We have p = 7 always, and the symmetry of Df(x) = EBZ]L D¢,
implies ind D!, = 0 always.

Then all strata M, ,(df) are O-dimensional

Chris Wend| (HU Berlin) Transversality and Symmetry September 21, 2018 15 / 23



Part 1. Equivariant transversality in finite dimensions

Recall Sample theorem 2: Generic smooth functions on M are Morse.

Proof:

Let E =T*M, then we need to show that for generic f : M — R,
df € T(E) is transverse to zero. There are two new features:

@ For x € df ~1(0), the operator D(df)(x) is always symmetric, so the
previous codimension formula changes to

codim M, ;(df; k, c) = dim EndgZ™ (ker D(df )(x)),

which is generally smaller, but still positive.
@ We have p = 7 always, and the symmetry of Df(x) = EBZ]L D¢,
implies ind D!, = 0 always.
Then all strata M, ,(df) are O-dimensional, and the substrata
M, ,(df; k, c) always have negative dimension.
Chris Wend| (HU Berlin)
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Part 2: Holomorphic curves

Fix a 2n-dimensional symplectic cobordism X with cylindrical stable
Hamiltonian ends, assume J is a compatible almost complex structure.
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Part 2: Holomorphic curves

Fix a 2n-dimensional symplectic cobordism X with cylindrical stable
Hamiltonian ends, assume J is a compatible almost complex structure.

Standard transversality result
For generic J, the open set

M*(J) :={u € M(J) | u not multiply covered}

is a transversely cut-out manifold of dim = vir-dim.
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Part 2: Holomorphic curves

Fix a 2n-dimensional symplectic cobordism X with cylindrical stable
Hamiltonian ends, assume J is a compatible almost complex structure.

Standard transversality result
For generic J, the open set

M*(J) :={u € M(J) | u not multiply covered}

is a transversely cut-out manifold of dim = vir-dim.

Question

What structure does M(J) generically have near the multiple covers?
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Part 2: Holomorphic curves

Fix a 2n-dimensional symplectic cobordism X with cylindrical stable
Hamiltonian ends, assume J is a compatible almost complex structure.

Standard transversality result
For generic J, the open set

M*(J) :={u € M(J) | u not multiply covered}

is a transversely cut-out manifold of dim = vir-dim.

Question

What structure does M(J) generically have near the multiple covers?

Sample theorem 3: If dim X =4 and J is generic, then unbranched
covers of immersed J-holomorphic curves with trivial normal bundle
and vanishing CZ-indices are cut out transversely. (cf. Taubes '96)
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Part 2: Holomorphic curves

Fix a 2n-dimensional symplectic cobordism X with cylindrical stable
Hamiltonian ends, assume J is a compatible almost complex structure.

Standard transversality result
For generic J, the open set

M*(J) = {u e M(J | u not multiply covered}

is a transversely cut-out manifold of dim = vir-dim.

Question
What structure does M(J) generically have near the multiple covers?

Sample theorem 3: If dim X =4 and J is generic, then unbranched
covers of immersed J-holomorphic curves with trivial normal bundle
and vanishing CZ-indices are cut out transversely. (cf. Taubes '96)

Let's see how this works in the case of immersed double covers. ..
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Part 2: Holomorphic curves

Ingredient A: Stratification via symmetry

M?(J) == {u=vop | veM*(J)immersed, ¢ a
holomorphic unbranched cover of degree 2}.
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Part 2: Holomorphic curves

Ingredient A: Stratification via symmetry

M?(J) == {u=vop | veM*(J)immersed, ¢ a
holomorphic unbranched cover of degree 2}.

Observations:
@ M?(J) is a smooth manifold with dimension determined by M*(.J).

@ Every immersed double cover is in M?2(.J).
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Part 2: Holomorphic curves

Ingredient B: Splitting the linearization

For u: (X,j) — (X, J) immersed, restricting D;(u) to the normal
bundle N, — ¥ defines a real-linear Cauchy-Riemann type operator

DY :T(N,) — Q"2 N,)
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Part 2: Holomorphic curves

Ingredient B: Splitting the linearization

For u: (X,j) — (X, J) immersed, restricting D;(u) to the normal

bundle N, — ¥ defines a real-linear Cauchy-Riemann type operator
DY :T(N,) — Q"2 N,)

such that u is transversely cut out < DY Wh? — Wk-1r s

surjective (k € N, 1 < p < 00).

For u = v o ¢ € M?2(J), the nontrivial deck transformation ¢ € Aut(y)

defines a splitting I'(N,) = ' (N,) ® I'_(V,,), where

Fi(Ny) ={neT(Ny) | noy =+n}.
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For u: (X,j) — (X, J) immersed, restricting D;(u) to the normal
bundle N, — ¥ defines a real-linear Cauchy-Riemann type operator
DY :T(N,) — Q"2 N,)
such that u is transversely cut out < DY Wh? — Wk-1r s
surjective (k € N, 1 < p < 00).
For u = v o € M?(J), the nontrivial deck transformation ) € Aut(y)
defines a splitting I‘(Nu) =TI (V) ®T-(Ny), where
I (Ny) = {n eI u)‘no¢:in}.
Then DY sends I'+(N,) to Q2! (2, N,), defining a splitting
DY =Df oD,
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Part 2: Holomorphic curves

Ingredient B: Splitting the linearization
For u: (X,j) — (X, J) immersed, restricting D;(u) to the normal
bundle N, — ¥ defines a real-linear Cauchy-Riemann type operator
DY :T(N,) — Q"2 N,)
such that u is transversely cut out < DY Wh? — Wk-1r s
surjective (k € N, 1 < p < 00).
For u = v o € M?(J), the nontrivial deck transformation ) € Aut(y)
defines a splitting I‘(Nu) =TI (V) ®T-(Ny), where
I (Ny) = {n eI u)‘no¢:in}.
Then DY sends I'+(N,) to Q2! (2, N,), defining a splitting
DY =Df oD,

such that D} is equivalent to D', and is thus surjective for generic .J.
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Part 2: Holomorphic curves

Brief digression (why you should believe super-rigidity is true)

For general branched covers of arbitrary degree, there is always a splitting

=1

whose summands are Cauchy-Riemann type operators corresponding to
the irreps of some finite group.

y
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Brief digression (why you should believe super-rigidity is true)

For general branched covers of arbitrary degree, there is always a splitting

=1

whose summands are Cauchy-Riemann type operators corresponding to
the irreps of some finite group.

Slightly surprising lemma:

For any u = v o ¢ with v a closed, immersed, simple curve with

ind DY = 0 and ¢ a holomorphic branched cover, every summand of
DY satisfies

ind D% < 0.
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Part 2: Holomorphic curves

Brief digression (why you should believe super-rigidity is true)

For general branched covers of arbitrary degree, there is always a splitting

=1

whose summands are Cauchy-Riemann type operators corresponding to
the irreps of some finite group.

Slightly surprising lemma:

For any u = v o ¢ with v a closed, immersed, simple curve with

ind DY = 0 and ¢ a holomorphic branched cover, every summand of
DY satisfies

ind D% < 0.

(If this were not true, super-rigidity would be false.)

v
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Part 2: Holomorphic curves

Ingredient C: Building walls

For nonnegative integers k = (k4,k_) and ¢ = (cy,c_), let

M?(J;k,c) = {u € M?(J)| dimker D} = k4, dimcoker D} = c4 }

Chris Wend| (HU Berlin) Transversality and Symmetry September 21, 2018 20 / 23



Part 2: Holomorphic curves

Ingredient C: Building walls

For nonnegative integers k = (k4,k_) and ¢ = (cy,c_), let

M?(J;k,c) = {u € M?(J)| dimker D} = k4, dimcoker D} = c4 }

Workhorse theorem

For generic J and all choices of g, A, k, ¢ satisfying the workhorse lemma
(to be discussed below),

M2(J;k,c) € M%(J)

is a smooth submanifold with codimension k. cy + k_c_.
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Part 2: Holomorphic curves

Ingredient C: Building walls

For nonnegative integers k = (k4,k_) and ¢ = (cy,c_), let

M?(J;k,c) = {u € M?(J)| dimker D} = k4, dimcoker D} = c4 }

Workhorse theorem
For generic J and all choices of g, A, k, ¢ satisfying the workhorse lemma
(to be discussed below),

M2(J;k,c) € M%(J)

is a smooth submanifold with codimension k. cy + k_c_.

When this (and its generalization for arbitrary branched covers) holds, it
implies super-rigidity via dimension counting arguments.
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Part 2: Holomorphic curves

Proving the workhorse theorem

Perturbing .J causes zeroth-order perturbations in D
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Part 2: Holomorphic curves

Proving the workhorse theorem

Perturbing J causes zeroth-order perturbations in DY. We thus need to
know whether every linear map ker DYY — coker DY¥ can be realized as

ker DY 4 001(5, N,) 24 coker DY

for some bundle map A : N, = A%'T*Y ® N,,.
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Proving the workhorse theorem

Perturbing J causes zeroth-order perturbations in DY. We thus need to
know whether every linear map ker DYY — coker DY¥ can be realized as

ker DY 4 001(5, N,) 24 coker DY

for some bundle map A : N, — A%'T*Y @ N,,. If not, then given bases
(n:) € ker DY and (¢;) € ker(DLY)* = coker DY, there exist nontrivial
coefficients ¢;; € R such that

> cijl&, Ani)pe = 0

0]

for all zeroth-order perturbations A.
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Part 2: Holomorphic curves

Proving the workhorse theorem

Perturbing J causes zeroth-order perturbations in DY. We thus need to
know whether every linear map ker DYY — coker DY¥ can be realized as

ker DY 4 001(5, N,) 24 coker DY

for some bundle map A : N, — A%'T*Y @ N,,. If not, then given bases
(n:) € ker DY and (¢;) € ker(DLY)* = coker DY, there exist nontrivial
coefficients ¢;; € R such that

> cijl&, Ani)pe = 0

0]

for all zeroth-order perturbations A.

0,1 . .
In other words, >_, . cijn; ® § € (N, @ A™T*E ® Ny) is identically
zero.
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Part 2: Holomorphic curves

Definition (a “quadratic unique continuation” property)

A linear partial differential operator D : I'(E) — I'(F') on Euclidean vector
bundles E, F' — X satisfies Petri’s condition if the canonical map

kerD @ kerD* = I'(E ® F|y)

is injective for every open subset U/ C 3.
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(= bifurcation theory for periodic orbits)
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Part 2: Holomorphic curves

Definition (a “quadratic unique continuation” property)

A linear partial differential operator D : I'(E) — I'(F') on Euclidean vector
bundles E, F' — ¥ satisfies Petri’s condition if the canonical map

kerD @ kerD* - T'(E ® Fy)

is injective for every open subset U C X.

Example 1: Elliptic operators on 1-dimensional domains
(= bifurcation theory for periodic orbits)

Example 2: Cauchy-Riemann operators on trivial line bundles
(= Sample theorem 3)

Meta-theorem (cf. A. Doan and T. Walpuski, in preparation):
Equivariant transversality problems are tractable for a large class of
elliptic operators that satisfy Petri’s condition.
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Part 2: Holomorphic curves

Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, DY satisfies Petri’s
condition.
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Final remarks:

© Unique continuation = Petri holds whenever ker DY or coker DY
has dim < 3.
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Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, DY satisfies Petri’s
condition.

Final remarks:

© Unique continuation = Petri holds whenever ker DY or coker DY
has dim < 3.

@ It does not always hold, e.g. for D = 0 and D* = —0:

I1®iz—i®z—2®14+1201=0.
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Part 2: Holomorphic curves

Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, DY satisfies Petri’s
condition.

Final remarks:

© Unique continuation = Petri holds whenever ker DY or coker DY
has dim < 3.

@ It does not always hold, e.g. for D = 0 and D* = —0:

1®iz-—1®z2-2Q1+12®1=0.

(Achtung: real tensor products!)

© For generic J, Div has invertible complex-antilinear part
= the above counterexample never appears.
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Part 2: Holomorphic curves

Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, DY satisfies Petri’s
condition.

Final remarks:

© Unique continuation = Petri holds whenever ker DY or coker DY
has dim < 3.

@ It does not always hold, e.g. for D = 0 and D* = —0:

1®iz-1®z2—-—2Qi+1201=0.
(Achtung: real tensor products!)
© For generic J, Div has invertible complex-antilinear part
= the above counterexample never appears.

@ For C-linear Cauchy-Riemann operators, the complex version of
Petri's condition always holds.
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@ It does not always hold, e.g. for D = 0 and D* = —0:
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Part 2: Holomorphic curves

Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, DY satisfies Petri’s
condition.

Final remarks:

© Unique continuation = Petri holds whenever ker DY or coker DY
has dim < 3.

@ It does not always hold, e.g. for D = 0 and D* = —0:

I®iz—i1®z2—-2Q1+i1z201=0.
(Achtung: real tensor products!)

© For generic J, Div has invertible complex-antilinear part
= the above counterexample never appears.

@ For C-linear Cauchy-Riemann operators, the complex version of

Petri's condition always holds. (No idea if this is useful.)
Ideas welcome!
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