Some Remarks on Transversality and Symmetry

Chris Wendl

Humboldt-Universität zu Berlin

September 21, 2018

(slides available at www.math.hu-berlin.de/~wendl/Amsterdam.pdf)

Example 1: Finite dimensions

Say a smooth map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is \mathbb{Z}_2 -equivariant if it satisfies

$$f(x, -y) = -f(x, y).$$

Exercise: Try to prove that every such map admits C^{∞} -close \mathbb{Z}_2 -equivariant perturbations for which 0 is a regular value.

Moral: You cannot have transversality and symmetry at the same time. .

Example 1: Finite dimensions

Say a smooth map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is \mathbb{Z}_2 -equivariant if it satisfies

$$f(x, -y) = -f(x, y).$$

Exercise: Try to prove that every such map admits C^{∞} -close \mathbb{Z}_2 -equivariant perturbations for which 0 is a regular value.

Moral: You cannot have transversality and symmetry at the same time

Example 1: Finite dimensions

Say a smooth map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is \mathbb{Z}_2 -equivariant if it satisfies

$$f(x, -y) = -f(x, y).$$

Exercise: Try to prove that every such map admits C^{∞} -close \mathbb{Z}_2 -equivariant perturbations for which 0 is a regular value.

Hint: Do not try too hard. Notice $\mathbb{R} \times \{0\} \subset f^{-1}(0)$ for all f.

Moral: You cannot have transversality and symmetry at the same time. . .

Example 1: Finite dimensions

Say a smooth map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is \mathbb{Z}_2 -equivariant if it satisfies

$$f(x, -y) = -f(x, y).$$

Exercise: Try to prove that every such map admits C^{∞} -close \mathbb{Z}_2 -equivariant perturbations for which 0 is a regular value.

Hint: Do not try too hard. Notice $\mathbb{R} \times \{0\} \subset f^{-1}(0)$ for all f.

Best case scenario: generic f intersect zero cleanly, i.e. all components of $f^{-1}(0)$ are submanifolds with

$$T_x\left(f^{-1}(0)\right) = \ker df(x).$$

Moral: You cannot have transversality and symmetry at the same time. .

Example 1: Finite dimensions

Say a smooth map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is \mathbb{Z}_2 -equivariant if it satisfies

$$f(x, -y) = -f(x, y).$$

Exercise: Try to prove that every such map admits C^{∞} -close \mathbb{Z}_2 -equivariant perturbations for which 0 is a regular value.

Hint: Do not try too hard. Notice $\mathbb{R} \times \{0\} \subset f^{-1}(0)$ for all f.

Best case scenario: generic f intersect zero **cleanly**, i.e. all components of $f^{-1}(0)$ are submanifolds with

$$T_x\left(f^{-1}(0)\right) = \ker df(x).$$

Moral: You cannot have transversality and symmetry at the same time...

...unless you can:

Example 2: Dynamics

Consider a τ -periodic orbit $\gamma:\mathbb{R}\to M$ of a smooth time-independent vector field X on M. Say γ is **nondegenerate** if

 $1 \notin \operatorname{Spectrum} (\operatorname{linearized} \operatorname{first-return} \operatorname{map} \operatorname{along} \gamma)$

Standard theorem: For generic X, all periodic orbits are nondegenerate

In other words, for generic X, the S^1 -equivariant section

$$\sigma_X: \mathcal{B} \to \mathcal{E}: (\gamma, \tau) \mapsto \dot{\gamma} - \tau X(\gamma)$$

...unless you can:

Example 2: Dynamics

Consider a au-periodic orbit $\gamma:\mathbb{R}\to M$ of a smooth time-independent vector field X on M. Say γ is **nondegenerate** if

 $1\not\in\operatorname{Spectrum}\left(\mathsf{linearized}\ \mathsf{first}\text{-}\mathsf{return}\ \mathsf{map}\ \mathsf{along}\ \gamma\right)$

Standard theorem: For generic X, all periodic orbits are **nondegenerate**

In other words, for generic X, the S^1 -equivariant section

$$\sigma_X: \mathcal{B} \to \mathcal{E}: (\gamma, \tau) \mapsto \dot{\gamma} - \tau X(\gamma)$$

...unless you can:

Example 2: Dynamics

Consider a au-periodic orbit $\gamma:\mathbb{R}\to M$ of a smooth time-independent vector field X on M. Say γ is **nondegenerate** if

 $1\not\in\operatorname{Spectrum}\left(\operatorname{linearized\ first-return\ map\ along\ }\gamma\right)$

Standard theorem: For generic X, all periodic orbits are **nondegenerate**.

In other words, for generic X, the $S^1 ext{-}\mathbf{equivariant}$ section

$$\sigma_X: \mathcal{B} \to \mathcal{E}: (\gamma, \tau) \mapsto \dot{\gamma} - \tau X(\gamma)$$

...unless you can:

Example 2: Dynamics

Consider a au-periodic orbit $\gamma:\mathbb{R}\to M$ of a smooth time-independent vector field X on M. Say γ is **nondegenerate** if

 $1 \notin \operatorname{Spectrum} (\operatorname{linearized} \operatorname{first-return} \operatorname{map} \operatorname{along} \gamma)$

Standard theorem: For generic X, all periodic orbits are **nondegenerate**.

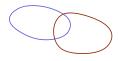
In other words, for generic X, the S^1 -equivariant section

$$\sigma_X: \mathcal{B} \to \mathcal{E}: (\gamma, \tau) \mapsto \dot{\gamma} - \tau X(\gamma)$$

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?



Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

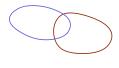
Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

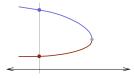
Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

 $\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?





$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

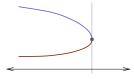


$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

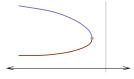
$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?



$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?



$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

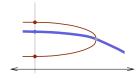
$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$



Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

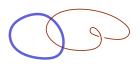
$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

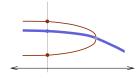


Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

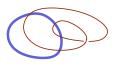


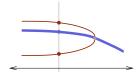


Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

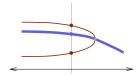




Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

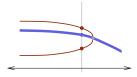
$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$



Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

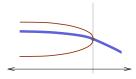
$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$



Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

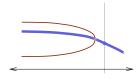
$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$



Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

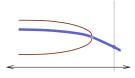
$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$



Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

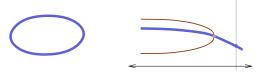


Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

(2) **Period doubling** bifurcations:



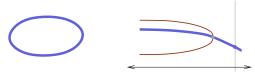
Theorem: For generic deformations, **birth-death** and **period doubling** are the **only** bifurcations.

Question: What happens to orbits under deformations $\{X_s\}_{s\in[0,1]}$?

(1) Birth-death bifurcations:

$$\mathcal{M}(\{X_s\}) := \{(s,\gamma) \mid s \in [0,1] \text{ and } \gamma \text{ is an orbit of } X_s\}$$

(2) **Period doubling** bifurcations:



Theorem: For generic deformations, **birth-death** and **period doubling** are the **only** bifurcations. (i.e. "walls" of codim. 1 comes in two types)

Example 3: Gromov-Witten theory

(X,J) a symplectic Calabi-Yau 3-fold,

$$N_A^g(X) = \text{``}\#\mathcal{M}_g(A,J)\text{''} \in \mathbb{Q}$$

where $\mathcal{M}_g(A,J)\cong \bar{\partial}_J^{-1}(0)$ is the moduli space of (unparametrized) J-holomorphic curves $u:(\Sigma,j)\to (X,J)$ of genus $g\geq 0$ homologous to $A\in H_2(X)$. Here, $c_1(TX)=0$ and $\dim X=6$ imply

vir-dim
$$\mathcal{M}_g(A,J) = \operatorname{ind} D(\bar{\partial}_J) = 0.$$

Trouble: If $v \in \mathcal{M}_h(A, J)$ and $d \ge 2$, then

 $\mathcal{M}_g(dA,J)\supset \Big\{u=v\circ\varphi\ \Big|\ \varphi: \Sigma_g \xrightarrow{d:1} \Sigma_h \text{ a holomorphic branched cover}\Big\}$

which has dimension $2\#\{\text{branch points}\} > 0$ in general, $\Rightarrow \bar{\partial}_J \not \uparrow \downarrow 0$

Example 3: Gromov-Witten theory

(X,J) a symplectic Calabi-Yau 3-fold,

$$N_A^g(X) = \text{``}\#\mathcal{M}_g(A,J)\text{''} \in \mathbb{Q},$$

where $\mathcal{M}_g(A,J)\cong \bar{\partial}_J^{-1}(0)$ is the moduli space of (unparametrized) *J*-holomorphic curves $u:(\Sigma,j)\to (X,J)$ of genus $g\geq 0$ homologous to $A\in H_2(X)$. Here, $c_1(TX)=0$ and $\dim X=6$ imply

vir-dim
$$\mathcal{M}_g(A,J) = \operatorname{ind} D(\bar{\partial}_J) = 0.$$

Trouble: If $v \in \mathcal{M}_h(A, J)$ and $d \ge 2$, then

 $\mathcal{M}_g(dA,J)\supset \left\{u=v\circ\varphi\ \Big|\ \varphi:\Sigma_g\stackrel{d:1}{\longrightarrow}\Sigma_h \text{ a holomorphic branched cover}
ight\}$

which has dimension $2\#\{\text{branch points}\} > 0$ in general, $\Rightarrow \bar{\partial}_J \not \uparrow 0$.

Example 3: Gromov-Witten theory

(X, J) a symplectic Calabi-Yau 3-fold,

$$N_A^g(X) = \text{``}\#\mathcal{M}_g(A,J)\text{''} \in \mathbb{Q},$$

where $\mathcal{M}_a(A,J) \cong \bar{\partial}_I^{-1}(0)$ is the moduli space of (unparametrized) *J*-holomorphic curves $u:(\Sigma,j)\to (X,J)$ of genus $g\geq 0$ homologous to $A \in H_2(X)$. Here, $c_1(TX) = 0$ and $\dim X = 6$ imply

vir-dim
$$\mathcal{M}_g(A,J) = \operatorname{ind} D(\bar{\partial}_J) = 0.$$

Trouble: If $v \in \mathcal{M}_h(A, J)$ and $d \geq 2$, then

 $\mathcal{M}_g(dA,J)\supset \left\{u=v\circ\varphi\;\middle|\; \varphi:\Sigma_g\stackrel{d:1}{\longrightarrow}\Sigma_h \text{ a holomorphic branched cover}\right\}$

which has dimension $2\#\{\text{branch points}\} > 0$ in general, $\Rightarrow \partial_T \not = 0$.

Example 3: Gromov-Witten theory

(X,J) a symplectic Calabi-Yau 3-fold,

$$N_A^g(X) = \text{``}\#\mathcal{M}_g(A,J)\text{''} \in \mathbb{Q},$$

where $\mathcal{M}_g(A,J)\cong \bar{\partial}_J^{-1}(0)$ is the moduli space of (unparametrized) J-holomorphic curves $u:(\Sigma,j)\to (X,J)$ of genus $g\geq 0$ homologous to $A\in H_2(X)$. Here, $c_1(TX)=0$ and $\dim X=6$ imply

vir-dim
$$\mathcal{M}_g(A,J) = \operatorname{ind} D(\bar{\partial}_J) = 0.$$

Trouble: If $v \in \mathcal{M}_h(A, J)$ and $d \ge 2$, then

 $\mathcal{M}_g(dA,J)\supset \left\{u=v\circ\varphi\;\middle|\; \varphi:\Sigma_g\stackrel{d:1}{\longrightarrow}\Sigma_h \text{ a holomorphic branched cover}
ight\}$

which has dimension $2\#\{\text{branch points}\} > 0$ in general, $\Rightarrow \bar{\partial}_J \not \uparrow 0$.

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, $\bar{\partial}_J$ intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X)\in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of finitely many disjoint embedded curves.

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, ∂_J intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X) \in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of **finitely many** disjoint embedded curves.

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, $\bar{\partial}_J$ intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X) \in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of **finitely many** disjoint embedded curves.

A history of the conjecture

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, ∂_J intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X) \in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of **finitely many** disjoint embedded curves.

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, ∂_J intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X) \in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of **finitely many** disjoint embedded curves.

A history of the conjecture (with names redacted):

• July 2008: First wrong proof, later withdrawn and abandoned

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, $\bar{\partial}_J$ intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X) \in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of **finitely many** disjoint embedded curves.

- July 2008: First wrong proof, later withdrawn and abandoned
- Oct. 2008: Second wrong proof, later published as a weaker result

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, $\bar{\partial}_J$ intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X) \in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of **finitely many** disjoint embedded curves.

- July 2008: First wrong proof, later withdrawn and abandoned
- Oct. 2008: Second wrong proof, later published as a weaker result
- July 2014: Third wrong proof, later published as a weaker result

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, ∂_J intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X) \in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of **finitely many** disjoint embedded curves.

- July 2008: First wrong proof, later withdrawn and abandoned
- Oct. 2008: Second wrong proof, later published as a weaker result
- July 2014: Third wrong proof, later published as a weaker result
- Sept. 2016: Fourth wrong proof, survived almost 2 years but withdrawn last month

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, $\bar{\partial}_J$ intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X) \in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of **finitely many** disjoint embedded curves.

A history of the conjecture (with names redacted):

- July 2008: First wrong proof, later withdrawn and abandoned
- Oct. 2008: Second wrong proof, later published as a weaker result
- July 2014: Third wrong proof, later published as a weaker result
- Sept. 2016: Fourth wrong proof, survived almost 2 years but withdrawn last month

Those last two were both by me.

Conjecture ("super-rigidity", Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, ∂_J intersects zero **cleanly**.

 \Rightarrow For generic J, each $N_A^g(X) \in \mathbb{Q}$ is a sum of Euler numbers of obstruction bundles over the spaces of branched covers of **finitely many** disjoint embedded curves.

A history of the conjecture (with names redacted):

- July 2008: First wrong proof, later withdrawn and abandoned
- Oct. 2008: Second wrong proof, later published as a weaker result
- July 2014: Third wrong proof, later published as a weaker result
- Sept. 2016: Fourth wrong proof, survived almost 2 years but withdrawn last month

Those last two were both by me. (Oops. Math is hard.)

For the rest of the talk, I will tell you about:

- The finite-dimensional setting. (Mostly elementary, no claim of originality.)
- The holomorphic curve setting.(No claim of a proof of super-rigidity.)

For the rest of the talk, I will tell you about:

- The finite-dimensional setting. (Mostly elementary, no claim of originality.)
- The holomorphic curve setting. (No claim of a proof of super-rigidity.)

For the rest of the talk, I will tell you about:

- The finite-dimensional setting. (Mostly elementary, no claim of originality.)
- The holomorphic curve setting. (No claim of a proof of super-rigidity.)

The ideas are based mainly on the paper

C. Wendl, Transversality and super-rigidity for multiply covered holomorphic curves (preprint 2016, arXiv:1609.09867)

For the rest of the talk, I will tell you about:

- The finite-dimensional setting. (Mostly elementary, no claim of originality.)
- The holomorphic curve setting. (No claim of a proof of super-rigidity.)

The ideas are based mainly on the paper withdrawn preprint

C. Wendl, Transversality and super-rigidity for multiply covered holomorphic curves (preprint 2016, arXiv:1609.09867)

For the rest of the talk, I will tell you about:

- The finite-dimensional setting. (Mostly elementary, no claim of originality.)
- The holomorphic curve setting. (No claim of a proof of super-rigidity.)

The ideas are based mainly on the paper withdrawn preprint withdrawn but still **90% correct** preprint

C. Wendl, Transversality and super-rigidity for multiply covered holomorphic curves (preprint 2016, arXiv:1609.09867)

For the rest of the talk, I will tell you about:

- The finite-dimensional setting. (Mostly elementary, no claim of originality.)
- The holomorphic curve setting. (No claim of a proof of super-rigidity.)

The ideas are based mainly on the paper withdrawn preprint withdrawn but still **90% correct** preprint

C. Wendl, Transversality and super-rigidity for multiply covered holomorphic curves (preprint 2016, arXiv:1609.09867)

(I'll talk a bit about the other 10% too.)

Fix an n-dimensional orbifold M and an orbibundle $E \to M$ of rank m.

Every $x \in M$ has a **finite group** G_x and a neighborhood $\mathcal{U}_x \subset M$ such that

$$E|_{\mathcal{U}_x} \cong (\mathcal{O} \times \mathbb{R}^m) / G_x$$

for some **linear** action of G_x on \mathbb{R}^m and a neighborhood $\mathcal{O} \subset \mathbb{R}^n$ of 0.

Question: Do generic $\sigma \in \Gamma(E)$ intersect the zero-section **transversely** (or at least **cleanly**)?

Sample theorem 1: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero cleanly.

Fix an n-dimensional orbifold M and an orbibundle $E \to M$ of rank m. Every $x \in M$ has a **finite group** G_x and a neighborhood $\mathcal{U}_x \subset M$ such that

$$E|_{\mathcal{U}_x} \cong (\mathcal{O} \times \mathbb{R}^m) / G_x$$

for some linear action of G_x on \mathbb{R}^m and a neighborhood $\mathcal{O} \subset \mathbb{R}^n$ of 0.

Question: Do generic $\sigma \in \Gamma(E)$ intersect the zero-section **transversely** (or at least **cleanly**)?

Sample theorem 1: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero cleanly.

Fix an n-dimensional orbifold M and an orbibundle $E \to M$ of rank m. Every $x \in M$ has a **finite group** G_x and a neighborhood $\mathcal{U}_x \subset M$ such that

$$E|_{\mathcal{U}_x} \cong (\mathcal{O} \times \mathbb{R}^m) / G_x$$

for some **linear** action of G_x on \mathbb{R}^m and a neighborhood $\mathcal{O} \subset \mathbb{R}^n$ of 0.

Question: Do generic $\sigma \in \Gamma(E)$ intersect the zero-section **transversely** (or at least **cleanly**)?

Sample theorem 1: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero cleanly.

Fix an n-dimensional orbifold M and an orbibundle $E \to M$ of rank m. Every $x \in M$ has a **finite group** G_x and a neighborhood $\mathcal{U}_x \subset M$ such that

$$E|_{\mathcal{U}_x} \cong (\mathcal{O} \times \mathbb{R}^m) / G_x$$

for some **linear** action of G_x on \mathbb{R}^m and a neighborhood $\mathcal{O} \subset \mathbb{R}^n$ of 0.

Question: Do generic $\sigma \in \Gamma(E)$ intersect the zero-section **transversely** (or at least **cleanly**)?

Sample theorem 1: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Fix an n-dimensional orbifold M and an orbibundle $E \to M$ of rank m. Every $x \in M$ has a **finite group** G_x and a neighborhood $\mathcal{U}_x \subset M$ such that

$$E|_{\mathcal{U}_x} \cong (\mathcal{O} \times \mathbb{R}^m) / G_x$$

for some **linear** action of G_x on \mathbb{R}^m and a neighborhood $\mathcal{O} \subset \mathbb{R}^n$ of 0.

Question: Do generic $\sigma \in \Gamma(E)$ intersect the zero-section **transversely** (or at least **cleanly**)?

Sample theorem 1: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Ingredient A: Stratification via symmetry

For any finite group G and representations $\rho: G \to \mathrm{GL}(n,\mathbb{R})$, $\tau: G \to \mathrm{GL}(m,\mathbb{R})$, define the **submanifold**

$$M_{\rho,\tau} = \big\{ x \in M \ \big| \ G_x \cong G, \ \text{acting on} \ T_x M \ \text{as} \ \rho \ \text{and on} \ E_x \ \text{as} \ \tau \big\}$$

and subbundle

$$E_{
ho, au}=\left\{v\in E|_{M_{
ho, au}}\;\Big|\;G\; ext{acts trivially on }v\;
ight\}.$$

Let $\{\theta_i: G \to \operatorname{Aut}_{\mathbb{R}}(W_i)\}_{i=1}^N$ denote the **real irreps** of G, with θ_1 as the trivial representation, and let $m_i(\rho) := \text{multiplicity of } \theta_i \text{ in } \rho$. Then

$$\dim M_{\rho,\tau} = m_1(\rho), \quad \operatorname{rank} E_{\rho,\tau} = m_1(\tau).$$

The orbifold M is thus a countable union of disjoint smooth submanifolds $M_{\rho,\tau}$ with distinguished subbundles $E_{\rho,\tau}\subset E|_{M_{\rho,\tau}}$. Notice: For all $\sigma\in\Gamma(E)$, $\sigma(M_{\rho,\tau})\subset E_{\rho,\tau}$,

 $\Rightarrow \sigma \not \cap 0$ at $x \in M_{\rho,\tau}$ unless τ is trivial

Ingredient A: Stratification via symmetry

For any finite group G and representations $\rho: G \to \mathrm{GL}(n,\mathbb{R})$, $\tau: G \to \mathrm{GL}(m,\mathbb{R})$, define the **submanifold**

$$M_{
ho, au}=ig\{x\in M\ ig|\ G_x\cong G,\ ext{acting on }T_xM\ ext{ as }
ho\ ext{and on }E_x\ ext{as } auig\}$$

and subbundle

$$E_{\rho,\tau} = \left\{ v \in E|_{M_{\rho,\tau}} \; \middle| \; G \text{ acts trivially on } v \; \right\}.$$

Let $\{\theta_i: G \to \operatorname{Aut}_{\mathbb{R}}(W_i)\}_{i=1}^N$ denote the **real irreps** of G, with θ_1 as the trivial representation, and let $m_i(\rho) := \text{multiplicity of } \theta_i \text{ in } \rho$. Then

$$\dim M_{\rho,\tau} = m_1(\rho), \quad \operatorname{rank} E_{\rho,\tau} = m_1(\tau).$$

The orbifold M is thus a countable union of disjoint smooth submanifolds $M_{\rho,\tau}$ with distinguished subbundles $E_{\rho,\tau}\subset E|_{M_{\rho,\tau}}$. Notice: For all $\sigma\in\Gamma(E)$, $\sigma(M_{\rho,\tau})\subset E_{\rho,\tau}$,

 $\Rightarrow \sigma \not \cap 0$ at $x \in M_{
ho, au}$ unless au is trivial

Ingredient A: Stratification via symmetry

For any finite group G and representations $\rho: G \to \mathrm{GL}(n,\mathbb{R})$, $\tau: G \to \mathrm{GL}(m,\mathbb{R})$, define the **submanifold**

$$M_{
ho, au}=ig\{x\in M\ ig|\ G_x\cong G,\ ext{acting on }T_xM\ ext{ as }
ho\ ext{and on }E_x\ ext{ as } auig\}$$

and subbundle

$$E_{\rho,\tau} = \left\{ v \in E|_{M_{\rho,\tau}} \; \middle| \; G \text{ acts trivially on } v \; \right\}.$$

Let $\{\theta_i: G \to \operatorname{Aut}_{\mathbb{R}}(W_i)\}_{i=1}^N$ denote the **real irreps** of G, with θ_1 as the trivial representation, and let $m_i(\rho) := \operatorname{multiplicity}$ of θ_i in ρ . Then

$$\dim M_{\rho,\tau} = m_1(\rho), \qquad \operatorname{rank} E_{\rho,\tau} = m_1(\tau).$$

The orbifold M is thus a countable union of disjoint smooth submanifolds $M_{\rho,\tau}$ with distinguished subbundles $E_{\rho,\tau}\subset E|_{M_{\rho,\tau}}$. Notice: For all $\sigma\in\Gamma(E)$, $\sigma(M_{\rho,\tau})\subset E_{\rho,\tau}$,

 $\Rightarrow \sigma \not \cap 0$ at $x \in M_{\rho,\tau}$ unless τ is trivial.

Ingredient A: Stratification via symmetry

For any finite group G and representations $\rho: G \to \mathrm{GL}(n,\mathbb{R})$, $\tau: G \to \mathrm{GL}(m,\mathbb{R})$, define the **submanifold**

$$M_{
ho, au}=ig\{x\in M\ ig|\ G_x\cong G,\ ext{acting on }T_xM\ ext{ as }
ho\ ext{and on }E_x\ ext{as } auig\}$$

and subbundle

$$E_{\rho,\tau} = \left\{ v \in E|_{M_{\rho,\tau}} \; \middle| \; G \text{ acts trivially on } v \; \right\}.$$

Let $\{\theta_i: G \to \operatorname{Aut}_{\mathbb{R}}(W_i)\}_{i=1}^N$ denote the **real irreps** of G, with θ_1 as the trivial representation, and let $m_i(\rho) :=$ multiplicity of θ_i in ρ . Then

$$\dim M_{\rho,\tau} = m_1(\rho), \qquad \operatorname{rank} E_{\rho,\tau} = m_1(\tau).$$

The orbifold M is thus a countable union of disjoint smooth submanifolds $M_{\rho,\tau}$ with distinguished subbundles $E_{\rho,\tau}\subset E|_{M_{\rho,\tau}}$.

Notice: For all $\sigma \in \Gamma(E)$, $\sigma(M_{\rho,\tau}) \subset E_{\rho,\tau}$,

 $\Rightarrow \sigma \not \cap 0$ at $x \in M_{\rho,\tau}$ unless τ is trivial

Ingredient A: Stratification via symmetry

For any finite group G and representations $\rho: G \to \mathrm{GL}(n,\mathbb{R})$, $\tau: G \to \mathrm{GL}(m,\mathbb{R})$, define the **submanifold**

$$M_{\rho,\tau} = \big\{ x \in M \ \big| \ G_x \cong G, \text{ acting on } T_xM \text{ as } \rho \text{ and on } E_x \text{ as } \tau \big\}$$

and subbundle

$$E_{\rho,\tau} = \left\{ v \in E|_{M_{\rho,\tau}} \; \middle| \; G \text{ acts trivially on } v \; \right\}.$$

Let $\{\theta_i: G \to \operatorname{Aut}_{\mathbb{R}}(W_i)\}_{i=1}^N$ denote the **real irreps** of G, with θ_1 as the trivial representation, and let $m_i(\rho) := \operatorname{multiplicity}$ of θ_i in ρ . Then

$$\dim M_{\rho,\tau} = m_1(\rho), \qquad \operatorname{rank} E_{\rho,\tau} = m_1(\tau).$$

The orbifold M is thus a countable union of disjoint smooth submanifolds $M_{\rho,\tau}$ with distinguished subbundles $E_{\rho,\tau} \subset E|_{M_{\rho,\tau}}$. Notice: For all $\sigma \in \Gamma(E)$, $\sigma(M_{\rho,\tau}) \subset E_{\rho,\tau}$,

$$\Rightarrow \sigma \not \uparrow 0$$
 at $x \in M_{\rho,\tau}$ unless τ is trivial.

Lemma (standard transversality arguments)

For generic $\sigma \in \Gamma(E)$, $\sigma|_{M_{\rho,\tau}}$ is transverse to the zero-section of $E_{\rho,\tau} \to M_{\rho,\tau}$ for every G, ρ, τ .

 \Rightarrow for generic $\sigma \in \Gamma(E)$, $\mathcal{M}(\sigma) := \sigma^{-1}(0)$ is a countable union of **disjoint** smooth manifolds

$$\mathcal{M}_{\rho,\tau}(\sigma) := \mathcal{M}(\sigma) \cap M_{\rho,\tau}$$

of dimension
$$m_1(\rho) - m_1(\tau)$$
. $(\Rightarrow \mathcal{M}_{\rho,\tau}(\sigma) = \emptyset \text{ if } m_1(\rho) < m_1(\tau).)$

Lemma (standard transversality arguments)

For generic $\sigma \in \Gamma(E)$, $\sigma|_{M_{\rho,\tau}}$ is transverse to the zero-section of $E_{\rho,\tau} \to M_{\rho,\tau}$ for every G, ρ, τ .

 \Rightarrow for generic $\sigma \in \Gamma(E)$, $\mathcal{M}(\sigma) := \sigma^{-1}(0)$ is a countable union of **disjoint** smooth manifolds

$$\mathcal{M}_{\rho,\tau}(\sigma) := \mathcal{M}(\sigma) \cap M_{\rho,\tau}$$

of dimension
$$m_1(\rho) - m_1(\tau)$$
. $(\Rightarrow \mathcal{M}_{\rho,\tau}(\sigma) = \emptyset$ if $m_1(\rho) < m_1(\tau)$.)

Lemma (standard transversality arguments)

For generic $\sigma \in \Gamma(E)$, $\sigma|_{M_{\rho,\tau}}$ is transverse to the zero-section of $E_{\rho,\tau} \to M_{\rho,\tau}$ for every G, ρ, τ .

 \Rightarrow for generic $\sigma \in \Gamma(E)$, $\mathcal{M}(\sigma) := \sigma^{-1}(0)$ is a countable union of **disjoint** smooth manifolds

$$\mathcal{M}_{\rho,\tau}(\sigma) := \mathcal{M}(\sigma) \cap M_{\rho,\tau}$$

of dimension
$$m_1(\rho) - m_1(\tau)$$
. $(\Rightarrow \mathcal{M}_{\rho,\tau}(\sigma) = \emptyset \text{ if } m_1(\rho) < m_1(\tau).)$

Lemma (standard transversality arguments)

For generic $\sigma \in \Gamma(E)$, $\sigma|_{M_{\rho,\tau}}$ is transverse to the zero-section of $E_{\rho,\tau} \to M_{\rho,\tau}$ for every G, ρ, τ .

 \Rightarrow for generic $\sigma \in \Gamma(E)$, $\mathcal{M}(\sigma) := \sigma^{-1}(0)$ is a countable union of **disjoint** smooth manifolds

$$\mathcal{M}_{\rho,\tau}(\sigma) := \mathcal{M}(\sigma) \cap M_{\rho,\tau}$$

of dimension
$$m_1(\rho) - m_1(\tau)$$
. $(\Rightarrow \mathcal{M}_{\rho,\tau}(\sigma) = \emptyset \text{ if } m_1(\rho) < m_1(\tau).)$

Ingredient B: Splitting the linearization

At $x \in \mathcal{M}_{\rho,\tau}(\sigma)$, there is a linearization

$$\mathbf{D}_x := D\sigma(x) : T_x M \to E_x.$$

Recall the irreps $\{\theta_i: G_x \to \operatorname{Aut}_{\mathbb{R}}(W_i)\}_{i=1}^N$, and denote $d_i:=\dim W_i$.

Since \mathbf{D}_x is G_x -equivariant, Schur's lemma implies that it splits with respect to the isotypic decompositions $T_xM=\bigoplus_{i=1}^N T_xM^i$ of ρ and $E_x=\bigoplus_{i=1}^N E_x^i$ of τ , giving

$$\mathbf{D}_x = \mathbf{D}_x^1 \oplus \ldots \oplus \mathbf{D}_x^N, \qquad \text{where} \qquad \mathbf{D}_x^i : T_x M^i \to E_x^i$$

These operators have Fredholm indices

$$\operatorname{ind} \mathbf{D}_{x}^{i} = d_{i} \left[m_{i}(\rho) - m_{i}(\tau) \right],$$

and we know \mathbf{D}_x^1 is surjective if σ is generic.

Ingredient B: Splitting the linearization

At $x \in \mathcal{M}_{\rho,\tau}(\sigma)$, there is a linearization

$$\mathbf{D}_x := D\sigma(x) : T_x M \to E_x.$$

Recall the irreps $\{ m{ heta}_i : G_x o \operatorname{Aut}_{\mathbb{R}}(W_i) \}_{i=1}^N$, and denote $d_i := \dim W_i$.

Since \mathbf{D}_x is G_x -equivariant, Schur's lemma implies that it splits with respect to the **isotypic decompositions** $T_xM = \bigoplus_{i=1}^N T_xM^i$ of ρ and $E_x = \bigoplus_{i=1}^N E_x^i$ of τ , giving

$$\mathbf{D}_x = \mathbf{D}_x^1 \oplus \ldots \oplus \mathbf{D}_x^N, \quad \text{where} \quad \mathbf{D}_x^i : T_x M^i \to E_x^i$$

These operators have Fredholm indices

$$\operatorname{ind} \mathbf{D}_x^i = d_i \left[m_i(\rho) - m_i(\tau) \right],$$

and we know \mathbf{D}_x^1 is surjective if σ is generic.

Ingredient B: Splitting the linearization

At $x \in \mathcal{M}_{\rho,\tau}(\sigma)$, there is a linearization

$$\mathbf{D}_x := D\sigma(x) : T_x M \to E_x.$$

Recall the irreps $\{\theta_i:G_x o\operatorname{Aut}_{\mathbb{R}}(W_i)\}_{i=1}^N$, and denote $d_i:=\dim W_i$.

Since D_x is G_x -equivariant, Schur's lemma implies that it splits with respect to the isotypic decompositions $T_xM=\bigoplus_{i=1}^N T_xM^i$ of ρ and $E_x=\bigoplus_{i=1}^N E_x^i$ of τ , giving

$$\mathbf{D}_x = \mathbf{D}_x^1 \oplus \ldots \oplus \mathbf{D}_x^N, \qquad \text{ where } \qquad \mathbf{D}_x^i : T_x M^i \to E_x^i.$$

These operators have Fredholm indices

$$\operatorname{ind} \mathbf{D}_{x}^{i} = d_{i} \left[m_{i}(\rho) - m_{i}(\tau) \right],$$

and we know \mathbf{D}_{x}^{1} is surjective if σ is generic.

Ingredient B: Splitting the linearization

At $x \in \mathcal{M}_{\rho,\tau}(\sigma)$, there is a linearization

$$\mathbf{D}_x := D\sigma(x) : T_x M \to E_x.$$

Recall the irreps $\{\theta_i:G_x o\operatorname{Aut}_{\mathbb{R}}(W_i)\}_{i=1}^N$, and denote $d_i:=\dim W_i$.

Since D_x is G_x -equivariant, Schur's lemma implies that it splits with respect to the isotypic decompositions $T_xM=\bigoplus_{i=1}^N T_xM^i$ of ρ and $E_x=\bigoplus_{i=1}^N E_x^i$ of τ , giving

$$\mathbf{D}_x = \mathbf{D}_x^1 \oplus \ldots \oplus \mathbf{D}_x^N, \quad \text{where} \quad \mathbf{D}_x^i : T_x M^i \to E_x^i.$$

These operators have Fredholm indices

$$\operatorname{ind} \mathbf{D}_{x}^{i} = d_{i} \left[m_{i}(\rho) - m_{i}(\tau) \right],$$

and we know \mathbf{D}_x^1 is surjective if σ is generic.

Ingredient B: Splitting the linearization

At $x \in \mathcal{M}_{\rho,\tau}(\sigma)$, there is a linearization

$$\mathbf{D}_x := D\sigma(x) : T_x M \to E_x.$$

Recall the irreps $\{\theta_i:G_x o\operatorname{Aut}_{\mathbb{R}}(W_i)\}_{i=1}^N$, and denote $d_i:=\dim W_i$.

Since D_x is G_x -equivariant, Schur's lemma implies that it splits with respect to the **isotypic decompositions** $T_xM=\bigoplus_{i=1}^N T_xM^i$ of ρ and $E_x=\bigoplus_{i=1}^N E_x^i$ of τ , giving

$$\mathbf{D}_x = \mathbf{D}_x^1 \oplus \ldots \oplus \mathbf{D}_x^N, \qquad \text{ where } \qquad \mathbf{D}_x^i : T_x M^i \to E_x^i.$$

These operators have Fredholm indices

ind
$$\mathbf{D}_x^i = d_i \left[m_i(\rho) - m_i(\tau) \right],$$

and we know \mathbf{D}_x^1 is surjective if σ is generic.

Ingredient C: Building walls (in the sense of "crossing")

 G_x acts on $\ker \mathbf{D}_x^i$ and $\operatorname{coker} \mathbf{D}_x^i$ as the irrep θ_i with some multiplicities, so their dimensions are **divisible by** d_i .

For nonnegative integers $\mathbf{k} = (k_1, \dots, k_N)$ and $\mathbf{c} = (c_1, \dots, c_N)$, let

$$\mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c}) = \left\{ x \in \mathcal{M}_{\rho,\tau}(\sigma) \middle| \dim \ker \mathbf{D}_x^i = d_i k_i, \dim \operatorname{coker} \mathbf{D}_x^i = d_i c_i \,\forall i \in \mathcal{D}_x^i \right\}$$

Workhorse theorem

For generic $\sigma \in \Gamma(E)$, for all choices $G, \rho, \tau, \mathbf{k}, \mathbf{c}$,

$$\mathcal{M}_{
ho, au}(\sigma;\mathbf{k},\mathbf{c})\subset\mathcal{M}_{
ho, au}(\sigma)$$

Ingredient C: Building walls (in the sense of "crossing")

 G_x acts on $\ker \mathbf{D}_x^i$ and $\operatorname{coker} \mathbf{D}_x^i$ as the irrep $\boldsymbol{\theta}_i$ with some multiplicities, so their dimensions are **divisible by** d_i .

For nonnegative integers $\mathbf{k} = (k_1, \dots, k_N)$ and $\mathbf{c} = (c_1, \dots, c_N)$, let

$$\mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = \left\{ x \in \mathcal{M}_{\rho,\tau}(\sigma) \middle| \dim \ker \mathbf{D}_x^i = d_i k_i, \dim \operatorname{coker} \mathbf{D}_x^i = d_i c_i \, \forall i \right\}$$

Workhorse theorem

For generic $\sigma \in \Gamma(E)$, for all choices $G, \rho, \tau, \mathbf{k}, \mathbf{c}$,

$$\mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})\subset\mathcal{M}_{\rho,\tau}(\sigma)$$

Ingredient C: Building walls (in the sense of "crossing")

 G_x acts on $\ker \mathbf{D}_x^i$ and $\operatorname{coker} \mathbf{D}_x^i$ as the irrep $\boldsymbol{\theta}_i$ with some multiplicities, so their dimensions are **divisible by** d_i .

For nonnegative integers $\mathbf{k} = (k_1, \dots, k_N)$ and $\mathbf{c} = (c_1, \dots, c_N)$, let

$$\mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c}) = \left\{ x \in \mathcal{M}_{\rho,\tau}(\sigma) \middle| \dim \ker \mathbf{D}_x^i = d_i k_i, \dim \operatorname{coker} \mathbf{D}_x^i = d_i c_i \, \forall i \right\}$$

Workhorse theorem

For generic $\sigma \in \Gamma(E)$, for all choices $G, \rho, \tau, \mathbf{k}, \mathbf{c}$,

$$\mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})\subset\mathcal{M}_{\rho,\tau}(\sigma)$$

Ingredient C: Building walls (in the sense of "crossing")

 G_x acts on $\ker \mathbf{D}_x^i$ and $\operatorname{coker} \mathbf{D}_x^i$ as the irrep θ_i with some multiplicities, so their dimensions are **divisible by** d_i .

For nonnegative integers $\mathbf{k}=(k_1,\ldots,k_N)$ and $\mathbf{c}=(c_1,\ldots,c_N)$, let

$$\mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c}) = \left\{ x \in \mathcal{M}_{\rho,\tau}(\sigma) \middle| \dim \ker \mathbf{D}_x^i = d_i k_i, \dim \operatorname{coker} \mathbf{D}_x^i = d_i c_i \, \forall i \right\}$$

Workhorse theorem

For generic $\sigma \in \Gamma(E)$, for all choices $G, \rho, \tau, \mathbf{k}, \mathbf{c}$,

$$\mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})\subset\mathcal{M}_{\rho,\tau}(\sigma)$$

Ingredient C: Building walls (in the sense of "crossing")

 G_x acts on $\ker \mathbf{D}_x^i$ and $\operatorname{coker} \mathbf{D}_x^i$ as the irrep $\boldsymbol{\theta}_i$ with some multiplicities, so their dimensions are **divisible by** d_i .

For nonnegative integers $\mathbf{k}=(k_1,\ldots,k_N)$ and $\mathbf{c}=(c_1,\ldots,c_N)$, let

$$\mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = \left\{ x \in \mathcal{M}_{\rho,\tau}(\sigma) \middle| \dim \ker \mathbf{D}_x^i = d_i k_i, \dim \operatorname{coker} \mathbf{D}_x^i = d_i c_i \, \forall i \right\}$$

Workhorse theorem

For generic $\sigma \in \Gamma(E)$, for all choices $G, \rho, \tau, \mathbf{k}, \mathbf{c}$,

$$\mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})\subset\mathcal{M}_{\rho,\tau}(\sigma)$$

Sketch of proof:

Replace $\Gamma(E)$ with a suitable Banach manifold of sections.

The **Sard-Smale** theorem \Rightarrow it suffices to prove

$$\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c}) := \big\{ (\sigma,x) \ \big| \ \sigma \in \Gamma(E) \text{ and } x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c}) \big]$$

is a smooth Banach submanifold of $\mathcal{M}_{\rho,\tau}:=\{(\sigma,x)\mid x\in\mathcal{M}_{\rho,\tau}(\sigma)\}$ with the **right codimension**. Choose $(\sigma_0,x_0)\in\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c})$ and consider nearby elements $(\sigma,x)\in\mathcal{M}_{\rho,\tau}$. The splittings

$$D\sigma(x) = \bigoplus_{i=1}^{N} \mathbf{D}_{x}^{i}$$

vary continuously with (σ,x) , so we have

$$(\sigma, x) \in \mathcal{M}_{\rho, \tau}(\mathbf{k}, \mathbf{c}) \Leftrightarrow \dim \ker D\sigma(x) = \dim \ker D\sigma_0(x_0) \Leftrightarrow \Phi(\sigma, x) = 0$$

for a smooth function

$$\Phi(\sigma, x) \in \operatorname{Hom}_G(\ker D\sigma_0(x_0), \operatorname{coker} D\sigma_0(x_0)) \cong \mathbb{R}^{\sum_i t_i k_i c_i}.$$

Sketch of proof:

Replace $\Gamma(E)$ with a suitable Banach manifold of sections.

The **Sard-Smale** theorem \Rightarrow it suffices to prove

$$\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c}) := \{(\sigma,x) \mid \sigma \in \Gamma(E) \text{ and } x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})\}$$

is a smooth Banach submanifold of $\mathcal{M}_{\rho,\tau}:=\{(\sigma,x)\mid x\in\mathcal{M}_{\rho,\tau}(\sigma)\}$ with the **right codimension**. Choose $(\sigma_0,x_0)\in\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c})$ and consider nearby elements $(\sigma,x)\in\mathcal{M}_{\rho,\tau}$. The splittings

$$D\sigma(x) = \bigoplus_{i=1}^{N} \mathbf{D}_{x}^{i}$$

vary continuously with (σ, x) , so we have

$$(\sigma, x) \in \mathcal{M}_{\rho, \tau}(\mathbf{k}, \mathbf{c}) \Leftrightarrow \dim \ker D\sigma(x) = \dim \ker D\sigma_0(x_0) \Leftrightarrow \Phi(\sigma, x) = 0$$

for a smooth function

 $\Phi(\sigma, x) \in \operatorname{Hom}_G(\ker D\sigma_0(x_0), \operatorname{coker} D\sigma_0(x_0)) \cong \mathbb{R}^{\sum_i t_i k_i c_i}.$

Sketch of proof:

Replace $\Gamma(E)$ with a suitable Banach manifold of sections.

The **Sard-Smale** theorem \Rightarrow it suffices to prove

$$\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c}) := \{(\sigma,x) \mid \sigma \in \Gamma(E) \text{ and } x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})\}$$

is a smooth Banach submanifold of $\mathcal{M}_{\rho,\tau}:=\{(\sigma,x)\mid x\in\mathcal{M}_{\rho,\tau}(\sigma)\}$ with the **right codimension**. Choose $(\sigma_0,x_0)\in\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c})$ and consider nearby elements $(\sigma,x)\in\mathcal{M}_{\rho,\tau}$. The splittings

$$D\sigma(x) = \bigoplus_{i=1}^{N} \mathbf{D}_{x}^{i}$$

vary continuously with (σ, x) , so we have

$$(\sigma, x) \in \mathcal{M}_{\rho, \tau}(\mathbf{k}, \mathbf{c}) \Leftrightarrow \dim \ker D\sigma(x) = \dim \ker D\sigma_0(x_0) \Leftrightarrow \Phi(\sigma, x) = 0$$

for a smooth function

$$\Phi(\sigma, x) \in \operatorname{Hom}_G(\ker D\sigma_0(x_0), \operatorname{coker} D\sigma_0(x_0)) \cong \mathbb{R}^{\sum_i t_i k_i c_i}.$$

Sketch of proof:

Replace $\Gamma(E)$ with a suitable Banach manifold of sections.

The **Sard-Smale** theorem \Rightarrow it suffices to prove

$$\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c}) := \{(\sigma,x) \mid \sigma \in \Gamma(E) \text{ and } x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})\}$$

is a smooth Banach submanifold of $\mathcal{M}_{\rho,\tau}:=\{(\sigma,x)\mid x\in\mathcal{M}_{\rho,\tau}(\sigma)\}$ with the **right codimension**. Choose $(\sigma_0,x_0)\in\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c})$ and consider nearby elements $(\sigma,x)\in\mathcal{M}_{\rho,\tau}$. The splittings

$$D\sigma(x) = \bigoplus_{i=1}^{N} \mathbf{D}_{x}^{i}$$

vary continuously with (σ, x) , so we have

$$(\sigma, x) \in \mathcal{M}_{\rho, \tau}(\mathbf{k}, \mathbf{c}) \Leftrightarrow \dim \ker D\sigma(x) = \dim \ker D\sigma_0(x_0) \Leftrightarrow \Phi(\sigma, x) = 0$$

for a **smooth function**

 $\Phi(\sigma, x) \in \operatorname{Hom}_G(\ker D\sigma_0(x_0), \operatorname{coker} D\sigma_0(x_0)) \cong \mathbb{R}^{\sum_i t_i k_i c_i}$

Sketch of proof:

Replace $\Gamma(E)$ with a suitable Banach manifold of sections.

The **Sard-Smale** theorem \Rightarrow it suffices to prove

$$\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c}) := \{(\sigma,x) \mid \sigma \in \Gamma(E) \text{ and } x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})\}$$

is a smooth Banach submanifold of $\mathcal{M}_{\rho,\tau}:=\{(\sigma,x)\mid x\in\mathcal{M}_{\rho,\tau}(\sigma)\}$ with the **right codimension**. Choose $(\sigma_0,x_0)\in\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c})$ and consider nearby elements $(\sigma,x)\in\mathcal{M}_{\rho,\tau}$. The splittings

$$D\sigma(x) = \bigoplus_{i=1}^{N} \mathbf{D}_{x}^{i}$$

vary continuously with (σ, x) , so we have

$$(\sigma, x) \in \mathcal{M}_{\rho, \tau}(\mathbf{k}, \mathbf{c}) \Leftrightarrow \dim \ker D\sigma(x) = \dim \ker D\sigma_0(x_0) \Leftrightarrow \Phi(\sigma, x) = 0$$

for a smooth function

$$\Phi(\sigma, x) \in \operatorname{Hom}_G(\ker D\sigma_0(x_0), \operatorname{coker} D\sigma_0(x_0)) \cong \mathbb{R}^{\sum_i t_i k_i c_i}.$$

Sketch of proof:

Replace $\Gamma(E)$ with a suitable Banach manifold of sections.

The **Sard-Smale** theorem \Rightarrow it suffices to prove

$$\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c}) := \{(\sigma,x) \mid \sigma \in \Gamma(E) \text{ and } x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})\}$$

is a smooth Banach submanifold of $\mathcal{M}_{\rho,\tau}:=\{(\sigma,x)\mid x\in\mathcal{M}_{\rho,\tau}(\sigma)\}$ with the **right codimension**. Choose $(\sigma_0,x_0)\in\mathcal{M}_{\rho,\tau}(\mathbf{k},\mathbf{c})$ and consider nearby elements $(\sigma,x)\in\mathcal{M}_{\rho,\tau}$. The splittings

$$D\sigma(x) = \bigoplus_{i=1}^{N} \mathbf{D}_{x}^{i}$$

vary continuously with (σ, x) , so we have

$$(\sigma, x) \in \mathcal{M}_{\rho, \tau}(\mathbf{k}, \mathbf{c}) \Leftrightarrow \dim \ker D\sigma(x) = \dim \ker D\sigma_0(x_0) \Leftrightarrow \Phi(\sigma, x) = 0$$

for a smooth function

$$\Phi(\sigma, x) \in \operatorname{Hom}_G(\ker D\sigma_0(x_0), \operatorname{coker} D\sigma_0(x_0)) \cong \mathbb{R}^{\sum_i t_i k_i c_i}.$$

We need to prove $D\Phi(\sigma_0, x_0)$ is **surjective**, then apply the implicit function theorem. Consider $s \in T_{\sigma_0}\Gamma(E)$ with $s(x_0) = 0$, so

$$(s,0)\in T_{(\sigma_0,x_0)}\mathcal{M}_{\rho, au}$$
, and

$$D\Phi(\sigma_0, x_0)(s, 0) : \ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$$

takes the form

$$\ker D\sigma_0(x_0) \xrightarrow{Ds(x_0)} E_{x_0} \xrightarrow{\operatorname{proj}} \operatorname{coker} D\sigma_0(x_0).$$

Is every G-equivariant linear map $\ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$ equal to $D\Phi(\sigma_0, x_0)(s, 0)$ for some $s \in T_{\sigma_0}\Gamma(E)$?

Workhorse lemma (trivial)

Given $\mathbf{D}: T_xM \to E_x$, every linear map $\mathbf{A}: \ker \mathbf{D} \to \operatorname{coker} \mathbf{D}$ can be lifted/extended to a map $\widetilde{\mathbf{A}}: T_xM \to E_x$.

We need to prove $D\Phi(\sigma_0,x_0)$ is **surjective**, then apply the implicit function theorem. Consider $s\in T_{\sigma_0}\Gamma(E)$ with $s(x_0)=0$, so $(s,0)\in T_{(\sigma_0,x_0)}\mathcal{M}_{\rho,\tau}$ and

$$D\Phi(\sigma_0, x_0)(s, 0) : \ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$$

takes the form

$$\ker D\sigma_0(x_0) \xrightarrow{Ds(x_0)} E_{x_0} \xrightarrow{\operatorname{proj}} \operatorname{coker} D\sigma_0(x_0).$$

Is every G-equivariant linear map $\ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$ equal to $D\Phi(\sigma_0, x_0)(s, 0)$ for some $s \in T_{\sigma_0}\Gamma(E)$?

Workhorse lemma (trivial)

Given $\mathbf{D}: T_xM \to E_x$, every linear map $\mathbf{A}: \ker \mathbf{D} \to \operatorname{coker} \mathbf{D}$ can be lifted/extended to a map $\widetilde{\mathbf{A}}: T_xM \to E_x$.

We need to prove $D\Phi(\sigma_0,x_0)$ is **surjective**, then apply the implicit function theorem. Consider $s\in T_{\sigma_0}\Gamma(E)$ with $s(x_0)=0$, so $(s,0)\in T_{(\sigma_0,x_0)}\mathcal{M}_{\rho,\tau}$, and

$$D\Phi(\sigma_0, x_0)(s, 0) : \ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$$

takes the form

$$\ker D\sigma_0(x_0) \xrightarrow{Ds(x_0)} E_{x_0} \xrightarrow{\operatorname{proj}} \operatorname{coker} D\sigma_0(x_0).$$

Is every G-equivariant linear map $\ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$ equal to $D\Phi(\sigma_0, x_0)(s, 0)$ for some $s \in T_{\sigma_0}\Gamma(E)$?

Workhorse lemma (trivial)

Given $\mathbf{D}: T_xM \to E_x$, every linear map $\mathbf{A}: \ker \mathbf{D} \to \operatorname{coker} \mathbf{D}$ can be lifted/extended to a map $\widetilde{\mathbf{A}}: T_xM \to E_x$.

We need to prove $D\Phi(\sigma_0,x_0)$ is **surjective**, then apply the implicit function theorem. Consider $s\in T_{\sigma_0}\Gamma(E)$ with $s(x_0)=0$, so $(s,0)\in T_{(\sigma_0,x_0)}\mathcal{M}_{\rho,\tau}$, and

$$D\Phi(\sigma_0, x_0)(s, 0) : \ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$$

takes the form

$$\ker D\sigma_0(x_0) \xrightarrow{Ds(x_0)} E_{x_0} \xrightarrow{\operatorname{proj}} \operatorname{coker} D\sigma_0(x_0).$$

Is every G-equivariant linear map $\ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$ equal to $D\Phi(\sigma_0,x_0)(s,0)$ for some $s\in T_{\sigma_0}\Gamma(E)$?

Workhorse lemma (trivial)

Given $\mathbf{D}: T_xM \to E_x$, every linear map $\mathbf{A}: \ker \mathbf{D} \to \operatorname{coker} \mathbf{D}$ can be lifted/extended to a map $\widetilde{\mathbf{A}}: T_xM \to E_x$.

We need to prove $D\Phi(\sigma_0,x_0)$ is **surjective**, then apply the implicit function theorem. Consider $s\in T_{\sigma_0}\Gamma(E)$ with $s(x_0)=0$, so $(s,0)\in T_{(\sigma_0,x_0)}\mathcal{M}_{\rho,\tau}$, and

$$D\Phi(\sigma_0, x_0)(s, 0) : \ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$$

takes the form

$$\ker D\sigma_0(x_0) \xrightarrow{Ds(x_0)} E_{x_0} \xrightarrow{\operatorname{proj}} \operatorname{coker} D\sigma_0(x_0).$$

Is every G-equivariant linear map $\ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$ equal to $D\Phi(\sigma_0,x_0)(s,0)$ for some $s\in T_{\sigma_0}\Gamma(E)$?

Workhorse lemma (trivial)

Given $\mathbf{D}:T_xM\to E_x$, every linear map $\mathbf{A}:\ker\mathbf{D}\to\mathrm{coker}\,\mathbf{D}$ can be lifted/extended to a map $\widetilde{\mathbf{A}}:T_xM\to E_x$.

We need to prove $D\Phi(\sigma_0,x_0)$ is **surjective**, then apply the implicit function theorem. Consider $s\in T_{\sigma_0}\Gamma(E)$ with $s(x_0)=0$, so $(s,0)\in T_{(\sigma_0,x_0)}\mathcal{M}_{\rho,\tau}$, and

$$D\Phi(\sigma_0, x_0)(s, 0) : \ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$$

takes the form

$$\ker D\sigma_0(x_0) \xrightarrow{Ds(x_0)} E_{x_0} \xrightarrow{\operatorname{proj}} \operatorname{coker} D\sigma_0(x_0).$$

Is every G-equivariant linear map $\ker D\sigma_0(x_0) \to \operatorname{coker} D\sigma_0(x_0)$ equal to $D\Phi(\sigma_0,x_0)(s,0)$ for some $s\in T_{\sigma_0}\Gamma(E)$?

Workhorse lemma (trivial)

Given $\mathbf{D}:T_xM\to E_x$, every linear map $\mathbf{A}:\ker\mathbf{D}\to\mathrm{coker}\,\mathbf{D}$ can be lifted/extended to a map $\widetilde{\mathbf{A}}:T_xM\to E_x$.

Recall **Sample theorem 1**: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Proof for $|G_x| \leq 2$:

For $x \in \mathcal{M}_{\rho,\tau}(\sigma)$ with $G_x = \mathbb{Z}_2$, we have **two irreps** θ_{\pm} with $d_{\pm} = 1$, so write $\mathbf{D}_x = \mathbf{D}_x^+ \oplus \mathbf{D}_x^-$. If σ is generic, $\mathcal{M}_{\rho,\tau}(\sigma)$ is a manifold of dimension $m_1(\rho) - m_1(\tau) = \dim \ker \mathbf{D}_x^+$, so it will suffice to prove

 $\dim \mathcal{M}_{\rho,\tau}(\sigma) = \dim \ker \mathbf{D}_x$, i.e. \mathbf{D}_x^- is injective!.

Useful observation: $\operatorname{ind} \mathbf{D}_x^- = -\operatorname{ind} \mathbf{D}_x^+ = -[m_+(\rho) - m_+(\tau)] \leq 0$. Now suppose $k_- := \dim \ker \mathbf{D}_x^- > 0$, and write $c_- := \dim \operatorname{coker} \mathbf{D}_x^-$ as $k_- + [m_+(\rho) - m_+(\tau)]$. Then $x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})$ with

$$\dim \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = m_{+}(\rho) - m_{+}(\tau) - k_{-}c_{-}$$
$$= -k_{-}^{2} - (k_{-} - 1)[m_{+}(\rho) - m_{+}(\rho)] < 0$$

What makes this work? Only 2 irreps \Rightarrow can compute ind \mathbf{D}_{r}^{-} .

Recall Sample theorem 1: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero cleanly.

Proof for $|G_x| \leq 2$:

For $x \in \mathcal{M}_{\rho,\tau}(\sigma)$ with $G_x = \mathbb{Z}_2$, we have **two irreps** θ_{\pm} with $d_{\pm} = 1$, so write $\mathbf{D}_x = \mathbf{D}_x^+ \oplus \mathbf{D}_x^-$. If σ is generic, $\mathcal{M}_{\rho,\tau}(\sigma)$ is a manifold of dimension $m_1(\rho) - m_1(\tau) = \dim \ker \mathbf{D}_x^+$, so it will suffice to prove

$$\dim \mathcal{M}_{\rho,\tau}(\sigma) = \dim \ker \mathbf{D}_x$$
, i.e. \mathbf{D}_x^- is injective!.

Useful observation: ind $\mathbf{D}_x^- = -\inf \mathbf{D}_x^+ = -[m_+(\rho) - m_+(\tau)] \leq 0$. Now suppose $k_- := \dim \ker \mathbf{D}_x^- > 0$, and write $c_- := \dim \operatorname{coker} \mathbf{D}_x^-$ as $k_- + [m_+(\rho) - m_+(\tau)]$. Then $x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})$ with

$$\dim \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = m_{+}(\rho) - m_{+}(\tau) - k_{-}c_{-}$$
$$= -k_{-}^{2} - (k_{-} - 1)[m_{+}(\rho) - m_{+}(\rho)] < 0$$

What makes this work? Only 2 irreps \Rightarrow can compute ind \mathbf{D}_{r}^{-} .

Recall **Sample theorem 1**: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Proof for $|G_x| \leq 2$:

For $x \in \mathcal{M}_{\rho,\tau}(\sigma)$ with $G_x = \mathbb{Z}_2$, we have **two irreps** θ_{\pm} with $d_{\pm} = 1$, so write $\mathbf{D}_x = \mathbf{D}_x^+ \oplus \mathbf{D}_x^-$. If σ is generic, $\mathcal{M}_{\rho,\tau}(\sigma)$ is a manifold of dimension $m_1(\rho) - m_1(\tau) = \dim \ker \mathbf{D}_x^+$, so it will suffice to prove

$$\dim \mathcal{M}_{\rho,\tau}(\sigma) = \dim \ker \mathbf{D}_x$$
, i.e. \mathbf{D}_x^- is injective!.

Useful observation: ind $\mathbf{D}_x^- = -\operatorname{ind} \mathbf{D}_x^+ = -[m_+(\rho) - m_+(\tau)] \leq 0$. Now suppose $k_- := \dim \ker \mathbf{D}_x^- > 0$, and write $c_- := \dim \operatorname{coker} \mathbf{D}_x^-$ as $k_- + [m_+(\rho) - m_+(\tau)]$. Then $x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})$ with

$$\dim \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = m_{+}(\rho) - m_{+}(\tau) - k_{-}c_{-}$$

$$= -k_{-}^{2} - (k_{-} - 1)[m_{+}(\rho) - m_{+}(\rho)] < 0$$

What makes this work? Only 2 irreps \Rightarrow can compute ind \mathbf{D}_{r}^{-} .

Recall **Sample theorem 1**: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Proof for $|G_x| \leq 2$:

For $x \in \mathcal{M}_{\rho,\tau}(\sigma)$ with $G_x = \mathbb{Z}_2$, we have **two irreps** θ_{\pm} with $d_{\pm} = 1$, so write $\mathbf{D}_x = \mathbf{D}_x^+ \oplus \mathbf{D}_x^-$. If σ is generic, $\mathcal{M}_{\rho,\tau}(\sigma)$ is a manifold of dimension $m_1(\rho) - m_1(\tau) = \dim \ker \mathbf{D}_x^+$, so it will suffice to prove

$$\dim \mathcal{M}_{\rho,\tau}(\sigma) = \dim \ker \mathbf{D}_x, \quad \text{i.e.} \quad \mathbf{D}_x^- \text{ is injective!}.$$

Useful observation: $\operatorname{ind} \mathbf{D}_x^- = -\operatorname{ind} \mathbf{D}_x^+ = -[m_+(\rho) - m_+(\tau)] \leq 0$. Now suppose $k_- := \dim \ker \mathbf{D}_x^- > 0$, and write $c_- := \dim \operatorname{coker} \mathbf{D}_x^-$ as $k_- + [m_+(\rho) - m_+(\tau)]$. Then $x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})$ with

$$\dim \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = m_{+}(\rho) - m_{+}(\tau) - k_{-}c_{-}$$

$$= -k_{-}^{2} - (k_{-} - 1)[m_{+}(\rho) - m_{+}(\rho)] < 0$$

What makes this work? Only 2 irreps \Rightarrow can compute ind \mathbf{D}_{x}^{-} .

Recall **Sample theorem 1**: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Proof for $|G_x| \leq 2$:

For $x \in \mathcal{M}_{\rho,\tau}(\sigma)$ with $G_x = \mathbb{Z}_2$, we have **two irreps** $\boldsymbol{\theta}_{\pm}$ with $d_{\pm} = 1$, so write $\mathbf{D}_x = \mathbf{D}_x^+ \oplus \mathbf{D}_x^-$. If σ is generic, $\mathcal{M}_{\rho,\tau}(\sigma)$ is a manifold of dimension $m_1(\rho) - m_1(\tau) = \dim \ker \mathbf{D}_x^+$, so it will suffice to prove

$$\dim \mathcal{M}_{\rho,\tau}(\sigma) = \dim \ker \mathbf{D}_x$$
, i.e. \mathbf{D}_x^- is injective!.

Useful observation: ind $\mathbf{D}_x^- = -\operatorname{ind} \mathbf{D}_x^+ = -[m_+(\rho) - m_+(\tau)] \leq 0$. Now suppose $k_- := \dim \ker \mathbf{D}_x^- > 0$, and write $c_- := \dim \operatorname{coker} \mathbf{D}_x^-$ as $k_- + [m_+(\rho) - m_+(\tau)]$. Then $x \in \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c})$ with

$$\dim \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = m_{+}(\rho) - m_{+}(\tau) - k_{-}c_{-}$$
$$= -k_{-}^{2} - (k_{-} - 1)[m_{+}(\rho) - m_{+}(\rho)] < 0.$$

What makes this work? Only 2 irreps \Rightarrow can compute ind \mathbf{D}_r^- .

Recall **Sample theorem 1**: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Proof for $|G_x| \leq 2$:

For $x \in \mathcal{M}_{\rho,\tau}(\sigma)$ with $G_x = \mathbb{Z}_2$, we have **two irreps** $\boldsymbol{\theta}_{\pm}$ with $d_{\pm} = 1$, so write $\mathbf{D}_x = \mathbf{D}_x^+ \oplus \mathbf{D}_x^-$. If σ is generic, $\mathcal{M}_{\rho,\tau}(\sigma)$ is a manifold of dimension $m_1(\rho) - m_1(\tau) = \dim \ker \mathbf{D}_x^+$, so it will suffice to prove

$$\dim \mathcal{M}_{\rho,\tau}(\sigma) = \dim \ker \mathbf{D}_x$$
, i.e. \mathbf{D}_x^- is injective!.

Useful observation: $\operatorname{ind} \mathbf{D}_x^- = -\operatorname{ind} \mathbf{D}_x^+ = -[m_+(\rho) - m_+(\tau)] \leq 0$. Now suppose $k_- := \dim \ker \mathbf{D}_x^- > 0$, and write $c_- := \dim \operatorname{coker} \mathbf{D}_x^-$ as $k_- + [m_+(\rho) - m_+(\tau)]$. Then $x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})$ with

$$\dim \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = m_{+}(\rho) - m_{+}(\tau) - k_{-}c_{-}$$
$$= -k_{-}^{2} - (k_{-} - 1)[m_{+}(\rho) - m_{+}(\rho)] < 0$$

What makes this work? Only 2 irreps \Rightarrow can compute ind \mathbf{D}_{x}^{-}

Recall **Sample theorem 1**: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Proof for $|G_x| \leq 2$:

For $x \in \mathcal{M}_{\rho,\tau}(\sigma)$ with $G_x = \mathbb{Z}_2$, we have **two irreps** θ_{\pm} with $d_{\pm} = 1$, so write $\mathbf{D}_x = \mathbf{D}_x^+ \oplus \mathbf{D}_x^-$. If σ is generic, $\mathcal{M}_{\rho,\tau}(\sigma)$ is a manifold of dimension $m_1(\rho) - m_1(\tau) = \dim \ker \mathbf{D}_x^+$, so it will suffice to prove

$$\dim \mathcal{M}_{\rho,\tau}(\sigma) = \dim \ker \mathbf{D}_x$$
, i.e. \mathbf{D}_x^- is injective!.

Useful observation: $\operatorname{ind} \mathbf{D}_x^- = -\operatorname{ind} \mathbf{D}_x^+ = -[m_+(\rho) - m_+(\tau)] \leq 0$. Now suppose $k_- := \dim \ker \mathbf{D}_x^- > 0$, and write $c_- := \dim \operatorname{coker} \mathbf{D}_x^-$ as $k_- + [m_+(\rho) - m_+(\tau)]$. Then $x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})$ with

$$\dim \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = m_{+}(\rho) - m_{+}(\tau) - k_{-}c_{-}$$
$$= -k_{-}^{2} - (k_{-} - 1)[m_{+}(\rho) - m_{+}(\rho)] < 0.$$

What makes this work? Only 2 irreps \Rightarrow can compute $\operatorname{ind} \mathbf{D}_x^-$

Recall **Sample theorem 1**: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Proof for $|G_x| \leq 2$:

For $x \in \mathcal{M}_{\rho,\tau}(\sigma)$ with $G_x = \mathbb{Z}_2$, we have **two irreps** $\boldsymbol{\theta}_{\pm}$ with $d_{\pm} = 1$, so write $\mathbf{D}_x = \mathbf{D}_x^+ \oplus \mathbf{D}_x^-$. If σ is generic, $\mathcal{M}_{\rho,\tau}(\sigma)$ is a manifold of dimension $m_1(\rho) - m_1(\tau) = \dim \ker \mathbf{D}_x^+$, so it will suffice to prove

$$\dim \mathcal{M}_{\rho,\tau}(\sigma) = \dim \ker \mathbf{D}_x$$
, i.e. \mathbf{D}_x^- is injective!.

Useful observation: $\operatorname{ind} \mathbf{D}_x^- = -\operatorname{ind} \mathbf{D}_x^+ = -[m_+(\rho) - m_+(\tau)] \leq 0$. Now suppose $k_- := \dim \ker \mathbf{D}_x^- > 0$, and write $c_- := \dim \operatorname{coker} \mathbf{D}_x^-$ as $k_- + [m_+(\rho) - m_+(\tau)]$. Then $x \in \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c})$ with

$$\dim \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = m_{+}(\rho) - m_{+}(\tau) - k_{-}c_{-}$$
$$= -k_{-}^{2} - (k_{-} - 1)[m_{+}(\rho) - m_{+}(\rho)] < 0.$$

What makes this work? Only 2 irreps \Rightarrow can compute ind D_x .

Recall **Sample theorem 1**: If $\dim M = \operatorname{rank} E$ and $|G_x| \leq 3$ for all x, then generic sections of E intersect zero **cleanly**.

Proof for $|G_x| \leq 2$:

For $x \in \mathcal{M}_{\rho,\tau}(\sigma)$ with $G_x = \mathbb{Z}_2$, we have **two irreps** $\boldsymbol{\theta}_{\pm}$ with $d_{\pm} = 1$, so write $\mathbf{D}_x = \mathbf{D}_x^+ \oplus \mathbf{D}_x^-$. If σ is generic, $\mathcal{M}_{\rho,\tau}(\sigma)$ is a manifold of dimension $m_1(\rho) - m_1(\tau) = \dim \ker \mathbf{D}_x^+$, so it will suffice to prove

$$\dim \mathcal{M}_{\rho,\tau}(\sigma) = \dim \ker \mathbf{D}_x$$
, i.e. \mathbf{D}_x^- is injective!.

Useful observation: $\operatorname{ind} \mathbf{D}_x^- = -\operatorname{ind} \mathbf{D}_x^+ = -[m_+(\rho) - m_+(\tau)] \leq 0$. Now suppose $k_- := \dim \ker \mathbf{D}_x^- > 0$, and write $c_- := \dim \operatorname{coker} \mathbf{D}_x^-$ as $k_- + [m_+(\rho) - m_+(\tau)]$. Then $x \in \mathcal{M}_{\rho,\tau}(\sigma;\mathbf{k},\mathbf{c})$ with

$$\dim \mathcal{M}_{\rho,\tau}(\sigma; \mathbf{k}, \mathbf{c}) = m_{+}(\rho) - m_{+}(\tau) - k_{-}c_{-}$$
$$= -k_{-}^{2} - (k_{-} - 1)[m_{+}(\rho) - m_{+}(\rho)] < 0.$$

What makes this work? Only 2 irreps \Rightarrow can compute ind \mathbf{D}_x^- .

Recall **Sample theorem 2**: Generic smooth functions on M are **Morse**.

Proof

Let $E = T^*M$, then we need to show that for **generic** $f: M \to \mathbb{R}$, $df \in \Gamma(E)$ is **transverse to zero**. There are two new features:

① For $x \in df^{-1}(0)$, the operator D(df)(x) is always symmetric, so the previous codimension formula changes to

$$\operatorname{codim} \mathcal{M}_{\rho,\tau}(df; \mathbf{k}, \mathbf{c}) = \dim \operatorname{End}_G^{\operatorname{sym}}(\ker D(df)(x)),$$

which is generally smaller, but still positive

• We have $\rho \cong \tau$ always, and the symmetry of $Df(x) = \bigoplus_{i=1}^N \mathbf{D}_x^i$ implies $\operatorname{ind} \mathbf{D}_x^i = 0$ always.

Recall **Sample theorem 2**: Generic smooth functions on M are **Morse**.

Proof:

Let $E=T^*M$, then we need to show that for **generic** $f:M\to\mathbb{R}$, $df\in\Gamma(E)$ is **transverse to zero**. There are two new features:

① For $x \in df^{-1}(0)$, the operator D(df)(x) is always symmetric, so the previous codimension formula changes to

$$\operatorname{codim} \mathcal{M}_{\rho,\tau}(df; \mathbf{k}, \mathbf{c}) = \dim \operatorname{End}_G^{\operatorname{sym}}(\ker D(df)(x)),$$

which is generally smaller, but still positive

② We have $\rho \cong \tau$ always, and the symmetry of $Df(x) = \bigoplus_{i=1}^N \mathbf{D}_x^i$ implies $\operatorname{ind} \mathbf{D}_x^i = 0$ always.

Recall **Sample theorem 2**: Generic smooth functions on M are **Morse**.

Proof:

Let $E=T^*M$, then we need to show that for **generic** $f:M\to\mathbb{R}$, $df\in\Gamma(E)$ is **transverse to zero**. There are two new features:

• For $x \in df^{-1}(0)$, the operator D(df)(x) is always symmetric, so the previous codimension formula changes to

$$\operatorname{codim} \mathcal{M}_{\rho,\tau}(df; \mathbf{k}, \mathbf{c}) = \dim \operatorname{End}_G^{\operatorname{sym}}(\ker D(df)(x))$$

which is generally smaller, but still positive

② We have $\rho \cong \tau$ always, and the symmetry of $Df(x) = \bigoplus_{i=1}^N \mathbf{D}_x^i$ implies $\operatorname{ind} \mathbf{D}_x^i = 0$ always.

Recall **Sample theorem 2**: Generic smooth functions on M are **Morse**.

Proof:

Let $E=T^*M$, then we need to show that for **generic** $f:M\to\mathbb{R}$, $df\in\Gamma(E)$ is **transverse to zero**. There are two new features:

• For $x \in df^{-1}(0)$, the operator D(df)(x) is always symmetric, so the previous codimension formula changes to

$$\operatorname{codim} \mathcal{M}_{\rho,\tau}(df; \mathbf{k}, \mathbf{c}) = \dim \operatorname{End}_G^{\operatorname{sym}}(\ker D(df)(x)),$$

which is generally **smaller**, but still **positive**.

② We have $\rho \cong \tau$ always, and the symmetry of $Df(x) = \bigoplus_{i=1}^N \mathbf{D}_x^i$ implies $\operatorname{ind} \mathbf{D}_x^i = 0$ always.

Recall **Sample theorem 2**: Generic smooth functions on M are **Morse**.

Proof:

Let $E=T^*M$, then we need to show that for **generic** $f:M\to\mathbb{R}$, $df\in\Gamma(E)$ is **transverse to zero**. There are two new features:

• For $x \in df^{-1}(0)$, the operator D(df)(x) is always symmetric, so the previous codimension formula changes to

$$\operatorname{codim} \mathcal{M}_{\rho,\tau}(df; \mathbf{k}, \mathbf{c}) = \dim \operatorname{End}_G^{\operatorname{sym}}(\ker D(df)(x)),$$

which is generally smaller, but still positive.

② We have $\rho \cong \tau$ always, and the symmetry of $Df(x) = \bigoplus_{i=1}^N \mathbf{D}_x^i$ implies $\operatorname{ind} \mathbf{D}_x^i = 0$ always.

Recall **Sample theorem 2**: Generic smooth functions on M are **Morse**.

Proof:

Let $E=T^*M$, then we need to show that for **generic** $f:M\to\mathbb{R}$, $df\in\Gamma(E)$ is **transverse to zero**. There are two new features:

• For $x \in df^{-1}(0)$, the operator D(df)(x) is always symmetric, so the previous codimension formula changes to

$$\operatorname{codim} \mathcal{M}_{\rho,\tau}(df; \mathbf{k}, \mathbf{c}) = \dim \operatorname{End}_G^{\operatorname{sym}}(\ker D(df)(x)),$$

which is generally smaller, but still positive.

We have $\rho \cong \tau$ always, and the symmetry of $Df(x) = \bigoplus_{i=1}^N \mathbf{D}_x^i$ implies $\operatorname{ind} \mathbf{D}_x^i = 0$ always.

Recall **Sample theorem 2**: Generic smooth functions on M are **Morse**.

Proof:

Let $E=T^*M$, then we need to show that for **generic** $f:M\to\mathbb{R}$, $df\in\Gamma(E)$ is **transverse to zero**. There are two new features:

• For $x \in df^{-1}(0)$, the operator D(df)(x) is always symmetric, so the previous codimension formula changes to

$$\operatorname{codim} \mathcal{M}_{\rho,\tau}(df; \mathbf{k}, \mathbf{c}) = \dim \operatorname{End}_G^{\operatorname{sym}}(\ker D(df)(x)),$$

which is generally smaller, but still positive.

② We have $\rho\cong \tau$ always, and the symmetry of $Df(x)=\bigoplus_{i=1}^N \mathbf{D}_x^i$ implies $\mathrm{ind}\,\mathbf{D}_x^i=0$ always.

Part 2: Holomorphic curves

Fix a 2n-dimensional **symplectic cobordism** X with cylindrical stable Hamiltonian ends, assume J is a **compatible** almost complex structure.

Standard transversality result

For generic J, the open set

$$\mathcal{M}^*(J) := \{ u \in \mathcal{M}(J) \mid u \text{ not multiply covered} \}$$

is a transversely cut-out manifold of $\dim = \operatorname{vir-dim}$.

Question

What structure does $\mathcal{M}(J)$ generically have near the multiple covers?

Sample theorem 3: If $\dim X=4$ and J is generic, then unbranched covers of immersed J-holomorphic curves with trivial normal bundle and vanishing CZ-indices are cut out transversely. (cf. Taubes '96)

Let's see how this works in the case of immersed **double** covers.

Fix a 2n-dimensional **symplectic cobordism** X with cylindrical stable Hamiltonian ends, assume J is a **compatible** almost complex structure.

Standard transversality result

For generic J, the open set

$$\mathcal{M}^*(J) := \left\{ u \in \mathcal{M}(J) \mid u \text{ not multiply covered} \right\}$$

is a transversely cut-out manifold of $\dim = \operatorname{vir-dim}$.

Question

What structure does $\mathcal{M}(J)$ generically have near the multiple covers?

Sample theorem 3: If $\dim X=4$ and J is generic, then unbranched covers of immersed J-holomorphic curves with trivial normal bundle and vanishing CZ-indices are cut out transversely. (cf. Taubes '96)

Let's see how this works in the case of immersed **double** covers.

Fix a 2n-dimensional **symplectic cobordism** X with cylindrical stable Hamiltonian ends, assume J is a **compatible** almost complex structure.

Standard transversality result

For generic J, the open set

$$\mathcal{M}^*(J) := \{ u \in \mathcal{M}(J) \mid u \text{ not multiply covered} \}$$

is a transversely cut-out manifold of $\dim = \operatorname{vir-dim}$.

Question

What structure does $\mathcal{M}(J)$ generically have near the multiple covers?

Sample theorem 3: If $\dim X = 4$ and J is generic, then unbranched covers of immersed J-holomorphic curves with trivial normal bundle and vanishing CZ-indices are cut out transversely. (cf. Taubes '96)

Let's see how this works in the case of immersed **double** covers...

Fix a 2n-dimensional **symplectic cobordism** X with cylindrical stable Hamiltonian ends, assume J is a **compatible** almost complex structure.

Standard transversality result

For generic J, the open set

$$\mathcal{M}^*(J) := \{ u \in \mathcal{M}(J) \mid u \text{ not multiply covered} \}$$

is a transversely cut-out manifold of $\dim = \operatorname{vir-dim}$.

Question

What structure does $\mathcal{M}(J)$ generically have near the multiple covers?

Sample theorem 3: If $\dim X = 4$ and J is generic, then unbranched covers of immersed J-holomorphic curves with trivial normal bundle and vanishing CZ-indices are cut out transversely. (cf. Taubes '96)

Let's see how this works in the case of immersed **double** covers. .

Fix a 2n-dimensional **symplectic cobordism** X with cylindrical stable Hamiltonian ends, assume J is a **compatible** almost complex structure.

Standard transversality result

For generic J, the open set

$$\mathcal{M}^*(J) := \left\{ u \in \mathcal{M}(J) \mid u \text{ not multiply covered} \right\}$$

is a transversely cut-out manifold of $\dim = \operatorname{vir-dim}$.

Question

What structure does $\mathcal{M}(J)$ generically have near the multiple covers?

Sample theorem 3: If $\dim X = 4$ and J is generic, then unbranched covers of immersed J-holomorphic curves with trivial normal bundle and vanishing CZ-indices are cut out transversely. (cf. Taubes '96)

Let's see how this works in the case of immersed double covers. . .

Ingredient A: Stratification via symmetry

$$\mathcal{M}^2(J) := \big\{ u = v \circ \varphi \ \big| \ v \in \mathcal{M}^*(J) \text{ immersed, } \varphi \text{ a} \\ \text{holomorphic unbranched cover of degree } 2 \big\}.$$

Observations:

- ① $\mathcal{M}^2(J)$ is a smooth manifold with dimension determined by $\mathcal{M}^*(J)$
- **②** Every immersed double cover is in $\mathcal{M}^2(J)$.

Ingredient A: Stratification via symmetry

$$\mathcal{M}^2(J) := \big\{ u = v \circ \varphi \ \big| \ v \in \mathcal{M}^*(J) \text{ immersed, } \varphi \text{ a} \\ \text{holomorphic unbranched cover of degree } 2 \big\}.$$

Observations:

- **1** $\mathcal{M}^2(J)$ is a smooth manifold with dimension determined by $\mathcal{M}^*(J)$.
- **② Every** immersed double cover is in $\mathcal{M}^2(J)$.

Ingredient A: Stratification via symmetry

$$\mathcal{M}^2(J) := \big\{ u = v \circ \varphi \ \big| \ v \in \mathcal{M}^*(J) \text{ immersed, } \varphi \text{ a} \\ \text{holomorphic unbranched cover of degree } 2 \big\}.$$

Observations:

- **1** $\mathcal{M}^2(J)$ is a **smooth manifold** with dimension determined by $\mathcal{M}^*(J)$.
- **2** Every immersed double cover is in $\mathcal{M}^2(J)$.

Ingredient B: Splitting the linearization

For $u:(\Sigma,j)\to (X,J)$ immersed, restricting $D\bar\partial_J(u)$ to the **normal bundle** $N_u\to \Sigma$ defines a real-linear **Cauchy-Riemann type** operator

$$\mathbf{D}_u^N: \Gamma(N_u) \to \Omega^{0,1}(\Sigma, N_u)$$

such that u is transversely cut out \Leftrightarrow $\mathbf{D}_u^N:W^{k,p} o W^{k-1,p}$ is surjective $(k\in\mathbb{N},\ 1< p<\infty)$.

For $u=v\circ\varphi\in\mathcal{M}^2(J)$, the nontrivial deck transformation $\psi\in\mathrm{Aut}(\varphi)$ defines a **splitting** $\Gamma(N_u)=\Gamma_+(N_u)\oplus\Gamma_-(N_u)$, where

$$\Gamma_{\pm}(N_u) = \{ \eta \in \Gamma(N_u) \mid \eta \circ \psi = \pm \eta \}$$

Then \mathbf{D}_u^N sends $\Gamma_{\pm}(N_u)$ to $\Omega_{\pm}^{0,1}(\Sigma,N_u)$, defining a splitting

$$\mathbf{D}_u^N = \mathbf{D}_u^+ \oplus \mathbf{D}_u^-$$

such that \mathbf{D}_u^+ is equivalent to \mathbf{D}_v^N , and is thus surjective for generic J

Ingredient B: Splitting the linearization

For $u:(\Sigma,j)\to (X,J)$ immersed, restricting $D\bar\partial_J(u)$ to the **normal** bundle $N_u\to \Sigma$ defines a real-linear Cauchy-Riemann type operator

$$\mathbf{D}_u^N: \Gamma(N_u) \to \Omega^{0,1}(\Sigma, N_u)$$

such that u is transversely cut out \Leftrightarrow $\mathbf{D}_u^N: W^{k,p} \to W^{k-1,p}$ is surjective $(k \in \mathbb{N}, 1 .$

For $u = v \circ \varphi \in \mathcal{M}^2(J)$, the nontrivial deck transformation $\psi \in \operatorname{Aut}(\varphi)$ defines a **splitting** $\Gamma(N_u) = \Gamma_+(N_u) \oplus \Gamma_-(N_u)$, where

$$\Gamma_{\pm}(N_u) = \{ \eta \in \Gamma(N_u) \mid \eta \circ \psi = \pm \eta \}.$$

Then \mathbf{D}_u^N sends $\Gamma_{\pm}(N_u)$ to $\Omega_{\pm}^{0,1}(\Sigma,N_u)$, defining a splitting

$$\mathbf{D}_u^N = \mathbf{D}_u^+ \oplus \mathbf{D}_u^-$$

such that \mathbf{D}_u^+ is equivalent to \mathbf{D}_v^N , and is thus surjective for generic J

Ingredient B: Splitting the linearization

For $u:(\Sigma,j)\to (X,J)$ immersed, restricting $D\bar\partial_J(u)$ to the **normal bundle** $N_u\to \Sigma$ defines a real-linear **Cauchy-Riemann type** operator

$$\mathbf{D}_u^N: \Gamma(N_u) \to \Omega^{0,1}(\Sigma, N_u)$$

such that u is transversely cut out \Leftrightarrow $\mathbf{D}_u^N: W^{k,p} \to W^{k-1,p}$ is surjective $(k \in \mathbb{N}, 1 .$

For $u = v \circ \varphi \in \mathcal{M}^2(J)$, the nontrivial deck transformation $\psi \in \operatorname{Aut}(\varphi)$ defines a **splitting** $\Gamma(N_u) = \Gamma_+(N_u) \oplus \Gamma_-(N_u)$, where

$$\Gamma_{\pm}(N_u) = \left\{ \eta \in \Gamma(N_u) \mid \eta \circ \psi = \pm \eta \right\}.$$

Then \mathbf{D}_u^N sends $\Gamma_{\pm}(N_u)$ to $\Omega_{\pm}^{0,1}(\Sigma,N_u)$, defining a splitting

$$\mathbf{D}_u^N = \mathbf{D}_u^+ \oplus \mathbf{D}_u^-$$

such that \mathbf{D}_u^+ is equivalent to \mathbf{D}_v^N , and is thus surjective for generic J

Ingredient B: Splitting the linearization

For $u:(\Sigma,j)\to (X,J)$ immersed, restricting $D\bar\partial_J(u)$ to the **normal bundle** $N_u\to \Sigma$ defines a real-linear **Cauchy-Riemann type** operator

$$\mathbf{D}_u^N: \Gamma(N_u) \to \Omega^{0,1}(\Sigma, N_u)$$

such that u is transversely cut out \Leftrightarrow $\mathbf{D}_u^N: W^{k,p} \to W^{k-1,p}$ is surjective $(k \in \mathbb{N}, 1 .$

For $u=v\circ\varphi\in\mathcal{M}^2(J)$, the nontrivial deck transformation $\psi\in\mathrm{Aut}(\varphi)$ defines a **splitting** $\Gamma(N_u)=\Gamma_+(N_u)\oplus\Gamma_-(N_u)$, where

$$\Gamma_{\pm}(N_u) = \left\{ \eta \in \Gamma(N_u) \mid \eta \circ \psi = \pm \eta \right\}.$$

Then \mathbf{D}_u^N sends $\Gamma_{\pm}(N_u)$ to $\Omega_{\pm}^{0,1}(\Sigma,N_u)$, defining a splitting

$$\mathbf{D}_u^N = \mathbf{D}_u^+ \oplus \mathbf{D}_u^-$$

such that \mathbf{D}_u^+ is equivalent to \mathbf{D}_v^N , and is thus surjective for generic J.

Ingredient B: Splitting the linearization

For $u:(\Sigma,j)\to (X,J)$ immersed, restricting $D\bar\partial_J(u)$ to the **normal** bundle $N_u\to \Sigma$ defines a real-linear Cauchy-Riemann type operator

$$\mathbf{D}_u^N: \Gamma(N_u) \to \Omega^{0,1}(\Sigma, N_u)$$

such that u is transversely cut out \Leftrightarrow $\mathbf{D}_u^N: W^{k,p} \to W^{k-1,p}$ is surjective $(k \in \mathbb{N}, 1 .$

For $u=v\circ\varphi\in\mathcal{M}^2(J)$, the nontrivial deck transformation $\psi\in\mathrm{Aut}(\varphi)$ defines a **splitting** $\Gamma(N_u)=\Gamma_+(N_u)\oplus\Gamma_-(N_u)$, where

$$\Gamma_{\pm}(N_u) = \left\{ \eta \in \Gamma(N_u) \mid \eta \circ \psi = \pm \eta \right\}.$$

Then \mathbf{D}_u^N sends $\Gamma_{\pm}(N_u)$ to $\Omega_{\pm}^{0,1}(\Sigma,N_u)$, defining a splitting

$$\mathbf{D}_u^N = \mathbf{D}_u^+ \oplus \mathbf{D}_u^-$$

such that \mathbf{D}_u^+ is equivalent to \mathbf{D}_v^N , and is thus surjective for generic J.

Brief digression (why you should believe super-rigidity is true)

For general branched covers of arbitrary degree, there is always a splitting

$$\mathbf{D}_u^N = \bigoplus_{i=1}^N (\mathbf{D}_u^{\boldsymbol{\theta}_i})^{\oplus k_i},$$

whose summands are **Cauchy-Riemann type** operators corresponding to the **irreps** of some finite group.

Slightly surprising lemma

For any $u=v\circ\varphi$ with v a closed, immersed, simple curve with $\operatorname{ind}\mathbf{D}_v^N=0$ and φ a holomorphic branched cover, every summand of \mathbf{D}_v^N satisfies

$$\operatorname{ind} \mathbf{D}_u^{\boldsymbol{\theta}_i} \leq 0.$$

(If this were not true, super-rigidity would be false.)

Brief digression (why you should believe super-rigidity is true)

For general branched covers of arbitrary degree, there is always a splitting

$$\mathbf{D}_u^N = \bigoplus_{i=1}^N (\mathbf{D}_u^{\boldsymbol{\theta}_i})^{\oplus k_i},$$

whose summands are **Cauchy-Riemann type** operators corresponding to the **irreps** of some finite group.

Slightly surprising lemma:

For any $u=v\circ\varphi$ with v a closed, immersed, simple curve with $\operatorname{ind}\mathbf{D}_v^N=0$ and φ a holomorphic branched cover, every summand of \mathbf{D}_v^N satisfies

$$\operatorname{ind} \mathbf{D}_{u}^{\boldsymbol{\theta}_{i}} \leq 0.$$

(If this were not true, super-rigidity would be false.)

Brief digression (why you should believe super-rigidity is true)

For general branched covers of arbitrary degree, there is always a splitting

$$\mathbf{D}_u^N = \bigoplus_{i=1}^N (\mathbf{D}_u^{\boldsymbol{\theta}_i})^{\oplus k_i},$$

whose summands are **Cauchy-Riemann type** operators corresponding to the **irreps** of some finite group.

Slightly surprising lemma:

For any $u=v\circ\varphi$ with v a closed, immersed, simple curve with $\operatorname{ind}\mathbf{D}_v^N=0$ and φ a holomorphic branched cover, every summand of \mathbf{D}_v^N satisfies

$$\operatorname{ind} \mathbf{D}_{u}^{\boldsymbol{\theta}_{i}} \leq 0.$$

(If this were not true, super-rigidity would be false.)

Ingredient C: Building walls

For nonnegative integers $\mathbf{k}=(k_+,k_-)$ and $\mathbf{c}=(c_+,c_-)$, let

$$\mathcal{M}^2(J; \mathbf{k}, \mathbf{c}) = \left\{ u \in \mathcal{M}^2(J) \mid \dim \ker \mathbf{D}_u^{\pm} = k_{\pm}, \dim \operatorname{coker} \mathbf{D}_u^{\pm} = c_{\pm} \right\}$$

Workhorse theorem

For generic J and all choices of $g, A, \mathbf{k}, \mathbf{c}$ satisfying the workhorse lemma (to be discussed below),

$$\mathcal{M}^2(J; \mathbf{k}, \mathbf{c}) \subset \mathcal{M}^2(J)$$

is a smooth submanifold with codimension $k_+c_+ + k_-c_-$.

When this (and its generalization for arbitrary branched covers) holds, it implies super-rigidity via dimension counting arguments.

Ingredient C: Building walls

For nonnegative integers $\mathbf{k}=(k_+,k_-)$ and $\mathbf{c}=(c_+,c_-)$, let

$$\mathcal{M}^2(J; \mathbf{k}, \mathbf{c}) = \left\{ u \in \mathcal{M}^2(J) \mid \dim \ker \mathbf{D}_u^{\pm} = k_{\pm}, \dim \operatorname{coker} \mathbf{D}_u^{\pm} = c_{\pm} \right\}$$

Workhorse theorem

For generic J and all choices of $g,A,\mathbf{k},\mathbf{c}$ satisfying the **workhorse lemma** (to be discussed below),

$$\mathcal{M}^2(J; \mathbf{k}, \mathbf{c}) \subset \mathcal{M}^2(J)$$

is a smooth submanifold with codimension $k_+c_+ + k_-c_-$.

When this (and its generalization for arbitrary branched covers) holds, it implies super-rigidity via dimension counting arguments.

Ingredient C: Building walls

For nonnegative integers $\mathbf{k}=(k_+,k_-)$ and $\mathbf{c}=(c_+,c_-)$, let

$$\mathcal{M}^2(J; \mathbf{k}, \mathbf{c}) = \left\{ u \in \mathcal{M}^2(J) \mid \dim \ker \mathbf{D}_u^{\pm} = k_{\pm}, \dim \operatorname{coker} \mathbf{D}_u^{\pm} = c_{\pm} \right\}$$

Workhorse theorem

For generic J and all choices of $g,A,\mathbf{k},\mathbf{c}$ satisfying the **workhorse lemma** (to be discussed below),

$$\mathcal{M}^2(J; \mathbf{k}, \mathbf{c}) \subset \mathcal{M}^2(J)$$

is a smooth submanifold with codimension $k_+c_+ + k_-c_-$.

When this (and its generalization for arbitrary branched covers) holds, it **implies super-rigidity** via dimension counting arguments.

Proving the workhorse theorem

Perturbing J causes zeroth-order perturbations in \mathbf{D}_u^N . We thus need to know whether every linear map $\ker \mathbb{D}_u^N \to \operatorname{coker} \mathbb{D}_u^N$ can be realized as

$$\ker \mathbf{D}_u^N \stackrel{A}{\longrightarrow} \Omega^{0,1}(\Sigma,N_u) \stackrel{\mathrm{proj}}{\longrightarrow} \operatorname{coker} \mathbf{D}_u^N$$

for some bundle map $A: N_u \to \Lambda^{0,1}T^*\Sigma \otimes N_u$. If not, then given bases $(\eta_i) \in \ker \mathbf{D}_u^N$ and $(\xi_j) \in \ker (\mathbf{D}_u^N)^* \cong \operatorname{coker} \mathbf{D}_u^N$, there exist nontrivial coefficients $c_{ij} \in \mathbb{R}$ such that

$$\sum_{i,j} c_{ij} \langle \xi_j, A\eta_i \rangle_{L^2} = 0$$

for all zeroth-order perturbations A.

Proving the workhorse theorem

Perturbing J causes **zeroth-order** perturbations in \mathbf{D}^N_u . We thus need to know whether every linear map $\ker \mathbf{D}^N_u \to \operatorname{coker} \mathbf{D}^N_u$ can be realized as

$$\ker \mathbf{D}_u^N \overset{A}{\longrightarrow} \Omega^{0,1}(\Sigma,N_u) \overset{\mathrm{proj}}{\longrightarrow} \operatorname{coker} \mathbf{D}_u^N$$

for some bundle map $A: N_u \to \Lambda^{0,1}T^*\Sigma \otimes N_u$. If not, then given bases $(\eta_i) \in \ker \mathbb{D}_u^N$ and $(\xi_j) \in \ker (\mathbb{D}_u^N)^* \cong \operatorname{coker} \mathbb{D}_u^N$, there exist nontrivial coefficients $c_{ij} \in \mathbb{R}$ such that

$$\sum_{i,j} c_{ij} \langle \xi_j, A\eta_i \rangle_{L^2} = 0$$

for all zeroth-order perturbations A.

Proving the workhorse theorem

Perturbing J causes **zeroth-order** perturbations in \mathbf{D}_u^N . We thus need to know whether every linear map $\ker \mathbf{D}_u^N \to \operatorname{coker} \mathbf{D}_u^N$ can be realized as

$$\ker \mathbf{D}_u^N \stackrel{A}{\longrightarrow} \Omega^{0,1}(\Sigma, N_u) \stackrel{\text{proj}}{\longrightarrow} \operatorname{coker} \mathbf{D}_u^N$$

for some bundle map $A: N_u \to \Lambda^{0,1}T^*\Sigma \otimes N_u$. If not, then given bases $(\eta_i) \in \ker \mathbf{D}_u^N$ and $(\xi_j) \in \ker (\mathbf{D}_u^N)^* \cong \operatorname{coker} \mathbf{D}_u^N$, there exist nontrivial coefficients $c_{ij} \in \mathbb{R}$ such that

$$\left| \sum_{i,j} c_{ij} \langle \xi_j, A\eta_i \rangle_{L^2} = 0 \right|$$

for all zeroth-order perturbations A.

Proving the workhorse theorem

Perturbing J causes **zeroth-order** perturbations in \mathbf{D}_u^N . We thus need to know whether every linear map $\ker \mathbf{D}_u^N \to \operatorname{coker} \mathbf{D}_u^N$ can be realized as

$$\ker \mathbf{D}_u^N \stackrel{A}{\longrightarrow} \Omega^{0,1}(\Sigma, N_u) \stackrel{\text{proj}}{\longrightarrow} \operatorname{coker} \mathbf{D}_u^N$$

for some bundle map $A: N_u \to \Lambda^{0,1}T^*\Sigma \otimes N_u$. If not, then given bases $(\eta_i) \in \ker \mathbf{D}_u^N$ and $(\xi_j) \in \ker (\mathbf{D}_u^N)^* \cong \operatorname{coker} \mathbf{D}_u^N$, there exist nontrivial coefficients $c_{ij} \in \mathbb{R}$ such that

$$\sum_{i,j} c_{ij} \langle \xi_j, A\eta_i \rangle_{L^2} = 0$$

for all zeroth-order perturbations A.

Definition (a "quadratic unique continuation" property)

A linear partial differential operator ${f D}:\Gamma(E)\to\Gamma(F)$ on Euclidean vector bundles $E,F\to\Sigma$ satisfies **Petri's condition** if the canonical map

$$\ker \mathbf{D} \otimes \ker \mathbf{D}^* \to \Gamma(E \otimes F|_{\mathcal{U}})$$

is **injective** for every open subset $\mathcal{U} \subset \Sigma$.

Example 1: Elliptic operators on 1-dimensional domains (⇒ bifurcation theory for **periodic orbits**)

Example 2: Cauchy-Riemann operators on **trivial line bundles** (⇒ Sample theorem 3)

Meta-theorem (cf. A. Doan and T. Walpuski, in preparation): Equivariant transversality problems are tractable for a large class of elliptic operators that satisfy Petri's condition.

Definition (a "quadratic unique continuation" property)

A linear partial differential operator ${f D}:\Gamma(E)\to\Gamma(F)$ on Euclidean vector bundles $E,F\to\Sigma$ satisfies **Petri's condition** if the canonical map

$$\ker \mathbf{D} \otimes \ker \mathbf{D}^* \to \Gamma(E \otimes F|_{\mathcal{U}})$$

is **injective** for every open subset $\mathcal{U} \subset \Sigma$.

Example 1: Elliptic operators on 1-dimensional domains (⇒ bifurcation theory for **periodic orbits**)

Example 2: Cauchy-Riemann operators on **trivial line bundles** (⇒ Sample theorem 3)

Meta-theorem (cf. A. Doan and T. Walpuski, in preparation): Equivariant transversality problems are tractable for a large class of elliptic operators that satisfy Petri's condition.

Definition (a "quadratic unique continuation" property)

A linear partial differential operator ${f D}:\Gamma(E)\to\Gamma(F)$ on Euclidean vector bundles $E,F\to\Sigma$ satisfies **Petri's condition** if the canonical map

$$\ker \mathbf{D} \otimes \ker \mathbf{D}^* \to \Gamma(E \otimes F|_{\mathcal{U}})$$

is **injective** for every open subset $\mathcal{U} \subset \Sigma$.

Example 1: Elliptic operators on 1-dimensional domains (⇒ bifurcation theory for **periodic orbits**)

Example 2: Cauchy-Riemann operators on **trivial line bundles** (⇒ Sample theorem 3)

Meta-theorem (cf. A. Doan and T. Walpuski, in preparation): Equivariant transversality problems are tractable for a large class of elliptic operators that satisfy Petri's condition.

Definition (a "quadratic unique continuation" property)

A linear partial differential operator ${f D}:\Gamma(E)\to\Gamma(F)$ on Euclidean vector bundles $E,F\to\Sigma$ satisfies **Petri's condition** if the canonical map

$$\ker \mathbf{D} \otimes \ker \mathbf{D}^* \to \Gamma(E \otimes F|_{\mathcal{U}})$$

is **injective** for every open subset $\mathcal{U} \subset \Sigma$.

Example 1: Elliptic operators on 1-dimensional domains (⇒ bifurcation theory for **periodic orbits**)

Example 2: Cauchy-Riemann operators on **trivial line bundles** (⇒ Sample theorem 3)

Meta-theorem (cf. A. Doan and T. Walpuski, in preparation): Equivariant transversality problems are **tractable** for a large class of elliptic operators that satisfy **Petri's condition**.

Workhorse lemma conjecture

For **generic** J and every J-holomorphic curve u, \mathbf{D}_u^N satisfies **Petri's** condition.

Final remarks

- **① Unique continuation** \Rightarrow Petri holds whenever $\ker \mathbf{D}_u^N$ or $\operatorname{coker} \mathbf{D}_u^N$ has $\dim \leq 3$.
- ② It does not always hold, e.g. for $\mathbf{D} = \bar{\partial}$ and $\mathbf{D}^* = -\partial$:

$$1 \otimes i\bar{z} - i \otimes \bar{z} - z \otimes i + iz \otimes 1 \equiv 0.$$

(**Achtung**: <u>real</u> tensor products!)

- For generic J, D_u^N has invertible complex-antilinear part
 ⇒ the above counterexample never appears.
- For C-linear Cauchy-Riemann operators, the **complex version** of Petri's condition always holds. (*No idea if this is useful.*)

ldeas welcome!

Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, \mathbf{D}_u^N satisfies **Petri's** condition.

Final remarks:

- **① Unique continuation** \Rightarrow Petri holds whenever $\ker \mathbf{D}_u^N$ or $\operatorname{coker} \mathbf{D}_u^N$ has $\dim \leq 3$.
- ② It does not always hold, e.g. for $D = \partial$ and $D^* = -\partial$:

$$1 \otimes i\bar{z} - i \otimes \bar{z} - z \otimes i + iz \otimes 1 \equiv 0.$$

(**Achtung**: <u>real</u> tensor products!)

- For generic J, \mathbf{D}_u^N has invertible complex-antilinear part \Rightarrow the above counterexample never appears.
- For C-linear Cauchy-Riemann operators, the **complex version** of Petri's condition always holds. (*No idea if this is useful.*)

ldeas welcome!

Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, \mathbf{D}_u^N satisfies **Petri's** condition.

Final remarks:

- **① Unique continuation** \Rightarrow Petri holds whenever $\ker \mathbf{D}_u^N$ or $\operatorname{coker} \mathbf{D}_u^N$ has $\dim \leq 3$.
- ② It does not <u>always</u> hold, e.g. for $\mathbf{D} = \bar{\partial}$ and $\mathbf{D}^* = -\partial$:

$$1\otimes i\bar{z}-i\otimes\bar{z}-z\otimes i+iz\otimes 1\equiv 0.$$

- **3** For generic J, \mathbf{D}_u^N has **invertible** complex-antilinear part \Rightarrow the above counterexample **never appears**.
- For C-linear Cauchy-Riemann operators, the complex version of Petri's condition always holds. (No idea if this is useful.)

Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, \mathbf{D}_u^N satisfies **Petri's** condition.

Final remarks:

- **① Unique continuation** \Rightarrow Petri holds whenever $\ker \mathbf{D}_u^N$ or $\operatorname{coker} \mathbf{D}_u^N$ has $\dim \leq 3$.
- ② It does not <u>always</u> hold, e.g. for $\mathbf{D} = \bar{\partial}$ and $\mathbf{D}^* = -\partial$:

$$1 \otimes i\bar{z} - i \otimes \bar{z} - z \otimes i + iz \otimes 1 \equiv 0.$$

- ⑤ For generic J, D_u^N has invertible complex-antilinear part ⇒ the above counterexample never appears.
- For C-linear Cauchy-Riemann operators, the complex version of Petri's condition always holds. (No idea if this is useful.)

Workhorse lemma conjecture

For **generic** J and every J-holomorphic curve u, \mathbf{D}_u^N satisfies **Petri's** condition.

Final remarks:

- **① Unique continuation** \Rightarrow Petri holds whenever $\ker \mathbf{D}_u^N$ or $\operatorname{coker} \mathbf{D}_u^N$ has $\dim \leq 3$.
- ② It does not <u>always</u> hold, e.g. for $\mathbf{D} = \bar{\partial}$ and $\mathbf{D}^* = -\partial$:

$$1 \otimes i\bar{z} - i \otimes \bar{z} - z \otimes i + iz \otimes 1 \equiv 0.$$

- § For generic J, \mathbf{D}_u^N has **invertible** complex-antilinear part \Rightarrow the above counterexample never appears.
- For C-linear Cauchy-Riemann operators, the complex version of Petri's condition always holds. (No idea if this is useful.)

Workhorse lemma conjecture

For **generic** J and every J-holomorphic curve u, \mathbf{D}_u^N satisfies **Petri's** condition.

Final remarks:

- **① Unique continuation** \Rightarrow Petri holds whenever $\ker \mathbf{D}_u^N$ or $\operatorname{coker} \mathbf{D}_u^N$ has $\dim \leq 3$.
- ② It does not <u>always</u> hold, e.g. for $\mathbf{D} = \bar{\partial}$ and $\mathbf{D}^* = -\partial$:

$$1 \otimes i\bar{z} - i \otimes \bar{z} - z \otimes i + iz \otimes 1 \equiv 0.$$

- **③** For generic J, \mathbf{D}_u^N has **invertible** complex-antilinear part ⇒ the above counterexample **never appears**.
- For C-linear Cauchy-Riemann operators, the complex version of Petri's condition always holds. (No idea if this is useful.)

Workhorse lemma conjecture

For **generic** J and every J-holomorphic curve u, \mathbf{D}_u^N satisfies **Petri's** condition.

Final remarks:

- **① Unique continuation** \Rightarrow Petri holds whenever $\ker \mathbf{D}_u^N$ or $\operatorname{coker} \mathbf{D}_u^N$ has $\dim \leq 3$.
- ② It does not <u>always</u> hold, e.g. for $\mathbf{D} = \bar{\partial}$ and $\mathbf{D}^* = -\partial$:

$$1 \otimes i\bar{z} - i \otimes \bar{z} - z \otimes i + iz \otimes 1 \equiv 0.$$

- For generic J, \mathbf{D}_u^N has invertible complex-antilinear part
 ⇒ the above counterexample never appears.
- For C-linear Cauchy-Riemann operators, the complex version of Petri's condition always holds. (No idea if this is useful.)

Workhorse lemma conjecture

For **generic** J and every J-holomorphic curve u, \mathbf{D}_u^N satisfies **Petri's** condition.

Final remarks:

- **① Unique continuation** \Rightarrow Petri holds whenever $\ker \mathbf{D}_u^N$ or $\operatorname{coker} \mathbf{D}_u^N$ has $\dim \leq 3$.
- ② It does not <u>always</u> hold, e.g. for $\mathbf{D} = \bar{\partial}$ and $\mathbf{D}^* = -\partial$:

$$1 \otimes i\bar{z} - i \otimes \bar{z} - z \otimes i + iz \otimes 1 \equiv 0.$$

- For generic J, \mathbf{D}_u^N has invertible complex-antilinear part
 ⇒ the above counterexample never appears.
- For C-linear Cauchy-Riemann operators, the complex version of Petri's condition always holds. (No idea if this is useful.)

Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, \mathbf{D}_u^N satisfies **Petri's** condition.

Final remarks:

- **① Unique continuation** \Rightarrow Petri holds whenever $\ker \mathbf{D}_u^N$ or $\operatorname{coker} \mathbf{D}_u^N$ has $\dim \leq 3$.
- ② It does not <u>always</u> hold, e.g. for $\mathbf{D} = \bar{\partial}$ and $\mathbf{D}^* = -\partial$:

$$1 \otimes i\bar{z} - i \otimes \bar{z} - z \otimes i + iz \otimes 1 \equiv 0.$$

(Achtung: real tensor products!)

- For generic J, \mathbf{D}_u^N has invertible complex-antilinear part
 ⇒ the above counterexample never appears.
- For C-linear Cauchy-Riemann operators, the complex version of Petri's condition always holds. (No idea if this is useful.)

Ideas welcome!