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Prelude

Example 1: Finite dimensions

Say a smooth map f : R2 → R2 is Z2-equivariant if it satisfies

f(x,−y) = −f(x, y).

Exercise: Try to prove that every such map admits C∞-close
Z2-equivariant perturbations for which 0 is a regular value.

Hint: Do not try too hard. Notice R× {0} ⊂ f−1(0) for all f .

Best case scenario: generic f intersect zero cleanly, i.e. all components of
f−1(0) are submanifolds with

Tx
(
f−1(0)

)
= ker df(x).

Moral: You cannot have transversality and symmetry at the same time. . .
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Prelude

. . . unless you can:

Example 2: Dynamics

Consider a τ -periodic orbit γ : R→M of a smooth time-independent
vector field X on M . Say γ is nondegenerate if

1 6∈ Spectrum (linearized first-return map along γ)

Standard theorem: For generic X, all periodic orbits are nondegenerate.

In other words, for generic X, the S1-equivariant section

σX : B → E : (γ, τ) 7→ γ̇ − τX(γ)

of the Banach space bundle E → B with B = H1(S1,M)× (0,∞) and
E(γ,τ) = L2(γ∗TM) is transverse to zero.
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Prelude

Question: What happens to orbits under deformations {Xs}s∈[0,1]?

(1) Birth-death bifurcations:

M({Xs}) := {(s, γ) | s ∈ [0, 1] and γ is an orbit of Xs}

(2) Period doubling bifurcations:

Theorem: For generic deformations, birth-death and period doubling
are the only bifurcations.

(i.e. “walls” of codim. 1 comes in two types)
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Prelude

Example 3: Gromov-Witten theory

(X,J) a symplectic Calabi-Yau 3-fold,

Ng
A(X) = “#Mg(A, J)” ∈ Q,

where Mg(A, J) ∼= ∂̄−1J (0) is the moduli space of (unparametrized)
J-holomorphic curves u : (Σ, j)→ (X, J) of genus g ≥ 0 homologous
to A ∈ H2(X). Here, c1(TX) = 0 and dimX = 6 imply

vir-dimMg(A, J) = indD(∂̄J) = 0.

Trouble: If v ∈Mh(A, J) and d ≥ 2, then

Mg(dA, J) ⊃
{
u = v ◦ ϕ

∣∣∣ ϕ : Σg
d:1−→ Σh a holomorphic branched cover

}
,

which has dimension 2#{branch points} > 0 in general, ⇒ ∂̄J 6t 0.
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Prelude

Conjecture (“super-rigidity”, Bryan-Pandharipande 2001)

For generic compatible J in a symplectic Calabi-Yau 3-fold, ∂̄J intersects
zero cleanly.

⇒ For generic J , each Ng
A(X) ∈ Q is a sum of Euler numbers of

obstruction bundles over the spaces of branched covers of finitely many
disjoint embedded curves.

A history of the conjecture (with names redacted):

July 2008: First wrong proof, later withdrawn and abandoned
Oct. 2008: Second wrong proof, later published as a weaker result
July 2014: Third wrong proof, later published as a weaker result
Sept. 2016: Fourth wrong proof, survived almost 2 years but
withdrawn last month

Those last two were both by me. (Oops. Math is hard.)
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Outline

For the rest of the talk, I will tell you about:

1 The finite-dimensional setting.
(Mostly elementary, no claim of originality.)

2 The holomorphic curve setting.
(No claim of a proof of super-rigidity.)

The ideas are based mainly on the

C. Wendl, Transversality and super-rigidity for multiply covered
holomorphic curves (preprint 2016, arXiv:1609.09867)
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Part 1: Equivariant transversality in finite dimensions

Fix an n-dimensional orbifold M and an orbibundle E →M of rank m.
Every x ∈M has a finite group Gx and a neighborhood Ux ⊂M such
that

E|Ux ∼= (O × Rm)
/
Gx

for some linear action of Gx on Rm and a neighborhood O ⊂ Rn of 0.

Question: Do generic σ ∈ Γ(E) intersect the zero-section transversely
(or at least cleanly)?

Sample theorem 1: If dimM = rankE and |Gx| ≤ 3 for all x, then
generic sections of E intersect zero cleanly.

Sample theorem 2: Generic smooth functions on an orbifold are Morse.
(cf. Wasserman ’69, Hepworth ’09)
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Part 1: Equivariant transversality in finite dimensions

Ingredient A: Stratification via symmetry

For any finite group G and representations ρ : G→ GL(n,R),
τ : G→ GL(m,R), define the submanifold

Mρ,τ =
{
x ∈M

∣∣ Gx ∼= G, acting on TxM as ρ and on Ex as τ
}

and subbundle

Eρ,τ =
{
v ∈ E|Mρ,τ

∣∣∣ G acts trivially on v
}
.

Let {θi : G→ AutR(Wi)}Ni=1 denote the real irreps of G, with θ1 as the
trivial representation, and let mi(ρ) := multiplicity of θi in ρ. Then

dimMρ,τ = m1(ρ), rankEρ,τ = m1(τ).

The orbifold M is thus a countable union of disjoint smooth
submanifolds Mρ,τ with distinguished subbundles Eρ,τ ⊂ E|Mρ,τ .
Notice: For all σ ∈ Γ(E), σ(Mρ,τ ) ⊂ Eρ,τ ,

⇒ σ 6t 0 at x ∈Mρ,τ unless τ is trivial.
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Part 1: Equivariant transversality in finite dimensions

Lemma (standard transversality arguments)

For generic σ ∈ Γ(E), σ|Mρ,τ is transverse to the zero-section of
Eρ,τ →Mρ,τ for every G, ρ, τ .

⇒ for generic σ ∈ Γ(E), M(σ) := σ−1(0) is a countable union of disjoint
smooth manifolds

Mρ,τ (σ) :=M(σ) ∩Mρ,τ

of dimension m1(ρ)−m1(τ). (⇒ Mρ,τ (σ) = ∅ if m1(ρ) < m1(τ).)

We still cannot conclude from this that M(σ) is anything as nice as a
smooth orbifold. The aim is to show that for certain applications, it is
“nice enough”.
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Part 1: Equivariant transversality in finite dimensions

Ingredient B: Splitting the linearization

At x ∈Mρ,τ (σ), there is a linearization

Dx := Dσ(x) : TxM → Ex.

Recall the irreps {θi : Gx → AutR(Wi)}Ni=1, and denote di := dimWi.

Since Dx is Gx-equivariant, Schur’s lemma implies that it splits with
respect to the isotypic decompositions TxM =

⊕N
i=1 TxM

i of ρ and

Ex =
⊕N

i=1E
i
x of τ , giving

Dx = D1
x ⊕ . . .⊕DN

x , where Di
x : TxM

i → Eix.

These operators have Fredholm indices

indDi
x = di [mi(ρ)−mi(τ)] ,

and we know D1
x is surjective if σ is generic.
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Part 1: Equivariant transversality in finite dimensions

Ingredient C: Building walls (in the sense of “crossing”)

Gx acts on kerDi
x and cokerDi

x as the irrep θi with some multiplicities,
so their dimensions are divisible by di.

For nonnegative integers k = (k1, . . . , kN ) and c = (c1, . . . , cN ), let

Mρ,τ (σ;k, c) =
{
x ∈Mρ,τ (σ)

∣∣dim kerDi
x = diki, dim cokerDi

x = dici ∀i
}

Workhorse theorem

For generic σ ∈ Γ(E), for all choices G, ρ, τ,k, c,

Mρ,τ (σ;k, c) ⊂Mρ,τ (σ)

is a smooth submanifold with codimension
∑N

i=1 tikici, where
ti := dimR EndG(Wi) ∈ {1, 2, 4}.
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x = diki, dim cokerDi

x = dici ∀i
}

Workhorse theorem

For generic σ ∈ Γ(E), for all choices G, ρ, τ,k, c,

Mρ,τ (σ;k, c) ⊂Mρ,τ (σ)

is a smooth submanifold with codimension
∑N

i=1 tikici, where
ti := dimR EndG(Wi) ∈ {1, 2, 4}.
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Part 1: Equivariant transversality in finite dimensions

Sketch of proof:
Replace Γ(E) with a suitable Banach manifold of sections.
The Sard-Smale theorem ⇒ it suffices to prove

Mρ,τ (k, c) :=
{

(σ, x)
∣∣ σ ∈ Γ(E) and x ∈Mρ,τ (σ;k, c)

}
is a smooth Banach submanifold of Mρ,τ := {(σ, x) | x ∈Mρ,τ (σ)}
with the right codimension. Choose (σ0, x0) ∈Mρ,τ (k, c) and consider
nearby elements (σ, x) ∈Mρ,τ . The splittings

Dσ(x) =
N⊕
i=1

Di
x

vary continuously with (σ, x), so we have

(σ, x) ∈Mρ,τ (k, c)⇔ dim kerDσ(x) = dim kerDσ0(x0)⇔ Φ(σ, x) = 0

for a smooth function

Φ(σ, x) ∈ HomG(kerDσ0(x0), cokerDσ0(x0)) ∼= R
∑
i tikici .

Chris Wendl (HU Berlin) Transversality and Symmetry September 21, 2018 12 / 23



Part 1: Equivariant transversality in finite dimensions

Sketch of proof:
Replace Γ(E) with a suitable Banach manifold of sections.
The Sard-Smale theorem ⇒ it suffices to prove

Mρ,τ (k, c) :=
{

(σ, x)
∣∣ σ ∈ Γ(E) and x ∈Mρ,τ (σ;k, c)

}
is a smooth Banach submanifold of Mρ,τ := {(σ, x) | x ∈Mρ,τ (σ)}
with the right codimension. Choose (σ0, x0) ∈Mρ,τ (k, c) and consider
nearby elements (σ, x) ∈Mρ,τ . The splittings

Dσ(x) =

N⊕
i=1

Di
x

vary continuously with (σ, x), so we have

(σ, x) ∈Mρ,τ (k, c)⇔ dim kerDσ(x) = dim kerDσ0(x0)⇔ Φ(σ, x) = 0

for a smooth function

Φ(σ, x) ∈ HomG(kerDσ0(x0), cokerDσ0(x0)) ∼= R
∑
i tikici .

Chris Wendl (HU Berlin) Transversality and Symmetry September 21, 2018 12 / 23



Part 1: Equivariant transversality in finite dimensions

Sketch of proof:
Replace Γ(E) with a suitable Banach manifold of sections.
The Sard-Smale theorem ⇒ it suffices to prove

Mρ,τ (k, c) :=
{

(σ, x)
∣∣ σ ∈ Γ(E) and x ∈Mρ,τ (σ;k, c)

}
is a smooth Banach submanifold of Mρ,τ := {(σ, x) | x ∈Mρ,τ (σ)}
with the right codimension. Choose (σ0, x0) ∈Mρ,τ (k, c) and consider
nearby elements (σ, x) ∈Mρ,τ . The splittings

Dσ(x) =

N⊕
i=1

Di
x

vary continuously with (σ, x), so we have

(σ, x) ∈Mρ,τ (k, c)⇔ dim kerDσ(x) = dim kerDσ0(x0)⇔ Φ(σ, x) = 0

for a smooth function

Φ(σ, x) ∈ HomG(kerDσ0(x0), cokerDσ0(x0)) ∼= R
∑
i tikici .

Chris Wendl (HU Berlin) Transversality and Symmetry September 21, 2018 12 / 23



Part 1: Equivariant transversality in finite dimensions

Sketch of proof:
Replace Γ(E) with a suitable Banach manifold of sections.
The Sard-Smale theorem ⇒ it suffices to prove

Mρ,τ (k, c) :=
{

(σ, x)
∣∣ σ ∈ Γ(E) and x ∈Mρ,τ (σ;k, c)

}
is a smooth Banach submanifold of Mρ,τ := {(σ, x) | x ∈Mρ,τ (σ)}
with the right codimension. Choose (σ0, x0) ∈Mρ,τ (k, c) and consider
nearby elements (σ, x) ∈Mρ,τ . The splittings

Dσ(x) =

N⊕
i=1

Di
x

vary continuously with (σ, x), so we have

(σ, x) ∈Mρ,τ (k, c)⇔ dim kerDσ(x) = dim kerDσ0(x0)⇔ Φ(σ, x) = 0

for a smooth function

Φ(σ, x) ∈ HomG(kerDσ0(x0), cokerDσ0(x0)) ∼= R
∑
i tikici .

Chris Wendl (HU Berlin) Transversality and Symmetry September 21, 2018 12 / 23



Part 1: Equivariant transversality in finite dimensions

Sketch of proof:
Replace Γ(E) with a suitable Banach manifold of sections.
The Sard-Smale theorem ⇒ it suffices to prove

Mρ,τ (k, c) :=
{

(σ, x)
∣∣ σ ∈ Γ(E) and x ∈Mρ,τ (σ;k, c)

}
is a smooth Banach submanifold of Mρ,τ := {(σ, x) | x ∈Mρ,τ (σ)}
with the right codimension. Choose (σ0, x0) ∈Mρ,τ (k, c) and consider
nearby elements (σ, x) ∈Mρ,τ . The splittings

Dσ(x) =

N⊕
i=1

Di
x

vary continuously with (σ, x), so we have

(σ, x) ∈Mρ,τ (k, c)⇔ dim kerDσ(x) = dim kerDσ0(x0)⇔ Φ(σ, x) = 0

for a smooth function

Φ(σ, x) ∈ HomG(kerDσ0(x0), cokerDσ0(x0)) ∼= R
∑
i tikici .

Chris Wendl (HU Berlin) Transversality and Symmetry September 21, 2018 12 / 23



Part 1: Equivariant transversality in finite dimensions

Sketch of proof:
Replace Γ(E) with a suitable Banach manifold of sections.
The Sard-Smale theorem ⇒ it suffices to prove

Mρ,τ (k, c) :=
{

(σ, x)
∣∣ σ ∈ Γ(E) and x ∈Mρ,τ (σ;k, c)

}
is a smooth Banach submanifold of Mρ,τ := {(σ, x) | x ∈Mρ,τ (σ)}
with the right codimension. Choose (σ0, x0) ∈Mρ,τ (k, c) and consider
nearby elements (σ, x) ∈Mρ,τ . The splittings

Dσ(x) =

N⊕
i=1

Di
x

vary continuously with (σ, x), so we have

(σ, x) ∈Mρ,τ (k, c)⇔ dim kerDσ(x) = dim kerDσ0(x0)⇔ Φ(σ, x) = 0

for a smooth function

Φ(σ, x) ∈ HomG(kerDσ0(x0), cokerDσ0(x0)) ∼= R
∑
i tikici .

Chris Wendl (HU Berlin) Transversality and Symmetry September 21, 2018 12 / 23



Part 1: Equivariant transversality in finite dimensions

We need to prove DΦ(σ0, x0) is surjective, then apply the implicit
function theorem. Consider s ∈ Tσ0Γ(E) with s(x0) = 0, so
(s, 0) ∈ T(σ0,x0)Mρ,τ , and

DΦ(σ0, x0)(s, 0) : kerDσ0(x0)→ cokerDσ0(x0)

takes the form

kerDσ0(x0)
Ds(x0)−→ Ex0

proj−→ cokerDσ0(x0).

Is every G-equivariant linear map kerDσ0(x0)→ cokerDσ0(x0) equal to
DΦ(σ0, x0)(s, 0) for some s ∈ Tσ0Γ(E)?

Workhorse lemma (trivial)

Given D : TxM → Ex, every linear map A : kerD→ cokerD can be
lifted/extended to a map Ã : TxM → Ex.

If A is G-equivariant, we can symmetrize to assume Ã also is, then set
s such that Ds(x0) = Ã.
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Chris Wendl (HU Berlin) Transversality and Symmetry September 21, 2018 13 / 23



Part 1: Equivariant transversality in finite dimensions

We need to prove DΦ(σ0, x0) is surjective, then apply the implicit
function theorem. Consider s ∈ Tσ0Γ(E) with s(x0) = 0, so
(s, 0) ∈ T(σ0,x0)Mρ,τ , and

DΦ(σ0, x0)(s, 0) : kerDσ0(x0)→ cokerDσ0(x0)

takes the form

kerDσ0(x0)
Ds(x0)−→ Ex0

proj−→ cokerDσ0(x0).

Is every G-equivariant linear map kerDσ0(x0)→ cokerDσ0(x0) equal to
DΦ(σ0, x0)(s, 0) for some s ∈ Tσ0Γ(E)?

Workhorse lemma (trivial)

Given D : TxM → Ex, every linear map A : kerD→ cokerD can be
lifted/extended to a map Ã : TxM → Ex.
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Part 1: Equivariant transversality in finite dimensions

Recall Sample theorem 1: If dimM = rankE and |Gx| ≤ 3 for all x,
then generic sections of E intersect zero cleanly.

Proof for |Gx| ≤ 2:
For x ∈Mρ,τ (σ) with Gx = Z2, we have two irreps θ± with d± = 1, so
write Dx = D+

x ⊕D−x . If σ is generic, Mρ,τ (σ) is a manifold of dimension
m1(ρ)−m1(τ) = dim kerD+

x , so it will suffice to prove

dimMρ,τ (σ) = dim kerDx, i.e. D−x is injective!.

Useful observation: indD−x = − indD+
x = −[m+(ρ)−m+(τ)] ≤ 0.

Now suppose k− := dim kerD−x > 0, and write c− := dim cokerD−x as
k− + [m+(ρ)−m+(τ)]. Then x ∈Mρ,τ (σ;k, c) with

dimMρ,τ (σ;k, c) = m+(ρ)−m+(τ)− k−c−
= −k2− − (k− − 1)[m+(ρ)−m+(ρ)] < 0.

What makes this work? Only 2 irreps ⇒ can compute indD−x .
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Part 1: Equivariant transversality in finite dimensions

Recall Sample theorem 2: Generic smooth functions on M are Morse.

Proof:
Let E = T ∗M , then we need to show that for generic f : M → R,
df ∈ Γ(E) is transverse to zero. There are two new features:

1 For x ∈ df−1(0), the operator D(df)(x) is always symmetric, so the
previous codimension formula changes to

codimMρ,τ (df ;k, c) = dim Endsym
G (kerD(df)(x)),

which is generally smaller, but still positive.
2 We have ρ ∼= τ always, and the symmetry of Df(x) =

⊕N
i=1D

i
x

implies indDi
x = 0 always.

Then all strata Mρ,ρ(df) are 0-dimensional, and the substrata
Mρ,ρ(df ;k, c) always have negative dimension.
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Part 2: Holomorphic curves

Fix a 2n-dimensional symplectic cobordism X with cylindrical stable
Hamiltonian ends, assume J is a compatible almost complex structure.

Standard transversality result

For generic J , the open set

M∗(J) :=
{
u ∈M(J)

∣∣ u not multiply covered
}

is a transversely cut-out manifold of dim = vir-dim.

Question

What structure does M(J) generically have near the multiple covers?

Sample theorem 3: If dimX = 4 and J is generic, then unbranched
covers of immersed J-holomorphic curves with trivial normal bundle
and vanishing CZ-indices are cut out transversely. (cf. Taubes ’96)

Let’s see how this works in the case of immersed double covers. . .
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Part 2: Holomorphic curves

Ingredient A: Stratification via symmetry

M2(J) :=
{
u = v ◦ ϕ

∣∣ v ∈M∗(J) immersed, ϕ a

holomorphic unbranched cover of degree 2
}
.

Observations:

1 M2(J) is a smooth manifold with dimension determined by M∗(J).

2 Every immersed double cover is in M2(J).
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Part 2: Holomorphic curves

Ingredient B: Splitting the linearization

For u : (Σ, j)→ (X, J) immersed, restricting D∂̄J(u) to the normal
bundle Nu → Σ defines a real-linear Cauchy-Riemann type operator

DN
u : Γ(Nu)→ Ω0,1(Σ, Nu)

such that u is transversely cut out ⇔ DN
u : W k,p →W k−1,p is

surjective (k ∈ N, 1 < p <∞).

For u = v ◦ ϕ ∈M2(J), the nontrivial deck transformation ψ ∈ Aut(ϕ)
defines a splitting Γ(Nu) = Γ+(Nu)⊕ Γ−(Nu), where

Γ±(Nu) =
{
η ∈ Γ(Nu)

∣∣ η ◦ ψ = ±η
}
.

Then DN
u sends Γ±(Nu) to Ω0,1

± (Σ, Nu), defining a splitting

DN
u = D+

u ⊕D−u

such that D+
u is equivalent to DN

v , and is thus surjective for generic J .
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Part 2: Holomorphic curves

Brief digression (why you should believe super-rigidity is true)

For general branched covers of arbitrary degree, there is always a splitting

DN
u =

N⊕
i=1

(Dθi
u )⊕ki ,

whose summands are Cauchy-Riemann type operators corresponding to
the irreps of some finite group.

Slightly surprising lemma:
For any u = v ◦ ϕ with v a closed, immersed, simple curve with
indDN

v = 0 and ϕ a holomorphic branched cover, every summand of
DN
u satisfies

indDθi
u ≤ 0.

(If this were not true, super-rigidity would be false.)
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Part 2: Holomorphic curves

Ingredient C: Building walls

For nonnegative integers k = (k+, k−) and c = (c+, c−), let

M2(J ;k, c) =
{
u ∈M2(J)

∣∣ dim kerD±u = k±, dim cokerD±u = c±
}

Workhorse theorem

For generic J and all choices of g,A,k, c satisfying the workhorse lemma
(to be discussed below),

M2(J ;k, c) ⊂M2(J)

is a smooth submanifold with codimension k+c+ + k−c−.

When this (and its generalization for arbitrary branched covers) holds, it
implies super-rigidity via dimension counting arguments.
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Part 2: Holomorphic curves

Proving the workhorse theorem

Perturbing J causes zeroth-order perturbations in DN
u . We thus need to

know whether every linear map kerDN
u → cokerDN

u can be realized as

kerDN
u

A−→ Ω0,1(Σ, Nu)
proj−→ cokerDN

u

for some bundle map A : Nu → Λ0,1T ∗Σ⊗Nu. If not, then given bases
(ηi) ∈ kerDN

u and (ξj) ∈ ker(DN
u )∗ ∼= cokerDN

u , there exist nontrivial
coefficients cij ∈ R such that∑

i,j

cij〈ξj , Aηi〉L2 = 0

for all zeroth-order perturbations A.

In other words,
∑

i,j cijηi ⊗ ξj ∈ Γ(Nu ⊗ Λ0,1T ∗Σ⊗Nu) is identically
zero.
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Part 2: Holomorphic curves

Definition (a “quadratic unique continuation” property)

A linear partial differential operator D : Γ(E)→ Γ(F ) on Euclidean vector
bundles E,F → Σ satisfies Petri’s condition if the canonical map

kerD⊗ kerD∗ → Γ(E ⊗ F |U )

is injective for every open subset U ⊂ Σ.

Example 1: Elliptic operators on 1-dimensional domains
(⇒ bifurcation theory for periodic orbits)

Example 2: Cauchy-Riemann operators on trivial line bundles
(⇒ Sample theorem 3)

Meta-theorem (cf. A. Doan and T. Walpuski, in preparation):
Equivariant transversality problems are tractable for a large class of
elliptic operators that satisfy Petri’s condition.
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Part 2: Holomorphic curves

Workhorse lemma conjecture

For generic J and every J-holomorphic curve u, DN
u satisfies Petri’s

condition.

Final remarks:
1 Unique continuation ⇒ Petri holds whenever kerDN

u or cokerDN
u

has dim ≤ 3.
2 It does not always hold, e.g. for D = ∂̄ and D∗ = −∂:

1⊗ iz̄ − i⊗ z̄ − z ⊗ i+ iz ⊗ 1 ≡ 0.

(Achtung: real tensor products!)
3 For generic J , DN

u has invertible complex-antilinear part
⇒ the above counterexample never appears.

4 For C-linear Cauchy-Riemann operators, the complex version of
Petri’s condition always holds. (No idea if this is useful.)

Ideas welcome!
Chris Wendl (HU Berlin) Transversality and Symmetry September 21, 2018 23 / 23
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