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Good overview articles : [4] and [5].

1 Floer homology on non-compact manifolds

e Symplectic homology is an attempt to generalize Floer homology to non-compact
symplectic manifolds

e Let (V,w) be a symplectic manifold, J an w-compatible almost complex structure
and H : S x V — R a Hamiltonian

e What could go wrong if we want to define F'H(H) via the Floer equation
Osu+ J(u)(Ou — Xp(u) =0 7 (%)

— FC.(H) could be of infinite rank even for fixed degree and then 6z might
involve infinite sums = could be not well-defined

— For fixed 1-periodic orbits x, y of Xy the solutions u of (%) with limg , u ==z
and limg_, ., v = y might not be contained in a compact subset of V'
= M(z,y) has no nice compactification.

= We have to restrict the class of open symplectic manifolds and the class of Hamil-
tonians

e Let (V,w) be a compact symplectic manifold with positive contact type boundary
Y = 0V, i.e. near X, there exists a vector field Y such that £yw = w and Y points
out of V along Y. By the way, Y is called a Liouville field for w.



e Define the Liouville form A by A := tyw and note that Ly A = \. It restricts to

a contact form « := Mry on ¥ with Reeb vector field R and contact structure
¢ = ker a.

e The flow ¢! of Y for ¢t € (—¢, 0] symplectically identifies a collar neighbourhood of
2 with (X x (—¢,0],d(e" - a)). Define the completion (V,@) by

V=VUyuX x (—¢,00)

. w onV
0= .
d(e"-a) on X x (—e,00)

e Call H cylindrical at infinity if there exists R > —e and a function h : R — R such
that R
H(y,r) = h(e") on Y x [R,00) CV

Note that on ¥ x [R,00) we have Xy = h/'(e") - R, as dH(,,y = h'(e") - d(e”) and
Wiy = d(e") Na+ e - da.

e Call J cylindrical at infinity if it is time independent and of the form
J¢=¢and JO, =R & d(e")oJ =—\ on ¥ x [R,00).
Proposition (Maxirr/l\um Principle). Let Hg, J be cylindrical at i?}\ﬁmty with Osh., < 0
and let u: Rx S' — V be a solution of (x) such that limy 1o u C V\X X [R,00). Then
wR x §Y) € V\ T x [R, ).

Remark. A similar result holds, if H, is of the form H,(y,r) = h,(e" ™) i.e. if we
consider a different contact form o := e/® . . The proof is similar but more involved
(see [2]).

Lemma (E. Hopf’s Weak Maximum Principle). Let Q@ C R"™ be a bounded open domain.
Consider a differential operator of the form

L= +Zbk(x)—

such that the functions by, are uniformly bounded on Q. If p is a C*-function on Q such
that Lp > 0, then p attains its maximum on OS).

Proof:

1. Assume that Lp > 0. As p is continuous, it attains its maximum on Q. If p attains
the maximum at xy € ) then

0?p

82$k

9.
0$k

Hence Lp < 0, a contradiction.

(xg) =0 and (xo) <0 VEk.



2. Now assume the general case Lp > 0. Assume that 2 is inside {|z;| < d}. Consider
o(x) := p(x) +e-e** with a,e > 0. Then

Lo =Lp+e-(a®+ ab(z))e*™
> e (0 = allb]eo)e™ ™.

= for a large enough, we find Lo > 0. By 1. o attains its maximum at the

boundary

= supp<supa—supa<supp+5 e

Q a0 a0
With ¢ — 0 we find the Lemma.

Proof of the Proposition. We consider the function p = e” o u. Then

dsp = d(e")(Osu) = d(e")( = J(Qu — Xp))
(Ou — Xp)
(Opu) — p- (W (p) - R)
() = I'(p) - p
(e")(JOsu+ Xp)
—A(Osu) + d(e")(Xu)
0,as orbits m fixed r-levels

= Ap=0,(A\9u) — W (p) - p) — O\ Osu)

= 0\ (Oyu) — O\ (Dsu) — W (p)Dsp — (Dsh)(p) - p — h'(p) - p - Dap

= d\(Ou, Oyu) — ( 05w, Opu] ) — dH (Du) — (D) (p) - p — h"(p) - p - Dp

w(Osu, Opu — Xpr) — (8sh’)(p) p=h"(p)-p-0Osp

= 0sul® = (B:1')(p) - p — 1" (p)(p) - p - Dsp

& Ap+ (W(p)p)-Osp = |0sul> — (O:K)(p) - p = 0.

Orp = d(e )@U) d

Now let  := u‘l(Z X (R + ¢, oo)) Due to the assumptions on the asymptotics of
U, 2 is bounded. By Lemma [I] l we find that p attains its maximum on 0€2. Hence
u(s, t) C 1% \ X X (R+¢,00) for all € > 0. With ¢ — 0, the proposition follows. O

2 First definition of symplectic homology

Now we give the definition of symplectic homology following Viterbo.

e The spectrum of (X, ) is spec(3, ) := {l | a has £l-periodic Reeb orbits} U {0}



e Call a Hamiltonian admissible, writing H € Ad(X, «), if it is cylindrical at infinity
with
h(e") =a-e"+b, where a € R\ spec(3, a)

and all 1-periodic orbits are non-degenerate.

e Note that admissible Hamiltonians have only finitely many 1-periodic orbits. In
view of the Maximum Principle we hence find that F'H.(H) is well-defined. How-
ever, these groups depend strongly on H. Note that with the Maximum Principle,
we get connecting homomorphisms FH,(H,) — FH,(H_) only if H_ > H, on
¥ x [R, 00) for some large R. However, for H; < Hy < Hj we still have commuta-
tive diagrams

FH,(H,) FH,.(H,) .

~.

FH,(H;)

e Define a partial order < on Ad(X,«) by Hy < Hy iff Hy < Hy on ¥ x [R, 00) for
some large R. Then define

SH.(V):= lim FH.(H).

HEAd(S, )

3 Direct and inverse limits

e A direct set (M, <) is a set M with a partial order < such that for each pair
o, f € M there exists v € M with a, 8 < v (Example (Ad(Z, «), <)).

e A subset M’ C M is cofinal if for every aw € M exists v € M’ such that a < v (Ex.
H, € Ad(%, o) with a,, — 00).

e A direct system of R-modules over (M, <) consists of R-modules X Vo € M and
R-linear maps (°* : X® — X? Va < 3 such that (** = id, 7% = %% Va <
B =<7 (Ex. (Ad(Z,a), <) with X7 = FH(H)).

o Let Q C @, X be a submodule generated by the elements Por® — 2 for any
a < pand x* € X Then

li = @ )
im X P x / Q
aeM aEM
These are finite sums of elements in X, considered equal if they are eventually

mapped to the same.

e An inverse system over (M, <) consists of X, together with R-linear maps m,z :
Xg =+ Xo Va < B such that mhe = id, oy = Tapmsy Va < S <. Then define

H£1Xa = {(wa) Tap(28) = o Va < /3} C H X,

aEM aeM




e Facts: lim is an exact functor, while lim is only left exact, but exact when applied
— —

to finite dimensional vector spaces.

Action filtration

e SH has a qualitative and a quantitative aspect. This far, we considered only the
quantitative feature.

e Assume that [w]m (V) = 0 or that w = d\. Then we have a well-defined action on
the loop space Z (V) b

A () — /xw—/Ht

where 7 : D? — V is such that Z|s1 = x. Moreover, the Floer equation (x) is the
negative gradient equation of Af. It follows that the action increases from —oo
to +o0 along Floer cylinders = 9F decreases action.

e Define for b & spec(X, a) the subcomplex FC<t(H) C FC(H) as generated by
orbits z with A (2) < b and FC*Y(H) = FC<*(H)/FC<*(H). As 0 decreases
action, it induces boundary operators on FC<*(H) and FC“Y(H) = FH<"(H)
and FH@ (H).

e Let H be an everywhere monotone decreasing homotopy between H. and zy 1-
periodic orbits of Hy. Then

A ) = AT (o) = [ 0AM

:/ VA% ||2d //aH ))dtds > 0.

So for globally decreasing homotopies the connecting homomorphism restricts to
maps

FH<*(H,) — FH<*(H_) and FH@Y(H,) — FH*Y(H_).

e Now call H filtration admissible, H € Ad’(%,a), if H € Ad(X,a) and H|y < 0.
Define a partial order < on Ad°(¥,a) by Hy < H_ iff H, < H_ globally as
functions. Then define

SH<*(V)= lim FH<"(H) and SH (VY= lim FH)(H).

— —
HeAdO(Z,a) HeAdO(Z,a)



e Inclusions FC@Y(H) ¢ FC@Y)(H) and projections FC@Y(H) ¢ FC@Y(H) for
a' <a <b<UV induce maps in SH which give the groups SH @ the structure of
a bidirect system over R x R. Fact:

lim lim SH@Y(V) = SH(V). (with previous definition)
—

b—oco a——00

This holds as SH@" (V) = SH@? for a,a’ < 0 (consider cofinal sequence of

Hamiltonians that are C?-small inside V' and cylindrical sharply increasing near ¥

to final slope.) Hence suffices to show lim SH(™% (V) = lim SH<*(V) = SH(V).
— —

This is straight forward.

5 Variant

e By P. Seidel, one can take also one Hamiltonian H of the form H(y,r) = h(e")
with lim, . h'(e") = co. Then FH(H) = SH(V).

e Has huge advantages when calculating SH (compare simplicial and singular ho-
mology).

e However, this does not recover action filtration and invariance follows only from
the isomorphism with SH(V'). Moreover, we have cheated in the definition (see
next chapter)

6 Morse-Bott

e In pratice, working only with non-degenerate orbits has a draw-back:

— naturally, if H is autonomous, its orbits come in S'-families, e.g. in areas
where H is cylindrical, H(y,r) = h(e"), this is the case.

e Can we use this symmetry? Answer: Yes. Assumes that the 1-periodic orbits
N = z(S") of Xy are isolated circles which are transversely non-degenerate, i.e.
ker (Dp¢}q -1 d) = T,N. Now, there are two possibilities:

e Solution 1 (formal):
perturb H with the help of a Morse-function f on ' 2 S* such that H = H+6- f
has for 0 small enough and each N two new constant 1-periodic orbits of degree
pez(x) + 3 (1 £ signh”(r)) corresponding to the maximum and minimum of f.

e Solution 2 (flow lines with cascades):
Chain complex is generated by critical points of f and differential counts flow lines
with cascades, i.e. alternating sequences of whole Floer cylinders between different
N and parts of Morse flow lines on A (see [3], appendix for precise definition)



7 Connection with topology

e Consider Hamiltonians as described previously - C2-small Morse function on V' and
cylindrical sharply increasing near ¥ (see image). So morally speaking SH (V') is
generated by critical points of H and two generators for each closed Reeb orbit (of
arbitrary length).

e Explicitly FH ™9 (H) = H,,,,(V,dV), as critical points of H have action close to
zero and Floer trajectories are in one-to-one correspondence with Morse gradient
trajectories of H. As the latter flow out of V along ¥, we get the relative homology.

e Moreover, FHi_Oo’a)(H) — SHi_Oo’a)(V) — SH,.(V) by the natural map in direct
limits and this gives a map ¢ : H,,(V,0V) — SH,.(V).

8 The transfer map

e The map above is in fact natural and fits into a bigger frame: Let (W,0W) be
a 0-codimensional symplectic submanifold of (V;0V') and assume that V' \ W is
an exact symplectic manifold. Then there exists a natural homomorphims ' such
that the following diagram commutes

SH,.(V) : SH,(W)

o

H, n(V,0V) o H, (W, 0W)

Construction idea: Consider Hamiltonians H of the shape

slope ik
B —_
slope k
/\/\/\/1I
2w =1 Zm:/ =A ZV:: 2A+ P

Fig. 1: Shape of H for transfer map

Then Gromov- Monotonicity assures that Floer trajectories inside W cannot escape
and hence SH=°(V) = SH(W). (see [1] and [2] for details)



9 Calculations

e Consider the unit ball B;(0) C C" and the standard symplectic structure w :=
%dz Adz. Take the standard Liouville form A = %(zdé — Zdz) with Liouville vector
field Y(z) = 120., which generates the flow ¢'(z) = /% - z. Note that (C",w) is
the completion of (B1(0),w).

e Consider Hamiltonians H,(z) = a - |z|*> = « - 22, which are cylindrical, as for
2o € S 1 we have H(¢'(29)) = e'. Their Hamiltonian vector fields are Xy (2) =
2iaz - 9, with Hamiltonian flow ¢%, (2) = e** . 2. = for @ € 7Z is 0 the only
1-periodic orbit of Xp.

e The Conley-Zehnder index of the constant orbit ~, is

pez(v) =n - (EW + PJ) asee

™

Hence FHy(H,) = 0 for « large enough = SH(B;(0)) = 0.

¢ Handle attachment
Let V =W Upw H?™ with k < n. Then

Theorem (Cieliebak,[1]). SH.(V) = SH,.(W)

Proof: Idea: Consider the transfer map SH.(V) — SH.(W) = SH=°(V), which
fits in the long exact sequence

SH(V) = SH,(V) — SH=*(V) — SH=°, (V).

Then show that SH (V) = 0. This follows as one can construct Hamiltonians
on V which have 1-periodic orbits below a certain action only in W or on the
handle and on the handle a similar argument as for the ball shows that they do
not count. 0

Corollary. Let V' be a subcritical Stein manifold, i.e. let V' be obtained from the
balll B1(0) by inductively adding a finite number of subcritical handles H". Then
SH,.(V)=0.

e Viterbo’s Theorem
Let M be any orientable smooth manifold. Consider the cotangent bundle 7" M.
Points in 7*M are denoted (q,p) with ¢ € M,p € TyM. T*M has a canonical
Liouville form 6 = pdq, i.e. w = df = dp A dq is symplectic. The choice of a
Riemannian metric defines the unit disc bundle D*M := {(¢,p) € T*M | ||p|| < 1}.
Let ZM denote the free loop space of M.

Theorem (Viterbo). SH.(D*M,df) = H,(£L M)

e The pair of pants product from Hamiltonian Floer homology carries over to sym-
plectic homology. However, it does not restrict to the filtered version



10 Wrapped Floer homology or Lagrangian symplectic
homology

e Let (V, A be a Liouville domain. Let L C V be an exact Lagrangian which intersects
OV transversely in a Legendrian submanifold 0L = L N9V, i.e. A|p is an exact
1-form which vanishes on OL.

e After applying a Hamiltonian isotopy, we may additionally assume that L is in-
variant under the flow of Y near 0V, i.e. in a collar neighbourhood 0V x (—¢, 0]
L is identified with 0 x (—¢,0].

e Take H € Ad(0V,«a). FC(L) is generated by 1-periodic Hamiltonian chords (start-
ing and ending on L), i.e. trajectories © of Xy with x(0),z(1) € L. A chord z is
non-degenerate if

— 1 is not an eigenvalue of the linearized flow for constant chords

— the image of T'L under the linearized time 1 flow is transversal to T'L, i.e.
Do)y (Te L) th Loy L.

e O counts solutions u : R x [0,1] — V to (*) such that u(R x {0,1}) C L.
Otherwise, we construction of the homology is completely analogue to SH.
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