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Solution Midterm

2. Let X be a topological space, 7 : S' — X a continuous loop and D? C R? the unit disk. Define
X' := X UD?/~ where z ~ y(2).

(a) Assume that X is Hausdorff and compact, then X’ is Hausdorff and compact.

e Denote 7 : X LI D? — X’ the quotient map. By definition of the topology of X’ the quotient
map 7 is continuous. Since D? is compact and X is compact by assumption, the space X' is
the image of a compact space under a continuous map and thus compact.

e First we claim that 7 is a closed map. Proof: We need to show that for any closed A C X LID?
the space m(A) is closed. By definition the space m(A) is closed iff 7=1(7w(A)) is closed. To
show that 7=1(7(A)) is closed we distinguish two subcases: case A C X or case A C D?. For
these two cases we have

if AC X then 7 *(m(A)) = AUy (y(S') N A)
if AC D? then n(7(A)) =v(ANSHUA.

Since S! is compact and 7 is continuous v(S') is compact. Because X is Hausdorff, v(S?!) is
also closed. This shows that (S*)N A4 is closed and since again + is continuous v~ (y(S1)NA)
is closed. This shows that 7= 1(m(A)) is closed in the first case. For the second case we argue
as follows: S*N A is closed and since S! is compact also compact. This shows that v(S! N A)
is compact and because X is Hausdorff 4(S* N A) is also closed. This shows that 7—1(7(A))
is closed in the second case. To see that 7~!(m(A)) is closed for a general A note that any
closed subspace in X LI D? is the union of two closed subspaces of the two considered cases.
Having seen that 7 is closed, we claim that points in X’ are closed. Proof: Given a point
[z] € X’ and pick any z € 7~ !([z]). Since X U D? is Hausdorff, the point set {z} is closed.
Hence {[z]} = m({x}) is closed.

Having proven the claims, we show that X’ is Hausdorff. Proof: Given two points [z], [y] € X’
such that [r] # [y]. Since points are closed and 7 is continuous, the spaces 7~ !([z]) and
7~ 1([y]) are closed and disjoint. Since X LI D? is Hausdorff and compact, it is also normal.
Hence we find open and disjoint subsets U,,U, C X U D? such that 7—*([z]) C U, and
7~ ([y]) C Uy. Now define

Uy =X \7((XUDH\U,) U,:=X\n((XuUD*)\U,).

Note that as U, and U, are open, their complements A, and A, are closed and because 7 is
closed, the spaces m(A,) and w(A,) are closed. This shows that U, and U, are open. Before
we show that they are disjoint, we claim that

Y (U,) C Uy, =~ YU, cU,.

Proof: Take # € 7~ '(U,) and assume by contradiction that & ¢ U, or equivalently & €
(X UD?)\ Uy, but then 7(Z) must lie in the complement of U, by definition in contradiction
to the choice of & € 7~1(U,). Similarly we show that 7—(U,) C U,.

Now we show that U, N U, = ). Proof: Assume by contradiction that U, N U, # 0. Since 7
is surjective we would have

0#7 U, NT,) =7 U,) N7 (U, cU,NU, = 0.

This is obviously a contradiction. To summarize: we have constructed two disjoint open
subsets U, and U,. It remains to see that [z] € U, and [y] € U,. Proof: Let x € 7~ ([z]) be
an element. By construction x € Uy, or equivalently = ¢ A,. Thus [z] = w(x) ¢ A,. Thus

[z] € U,. Similarly we show that [y] € U,,.



