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PROBLEM SET 3

Due: 10.05.2017

Instructions

Problems marked with (∗) will be graded. Solutions may be written up in German or English and should be
handed in before the Übung on the due date. For problems without (∗), you do not need to write up your
solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

Problems

1. Recall that [0, 1]R denotes the set of all functions f : R → [0, 1], with the topology of pointwise
convergence. Tychonoff’s theorem implies that [0, 1]R is compact, but one can show that it is not first
countable, so it need not be sequentially compact.

(a) For x ∈ R and n ∈ N, let x(n) ∈ {0, . . . , 9} denote the nth digit to the right of the decimal point

in the decimal expansion of x. Now define a sequence fn ∈ [0, 1]R by setting fn(x) =
x(n)

10 . Show
that for any subsequence fkn

of fn, there exists x ∈ R such that fkn
(x) does not converge, hence

fn has no pointwise convergent subsequence.

(b) (∗) The compactness of [0, 1]R does imply that every sequence has a convergent subnet, or equiv-
alently, a cluster point. Use this to deduce that for every sequence fn ∈ [0, 1]R, there exists
f ∈ [0, 1]R such that for any given finite subset X ⊂ R, some subsequence of fn converges to f at
all points in X . Attention: The choice of subsequence can depend on the choice of subset X !

Challenge: Find a direct proof of the statement in part (b), without passing through Tychonoff’s
theorem. (I do not know how to do this, and I suspect that it’s approximately as difficult as actually
proving Tychonoff’s theorem—in any case, it very likely requires the axiom of choice.)

2. Consider the space X =
{

f ∈ [0, 1]R
∣

∣ f(x) 6= 0 for at most countably many points x ∈ R
}

, with the
subspace topology that it inherits from [0, 1]R.

(a) Show that X is sequentially compact.
Hint: For any sequence fn ∈ X , the set

⋃

n∈N
{x ∈ R | fn(x) 6= 0} is also countable.

(b) For each x ∈ R, define Ux = {f ∈ X | −1 < f(x) < 1}.1 Show that the collection {Ux ⊂ X | x ∈ R}
forms an open cover of X that has no finite subcover, hence X is not compact.

3. There is a cheap trick to view any topological space as a compact space with a single point removed.
For a space X with topology T , let {∞} denote a set consisting of one element that is not in X , and
define the one point compactification of X as the set X∗ = X ∪{∞} with topology T ∗ consisting of all
subsets in T plus all subsets of the form (X \K) ∪ {∞} ⊂ X∗ where K ⊂ X is closed and compact.

(a) Verify that T ∗ is a topology and that X∗ is always compact.

(b) Show that if X is first countable,2 then a sequence in X ⊂ X∗ converges to ∞ ∈ X∗ if and only
if it has no convergent subsequence in X .

(c) Show that X∗ is Hausdorff if and only if X is both Hausdorff and locally compact.

(d) Show that for X = R, X∗ is homeomorphic to S1. (More generally, one can use stereographic
projection to show that the one point compactification of Rn is homeomorphic to Sn.)

(e) Show that if X is already compact, then X∗ is homeomorphic to the disjoint union X ⊔ {∞}.

1This is a corrected version of the problem sheet. In the version handed out in class, the definition of Ux was misstated.
2The original version of this problem sheet did not mention the first countability condition in Problem 3(b), but it is rather

important.
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4. For each of the following spaces, determine whether it is (i) Hausdorff, (ii) locally compact, (iii) con-
nected, (iv) locally path-connected.3

(a) The irrational numbers R \Q

(b) {0} ∪ {1/n | n ∈ N} ⊂ R

(c) The quotient group R/Q, i.e. the set of equivalence classes of real numbers where x ∼ y if and
only if x− y ∈ Q

(d) (∗) The one point compactification of Q (cf. Problem 3)

5. Suppose X and Y are topological spaces, x ∈ X , K ⊂ Y is compact, and U ⊂ X×Y is an open subset
such that {x} ×K ⊂ U . Prove that V ×K ⊂ U for some neighborhood V ⊂ X of x.

6. The main goal of this problem is to prove the following important lemma.

Lemma: Suppose X is a locally compact Hausdorff space with subsets K ⊂ U ⊂ X such that K is

compact and U is open. Then there exists an open subset V ⊂ X with compact closure V̄ such that

K ⊂ V ⊂ V̄ ⊂ U .

(a) Show that the lemma becomes false if X is not locally compact.
Hint: Every finite subset is compact.

(b) In any topological space X , the boundary of a subset K ⊂ X is defined by

∂K = {y ∈ X | every neighborhood of y intersects both K and X \K}.

Show that if K is compact, then ∂K is a closed subset of K (and is therefore compact).

(c) (∗) Show that if X is locally compact and Hausdorff, then for every point x ∈ X , every compact
neighborhood K ⊂ X of x contains an open neighborhood V ⊂ X of x which is disjoint from
some neighborhood of ∂K.4 Hint: The argument you need here is similar to our proof in lecture
that compact subsets of Hausdorff spaces are always closed.

(d) Prove the lemma in the case where K is a one point subset.

(e) Use a finite covering argument to complete the proof of the lemma.

7. For any topological spaces X and Y , the set C(X,Y ) of continuous maps from X to Y can be assigned
a topology with subbase consisting of all sets of the form

UK,V = {f ∈ C(X,Y ) | f(K) ⊂ V }

for K ⊂ X compact and V ⊂ X open. The resulting topology on C(X,Y ) is called the compact-open

topology.

(a) Show that if Y is a metric space, then a sequence in C(X,Y ) converges in the compact-open
topology if and only if it converges uniformly on all compact subsets.

(b) (∗) In algebraic topology, two continuous maps f, g : X → Y are called homotopic if there exists
a continuous map H : [0, 1] × X → Y with H(0, ·) = f and H(1, ·) = g. Show that if f and g
are homotopic, then they belong to the same path component of C(X,Y ) in the compact-open
topology. Hint: You might find #5 helpful, and also #3(b) from Problem Set 2.

(c) (∗) Prove that ifX is locally compact and Hausdorff, then the converse of the statement in part (b)
holds: any two maps in the same path component of C(X,Y ) are homotopic.
Hint: The lemma of #6 is needed here, or at least the case of it where K is a one point subset.

(d) Show that for any three topological spaces X , Y and Z such that Y satisfies the conclusion of the
lemma in #6 (so in particular if Y is locally compact and Hausdorff), the natural map

C(X,Y )× C(Y, Z) → C(X,Z) : (f, g) 7→ g ◦ f

is continuous.

3You should always assume unless otherwise specified that R is endowed with its standard topology, and all spaces derived
from it as subsets/products/quotients etc. carry the natural subspace/product/quotient topology.

4In case I forgot to say this in lecture, for any subset A ⊂ X of a space X, a set B ⊂ X is called a neighborhood of A if it
contains an open set that contains A.
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