TOPOLOGY I C. WENDL / F. SCHMÄSCHKE Humboldt-Universität zu Berlin Summer Semester 2017

PROBLEM SET 3 Due: 10.05.2017

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

Problems

- 1. Recall that $[0,1]^{\mathbb{R}}$ denotes the set of all functions $f : \mathbb{R} \to [0,1]$, with the topology of pointwise convergence. Tychonoff's theorem implies that $[0,1]^{\mathbb{R}}$ is compact, but one can show that it is not first countable, so it need not be sequentially compact.
 - (a) For $x \in \mathbb{R}$ and $n \in \mathbb{N}$, let $x_{(n)} \in \{0, \dots, 9\}$ denote the *n*th digit to the right of the decimal point in the decimal expansion of x. Now define a sequence $f_n \in [0,1]^{\mathbb{R}}$ by setting $f_n(x) = \frac{x_{(n)}}{10}$. Show that for any subsequence f_{k_n} of f_n , there exists $x \in \mathbb{R}$ such that $f_{k_n}(x)$ does not converge, hence f_n has no pointwise convergent subsequence.
 - (b) (*) The compactness of $[0,1]^{\mathbb{R}}$ does imply that every sequence has a convergent *subnet*, or equivalently, a cluster point. Use this to deduce that for every sequence $f_n \in [0,1]^{\mathbb{R}}$, there exists $f \in [0,1]^{\mathbb{R}}$ such that for any given finite subset $X \subset \mathbb{R}$, some subsequence of f_n converges to f at all points in X. Attention: The choice of subsequence can depend on the choice of subset X!

Challenge: Find a direct proof of the statement in part (b), without passing through Tychonoff's theorem. (I do not know how to do this, and I suspect that it's approximately as difficult as actually proving Tychonoff's theorem—in any case, it very likely requires the axiom of choice.)

- 2. Consider the space $X = \{f \in [0,1]^{\mathbb{R}} \mid f(x) \neq 0 \text{ for at most countably many points } x \in \mathbb{R}\}$, with the subspace topology that it inherits from $[0,1]^{\mathbb{R}}$.
 - (a) Show that X is sequentially compact. Hint: For any sequence $f_n \in X$, the set $\bigcup_{n \in \mathbb{N}} \{x \in \mathbb{R} \mid f_n(x) \neq 0\}$ is also countable.
 - (b) For each $x \in \mathbb{R}$, define $\mathcal{U}_x = \{f \in X \mid -1 < f(x) < 1\}$.¹ Show that the collection $\{U_x \subset X \mid x \in \mathbb{R}\}$ forms an open cover of X that has no finite subcover, hence X is not compact.
- 3. There is a cheap trick to view any topological space as a compact space with a single point removed. For a space X with topology \mathcal{T} , let $\{\infty\}$ denote a set consisting of one element that is not in X, and define the *one point compactification* of X as the set $X^* = X \cup \{\infty\}$ with topology \mathcal{T}^* consisting of all subsets in \mathcal{T} plus all subsets of the form $(X \setminus K) \cup \{\infty\} \subset X^*$ where $K \subset X$ is closed and compact.
 - (a) Verify that \mathcal{T}^* is a topology and that X^* is always compact.
 - (b) Show that if X is first countable,² then a sequence in $X \subset X^*$ converges to $\infty \in X^*$ if and only if it has no convergent subsequence in X.
 - (c) Show that X^* is Hausdorff if and only if X is both Hausdorff and locally compact.
 - (d) Show that for $X = \mathbb{R}$, X^* is homeomorphic to S^1 . (More generally, one can use stereographic projection to show that the one point compactification of \mathbb{R}^n is homeomorphic to S^n .)
 - (e) Show that if X is already compact, then X^* is homeomorphic to the disjoint union $X \sqcup \{\infty\}$.

¹This is a corrected version of the problem sheet. In the version handed out in class, the definition of U_x was misstated. ²The original version of this problem sheet did not mention the first countability condition in Problem 3(b), but it is rather important.

- 4. For each of the following spaces, determine whether it is (i) Hausdorff, (ii) locally compact, (iii) connected, (iv) locally path-connected.³
 - (a) The irrational numbers $\mathbb{R} \setminus \mathbb{Q}$
 - (b) $\{0\} \cup \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$
 - (c) The quotient group \mathbb{R}/\mathbb{Q} , i.e. the set of equivalence classes of real numbers where $x \sim y$ if and only if $x y \in \mathbb{Q}$
 - (d) (*) The one point compactification of \mathbb{Q} (cf. Problem 3)
- 5. Suppose X and Y are topological spaces, $x \in X$, $K \subset Y$ is compact, and $\mathcal{U} \subset X \times Y$ is an open subset such that $\{x\} \times K \subset \mathcal{U}$. Prove that $\mathcal{V} \times K \subset \mathcal{U}$ for some neighborhood $\mathcal{V} \subset X$ of x.
- 6. The main goal of this problem is to prove the following important lemma.

Lemma: Suppose X is a locally compact Hausdorff space with subsets $K \subset U \subset X$ such that K is compact and U is open. Then there exists an open subset $V \subset X$ with compact closure \overline{V} such that $K \subset V \subset \overline{V} \subset U$.

- (a) Show that the lemma becomes false if X is not locally compact. Hint: Every finite subset is compact.
- (b) In any topological space X, the boundary of a subset $K \subset X$ is defined by

 $\partial K = \{y \in X \mid \text{every neighborhood of } y \text{ intersects both } K \text{ and } X \setminus K \}.$

Show that if K is compact, then ∂K is a closed subset of K (and is therefore compact).

- (c) (*) Show that if X is locally compact and Hausdorff, then for every point $x \in X$, every compact neighborhood $K \subset X$ of x contains an open neighborhood $\mathcal{V} \subset X$ of x which is disjoint from some neighborhood of ∂K .⁴ Hint: The argument you need here is similar to our proof in lecture that compact subsets of Hausdorff spaces are always closed.
- (d) Prove the lemma in the case where K is a one point subset.
- (e) Use a finite covering argument to complete the proof of the lemma.
- 7. For any topological spaces X and Y, the set C(X, Y) of continuous maps from X to Y can be assigned a topology with subbase consisting of all sets of the form

$$\mathcal{U}_{K,V} = \{ f \in C(X,Y) \mid f(K) \subset V \}$$

for $K \subset X$ compact and $V \subset X$ open. The resulting topology on C(X, Y) is called the *compact-open* topology.

- (a) Show that if Y is a metric space, then a sequence in C(X, Y) converges in the compact-open topology if and only if it converges uniformly on all compact subsets.
- (b) (*) In algebraic topology, two continuous maps $f, g: X \to Y$ are called *homotopic* if there exists a continuous map $H: [0,1] \times X \to Y$ with $H(0, \cdot) = f$ and $H(1, \cdot) = g$. Show that if f and gare homotopic, then they belong to the same path component of C(X, Y) in the compact-open topology. *Hint:* You might find #5 helpful, and also #3(b) from Problem Set 2.
- (c) (*) Prove that if X is locally compact and Hausdorff, then the converse of the statement in part (b) holds: any two maps in the same path component of C(X, Y) are homotopic. Hint: The lemma of #6 is needed here, or at least the case of it where K is a one point subset.
- (d) Show that for any three topological spaces X, Y and Z such that Y satisfies the conclusion of the

$$C(X,Y)\times C(Y,Z)\to C(X,Z):(f,g)\mapsto g\circ f$$

is continuous.

lemma in #6 (so in particular if Y is locally compact and Hausdorff), the natural map

³You should always assume unless otherwise specified that \mathbb{R} is endowed with its standard topology, and all spaces derived from it as subsets/products/quotients etc. carry the natural subspace/product/quotient topology.

⁴In case I forgot to say this in lecture, for any subset $A \subset X$ of a space X, a set $B \subset X$ is called a *neighborhood of* A if it contains an open set that contains A.