PROBLEM SET 7 Due: 7.06.2017

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

Special note: You may continue to use the fact that $\pi_1(S^1) \cong \mathbb{Z}$ without proof. (We'll prove it next week.)

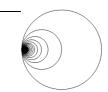
Problems

1. Recall that the wedge sum of two pointed spaces (X, x) and (Y, y) is defined as $X \vee Y = (X \sqcup Y)/\sim$ where the equivalence relation identifies the two base points x and y. It is commonly said that whenever X and Y are both path-connected and are otherwise "reasonable" spaces, the formula

$$\pi_1(X \vee Y) \cong \pi_1(X) * \pi_1(Y) \tag{1}$$

holds. We've seen for instance that this is true when X and Y are both circles. The goal of this problem is to understand slightly better what "reasonable" means in this context, and why such a condition is needed.

- (a) Show by a direct argument (i.e. without trying to use Seifert-van Kampen) that if X and Y are both Hausdorff and simply connected, then $X \vee Y$ is simply connected. Hint: Hausdorff implies that $X \setminus \{x\}$ and $Y \setminus \{y\}$ are both open subsets. Consider loops γ : $[0,1] \to X \vee Y$ based at [x] = [y] and decompose [0,1] into subintervals in which $\gamma(t)$ stays in either X or Y.
- (b) Call a pointed space (X, x) $nice^1$ if X is Hausdorff and x admits an open neighborhood that is simply connected. Show that the formula (1) holds whenever (X, x) and (Y, y) are both nice.
- (c) Here is an example of a space that is not "nice" in the sense of part (b): the so-called *Hawaiian earring* can be defined as the subset of \mathbb{R}^2 consisting of the union for all $n \in \mathbb{N}$ of the circles of radius 1/n centered at (1/n, 0). As usual, we assign to this set the subspace topology induced by the standard topology of \mathbb{R}^2 . Show that in this space, the point (0,0) does not have any simply connected open neighborhood.



- (d) It is tempting to liken the Hawaiian earring to the infinite wedge sum of circles $X := \bigvee_{n=1}^{\infty} S^1$, defined as above by choosing a base point in each copy of the circle and then identifying all the base points in the infinite disjoint union $\bigsqcup_{n=1}^{\infty} S^1$. Since both X and the Hawaiian earring are unions of infinite collections of circles that all intersect each other at one point, it is not hard to imagine a bijection between them. Show however that such a bijection can never be a homeomorphism; in particular, unlike the Hawaiian earring, X is "nice" for any choice of base point.
 - Hint: Pay attention to how the topology of X is defined—it is a quotient of a disjoint union.
- 2. (*) As proved in lecture, the closed orientable surface Σ_q of genus $g \geq 0$ has $\pi_1(\Sigma_q)$ isomorphic to

$$G_g := \left\{ x_1, y_1, \dots, x_g, y_g \mid x_1 y_1 x_1^{-1} y_1^{-1} \dots x_g y_g x_g^{-1} y_g^{-1} = e \right\}.$$

Show that the abelianization (cf. Problem Set 6 #2) of G_g is isomorphic to the additive group \mathbb{Z}^{2g} . Hint: By definition, G_g is a particular quotient of the free group on 2g generators. Observe that the abelianization of the latter is exactly the same group as the abelianization of G_g . (Why?)

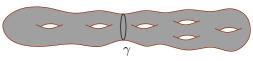
Remark: \mathbb{Z}^n is isomorphic to \mathbb{Z}^m if and only if n=m, so this proves Σ_g and Σ_h are not homeomorphic.

¹Not a standardized term, I made it up.

3. For integers $g,m\geq 0$, let $\Sigma_{g,m}$ denote the compact surface obtained by cutting m disjoint disk-shaped holes out of the closed orientable surface with genus g. (By this convention, $\Sigma_g=\Sigma_{g,0}$.) The boundary $\partial\Sigma_{g,m}$ is then a disjoint union of m circles, e.g. the case with g=1 and m=3 might look like the picture at the right.

- (a) (*) Show that $\pi_1(\Sigma_{g,1})$ is a free group with 2g generators, and if $g \geq 1$, then any simple closed curve parametrizing $\partial \Sigma_{g,1}$ represents a nontrivial element of $\pi_1(\Sigma_{g,1})$.²

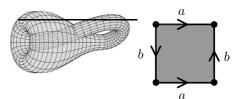
 Hint: Think of Σ_g as a polygon with some of its edges identified. If you cut a hole in the middle of the polygon, what remains admits a deformation retraction to the edges. Prove it with a picture.
- (b) (*) Assume γ is a simple closed curve separating Σ_g into two pieces homeomorphic to $\Sigma_{h,1}$ and $\Sigma_{k,1}$ for some $h,k\geq 0$. (The picture at the right shows an example with h=2 and k=4.) Show that the image of $[\gamma] \in \pi_1(\Sigma_g)$ under the natural projection to the abelianization of $\pi_1(\Sigma_g)$ is trivial.



Hint: What does γ look like in the polygonal picture from part (a)? What is it homotopic to?

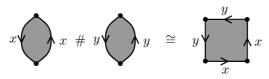
- (c) (*) Show that the curve γ in part (b) nevertheless represents a nontrivial element of $\pi_1(\Sigma_g)$. Hint: Break Σ_g into two open subsets overlapping near γ , then see what van Kampen tells you.
- (d) Prove that the generators a and b in the group $\{a, b, c, d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} = e\}$ satisfy $ab \neq ba$. Advice: A purely algebraic solution to this problem is presumably possible, but you could also just deduce it from part (c).
- (e) Generalize part (a): show that if $m \ge 1$, $\pi_1(\Sigma_{g,m})$ is a free group with 2g + m 1 generators.
- 4. The first of the two pictures at the right shows one of the standard ways of representing the $Klein\ bottle^3$ as an "immersed" (i.e. smooth but with self-intersections) surface in \mathbb{R}^3 . As a topological space, the technical definition is

 $\mathbb{K}^2 = [0, 1]^2 / \sim$



where $(s,0) \sim (s,1)$ and $(0,t) \sim (1,1-t)$ for every $s,t \in [0,1]$. This is represented by the square with pairs of sides identified in the rightmost picture; notice the reversal of arrows, which is why $\mathbb{K}^2 \neq \mathbb{T}^2$!

- (a) Using the same argument by which we computed $\pi_1(\Sigma_g)$ in lecture, show that $\pi_1(\mathbb{K}^2)$ is isomorphic to $G := \{a, b \mid aba^{-1}b = e\}$.
- (b) (*) Consider the subset $\ell = \{[(s,t)] \in \mathbb{K}^2 \mid t=1/4 \text{ or } t=3/4\}$ in \mathbb{K}^2 . Show that ℓ is a simple closed curve which separates \mathbb{K}^2 into two pieces, each homeomorphic to the Möbius band $\mathbb{M}^2 := \{(e^{i\theta}, \tau e^{i\theta/2}) \in S^1 \times \mathbb{C} \mid \theta \in [0, 2\pi], \ \tau \in [-1, 1]\}$. Use this decomposition to show via the Seifert-van Kampen theorem that $\pi_1(\mathbb{K}^2)$ is also isomorphic to $G' := \{c, d \mid c^2 = d^2\}$.
- (c) Recall that \mathbb{RP}^2 can be constructed by gluing \mathbb{M}^2 to a disk \mathbb{D}^2 , so conversely, $\mathbb{RP}^2 \setminus \mathring{\mathbb{D}}^2 \cong \mathbb{M}^2$. Part (b) implies therefore that \mathbb{K}^2 is homoemorphic to the connected sum $\mathbb{RP}^2 \# \mathbb{RP}^2$ (cf. Problem Set 6 #3). Now, viewing \mathbb{RP}^2 as a polygon with two (curved) edges that are identified, imitate the argument we carried out for Σ_g in lecture to derive a different presentation for \mathbb{K}^2 as shown in the figure below, and deduce that $\pi_1(\mathbb{K}^2)$ is also isomorphic to $G'' := \{x, y \mid x^2y^2 = e\}$.



(d) For the groups G, G' and G'' above, find explicit isomorphisms of their abelianizations to $\mathbb{Z} \oplus \mathbb{Z}_2$. Then find explicit isomorphisms from each of G, G' and G'' to the others.

²Terminology: one says in this case that $\partial \Sigma_{g,1}$ is homotopically nontrivial or essential, or equivalently, not nullhomotopic. ³If you think my glass Klein bottle is cool, you can buy your own at http://www.kleinbottle.com/.