
Topology I Humboldt-Universität zu Berlin
C. Wendl / F. Schmäschke Summer Semester 2017

PROBLEM SET 9

Due: 5.07.2017

Instructions

Problems marked with (∗) will be graded. Solutions may be written up in German or English and should be
handed in before the Übung on the due date. For problems without (∗), you do not need to write up your
solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

1. The goal of this problem is to prove the following statement.

Proposition: If M is a topological n-manifold, then it is not also a topological m-manifold for m 6= n.

We need to show in particular that if we are given two neighborhoods U ,U ′ ⊂M of a point p ∈M and
charts ϕ : U → Ω and ψ : U ′ → Ω′ where Ω ⊂ R

n and Ω′ ⊂ R
m are both open subsets, then n = m. By

composing both charts with translations in Euclidean space, we can assume without loss of generality
that both map p to the origin in Rn or Rm respectively. The transition map ψ ◦ ϕ−1 then takes some
neighborhood of 0 ∈ Rn homeomorphically to some neighborhood of 0 ∈ Rm.

(a) Prove that if ψ◦ϕ−1 is continuously differentiable, thenm = n. (This proves the weaker statement
that a smooth n-manifold cannot also be a smooth m-manifold for m 6= n.)

(b) Suppose δ > 0 and ǫ > 0 are small enough so that the balls Bn

δ
(0) ⊂ Rn and Bm

ǫ (0) ⊂ Rm about
the origin are contained in the domains of ψ ◦ϕ−1 and ϕ◦ψ−1 respectively, and ψ ◦ϕ−1(Bn

δ
(0)) ⊂

Bm
ǫ (0). Now show that the map

f : Sn−1 → Bn

δ (0) \ {0} : v 7→
δ

2
v

is not homotopic to a constant among continuous maps Sn−1 → Bn

δ
(0) \ {0}.

Hint: Reduce this to a statement about maps Sn−1 → Sn−1 and consider their degrees.

(c) Show that if m > n, then the map ψ ◦ ϕ−1 ◦ f : Sn−1 → Bm
ǫ (0) \ {0} is homotopic (among maps

Sn−1 → Bm
ǫ (0) \ {0}) to a constant. Then compose it with ϕ ◦ ψ−1 to derive a contradiction to

part (b), proving m ≤ n.

To conclude the proof, one can use the same argument replacing ψ ◦ϕ−1 by ϕ ◦ψ−1 in order to derive
a similar contradiction if n > m.

2. Each of the following pictures defines a topological space by identifying all vertices of the polygon
to a single point and identifying any pairs of edges with matching letters via a homeomorphism that
matches the arrows. Determine whether each space is (i) a 2-manifold (without boundary), (ii) a
2-manifold with boundary, or (iii) neither.

(a)

a

ab

(b)

a

a

b

b

c

c

(c)

a

a b

b
c

c

(d) For any cases in parts (a)–(c) where the space is a manifold or a manifold with boundary, describe
it in terms of familiar surfaces such as the disk, the Möbius band, the sphere, the torus, the
projective plane, and connected sums of these.

Remark: You can answer parts (a)–(c) without doing part (d), but if you can see how to do part (d),
then it’s a good way to verify whether your answers to parts (a)–(c) were correct. In some cases, you
might also be able to compute the fundamental groups of the spaces in part (d) and compare the result
with whatever the polygon pictures tell you.
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3. Recall that an atlas on a manifold M is a collection of charts {ϕα : Uα → Ωα}α∈I such that the sets
{Uα}α∈I form an open cover of M .1

(a) What is the minimum number of charts required to form an atlas on Sn?
Hint: The answer is not 1.

(b) Suppose M is a connected 1-manifold (without boundary) admitting an atlas that consists of
precisely two charts ϕ : U → Ω ⊂ R and ψ : V → Ω′ ⊂ R. Show that U ∩ V has either one or two
connected components.

(c) Under the same assumptions as in part (b), show that M is homeomorphic to R if U ∩ V is
connected, and M is otherwise homeomorphic to S1.

(d) Prove that every connected 1-manifold is homeomorphic to either S1 or R.
Hint: Though you don’t know whether M admits an atlas with only one or two charts, you
know it admits a finite atlas if M is compact, and more generally, the second countability axiom
guarantees that it always admits a countable atlas. (Why?) Show that M must be S1 in the
compact case, and in the noncompact case, use the countable atlas to inductively construct a
homeomorphism to R.

If you’re wondering what additional connected 1-manifolds would be possible if we did not assume the
second countability axiom, see https://en.wikipedia.org/wiki/Long_line_(topology).

4. (∗) Show that for the unit circle S1 ⊂ C, the degree of a map f : S1 → S1 is equivalent to the winding

number wind(f ; 0) ∈ Z defined in Problem Set 5 #1.

5. (∗) Use the implicit function theorem to prove that the orthogonal group

O(n) := {A ∈ GL(n,R) | AT
A = 1}

is a smooth manifold. What is its dimension?
Hint: O(n) = f−1(1) for the smooth map f : Rn×n → Rn×n : A 7→ A

T
A on the vector space Rn×n

of real n-by-n matrices, but 1 is not a regular value of this map. In fact, f is also very far from being
surjective, as its image lies in a linear subspace of Rn×n. Can you replace the target space of f with
something smaller so that the identity matrix 1 becomes a regular value?

6. Suppose N is a closed and connected smooth n-manifold, and X is a compact smooth (n+1)-manifold
with boundary such that ∂X has two connected components M+ and M−. We call X in this case
an unoriented cobordism between M+ and M−. Denote the mod 2 degree for maps f : M± → N by
deg2(f) ∈ Z2.

(a) (∗) Show that if f± : M± → N are two smooth maps that are restrictions f |M±
of some smooth

map f : X → N , then deg2(f+) = deg2(f−).

(b) Suppose X is compact but has connected boundary ∂X = M and f : M → N extends to a
smooth map F : X → N . What can you conclude about deg2(f)?

7. Compute the degrees deg(f) ∈ Z of the following maps.

(a) (∗) f : S2 → S2 where S2 = C ∪ {∞} is the one-point compactification of C and f is the unique
continuous extension of a complex polynomial C → C with degree n ≥ 0.

(b) (∗) f : Sn × Sm → Sm × Sn : (x, y) 7→ (−y,−x) for some m,n ∈ N.
Hint: f is a diffeomorphism either way, but does it preserve or reverse orientations? The answer
may depend on m and n.

(c) f : T2 → T2 : [v] 7→ [Av], where T2 is identified with R2/Z2 and A is a 2-by-2 matrix with integer
entries. (Note that f is well defined because A : R2 → R

2 preserves the lattice Z
2.)

Hint: You can at least guess the answer if you think about the geometric meaning of the deter-
minant in terms of areas of regions in R2.

1Note that an atlas is not always required to be maximal, but e.g. it is common to specify a smooth structure on a manifold

by forming an atlas out of finitely many smoothly compatible charts. The actual smooth structure is then the unique maximal

collection of smoothly compatible charts containing that atlas.
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