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C. Wendl Summer Semester 2018

PROBLEM SET 11

Due: Never

Instructions

This problem set will not be graded and should not be handed in, but it involves material from the last
week of lectures which may appear on the exam. Written solutions are appended, but I advise you to try
the problems yourself before looking at them.

Problems

1. For any space X , abelian group G and integer k ě 1, there is an isomorphism

S˚ : HkpX ;Gq Ñ Hk`1pSX ;Gq,

where SX :“ C`XYXC´X denotes the suspension ofX , defined by gluing together two homeomorphic
copies of its cone CX . Letting p´ P C´X Ă SX denote the tip of the bottom cone, one can construct
S˚ out of the following diagram:

HkpX ;Gq Hk`1pSX ;Gq

Hk`1pC`X,X ;Gq Hk`1pSXztp´u, C´Xztp´u;Gq Hk`1pSX,C´X ;Gq

S˚

k˚B˚

i˚ j˚

Here B˚ is the connecting homomorphism from the long exact sequence of the pair pC`X,Xq and is an
isomorphism due to the fact that the terms HkpC`X ;Gq and Hk`1pC`X ;Gq in that sequence vanish,
since C`X is contractible. The other maps are all induced by the obvious inclusions of pairs and they
are all also isomorphisms: i˚ because i is a homotopy equivalence of pairs (see Example 23.3 in the
lecture notes), j˚ by the excision theorem, and k˚ due to the fact thatHkpC´X ;Gq “ Hk`1pC´X ;Gq “
0 in the long exact sequence of pSX,C´Xq. One can use the diagram to write down a formula for S˚,
but it isn’t an immediately useful formula since it involves k´1

˚ and B´1
˚ , which we cannot so easily

write in terms of cycles. But we can still characterize S˚ in terms of cycles as follows:

(a) Show that for any k-cycle b P CkpX ;Gq Ă CkpSX ;Gq, there exist two pk ` 1q-chains c˘ P
Ck`1pC˘X ;Gq Ă Ck`1pSX ;Gq such that

Bc` “ ´Bc´ “ b (1)

and S˚ satisfies
S˚rbs “ rc` ` c´s. (2)

Moreover, show that the formula (2) holds for any pair of pk ` 1q-chains c˘ P Ck`1pC˘X ;Gq
satisfying (1). (Note that the assumption Bc` “ ´Bc´ implies c` ` c´ P Ck`1pSX ;Gq is a cycle.)
Hint: Start with a relative cycle representing rc`s P Hk`1pC`X,X ;Gq, then follow the arrows

wherever they lead you. When you get to the map k˚, deduce whatever you can from the fact

that it is an isomorphism.

(b) In the special case X “ Sk, we have SSk – Sk`1 and H1pS1;Zq – π1pS1q – Z, so induction
on k gives HkpSk;Zq – Z for all k P N. In this case we can define a distinguished generator
rSks P HkpSk;Zq, the fundamental class of Sk, inductively as follows:

• rS1s is the homotopy class of Id : S1 Ñ S1 under the isomorphism H1pS1;Zq – π1pS1q.

• rSk`1s :“ S˚rSks for k ě 1.
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Prove by induction that for each k P N, rSks can be represented by a cycle of the form
ř

i ǫiσi,
where ǫi “ ˘1 and σi : ∆

k Ñ Sk are parametrizations of the k-simplices in an oriented triangu-
lation of Sk.
Hint: There may be multiple valid ways to do this, but in my solution, I end up with 2k simplices

of dimension k in the triangulation of Sk.

2. Let i : A ãÑ X denote the inclusion map for a pair pX,Aq. Show that for any given coefficient group
G, the induced map i˚ : HnpA;Gq Ñ HnpX ;Gq is an isomorphism for all n if and only if the relative
homology groups HnpX,A;Gq vanish for all n.

3. Work through the rest of the proof of Theorem 23.6 in the lecture notes, the existence of the long exact
sequence resulting from any short exact sequence of chain complexes. Stop when you either finish, get
tired, or simply decide that you believe the theorem.

See next page for solutions.
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SOLUTIONS

1. (a) Suppose c` P Ck`1pC`X ;Gq is a relative cycle in pC`X,Xq, so Bc` P CkpX ;Gq and c` represents
an arbitrary relative homology class rc`s P Hk`1pC`X,X ;Gq. By the formula proved at the end
of Lecture 23, we have

B˚rc`s “ rBc`s P HkpX ;Gq,

and this can be any element of HkpX ;Gq since B˚ is an isomorphism. It follows that given any
rbs P HkpX ;Gq represented by a k-cycle b P CkpX ;Gq, b is homologous to Bc` for some c` as
above, which means b ´ Bc` “ Bx for some x P Ck`1pX ;Gq, or equivalently, b “ Bpc` ` xq.
Regarding Ck`1pX ;Gq as a subgroup of Ck`1pC`X ;Gq, we are then free to replace the original
c` with c` ` x and thus assume without loss of generality that

Bc` “ b.

Next, apply j˚ ˝ i˚ to c`: since the maps j and i are just inclusions, this changes nothing except
to view c` as a chain in SX (which contains C`X) and also as a relative cycle in pSX,C´Xq
(since Bc` is a chain in X and C´X contains the latter). Now since k˚ is an isomorphism, we have
k˚rys “ rc`s P Hk`1pSX,C´X ;Gq for some absolute cycle y P Ck`1pSX ;Gq, which is unique up
to homology, and by the definition of S˚,

S˚rbs “ rys.

Since k : pSX,Hq ãÑ pSX,C´Xq is just the inclusion of pairs, this means that the relative cycle
y ´ c` in pSX,C´Xq is nullhomologous, so

y ´ c` “ c´ ` Bz

for some c´ P Ck`1pC´X ;Gq and z P Ck`2pSX ;Gq, implying y´ Bz “ c` ` c´. Since both terms
on the left hand side of this relation are absolute cycles in SX , this proves that c` ` c´ is also
an absolute cycle, which moreover represents the same homology class in Hk`1pSX ;Gq as y, so
we have proved that the formulas (1) and (2) hold for some c˘.

Now suppose c˘ P Ck`1pC˘X ;Gq are any chains such that (1) holds for a given cycle b P CkpX ;Gq.
Then c` is a relative cycle in pC`X,Xq satisfying B˚rc`s “ rbs, and if we follow the inclusions
to regard it also as a relative cycle in pSX,C´Xq representing a class rc`s P Hk`1pSX,C´X ;Gq,
we have by definition

k˚S˚rbs “ rc`s.

But by assumption c` `c´ can be regarded as another absolute cycle in SX , and it clearly satisfies
k˚rc` ` c´s “ rc`s P Hk`1pSX,C´X ;Gq since c´ is contained in C´X , so the injectivity of k˚

now implies S˚rbs “ rc` ` c´s.

(b) We fix a homeomorphism identifying ∆1 with the unit interval I, giving for any space X an iden-
tification of singular 1-simplices with paths γ : I Ñ X such that (under the obvious identification
of singular 0-simplies in X with points in X)

Bγ “ γp1q ´ γp0q.

Now define two paths γ˘ : I Ñ S1 by

γ`ptq :“ eπit, γ´ptq :“ eπipt`1q,

so that the concatenation γ` ¨ γ´ is the loop t ÞÑ e2πit, also known as the identity loop under
the usual identification of I{BI with S1. This means that if we regard γ˘ as singular 1-simplices
in S1, their sum is a cycle and

rS1s “ rγ` ` γ´s.

Notice that both of the paths γ˘ are embeddings, and their images overlap only at their end
points, so they are 1-simplices that overlap only at their common boundaries, thus forming a
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triangulation of S1. The triangulation has an obvious orientation, defined by orienting both
1-simplices so that their vertices are ordered from γ˘p0q to γ˘p1q.

Now by induction, assume we have an oriented triangulation of Sk giving rise to a k-cycle
ř

i ǫiσi as
stated which represents the fundamental class rSks. Identifying Sk`1 with SSk “ C`SkYSkC´S

k,
let p˘ denote the points at the tips of the two cones C˘Sk. We claim that every k-simplex
σ : ∆k Ñ Sk in the triangulation naturally gives rise to an embedded pk ` 1q-simplex σ˘ :
∆k`1 Ñ C˘Sk whose intersection with Sk Ă C˘S

k is one of its boundary faces and matches σ,
and moreover, that this collection of pk ` 1q-simplices triangulates C˘S

k.

Let us prove the claim for C`Sk “ pr0, 1s ˆSkq{pt1uˆSkq, in which p` is literally the equivalence
class of any point in t1u ˆ Sk. Given σ : ∆k Ñ Sk, we can then define σ` : ∆k`1 Ñ C`S

k by

σ`pt0, . . . , tk, tk`1q :“

#

”´

tk`1, σ
´

t0
1´tk`1

, . . . , tk
1´tk`1

¯¯ı

, if tk`1 ă 1,

p` if tk`1 “ 1.

Identifying ∆k with the boundary face Bpk`1q∆
k`1 then gives σ`|Bpk`1q∆

k`1 “ σ, while σ` maps

the opposite vertex p0, . . . , 0, 1q to the point p`. It is easy to check (but I will not explain it here)
that this collection of pk ` 1q-simplices for all σ in the triangulation of Sk gives a triangulation
of C`Sk. Similar pk`1q-simplices σ´ : ∆k`1 Ñ C´S

k can be defined in an analogous way to define
a triangulation of C´S

k, and both sets of simplices together give a triangulation of SSk – Sk`1.

We now orient this triangulation as follows: by assumption, each simplex σp∆kq in the triangula-
tion of Sk comes with an orientation determined by the sign ǫk “ ˘1, so there is a preferred class
of orderings of its vertices. Since each of the two pk`1q-simplices σ˘p∆k`1q has the same vertices
as σp∆kq plus one extra vertex at p˘, we can assign to σ`p∆k`1q the orientation given by first
writing the vertices of σp∆kq in the preferred order, and then adding p` at the end of the list.
Define the orientation of σ´p∆k`1q by this same prescription, but then reverse its orientation.
The result is that the induced orientation of σp∆kq as a boundary face of σ`p∆k`1q matches its
given orientation, but is opposite its induced orientation as a boundary face of σ´p∆k`1q. This
makes our triangulation of Sk`1 – SSk into an oriented triangulation, and writing

c˘ :“
ÿ

i

ǫiσ
˘
i P Ck`1pC˘Sk;Zq

then gives Bc` “ ´Bc´ “
ř

i ǫiσi P CkpSk;Zq. Using the induction hypothesis and the result of
part (a), we conclude

«

ÿ

i

ǫipσ
`
i ´ σ´

i q

ff

“ S˚rSks “ rSk`1s P Hk`1pSk`1;Zq.

2. The exact sequence of the pair pX,Aq takes the form

. . . Ñ Hn`1pX,A;Gq Ñ HnpA;Gq
i˚
Ñ HnpX ;Gq Ñ HnpX,A;Gq Ñ . . . ,

so if HnpX,A;Gq “ 0 for every n, this reduces to

0 Ñ HnpA;Gq
i˚
Ñ HnpX ;Gq Ñ 0

for every n, in which exactness immediately implies that i˚ is an isomorphism.

Conversely, suppose we do not know H˚pX,A;Gq but it is given that i˚ : HnpA;Gq Ñ HnpX ;Gq is an
isomorphism for every n. Consider the following portion of the long exact sequence:

. . . Ñ HnpA;Gq
in˚
Ñ HnpX ;Gq

j˚
Ñ HnpX,A;Gq

B˚
Ñ Hn´1pA;Gq

i
n´1

˚
Ñ Hn´1pX ;Gq Ñ . . . ,

where superscripts have been added to i˚ to distinguish the two versions of this map that appear. Since
in˚ is surjective, exactness at the term HnpX ;Gq implies ker j˚ “ im in˚ “ HnpX ;Gq, which means j˚
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is the trivial map, so its image is the trivial subgroup of HnpX,A;Gq. Exactness at HnpX,A;Gq then
implies ker B˚ “ im j˚ “ 0, so B˚ is injective. The injectivity of in´1

˚ implies in turn via exactness
at Hn´1pA;Gq that im B˚ “ ker in´1

˚ “ 0, so we conclude that B˚ is an injective homomorphism with
trivial image. This is only possible if HnpX,A;Gq “ 0.

3. I will not do this problem for you, but if you really want to read a proof instead of working it out
yourself, you’ll find one on pages 116–117 in Hatcher (Theorem 2.16 in particular).
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