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PROBLEM SET 4

Solutions for #6–7

These problems were harder than usual, and the way I stated #6(b) in particular was slightly wrong. (The
grader has been instructed to give everyone full credit on that one.) The notions of one point compactification
and the compact-open topology are also conceptually important, thus it’s worth devoting somewhat more
attention to them than we had time for in the Übung this week. So here are some written solutions.

6. (a) The collection T ˚ consists of all open sets U Ă X plus all sets of the form pXzKq Y t8u Ă X˚

for closed compact subsets K Ă X . Note first that this collection includes H and X˚; the latter
in particular because H Ă X is closed and compact. Next, consider unions: any union of open
sets in X is another open set in X , and a union of sets of the form pXzKαq Y t8u P T ˚ for
tKα Ă XuαPI a collection of closed compact subsets has the form

ď

αPI

ppXzKαq Y t8uq “

˜

Xz
č

αPI

Kα

¸

Y t8u “ pXzKq Y t8u

where we define
K :“

č

αPI

Kα. (1)

Since every Kα is closed, the intersection K is also closed, and since it is contained in each of the
compact sets Kα, K is therefore also compact, implying pXzKq Y t8u P T ˚. It remains only to
observe that for any U Ă X open and K Ă X closed and compact,

U Y ppXzKq Y t8uq “
´
Xz

`
pXzUq X K

˘¯
Y t8u “ pXzK 1q Y t8u

where
K 1 :“ pXzUq X K. (2)

The latter is the intersection of two closed sets and is thus closed, and since it is contained in the
compact set K, it is also compact, so pXzK 1q Y t8u P T ˚. This proves that arbitrary unions of
sets in T ˚ are also in T ˚.

For intersections of two sets U ,V P T ˚, we have three cases to consider: first, if U and V are both
open subsets of X then obviously U X V is as well. If U Ă X is open and V “ pXzKq Y t8u for
K Ă X closed and compact, then

U X V “ U X pXzKq (3)

is the intersection of two open subsets and is thus open. Finally, if both contain 8 and the
complements of closed compact subsets K,K 1 Ă X , then

U X V “
`
XzpK Y K 1q

˘
Y t8u,

where K YK 1 is closed and compact since it is a finite union of closed compact sets. This proves
that finite intersections of sets in T ˚ are also in T ˚, hence T ˚ is a topology on X˚.

To see that X˚ is compact, note that any given open cover of X˚ must contain at least one open
set that contains 8, so let us pick such a set and call it U8, denoting the entire open cover then
by

X˚ “ U8 Y

˜
ď

αPI

Uα

¸

.

Since U8zt8u “ XzK for some closed compact set K Ă X , the open sets U 1
α :“ X X Uα Ă X

must form an open cover of K, which therefore has a subcover

K Ă
Nď

i“1

pX X Uαi
q
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for some finite subset tα1, . . . , αNu Ă I. We therefore have a finite subcover of X˚ consisting of
U8 and the sets Uαi

for i “ 1, . . . , N . This concludes the solution.

I would like to add a further remark in connection with the detail that got me into trouble in
part (b) below. One might wonder if one could instead define T ˚ so that open sets containing 8
are of the form pXzKqY8 for arbitrary compact sets K Ă X , rather than requiring K to be both
compact and closed.1 The answer is that if this were the definition, then T ˚ would not generally
be a topology, i.e. it would not be closed under arbitrary unions and finite intersections. Indeed,
at three points in the above argument (namely at Equations (1), (2) and (3)), we explicitly used
the assumption that our compact subsets K Ă X were also closed: this way we can be sure that
their intersections with each other or with other closed subsets are also closed and therefore (as
closed subsets of compact sets) compact. It is not true in general that an intersection of compact
subsets must always be compact. This probably goes against your intuition since it can only
happen in non-Hausdorff spaces, but here is an easy example: let X “ pR ˆ t0, 1uq{„ with the
quotient topology, where px, 0q „ px, 1q for every x ‰ 0, i.e. this defines the “line with two zeroes”.
Since the quotient projection π : Rˆt0, 1u Ñ X is continuous, the sets Ki :“ πpr´1, 1sˆtiuq Ă X

for i “ 0, 1 are continuous images of compact sets and are therefore compact. But since each of
them contains a different copy of 0 and not the other one, K0 XK1 is homeomorphic to the union
of intervals r´1, 0q Y p0, 1s, and in particular it has sequences that converge to both copies of 0
but have no convergent subsequence with limit in K0 X K1. This can happen only because while
K0 and K1 are both compact, they are not closed, e.g. the closure of K0 also contains rp0, 1qs,
which is not in K0!

You should be aware that in much of the literature, authors require their space X to be both
Hausdorff and locally compact before even attempting to define its one point compactification,
and in this case they do not always include the word “closed” together with “compact” since it is
automatic. This restriction is not necessary, but it does make life easier.

(b) The statement was false as written, but a correct version would be as follows:

If X is first countable and Hausdorff, then a sequence xn P X converges to 8 P X˚ as a
sequence in X˚ if and only if it has no convergent subsequence as a sequence in X . In

particular, X˚ is sequentially compact if X is first countable and Hausdorff.

Without Hausdorff the statement is not true; see below for a counterexample. We will use the
fact (proved in lecture) that every compact subset of a Hausdorff space is also closed. Note that
if xn P X is a sequence converging to the point x P X , then

tx, x1, x2, x3, . . .u Ă X

is a compact set. Indeed, any open cover includes a set that is a neighborhood of x and thus (by
the definition of convergence) also contains xn for all n ě N if N P N is sufficiently large. Then
a finite subcover can be found that includes this neighborhood of x plus a finite collection of sets
containing the finite set of points x1, . . . , xN´1. If X is Hausdorff, it follows that tx, x1, x2, x3, . . .u
is also closed. (This need not be true if X is not Hausdorff, e.g. we have seen spaces in which one
point subsets txu Ă X are not always closed, in which case the union of points in the constant
sequence xn :“ x is a compact but non-closed subset.)

To prove the statement, assume X is Hausdorff and first countable and xn P X Ă X˚ is a
sequence. We then have xn Ñ 8 if and only if for every closed compact set K Ă X , xn R K for
all n sufficiently large. If this is true but xn has a subsequence xkn

converging to some x P X ,
then K :“ tx, xk1

, xk2
, xk3

, . . .u Ă X is an example of a closed compact set, implying xn R K for
all n sufficiently large, but this is clearly false. Conversely, if xn does not converge to 8, then xn

has a subsequence xkn
that stays away from some neighborhood of 8, meaning there is a compact

set K Ă X such that xkn
R XzK for all n, or equivalently, xkn

P K. Since X (and therefore also
K Ă X with the subspace topology) is first countable, K is sequentially compact, so xkn

has a
further subsequence that converges to a limit in K.

1This detail makes no difference of course if X is Hausdorff.
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Here is the counterexample I promised if the Hausdorff condition is dropped. Define a topology
T on R consisting of H plus every set of the form U Y t0u for U Ă R open in the standard
topology. In the topological space X :“ pR, T q, every nonempty open subset contains 0, thus
the only closed subset A Ă X containing 0 is A “ X . It follows that 0 is not contained in any
closed compact subset, and it is therefore in every neighborhood of 8 P X˚, so that the constant
sequence xn :“ 0 P X converges both to 0 and to 8.

(c) As usual it is convenient to view S1 as the unit circle in C so that we can use complex expo-
nentials. Choose a homeomorphism between R and S1zt1u: one can do this by first fixing any
homeomorphism ϕ : R Ñ p0, 1q and then defining

Φ : R Ñ S1zt1u : t ÞÑ e2πiϕptq. (4)

This extends in an obvious way to a bijection Φ : R˚ Ñ S1 by setting Φp8q :“ 1. Is it a
homeomorphism?

One can reframe this question as follows. Consider two topologies on S1: its standard topology T

(defined as the subspace topology with respect to the standard topology of C “ R2), and another
topology T 1 whose open sets are ΦpUq for all open sets U Ă R˚. In this way Φ becomes tautolog-
ically a homeomorphism between R˚ and pS1, T 1q, so now the question is: are the two topologies
T and T 1 the same?

The way we constructed T 1 allows us to think of pS1, T 1q as the one point compactification of
S1zt1u, but with the role of 8 played by the point 1 P S1. This means two things in particular.
First, the open sets in pS1, T 1q that do not contain 1 are simply the open sets in S1zt1u with its
standard topology; this results from the fact that the map (4) is a homeomorphism. Second, the
open sets in pS1, T 1q that contain 1 are all the sets of the form

`
pS1zt1uqzK

˘
Y t1u “ S1zK

for subsets K Ă S1zt1u that are closed and compact in the standard topology. Since S1 is compact
and Hausdorff, its compact subsets are precisely its closed subsets, so this just means the sets in
T 1 containing 1 are precisely the complements of closed subsets that do not contain 1, i.e. the
open sets (in the standard topology) containing 1. This proves that the two topologies are the
same.

By the way, one can use the same strategy to prove that the one point compactification of Rn is
homeomorphic to Sn for every n P N.

(d) If X is compact, then since it is also closed (because H Ă X is open), pXzXq Y t8u “ t8u is an
open subset of X˚. Notice that X is also an open subset of X˚ since it is an open subset of X ,
hence t8u Ă X˚ and X Ă X˚ are each both open and closed. One can now show as in Problem 3
that the natural map X > t8u ãÑ X˚ defined via the inclusions X ãÑ X˚ and t8u ãÑ X˚ is a
homeomorphism.

(e) Suppose X is locally compact and Hausdorff. Since open sets in X are also open in X˚, this
proves immediately that any two distinct points in X have disjoint neighborhoods in X˚. We still
need to show that every x P X has a neighborhood in X˚ that is disjoint from some neighborhood
of 8. For this, choose K Ă X to be a compact neighborhood of x, and note that K is also closed
since X is Hausdorff. Then pXzKqY t8u is a neighborhood of 8 disjoint from K, so we are done.

Conversely, suppose X˚ is Hausdorff. Notice that for any open set U Ă X˚, U X X is an open
subset of X : indeed, this is obvious if 8 R U , and otherwise we have U “ pXzKq Y t8u for a
closed set K Ă X , so that

U X X “ XzK

is also open. Now given distinct points x, y P X with disjoint neighborhoods Ux Ă X˚ of x and
Uy Ă X˚, we obtain disjoint neighborhoods of these two points in X by setting

U
1
x :“ Ux X X and U

1
y :“ Uy X X,
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and this proves that X is Hausdorff. Furthermore, for every x P X , there is an open neighborhood
U Ă X of x which is disjoint from some open neighborhood pXzKq Y t8u of 8, where K Ă X is
closed and compact. Then U X pXzKq “ H implies U Ă K, hence K is a compact neighborhood
of x, proving that X is locally compact.

(f) We start with the following claim: if K Ă Q is a compact subset of Q, then K does not contain
any nonempty open subset of Q. This means in particular that K does not contain any set of
the form Q X pa, bq for real numbers a ă b; note that since Q inherits its topology from R as a
subspace, every open set in Q is a union of sets of this form. To prove the claim, suppose a ă b

and Q X pa, bq Ă K Ă Q. Then there exists an irrational number x P pa, bq and a sequence of
rational numbers xn P Q X pa, bq with xn Ñ x, so xn is a sequence in K that has no convergent
subsequence with a limit in K. This proves that K cannot be sequentially compact, and since it
is a subset of the metric space R, it follows that K also cannot be compact.

Now suppose x P Q has a neighborhood U Ă Q˚ that is disjoint from some neighborhood pQzKqY
t8u Ă Q˚ of 8, where K Ă Q is compact. Then 8 R U , so U is an open subset of Q, but
U X pQzKq “ H implies U Ă K and thus contradicts the claim above.

(g) Suppose xn P Q˚ is a sequence convergent to x P Q. Since x has neighborhoods that do not
contain 8, we then have xn ‰ 8 for sufficiently large n, so without loss of generality xn is a
sequence in Q. Since Q is Hausdorff, xn cannot also converge to some other point y ‰ x in Q.
Now observe that K :“ tx, x1, x2, x3, . . .u Ă Q is a compact subset of Q (we proved this in part (b)
above), and therefore also closed since Q is Hausdorff. Thus pQzKq Y t8u is a neighborhood of
8 in Q˚ that does not contain xn for any n, implying xn Û 8.

Remark: Q is a metric space and therefore first countable, so each x P Q has a countable neighor-
hood base, which can also serve as a countable neighborhood base of x in Q˚. But the result
of this problem together with part (f) shows that Q˚ cannot be first countable, as we proved in
lecture that every non-Hausdorff first countable space has a sequence with two limits. It follows
that 8 is the unique point in Q˚ that fails to have a countable neighborhood base.

(h) We already observed that Q is not locally compact: in fact no nonempty open subset of Q is
contained in a compact set, hence no neighborhood in Q of any point is compact. Since Q is also
an open subset of Q˚, Q is a neighborhood in Q˚ of each x P Q, but the previous sentence implies
that Q does not contain any compact neighborhood of x.

7. (a) Denote the metric on Y by d and suppose fn P CpX,Y q is a sequence that converges uniformly on
compact sets to f P CpX,Y q. Concretely, this means that for every compact subset K Ă X and
every ǫ ą 0, there exists N P N such that dpfnpxq, fpxqq ă ǫ for all n ě N and x P K. To show
that fn also converges to f in the compact-open topology, we need to show that for every open set
V Ă Y such that f P UK,V , we also have fn P UK,V for all large n; equivalently, if fpKq Ă V , then
fnpKq Ă V for all n sufficiently large. The proof is based on the fact that since K is compact,
the distance from fpKq to the complement of V is positive. More generally, suppose A,B Ă Y

are disjoint closed subsets such that A is compact, and write

dpA,Bq :“ inf
xPA

dpx,Bq where dpx,Bq :“ inf
yPB

dpx, yq.

Since A Ă XzB and the latter is open, dpx,Bq ą 0 for every x P A. Now if dpA,Bq “ 0, then we
can find a sequence xn P A such that dpxn, Bq Ñ 0, and since A is compact, we can replace xn

with a subsequence that converges to some point x P A. (We are using the fact that A is a metric
space so that compactness implies sequential compactness.) But dpx,Bq ą 0, so as soon as n is
large enough to have xn P B 1

2
dpx,Bqpxq, we find that for all y P B,

dpx,Bq ď dpx, yq ď dpx, xnq ` dpxn, yq

and thus

dpxn, yq ě dpx,Bq ´ dpx, xnq ą
1

2
dpx,Bq,
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which is a contradiction since dpxn, Bq Ñ 0. This proves dpA,Bq ą 0. Applying this in the case
at hand, we have

ǫ :“ dpfpKq, XzV q ą 0 and thus dpfpxq, XzV q ě ǫ ą 0 for all x P K.

Now if N P N is chosen so that dpfnpxq, fpxqq ă ǫ for all n ě N and x P K, it follows that
fnpxq P V for all x P K, hence fn P UK,V as claimed.

I will give two arguments to prove the converse: one that is relatively straightforward but works
only if X is first countable, and another that works in general but requires a bit more creativity.

For the first version, we prove that if fn does not converge to f uniformly on all compact subsets,
then it also does not converge in the compact-open topology. The assumption means there exists
a compact subset K Ă X , a number ǫ ą 0, a sequence xn P K and a subsequence fkn

of fn such
that

dpfkn
pxnq, fpxnqq ě ǫ for all n.

If X is first countable, then K (with the subspace topology) is also first countable and therefore
sequentially compact, so we are free to replace xn with a subsequence that converges to some
point x P K. Let

V :“ Bǫ{2pfpxqq Ă Y.

Since f : X Ñ Y is continuous, f´1pV q Ă X is an open neighborhood of x, so the con-
vergence xn Ñ x implies xn P f´1pV q for all n ě N if N P N is sufficiently large. Now
K 1 :“ tx, xN , xN`1, xN`2, . . .u Ă X is a compact subset satisfying fpK 1q Ă V , hence f P UK1,V .
But for each n ě N , the triangle inequality gives

dpfkn
pxnq, fpxqq ě dpfkn

pxnq, fpxnqq ´ dpfpxnq, fpxqq ą ǫ ´
ǫ

2
“

ǫ

2
,

implying fkn
pK 1q Ę V and thus fkn

R UK1,V for all n ě N . This proves that fn does not converge
to f in the compact-open topology.

Without assuming X is first countable, we can still argue as follows. Assuming fn Ñ f in
the compact-open topology, we need to show that for every compact K Ă X and every ǫ ą 0,
supxPK dpfnpxq, fpxqq ă ǫ for all n sufficiently large. To start with, note that for each x P K, the
continuity of f allows us to choose an open neighborhood Vx Ă X of x such that

fpVxq Ă Bǫ{3pfpxqq.

It follows that2

fpsVxq Ă Bǫ{3pfpxqq Ă Bǫ{2pfpxqq.

Since K is compact and the sets Vx for x P K cover K, we can also find a finite set x1, . . . , xN P K

such that K Ă Vx1
Y. . .YVxN

. Notice that in the subspace topology onK, the subsets sVxXK Ă K

are closed and are therefore also compact. Defining Ki :“ sVxi
XK Ă X and Vi :“ Bǫ{2pfpxiqq Ă Y

for each i “ 1, . . . , N , we then have an open set

U :“
Nč

i“1

UKi,Vi
Ă CpX,Y q

such that f P U , since fpsVxi
q Ă Bǫ{2pfpxiqq for every i “ 1, . . . , N . Convergence in the compact-

open topology then implies fn P U for all n sufficiently large. Assuming this, we can find for every
x P K some i P t1, . . . , Nu such that x P Vxi

, and it follows that fnpxq P Bǫ{2pfpxiqq, thus

dpfnpxq, fpxqq ď dpfnpxq, fpxiqq ` dpfpxiq, fpxqq ă
ǫ

2
`

ǫ

2
“ ǫ.

2Here is a straightforward but necessary exercise: show that for any continuous map f : X Ñ Y between topological spaces

and any subset U Ă X, fp sUq Ă fpUq.
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(b) We need to find an example of a pointwise convergent sequence fn Ñ f P CpX,Y q together with a
convergent sequence xn Ñ x P X such that fnpxnq does not converge to fpxq. I suspect you have
seen such an example before in analysis: e.g. let X “ Y “ r0, 1s, and take fn : r0, 1s Ñ r0, 1s to be
any sequence of continuous functions such that fn|r1{n,1s ” 0 but fnp1{2nq “ 1. (Draw a picture:
you need the graph of fn to have a sharp “bump” in the interval r0, 1{ns, with steeper slopes
for larger values of n.) Then fn converges pointwise to f :“ 0 P CpX,Y q and xn :“ 1{2n P X

converges to x :“ 0 P X , but fnpxnq “ 1 does not converge to fpxq “ 0.

(c) We need to show that if fn Ñ f P CpX,Y q converges in the compact-open topology and xn Ñ x

in X , then evpfn, xnq “ fnpxnq Ñ fpxq “ evpf, xq in Y . Given an open neighborhood V Ă Y

of fpxq, we know f´1pV q Ă X is an open neighborhood of x since f is continuous, so the
convergence of xn implies xn P f´1pV q for all n ě N if N P N is sufficiently large. Consider
the compact set K :“ tx, xN , xN`1, xN`2, . . .u Ă X , which by the previous remarks satisfies
fpKq Ă V and thus f P UK,V . The convergence of fn then implies fn P UK,V for all n ě N 1 for
some N 1 P N sufficiently large, in which case taking n ě maxtN,N 1u gives

evpfn, xnq “ fnpxnq Ă fnpKq Ă V,

proving evpfn, xnq Ñ evpf, xq.

(d) Assuming X is locally compact and Hausdorff, we need to show that for any open set V Ă Y ,
ev´1pV q Ă CpX,Y q ˆ X is open, where CpX,Y q carries the compact-open topology and the
topology on CpX,Y q ˆX is the resulting product topology. Open sets in CpX,Y q ˆX are unions
of “boxes” of the form O ˆ W for O Ă CpX,Y q and W Ă X both open. Thus another way to
frame the problem is that for any given open set V Ă Y and pf0, x0q P ev´1pV q, there exist open
neighborhoods O Ă CpX,Y q for f0 and W Ă X of x0 such that evpO ˆ Wq Ă V . To show this,
choose W Ă X to be an open neighborhood of x0 with compact closure K :“ ĎW Ă f´1

0
pV q, which

exists because X is Hausdorff and locally compact. Then UK,V is an open neighborhood of f0
in CpX,Y q. For any f P UK,V and x P W , we then have

evpf, xq “ fpxq Ă fpKq Ă V,

proving UK,V ˆ W Ă ev´1pV q.

(e) In this problem we assume CpX,Y q carries some topology T for which ev : CpX,Y q ˆ X Ñ Y

is continuous, and the goal is to show that for every compact K Ă X and open V Ă Y , the sets
UK,V Ă CpX,Y q which define the subbase of the compact-open topology also belong to T . One
way to do this is by showing that for any f0 P UK,V , there exists a set O P T that contains f0
and is also a subset of UK,V ; indeed, if this is true, then since the element f0 P UK,V is arbitrary,
UK,V is a union of sets in T and must therefore also belong to T .

To proceed, we know that since V Ă Y is open and ev is continuous, ev´1pV q is also open in the
product topology on CpX,Y qˆX . By assumption ev´1pV q contains pf0, xq for every x P K. Being
open in the product topology then means that for each x P K, there exists a “box neighborhood”
of pf0, xq in ev´1pV q, meaning a pair of open sets Ox P T and Ux Ă X such that

pf0, xq P Ox ˆ Ux Ă ev´1pV q.

The sets tUxuxPK then form an open cover of K, which has a finite subcover since K is compact:
choose x1, . . . , xN P K such that

K Ă
Nď

i“1

Uxi
.

The finite intersection

O :“
Nč

i“1

Oxi
Ă CpX,Y q

then also belongs to the topology T , and it contains f0. Finally, we see that for any f P O

and x P K, we have x P Uxi
for some i P t1, . . . , Nu, and f P Oxi

then implies fpxq P V since
Oxi

ˆ Uxi
Ă ev´1pV q. This establishes fpKq Ă V , thus f P UK,V and therefore O Ă UK,V ,

completing the proof.
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(f) When asked to prove that something is not continuous, the temptation is always to look for a
sequence that violates sequential continuity, but in this case part (c) tells you that that will not
work. Instead we use the definition of continuity directly. Arguing by contradiction, suppose
ev : CpQ,Rq ˆ Q Ñ R is continuous, so for every open set W Ă R, ev´1pWq Ă CpQ,Rq ˆ Q is
open. Let us assume W ‰ R. Here CpQ,Rq ˆ Q carries the product topology with respect to the
compact-open topology on CpQ,Rq, so for any pf0, x0q P ev´1pWq, openness means the existence
of a box neighborhood

pf0, x0q P O ˆ U Ă ev´1pWq,

where O Ă CpQ,Rq and U Ă Q are each open. By the definition of the compact-open topology,
O is a union of finite intersections of sets of the form UK,V , so in particular there exists a finite
collection of compact sets Ki Ă Q and open sets Vi Ă R indexed by i “ 1, . . . , N such that

f0 P
Nč

i“1

UKi,Vi
Ă O.

Let K :“ K1 Y . . . Y KN and observe that this is also a compact subset of Q. As we observed
in the solution to #6(f), compactness implies that K cannot contain any nonempty open subset
of Q, so in particular there exist points in U that are not in K, and in fact the set of such points
is open in U (and therefore open in Q) since K is closed in Q. It follows that there exists a
nonempty open interval pa, bq Ă R such that

pa, bq X Q Ă U and pa, bq X K “ H.

Now we use the fact that no nonempty open set in Q is connected: for instance, pa, bq XQ can be
split into three disjoint open subsets

pa, bq X Q “ I´ Y I0 Y I`

which are the intersections of Q with disjoint open intervals pa, r´q, pr´, r`q and pr`, bq respec-
tively for some irrational numbers r˘. The point is that since r˘ R Q, I0 is an open and closed
subset of Q. Finally, define a function f P CpQ,Rq such that fpxq is a point in RzW for every
x P I0 but fpxq “ f0pxq everywhere else. Here we do not need to worry about any discontinuities
at x “ r˘ since these two points do not belong to the domain of f . Since I0 XK “ H, f satisfies

the same constraints fpKiq Ă Vi that f0 does and thus belongs to
ŞN

i“1
UKi,Vi

Ă O, and since
I0 Ă pa, bq X Q Ă U , we have

pf, xq P O ˆ U

for every x P I0. But by construction, pf, xq R ev´1pWq, so this is a contradiction.

Remark: We’ve just shown that ev : CpQ,Rq ˆ Q Ñ R is sequentially continuous but not contin-
uous, thus CpQ,Rq ˆ Q is not first countable. Since Q clearly is first countable, it follows easily
that CpQ,Rq is not.
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