Analysis II* SoSe 2019

Übungsblatt 10

Schriftliche Abgabe: Donnerstag 27. Juni 2019

Schreiben Sie jede Aufgabe bitte auf ein gesondertes Blatt, und schreiben Sie auf jedes Blatt ihren Namen, ihre Matrikelnummer und ihre Übungsgruppe (Wochentag + Übungsleiter + Zeit)

Aufgabe 10.1 (2+2+2+2) Punkte) Berechnen Sie:

(a)
$$\int_0^\pi e^{\sin x} \cos x \, dx$$
 (b)
$$\int_{-2}^x e^{\sqrt{3t+9}} \, dt, \qquad x \in (-2, \infty)$$

(c)
$$\int_1^e \frac{\ln x}{x} \, dx$$
 (d)
$$\int_1^x \sin(\ln t) \, dt, \qquad x \in (0, \infty)$$

Aufgabe 10.2 (2 + 2 + 2 + 2 + 2 Punkte) Sei $I = [a, b] \subset \mathbb{R}$ ein Intervall mit a < b, und E ein Banachraum. Beweisen Sie die folgenden Eigenschaften des Riemann-Integrals:

- a) Hat $f: I \to E$ den Wert f(x) = 0 für alle bis auf endlich viele Punkte $x \in I$, dann ist f Riemann-integrierbar und es gilt $\int_a^b f(x) dx = 0$.
- b) Sei $\mathcal{P}=\{x_0,\ldots,x_n\}$ eine Zerlegung von I mit Teilintervalle $I_k:=[x_{k-1},x_k]$. Wenn die Einschränkungen $f|_{I_k}:I_k\to E$ einer Funktion $f:I\to E$ für alle $k=1,\ldots,n$ Riemann-integrierbar sind, dann ist auch f Riemann-integrierbar, und es gilt $\int_a^b f(x)\,dx = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)\,dx$. Hinweis: Zerlegungen der verschiedenen I_k für $k=1,\ldots,n$ können vereinigt werden, um eine feinere Zerlegung von I zu definieren.
- c) Sind $f,g:I\to\mathbb{R}$ Riemann-integrierbar mit $f(x)\geq g(x)$ für alle $x\in I$, dann gilt $\int_a^b f(x)\,dx\geq \int_a^b g(x)\,dx.$
- d) Ist $f: I \to E$ Riemann-integrierbar, dann ist $f|_{I'}: I' \to E$ für jedes Teilintervall $I' \subset I$ auch Riemann-integrierbar. Hinweis: Cauchy-Kriterium.
- e) Ist $f: I \to \mathbb{R}$ stetig mit $f(x) \ge 0$ für alle $x \in I$ und $f(x_0) > 0$ für ein $x_0 \in I$, dann gilt $\int_a^b f(x) dx > 0$. Hinweis: Wenden Sie Teilaufgaben b), c) und d) an.

Aufgabe 10.3 (3 + 2 Punkte)

- a) Sei E ein Banachraum und $f: \mathbb{R} \to E$ eine auf jedem kompakten Intervall $I \subset \mathbb{R}$ Riemann-integrierbare Funktion, die auch eine Stammfunktion $F: \mathbb{R} \to E$ besitzt, und die auf $\mathbb{R} \setminus \{0\}$ aber *nicht unbedingt in* x = 0 stetig ist. Beweisen Sie, dass $g(x) := \int_0^x f(t) dt$ dann eine Stammfunktion von f ist.
- b) Finden Sie eine auf jedem kompakten Intervall $I \subset \mathbb{R}$ Riemann-integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$, so dass die Funktion $g(x) := \int_0^x f(t) dt$ auf $\mathbb{R} \setminus \{0\}$ aber nicht in x = 0 differenzierbar ist, und folgern Sie, dass f keine Stammfunktion besitzt.

Achtung: In der Vorlesung wurde vom Mittelwertsatz ein Resultat über Riemann-integrierbare Funktionen $I \to \mathbb{R}^m$ mit Stammfunktionen hergeleitet, das aber in Teilaufgabe a) nicht gilt, weil E nicht \mathbb{R}^m sondern ein beliebiger Banachraum ist. Es wurde aber auch eine Version des Hauptsatzes der Differential- und Integralrechnung bewiesen, die nicht voraussetzt, dass f überall stetig ist. **Aufgabe 10.4** (3 Punkte) Beweisen Sie direkt von der Definition der Integrierbarkeit,¹ dass die folgende Funktion nicht Riemann-integrierbar ist:

$$\delta:[0,1] \to \mathbb{R}, \qquad \delta(x) := \begin{cases} 1 & \text{für } x \text{ rational,} \\ 0 & \text{für } x \text{ irrational,} \end{cases}$$

Insgesamt: 26 Punkte

Aufgabe 10.Z (3 + 3 Punkte)

Sei $I := [a,b] \subset \mathbb{R}$ mit a < b, und bezeichne mit $C^k(I)$ der Vektorraum von k-fach stetig differenzierbaren reellwertigen Funktionen $f:I \to \mathbb{R}$. In Aufgabe 3.Z wurde für jede ganze Zahl $k \geq 0$ eine Norm $\|\cdot\|_{C^k}$ auf $C^k(I)$ definiert, so dass $C^k(I)$ ein Banachraum und $C^k(I) \to C^0(I): f \mapsto f^{(k)}$ eine stetige lineare Abbildung wird. In dieser Aufgabe betrachten wir die Teilmenge

$$X^k := \{ f \in C^k(I) \mid f(a) = f(b) = 0 \}.$$

Dies ist ein abgeschlossener linearer Unterraum von $C^k(I)$, und daher auch ein Banachraum mit der gleichen Norm. Beweisen Sie:

- a) Die stetige lineare Abbildung $\mathbf{T}: X^2 \to C^0(I): f \mapsto f''$ ist bijektiv.
- b) Es gibt eine Konstante c > 0, so dass für jedes $f \in X^2$, gilt $||f||_{C^0} \le c||f'||_{C^0}$ und $||f'||_{C^0} \le c||f''||_{C^0}$, und $\mathbf{T}^{-1}: C^0(I) \to X^2$ ist daher stetig. Hinweis: Diese Ungleichungen sind falsch für $f \in C^2(I)$ im Allgemeinen—sie hängen also wesentlich von der Randbedingung f(a) = f(b) = 0 ab, die unter Anderem impliziert, dass auch f' irgendwo in (a,b) verschwinden muss. (Warum?)

Die folgenden Aufgaben werden teilweise in den Übungen besprochen.

Aufgabe 10.A Berechnen Sie
$$\int_0^1 e^t \sin \pi t \, dt$$
 und $\int_0^{\pi/2} \frac{3 \sin x \cdot \cos x}{\sqrt{1 + 3 \sin^2 x}} \, dx$.

Aufgabe 10.B Beweisen Sie die folgenden weiteren Eigenschaften des Riemann-Integrals für Funktionen $I := [a, b] \to E$, wobei E ein Banachraum ist über den Körper \mathbb{K} :

- a) Integration ist linear, d.h. für gegebene Riemann-integrierbare Funktionen $f,g:I\to E$ und Skalare $\lambda,\mu\in\mathbb{K}$ ist $\lambda f+\mu g:I\to E$ auch Riemann-integrierbar, mit $\int_a^b \left[\lambda f(x)+\mu g(x)\right]\,dx=\lambda\int_a^b f(x)\,dx+\mu\int_a^b g(x)\,dx.$
- b) Gegeben ein zweiter Banachraum F, eine lineare Abbildung $\mathbf{L}: E \to F$ heißt beschränkt, falls existiert eine Konstante c>0, so dass $\|\mathbf{L}v\| \le c\|v\|$ für alle $v\in E$ gilt. Falls $f: I \to E$ Riemann-integrierbar und $\mathbf{L} \in \mathcal{L}(E,F)$ beschränkt ist, dann ist $\mathbf{L} \circ f: I \to F$ auch Riemann-integrierbar, und es gilt

$$\int_{a}^{b} \mathbf{L}(f(x)) dx = \mathbf{L} \left(\int_{a}^{b} f(x) dx \right).$$

Beweisen Sie damit die Formeln $\int_a^b \overline{f(x)} \, dx = \overline{\int_a^b f(x)} \, dx$ und $\int_a^b (f_1(x), f_2(x)) \, dx = \left(\int_a^b f_1(x) \, dx, \int_a^b f_2(x) \, dx \right)$ für komplex- bzw. vektorwertige Funktionen.

¹Im Skript von Helga Baum wird dieses Resultat als Konsequenz des Lebesgueschen Integrierbarkeitskriteriums hergeleitet, aber dies wurde in unserer Vorlesung nicht bewiesen, also dürfen Sie es hier nicht anwenden.

²Folgendes lässt sich eher leicht beweisen: eine lineare Abbildung $\mathbf{L}: E \to F$ ist beschränkt genau dann, wenn sie stetig ist. Wir wissen insb., dass \mathbf{L} immer beschränkt ist, falls dim $E < \infty$.