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These notes will be expanded gradually over the course of the semester. If you notice any
typos or mathematical errors, please send e-mail about them to wendl@math.hu-berlin.de and
they will be corrected.

While the notes are written in English, I make an effort to include the German translations
(geschrieben in dieser Schriftart) of important terms wherever they are introduced. I will occa-
sionally omit these translations in cases where the English and German words are identical, or
if the word has already appeared before with its translation in a different context (e.g. the word
“smooth” needs to be defined many times in different contexts, and its German translation is always
the same), and also in cases where I can’t reliably figure out what the German word is. The latter
will happen more often as the course goes on, because the deeper one gets into advanced mathe-
matics, the harder it becomes to find authoritative German sources for clarifying the terminology
(and I am not linguistically qualified to invent terms in German myself).





First semester (Differentialgeometrie I)

1. Introduction

Before diving in with definitions, theorems and proofs, I want to give an informal taste of what
differential geometry is all about. The word “informal” means, in this case, that you should try
not to worry too much about the precise definitions or rigorous arguments behind what we are
discussing, but focus instead on the big picture. Before the first lecture is finished, I will revert to
being a proper mathematician and give some actual definitions.

1.1. A foretaste of Riemannian geometry. Let’s assume for the moment that we all
understand what a “smooth surface” is, e.g. you can picture it as a subset1 of R3 such that every
point has a neighborhood parametrized by some injective2 C8-map

R2 openĄ U ãÑ R3.

With this understood, assume
Σ Ă R3

is a smooth surface.
1.1.1. Distances and geodesics. We could view Σ as a metric space by defining the distance

between two points x, y P Σ via the Euclidean metric, but this is not necessarily the most natural
thing to do. A more natural notion of distance in the surface Σ would be one that tells you
something about the actual distance that an ant has to travel if it walks a path along the surface
between x and y. If that path is parametrized by a smooth map γ : ra, bs Ñ R3 satisfying
γpra, bsq Ă Σ, γpaq “ x and γpbq “ y, then the distance travelled is

(1.1) ℓpγq :“
ż b
a

| 9γptq| dt “
ż b
a

ax 9γptq, 9γptqy dt,
where 9γptq denotes the time derivative of γptq, xv, wy denotes the Euclidean inner product of two
vectors v, w P R3, and |v| :“axv, vy denotes the Euclidean norm. If we denote by Ppx, yq the set
of all smooth paths in Σ connecting x to y, then a natural notion of distance on Σ can now be
defined by

(1.2) dpx, yq :“ inf
γPPpx,yq

ℓpγq.
The infimum needs to be taken since, in general, there are many distinct paths from x to y that
will have different lengths. In principle we are interested in the shortest such path, though it is
not obvious in general whether such a shortest path must exist:

1We will soon improve this definition so that surfaces do not need to be regarded as subsets of R3. In fact, there
are some important examples of surfaces that cannot be embedded in R3; a famous example is the Klein bottle, see
https://en.wikipedia.org/wiki/Klein_bottle .

2We will need to add a condition concerning the derivative of the map U ãÑ R3 before this becomes an adequate
definition, but let’s worry about that later.

1
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Question 1.1. Given a smooth surface Σ and two distinct points x, y P Σ, does there exist a
smooth path on Σ from x to y that has the shortest possible length? Is it unique?

We will see later in this semester that the answer to both questions is always yes if x and y
are close enough to each other, and the shortest path can then be characterized by a second-order
ordinary differential equation. Such a path is called a geodesic (Geodäte or geodätische Linie),
and it serves as the best possible substitute for a “straight line” on Σ, even in cases where no
actual straight paths on Σ exist. The canonical example you should picture is the unit sphere
Σ :“ S2 Ă R3, whose geodesics are the so-called great circles, namely the subsets S2 X P defined
via 2-dimensional linear subspaces P Ă R3. These are the paths that all airplanes would traverse
along the Earth if there were no additional factors such as weather conditions or no-fly zones to
consider.

1.1.2. Angles, isometries, and curvature. The fundamental piece of data that makes the above
definition of distance on Σ possible is the Euclidean inner product x , y. In fact, x , y contains
strictly more information than is actually needed for defining distances on Σ; if you look again
at the formula (1.1), you’ll notice that it doesn’t really require knowing what xv, wy is for every
v, w P R3, but is already well-defined if we know how to define this for every pair of vectors v, w
that are tangent to Σ at any given point. (Indeed, 9γptq P R3 is always tangent to Σ at γptq.) In
fact, it would suffice to know what xv, vy is for every individual tangent vector v, but knowing
xv, wy for two distinct vectors provides some additional information that is of geometric interest:
it allows us to compute the angle between any two tangent vectors. Indeed, the angle θ between
two vectors v, w P R3 can always be deduced from the formula

xv, wy “ |v| ¨ |w| ¨ cos θ.
We can therefore define not only the length of any smooth path along Σ, but also the angle between
two smooth paths wherever they intersect. This information makes Σ into what we will later call
a (2-dimensional) Riemannian manifold (Riemannsche Mannigfaltigkeit), and the restriction of
the inner product to the tangent spaces on Σ, which determines all lengths and angles, is called a
Riemannian metric (Riemannsche Metrik).3

Here is a natural question one can ask about Riemannian manifolds. Suppose Σ1,Σ2 Ă R3

are two smooth surfaces, and ϕ : Σ1 Ñ Σ2 is a smooth bijective map between them whose inverse
is also smooth.4 We call ϕ in this case a diffeomorphism (Diffeomorphismus), and say that Σ1

and Σ2 are diffeomorphic (diffeomorph). We say that ϕ is additionally an isometry (Isometrie)
if it preserves all distances and angles, and in this case, Σ1 and Σ2 are said to be isometric
(isometrisch).

Question 1.2. Given two diffeomorphic surfaces, how can we measure whether they are iso-
metric?

In simple examples, it is often easy to recognize when two surfaces are diffeomorphic: an
example is shown in Figures 1 and 2, where we can compare the standard unit sphere S2 Ă R3

with a “nonstandard” embedding of S2 into R3 that elongates a portion of the sphere into something
more closely resembling a cylinder. It is surely not hard to imagine that these two surfaces in R3 are
diffeomorphic; writing down an explicit example of a diffeomorphism would be a pain in the neck,

3Caution: there is a potential for confusion in this terminology, because a Riemannian metric is not a particular
kind of metric in the sense of metric spaces, though it does determine one via formulas such as (1.2). A Riemannian
metric carries strictly more information, since it determines angles in addition to distances.

4For the purposes of this discussion, you may assume that a function on a smooth surface Σ Ă R3 is smooth if
it can be extended to a smooth function on a neighborhood of Σ; the latter notion is familiar from your first-year
Analysis class since the neighborhood is an open subset of R3. We will later give an equivalent but more elegant
definition of smoothness for functions on manifolds.
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but we will content ourselves with the intuitive understanding that in the process of “stretching” the
standard sphere into its nonstandard counterpart, one could if necessary come up with a smooth
bijection between the two. The much deeper observation is that they are not isometric, and we will
need to develop some technology before we can prove this rigorously. One of the key ideas behind
the proof is shown in Figures 1 and 2: on any surface Σ, one can draw a closed piecewise-smooth
path along Σ, choose a starting point p0 on the path and a tangent vector v0 at p0, then translate
the vector v0 along the path via a process known as parallel transport. We will have to give a
careful definition later of what is meant by parallel transport, but Figures 1 and 2 will hopefully
give you some intuition about this. The interesting question is now: if we parallel transport the
vector v0 once around our chosen closed path, does it return to the same starting vector? As
you can see in the pictures, the answer is no for the triangular path in Figure 1, but yes for
the rectangular path in Figure 2. It will turn out that this observation encodes a fundamental
difference between these two Riemannian manifolds: the standard sphere has positive curvature
(Krümmung) at every point, but the elongated sphere does not—if fact, the surface in Figure 2
has zero curvature everywhere on the elongated region where our rectangle is drawn.

A major portion of the second half of this semester will be devoted to the precise definition of
curvature and its important properties. One of these is that it completely characterizes the notion
of local flatness :

Question 1.3. Given a smooth surface Σ Ă R3 and a point p P Σ, does p have any neighbor-
hood that is isometric to an open subset of the “flat” surface R2 ˆ t0u Ă R3?

A surface Σ Ă R3 is called locally flat (lokal flach) if the answer to Question 1.3 is yes for
every point p P Σ. Figure 3 shows an example of a surface that is locally flat, even though it does
not look flat in the picture: you know it is locally flat because you know that an ordinary piece of
paper can be bent into this cylindrical shape without breaking or stretching it. This is not true
of the standard unit sphere in R3. Perhaps you’ve never held in your hand a piece of paper that’s
shaped like part of a globe5, but you can surely imagine that if you did, you could never make
it flat without breaking or stretching it. This is another symptom of the positive curvature of
the round sphere.6 By contrast, the cylindrical surface in Figure 3 has zero curvature everywhere.
The statement that a cylinder is in some sense “not curved” may seem jarring at first, but you’ll
get used to it: the point is that the quantity we’re calling curvature should depend only on the
Riemannian metric, and not on the specific way we’ve chosen to embed our Riemannian manifold
in R3. If two surfaces are isometric, then their curvatures at corresponding points will always be
the same.

The positive curvature of the round sphere is not unrelated to the fact that the angles of
the “triangle” in Figure 1 add up to considerably more than 180 degrees. We will later also see
examples of surfaces with negative curvature: the basic picture to have in mind is the shape of
a saddle. In these surfaces, the angles in a triangle will add up to less than 180 degrees. The
elongated sphere in Figure 2 has zero curvature in the shaded region, but not everywhere; since it
is diffeomorphic to S2, one could reinterpret this as the statement that S2 admits a Riemannian
metric that is locally flat in some region. That is not a deep or surprising statement, as every
Riemannian metric on an arbitrary manifold can in fact be modified to make it flat in some small
region. A more interesting question is whether it can be modified to make it locally flat everywhere,
like the cylindrical surface in Figure 3. Let us take this opportunity to state a standard corollary
of a rather deep theorem:

5If you know where to buy one, please let me know!
6This is also the mathematical reason why it is impossible to create a flat map of the Earth without distorting

distances and angles in some regions.
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PSfrag replacements

p0

v0

Figure 1. The “round” sphere S2 Ă R3. Parallel transport of a vector along a
closed path leads to a different vector upon return.

PSfrag replacements

p0

v0

Figure 2. A different embedding of S2 in R3, so that the darkly shaded region
is locally flat. Parallel transport of a vector around a closed path in this region
always leads back to the same initial vector.

Theorem. There is no Riemannian metric on the sphere S2 that is everywhere locally flat.

This will follow from the beautiful Gauss-Bonnet theorem for surfaces, to be proved near the
end of this semester. It relates the integral of the curvature over a compact surface to a topological
quantity, its Euler characteristic, which in the case of S2 is positive. This is the reason why
Figure 2 could not have been drawn so that every part of the sphere had zero curvature. We will
also use a variant of this theorem to understand what the various observations above about sums
of angles of triangles have to do with curvature.
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PSfrag replacements

Figure 3. A piece of a cylinder can be flattened to a plane without changing
any lengths or angles on the surface.

1.1.3. Spacetime as a pseudo-Riemannian 4-manifold. Differential geometry is not only about
surfaces, and it also plays an important role in subjects that cannot accurately be called “pure”
mathematics. This is true especially in several areas of theoretical physics, the most famous of
which is Einstein’s theory of gravitation, known as the general theory of relativity (allgemeine
Relativitätstheorie). We will not directly discuss gravitation in this course, but several of the
mathematical concepts we will cover are essential for understanding Einstein’s picture of the uni-
verse.

The paradigm introduced by Einstein for an understanding of space and time can be summa-
rized as follows:

(1) There are three spatial dimensions, but time adds a fourth. Locally, an “event” occurring
in a particular place at a particular time thus requires four coordinates for its description,
defining a point in R4.

(2) The picture in item (1) is only local, i.e. it is sufficient for describing interactions between
events on a small or medium scale, but one should not assume that the set of all events in
the universe (known as spacetime or Raumzeit) is in bijective correspondence with R4.
In general, spacetime could be any smooth 4-dimensional manifold.

(3) Spacetime is endowed with a (pseudo-)Riemannian metric, which determines a notion of
geodesics. In the absence of forces other than gravity, all objects move along geodesics
in spacetime.

(4) The presence of mass affects the curvature of spacetime and thus changes the geodesics.
A precise relationship between mass and curvature is given by the Einstein equation, the
fundamental field equation of general relativity.

In this paradigm, gravity is not a force: it is just a geometric effect produced by the interaction
between mass and curvature. In other words, the reason a brick falls toward the Earth if you drop
it is that as soon as you let go, it starts following a geodesic in spacetime, and the Earth’s mass
causes curvature that determines the shape of that geodesic: moving forward in time while moving
closer to the Earth in space.

I should say a word about the appearance of the prefix “pseudo-” in the above paradigm, which
places Einstein’s theory slightly outside the realm of standard Riemannian geometry. As sketched
above, a Riemannian metric on a manifold M is a choice for each point p PM of an inner product
on the space of tangent vectors to M at p. As you know, an inner product x , y on a real vector
space V is a positive-definite bilinear form, implying in particular that it is

‚ symmetric: xv, wy “ xw, vy for all v, w P V ;
‚ nondegenerate: For every v P V zt0u, there exists w P V such that xv, wy ‰ 0.
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To define a pseudo-Riemannian metric onM , one adopts these two assumptions for the inner prod-
uct x , y on the space of tangent vectors at every point p PM , but without assuming any positivity,
i.e. we do not require xv, vy to be positive whenever v ‰ 0. The classification of quadratic forms
(or equivalently the spectral theorem for symmetric linear maps) implies that any n-dimensional
vector space V with a symmetric nondegenerate bilinear form x , y can be split into two orthogonal
(with respect to x , y) subspaces

V “ V` ‘ V´
such that x , y is positive-definite on V` and negative-definite on V´. (Note that if both subspaces
are nontrivial, then there always also exist nonzero vectors v P V such that xv, vy is zero—this does
not contradict nondegeneracy!) The pseudo-Riemannian metrics used in general relativity have the
property that on every tangent space, dimV` “ 3 and dimV´ “ 1.7 Pseudo-Riemannian metrics
with this property are also sometimes called Lorentzian metrics, and said to have Lorentz
signature.

The canonical example of a Lorentzian inner product is what is called theMinkowski metric
on R4: we define it by

(1.3) xx, yy “ ´x0y0 `
3ÿ
j“1

xjyj ,

where we are following the physicists’ convention of labeling vectors v P R4 by their coordinates vµ

with µ “ 0, 1, 2, 3. It is actually crucial for Einstein’s theory that the metric on spacetime is not
positive-definite, because the Lorentzian signature is precisely what produces qualitative physical
distinctions between the three spatial dimensions and the fourth one, time. In the convention
used above to write down the Minkowski metric, time is labelled as the zeroth coordinate, and is
thus distinguished by the minus sign appearing in (1.3). More generally, a vector v in a vector
space V with a Lorentzian inner product x , y is called time-like if xv, vy ă 0, space-like if
xv, vy ą 0, and light-like if xv, vy “ 0. With a bit of linear algebra, one can see that the set of
all space-like vectors is connected, but the set of vectors that are time-like or light-like splits into
two connected components, which we think of as representing motion forward or backward in time.
Similarly, on a Lorentzian manifold, a geodesic can be either time-like, light-like or space-like, and
in the first two categories one can distinguish between parametrizations of the geodesic that are
oriented forward or backward in time, while for space-like geodesics there is no such distinction.
The physical significance of these observations is the following: in general relativity, all particles
with mass travel through spacetime along time-like geodesics, while particles with no mass travel
along light-like geodesics—the latter are the particles that observers perceive as travelling at the
speed of light. As far as we know, nothing travels along space-like geodesics, which is equivalent
to saying that nothing travels faster than light. According to the geometry of spacetime, anything
that could do this would also sometimes be observed to travel backward in time. Naturally, the
non-existence of such particles according to the known laws of physics has not stopped physicists
from giving them a name—tachyons—and they are mentioned frequently in science fiction, as a
clearly necessary ingredient in time travel.

While we will probably not say anything further about general relativity in this course, we will
prove some results about pseudo-Riemannian manifolds, and will try to avoid assuming that inner
products are positive-definite unless that assumption is absolutely necessary.

1.1.4. Gauge theory. To round out this motivational introduction, I want to mention briefly
another area of physics beyond general relativity where differential geometry plays a key role. The
last half-century has witnessed intense and fruitful interactions between geometry and quantum

7Or possibly the other way around—the literature is not unanimous on this convention.
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field theory (on which the theory of elementary particles is based), along with its more exotic
and controversial cousin, string theory. Each of the classical fields underlying the various types of
elementary particles can be described mathematically as a geometric object, namely a section of
a smooth fiber bundle. The particles that mediate the electromagnetic, strong and weak nuclear
forces, in particular, are described via so-called gauge fields, which are known to mathematicians
as connections : these are a fundamental piece of geometric data on a fiber bundle, analogous to
the Lorentzian metrics on the spacetime manifold of general relativity. This subject as a whole is
known as gauge theory, a term which means slightly different things in the two fields: physicists
understand it as the basis of their understanding of the forces of nature, while for mathematicians,
it is a powerful framework for developing geometric and topological invariants based on spaces of
solutions to nonlinear PDEs. In the big picture, gauge theory is both, and it has served as one of
the most exciting sources of interactions between theoretical physics and pure mathematics during
the past few decades. We will lay a few of the basic foundations for this subject via the study of
vector bundles in the second half of this semester.

1.2. Charts and transition maps. We now begin the study of differential geometry in
earnest.

The fundamental objects of study in this subject are called smooth, finite-dimensional mani-
folds. We will spend most of the first two lectures explaining the definition of this term and giving
some basic examples.

We start with the intuition that a 1-dimensional manifold is what you have previously called
a “curve” (Kurve), and a 2-dimensional manifold is a “surface” (Fläche). For arbitrary n P N, an
elementary example of an n-dimensional manifold will be the so-called n-sphere

Sn :“  
x P Rn`1

ˇ̌ |x| “ 1
(
,

where | ¨ | again denotes the Euclidean norm. The word “sphere” (Sphäre) on its own normally
refers to the familiar case n “ 2, though it can also refer to the general case if the value of n
is clear from context. The 1-sphere has been known to you since Kindergarten under a different
name: the circle (Kreis). Let us examine this example a bit more closely, and clarify in particular
the following point: S1 is defined as a subset of R2, so why do we consider it a “one-dimensional”
object?

The answer can be explained via an intelligent choice of coordinates. Consider the standard
polar coordinates pr, θq on R2, which are related to the Cartesian coordinates px, yq by

x “ r cos θ, y “ r sin θ.

For concreteness, we assume (and will always assume) the angle θ is measured in radians, so the
range θ P r0, 2πs describes a full rotation. In polar coordinates, S1 is the subset tr “ 1u Ă R2,
thus one of the coordinates becomes irrelevant, and having one coordinate left makes S1 a one-
dimensional object.

The above discussion of polar coordinates glossed over an important point: one cannot simul-
taneously describe every point in S1 via a unique value of the angular coordinate θ P R, at least
not if we want the values of θ to be unambiguously defined and continuously dependent on the
points that they describe. One could e.g. require θ to take values only in a half-open interval like
r0, 2πq or p´π, πs: this creates a one-to-one correspondence between points on S1 and values of
the coordinate, but the function one defines in this way from S1 to r0, 2πq or p´π, πs has a jump
discontinuity at the point where the coordinate reaches either end of the allowed interval. If you
want to avoid such discontinuities, then the only option is to give up on the notion of describing
all of S1 in a single coordinate system, and instead use multiple coordinate systems defined on



8 FIRST SEMESTER (DIFFERENTIALGEOMETRIE I)

different subsets. For instance, we could define two subsets of the circle by

U :“ S1ztp1, 0qu, V :“ S1ztp´1, 0qu,
and associate to these two subsets two potentially different angular coordinates θ and φ respectively,
each taking values in an appropriate open interval, thus defining continuous functions

θ : U Ñ p0, 2πq, φ : V Ñ p´π, πq.
Since S1 “ UYV , these two coordinate systems together can be used to describe every point in S1.
Moreover, there is a large region on which both coordinates θ and φ are defined: it consists of the
two semi-circles S1` :“ tpx, yq P S1 | y ą 0u and S1´ :“ tpx, yq P S1 | y ă 0u, and on each of these
one can easily derive a relationship between θ and φ, namely

(1.4) φ “
#
θ on S1`,
θ ´ 2π on S1´.

The pairs pU , θq and pV , φq are our first examples of what we will call charts on the 1-dimensional
manifold S1, and together they form a smooth atlas that determines a smooth structure on S1.
Let us now begin giving precise definitions to these terms.

In the following, assumeM is a set, and n ě 0 is an integer. For the sake of intuition, you may
picture M as a surface (in which case n “ 2), and picture the subsets U ,V ĂM as open subsets of
that surface.8 Recall that a continuous map defined on an open subset of Euclidean space is called
smooth (glatt) if it admits derivatives of all orders.

Definition 1.4. An n-dimensional chart (Karte)9 pU , xq on M consists of a subset U Ă M

and an injective map x : U ãÑ Rn whose image xpUq Ă Rn is an open set.
Any two charts pU , xq and pV , yq determine a pair of transition maps (Kartenübergänge)

Rn Ą xpU X Vq y˝x´1ÝÑ ypU X Vq Ă Rn,

Rn Ą ypU X Vq x˝y´1ÝÑ xpU X Vq Ă Rn,

(1.5)

which are inverse to each other, and are thus bijections between subsets of Rn. We say that the
two charts are Ck-compatible (verträglich) for some k P N Y t0,8u if the sets xpU X Vq and
ypUXVq are both open and the transition maps y ˝x´1 and x˝y´1 are both of class Ck. If k “ 8,
we say the charts are smoothly compatible (glatt verträglich).

A picture of what a pair of overlapping charts on a surface might look like is shown in Figure 4.
An individual chart pU , xq should be understood as defining a coordinate system for describing all
points in the subset U ĂM , where the individual coordinates (Koordinaten) are the n real-valued
functions

x1, . . . , xn : U Ñ R

defined as the component functions of the map x “ px1, . . . , xnq : U Ñ Rn. Note that in Defini-
tion 1.4, it is permissible for the domains U and V of the two charts to be disjoint, in which case

8Saying the word “open” presumes that M has some structure beyond merely being an arbitrary set, e.g. it
could be a subset of some Euclidean space Rn, or more generally, a metric or topological space. We will address this
point properly in the next lecture, but since we have not addressed it yet, Definition 1.4 refers to U and V simply
as “subsets” of M , without saying they are open. In practice, they always will be.

9A word of caution for German speakers: the mathematical word Abbildung (as in “eine injektive Abbildung
von Rn nach Rm”) can be translated into English as either “map” or “mapping”, but do not be tempted to translate
“map” into mathematical German as Karte. In mathematical English, a “chart” and a “map” are not exactly the
same thing.
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PSfrag replacements
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y
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V

xpUq

ypVq
xpU X Vq

ypU X Vq

y ˝ x´1

M

R2R2

Figure 4. Two charts pU , xq and pV , yq on a surface M , with an associated
transition map y ˝ x´1 defining a bijection between two open sets (the shaded
regions) in R2.

the transition maps y ˝ x´1 and x ˝ y´1 are both just the trivial map from the empty set to itself.
But if U X V ‰ H, then the transition map

U X V

Rn
openĄ xpU X Vq ypU X Vq openĂ Rn

x

y

y˝x´1

defines a coordinate transformation, e.g. for any point p P U X V , y ˝ x´1 sends the vector
px1ppq, . . . , xnppqq P Rn that represents p in “x-coordinates” to the vector that represents the
same point in “y-coordinates”, namely py1ppq, . . . , ynppqq P Rn. It is often convenient in this sit-
uation to write the y-coordinates on the overlap region as functions of the x-coordinates, i.e. if
we identify each point in U X V with the vector in Rn determined by its x-coordinates, then the
y-coordinates can be viewed as functions of n variables, which are naturally labelled x1, . . . , xn,
producing a transformation

(1.6) px1, . . . , xnq ÞÑ py1px1, . . . , xnq, . . . , pynpx1, . . . , xnqq.
This is a slight abuse of notation, because in this expression, the variables x1, . . . , xn are no longer
interpreted as real-valued functions on U Ă M , but simply as the usual Cartesian coordinates on
the open subset xpU X Vq Ă Rn. With this understood, (1.6) is just another expression for the
transition map y ˝ x´1, and the inverse transition map x ˝ y´1 can similarly be written as

(1.7) py1, . . . , ynq ÞÑ px1py1, . . . , ynq, . . . , pxnpy1, . . . , ynqq,
with the variables y1, . . . , yn now understood to represent Cartesian coordinates on ypUXVq Ă Rn.
If the two charts are Ck-compatible, then both of the transformations in (1.6) and (1.7) are of
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class Ck. If k ě 1, then since the two transformations are inverse to each other, it follows that the
n-by-n matrix with entries

Byi
Bxj px

1, . . . , xnq, i, j P t1, . . . , nu
is invertible for every px1, . . . , xnq P xpU X Vq Ă Rn.

Remark 1.5. You may have been accustomed to using subscripts x1, . . . , xn for coordinates
on Rn in your studies up to this point, and will thus wonder why I am instead using superscripts in
all the expressions above. This is not an arbitrary choice—it is a convention that is widespread in
differential geometry, and especially popular among physicists, and we will try to use it consistently
throughout this course. Subscripts will at some point also appear, but they will have a different
meaning.

Example 1.6. In the discussion of the unit circle S1 above, we defined two charts pU , θq and
pV , φq, with images θpUq “ p0, 2πq Ă R and φpVq “ p´π, πq Ă R. The overlap region UXV of these
two charts is the union of two disjoint open sets that we denoted by S1` and S1´, the upper and
lower semicircle (disjoint from the x-axis). The transition map φ˝ θ´1 : θpS1`YS1´q Ñ φpS1`YS1´q
is then found by writing φ as a function of θ as in (1.4), which gives

φpθq “
#
θ for 0 ă θ ă π,

θ ´ 2π for π ă θ ă 2π.

Observe that while this map appears at first glance to have a jump discontinuity, its actual domain
is θpS1`YS1´q “ p0, πqYpπ, 2πq, i.e. it excludes the point π at which the discontinuity would occur.
As a result, this transition map is smooth, and so is its inverse; the two charts pU , θq and pV , φq
are therefore smoothly compatible.

Exercise 1.7. The standard spherical coordinates (Kugelkoordinaten) on R3 are defined
via the transformation

(1.8) pr, θ, φq ÞÑ px, y, zq,
$’&’%
x :“ r cos θ cosφ,

y :“ r sin θ cosφ,

z :“ r sinφ,

where θ plays the role of an angle in the xy-plane, and φ P r´π{2, π{2s is the angle between the
vector px, y, zq P R3 and the xy-plane.10 Restricting to r “ 1, the other two coordinates pθ, φq can
be used to describe points on the unit sphere S2 Ă R3, though there are choices to be made since
θ is only defined up to multiples of 2π (and it is not defined at all at the north and south poles
p˘ :“ p0, 0,˘1q P S2, where φ “ ˘π{2.)

(a) Find two subsets U1,U2 Ă S2 with U1YU2 “ S2ztp`, p´u such that for i “ 1, 2, there are
2-dimensional charts of the form pUi, αiq with αi “ pθi, φiq, where the coordinate functions
θi, φi : Ui Ñ R are continuous and satisfy the spherical coordinate relations (1.8), and have
images α1pU1q “ p0, 2πq ˆ p´π{2, π{2q Ă R2 and α2pU2q “ p´π, πq ˆ p´π{2, π{2q Ă R2.

(b) One cannot use spherical coordinates to construct a chart on S2 that contains either of
the poles p˘ “ p0, 0,˘1q. Can you think of another way to construct charts on open
subsets of S2 that contain these two points?

10Achtung: there are various conventions for spherical coordinates in use. I’m told that this is the standard
convention learned by mathematics students in Germany. I learned a different convention as a physics student in
the U.S.: x “ r cosφ sin θ, y “ r sinφ sin θ, z “ r cos θ. Here φ plays the role of the angle in the xy-plane, and
θ P r0, πs is the angle between px, y, zq P R3 and the positive z-axis.
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Hint: On any sufficiently small neighborhood of p` or p´ in S2, every point has its
z-coordinate determined by the x and y-coordinates.

(c) Now that you’ve constructed charts that cover every point on S2, write down the asso-
ciated transition maps and show that your charts are all smoothly compatible with each
other.

2. Smooth manifolds

In this lecture we give the definition of the term smooth manifold and look at a few more
examples.

2.1. Atlases and smooth structures. We concluded Lecture 1 by defining the notion of a
chart on a set M , and Ck-compatibility between two charts. A chart pU , xq should be interpreted
as a “local” coordinate system, which can be used to label points in the subset U Ă M . We saw
in the example of the circle S1 that while one cannot apparently describe all points in S1 via a
single chart, it was easy to find two smoothly compatible charts such that every point is in at least
one or the other. Exercise 1.7 similarly outlines how to cover S2 with four charts using spherical
coordinates. These were the first examples of the following general concept.

Definition 2.1. An atlas of class Ck for the set M (or smooth atlas in the case k “ 8)
is a collection of charts A “ tpUα, xαquαPI that are all Ck-compatible with each other, such thatŤ
αPI Uα “M .11

In first-year analysis, you learned what it means for a real-valued function on an open subset
of Rn to be differentiable; it was important in that definition that the domain of the function
should be open, as differentiation at a point p involves limits that are not well defined unless f
itself is defined on some ball around p. In differential geometry, we would also like to be able to
differentiate functions

f :M Ñ R

defined on a manifold M , such as the circle S1 or sphere S2. This is a nontrivial problem, even
in simple examples such as Sn that are given as subsets of Euclidean space, since they are not
generally open subsets. But if M is a set equipped with an atlas, then M is covered by subsets
that have coordinate systems, so for each chart pU , xq we can write down f “in local coordinates”,
meaning we identify each point p P U with its coordinate vector px1ppq, . . . , xnppqq P Rn, so that
f |U : U Ñ R becomes a function of n real variables

(2.1) px1, . . . , xnq ÞÑ fpx1, . . . , xnq,
with x1, . . . , xn interpreted as the standard Cartesian coordinates on the open set xpUq Ă Rn.
This is another slight abuse of notation, similar to the coordinate expressions for transition maps
described in (1.6) and (1.7); in fact, the function that is literally described in (2.1) is not f :M Ñ R

but rather
xpUq f˝x´1ÝÑ R.

It now seems natural to say that f is differentiable at p P U Ă M if and only if its coordinate
expression f ˝ x´1 is differentiable (in the sense of first-year analysis) at the corresponding point
xppq P xpUq Ă Rn. For this to be a reasonable definition, we need to know that it does not depend
on the choice of the chart pU , xq, as our atlas may indeed contain multiple distinct charts that
contain the point p. This issue is precisely what the compatibility condition in Definition 1.4 was
designed to settle:

11In this definition, I may be any set, finite, countable or uncountable. We refer to it as an index set since it
is only used for labelling purposes and is otherwise unimportant in itself.
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Lemma 2.2. Suppose pU , xq and pV , yq are two Ck-compatible charts on M , and f : M Ñ R

is a function. Then for each nonnegative integer r ď k, the function xpU X Vq f˝x´1ÝÑ R is of class

Cr if and only if the function ypU X Vq f˝y´1ÝÑ R is of class Cr.

Proof. The statement follows from the chain rule, since f ˝ y´1 “ pf ˝ x´1q ˝ px ˝ y´1q and
f ˝ x´1 “ pf ˝ y´1q ˝ py ˝ x´1q. �

Definition 2.3. For a set M with an atlas A of class Ck and r P N Y t0,8u with r ď k, a

function f : M Ñ R is said to be of class Cr if and only if the function xpUq f˝x´1ÝÑ R is of class
Cr for every chart pU , xq P A.

Exercise 2.4. Convince yourself that Lemma 2.2 becomes false in general if one allows r ą k.
(See also Example 2.7 below for a concrete special case.) This has the following consequence: if
we want to define what it means for a function on a manifold to be of class Ck, then we need to
have an atlas of class Ck or better to test it with. In particular, the notion of smooth functions on
M cannot be defined unless M is equipped with a smooth atlas.

The examples of smooth atlases we saw in Lecture 1 on S1 and S2 were finite, and this will
turn out to be a general pattern: we will see that almost all manifolds we are interested in admit
finite atlases, though it is not often important to know this. On the other hand, a general atlas
can be uncountably infinite, and one can always enlarge a finite atlas tpUα, xαquαPI in trivial ways,
e.g. by choosing subsets U 1α Ă Uα for which xαpU 1αq Ă Rn is open and adding in the restricted
charts pU 1α, xα|U 1αq, which are obviously still compatible with all the others. We say that an atlas
A “ tpUα, xαquαPI of class Ck is maximal if it cannot be enlarged any further without sacrificing
compatibility, i.e. every chart that is Ck-compatible with all of the charts in A already belongs
to A.

Lemma 2.5. Given an atlas A “ tpUα, xαquαPI of class Ck on M , let A1 denote the collection
of all charts on M that are Ck-compatible with all the charts in A. Then A1 is a maximal atlas of
class Ck, and it is the only one containing A.

Proof. To show that A1 is an atlas, we need to show that any two charts pU , xq and pV , yq
that are Ck-compatible with every pUα, xαq are also Ck-compatible with each other. Given a point
p P U X V , pick α P I so that p P Uα. The set xpU X V X Uαq Ă Rn is then the intersection of
the two open sets xpU X Uαq and xpV X Uαq and is thus an open neighborhood of xppq, so on this
neighborhood, the transition map y ˝ x´1 can then be written as

y ˝ x´1 “ py ˝ x´1
α q ˝ pxα ˝ x´1q,

which is a composition of two Ck-maps and is therefore of class Ck on the neighborhood of xppq
in question. This trick works (possibly with different choices of α) for any point p P U X V , and it
also works for the inverse transition map x ˝ y´1, thus it implies that both of the transition maps
relating x and y are everywhere of class Ck, and A1 is therefore an atlas. It clearly also contains A,
and it is maximal, since any chart compatible with every chart in A1 is also compatible with every
chart in A, and thus belongs to A1 by definition. Finally, if A2 is any other atlas containing A,
then every chart in A2 is compatible with every chart in A Ă A2 and therefore belongs to A1 by
definition, proving A2 Ă A1. If A2 is also maximal, it follows that A2 “ A1. �

Definition 2.6. For k P NYt8u, a Ck-structure (Ck-Struktur) or differentiable structure
of class Ck (differenzierbare Struktur von der Klasse Ck) on a set M is a maximal atlas A of
class Ck on M . In the case k “ 8, we also call this a smooth structure (glatte Struktur) on M .
If M has been endowed with a Ck-structure A, then a chart pU , xq on M will be referred to as a
Ck-chart (or a smooth chart in the case k “ 8) if it belongs to the maximal atlas A.
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The maximality condition in Definition 2.6 is convenient for bookkeeping purposes (see Re-
mark 2.8 below), but Lemma 2.5 shows that it is not a meaningful restriction. In practice, one
typically specifies a smooth structure by first describing the smallest atlas one is able to construct,
and then replacing it with its unique maximal extension. We will usually carry out the latter step
without even mentioning it.

Example 2.7. The following defines an atlas of class C0 but not C1 on R: consider two charts
pU , xq and pV , yq with

U :“ p´8, 1q, xptq :“ t,

V :“ p´1,8q, yptq :“ t3.

The resulting transition maps both send p´1, 1q Ñ p´1, 1q and are given by

ypxq “ x3, xpyq “ 3
?
y,

so both are continuous, but x ˝ y´1 is not differentiable. This has the consequence that functions
RÑ R that look differentiable in the x-coordinate might not look differentiable in the y-coordinate.
An easy example is the identity map fptq “ t, which looks like fpxq “ x and is thus smooth in the
x-coordinate, but its expression in the y-coordinate is fpyq “ 3

?
y, which fails to be differentiable

at the point 0 P ypVq “ p´1,8q.
Note that if we enlarge both U and V to R, then while the two charts pU , xq and pV , yq together

do not determine any smooth structure on R, each of these charts individually forms a smooth
atlas—an atlas with only one chart is always smooth since it has no nontrivial transition maps
whose differentiability would need to be checked. Each therefore determines a smooth structure
via Lemma 2.5, and in this way, one obtains two different smooth structures on R.

Remark 2.8. The advantage of requiring maximality in Definition 2.6 is the following: if A
and A1 are two atlases on M for which every chart in A is compatible with every chart in A1, then
the two notions of differentiability for functions on M defined via these two atlases will be the
same, and we would therefore prefer to think of them is defining the same smooth structure, even
if they are different atlases, strictly speaking. In this scenario, it is easy to check that both atlases
do in fact have the same maximal extension.

2.2. Some topological notions. With the concept of a smooth atlas in hand, a reasonable
guess for the “right” definition of a smooth manifold would be that it is any set endowed with
the additional structure of a smooth atlas. In practice, however, doing anything interesting with
manifolds requires imposing one or two further restrictions on what is allowed to be a manifold
and what is not.

I do not want to assume previous knowledge of topology in this course, but a few basic notions
of the subject now need to be discussed before we can give the precise definition of a manifold. Most
of them will play a negligible role in this course, and in fact, the intuition you already have about
metric spaces is fully sufficient for understanding the definition of a manifold (cf. Remark 2.20
below)—nonetheless, you will not be able to understand why that definition is what it is unless we
first discuss the alternatives.

Since you have seen metric spaces before, you know how to define fundamental notions such
as continuity (Stetigkeit), convergence of a sequence to a point (Konvergenz einer Folge gegen
einen Punkt) and closed sets (abgeschlossene Teilmengen) in metric spaces. You will also have seen
important concepts such as that of a neighborhood (Umgebung) of a point x P X , meaning any
subset U Ă X that contains an open subset containing x, and probably also a homeomorphism
(Homöomorphismus), which is a continuous bijection whose inverse is also continuous. One detail
you may or may not already be aware of is that all of these notions can be defined without any
explicit reference to a metric, so long as one knows what an “open set” is. In particular:
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Proposition 2.9 (first-year analysis). Assume X and Y are metric spaces.

(1) A sequence xn P X converges to a point x P X if and only if for every neighborhood
U Ă X of x, xn P U for all sufficiently large n.

(2) A subset U Ă X is closed if and only if its complement XzU Ă X is open.
(3) A map f : X Ñ Y is continuous if and only if for every open subset U Ă Y , f´1pUq :“

tx P X | fpxq P Uu is an open subset of X.
(4) A bijective map f : X Ñ Y is a homeomorphism if and only if it defines a bijective

correspondence between the open subsets of X and the open subsets of Y , i.e. for all
subsets U Ă X, U is open if and only if fpUq Ă Y is open.

�

Exercise 2.10. If you do not already find Proposition 2.9 obvious, prove it.

Topology begins with the observation that it is sometimes convenient to define what an open
set is without the aid of a metric. For this idea to be useful, we just need open sets to satisfy a
few properties that are already familiar from the theory of metric spaces:

Definition 2.11. A topology (Topologie) on a set X is a collection T of subsets of X
satisfying the following axioms:

(i) H P T and X P T ;
(ii) For every subcollection I Ă T ,

ď
UPI

U P T ;

(iii) For every pair U1,U2 P T , U1 X U2 P T .

The pair pX, T q is then called a topological space (topologischer Raum), and we call the sets
U P T the open subsets (offene Teilmengen) in pX, T q.

We will usually not give an actual label to the topology when discussing a topological space,
so e.g. instead of talking about pX, T q, we will talk about “the topological space X” with the
understanding that a subset U Ă X is called “open” if and only if it belongs to the topology
that has been specified on X . For topological spaces X and Y , one now takes the statements
in Proposition 2.9 as definitions of the notions of convergence, closed subsets, continuity and
homeomorphisms.

We call a topological space X metrizable (metrisierbar) if it admits a metric for which the
given topology of X consists of all sets that are unions of open balls, i.e. the metrizable spaces
are the topological spaces that you already saw (but without using the word “topology”) when you
studied metric spaces. Two things about this notion are important to understand:

(1) If X is metrizable, then the metric that defines its topology is typically far from being
unique. For example, dpx, yq :“ c|x ´ y| for any constant c ą 0 defines a “nonstandard”
metric on R that nonetheless induces the same topology as the standard one.

(2) Many topological spaces are not metrizable, and they can easily have properties that are
counterintuitive. (We will see an example in a moment.)

We saw in §2.1 that an atlas of class Ck on a setM determines a natural way to define what it
means for a function f : M Ñ R to be of class Cr for any r ď k. This holds in particular for r “ 0,
so that continuity of functions can be defined in a certain sense, even though we never explicitly
endowed M with a topology. But actually, we did, we just didn’t notice:
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Proposition 2.12. Given an atlas A “ tpUα, xαquαPI of class C0 on a set M , there exists a
unique topology on M such that the sets Uα ĂM are all open and the maps xα are all homeomor-
phisms onto their images.12 Moreover, for every other chart pU , xq that is C0-compatible with the
charts in A, U ĂM is also open and x is also a homeomorphism onto its image.

Proof. Suppose M carries a topology with the properties described, and O ĂM is an open
subset. Then each of the sets Oα :“ O X Uα is open, and O “ Ť

αPI Oα. Since each xα is a
homeomorphism onto its image in Rn, xαpOαq is then also an open subset of Rn. Conversely,
if O Ă M is any subset such the sets Ωα :“ xαpO X Uαq Ă Rn are all open, then each Oα :“
O X Uα “ x´1

α pΩαq ĂM must also be open since xα is a homeomorphism, and therefore so is the
union O “Ť

αPI Oα. This proves that a topology with the stated properties is unique: if it exists,
then it is precisely the collection of all subsets O Ă M such that xαpO X Uαq Ă Rn is open for
every α P I.

To prove existence, one now has to prove that the collection of subsets of M described above
satisfies the axioms of a topology, i.e. it contains M and H and is closed under arbitrary unions
and finite intersections. This is a straightforward exercise.

Finally, let us fix the topology on M described above and suppose pU , xq is another chart
that is C0-compatible with pUα, xαq for every α P I. We need to show that U Ă M is open and
x : U Ñ Rn is a homeomorphism onto its image, which is equivalent to showing that for subsets
O Ă U , O is open in M if and only if xpOq is open in Rn. For this, we make use of the transition
maps relating pU , xq and pUα, xαq for an arbitrary choice of α P I:

U X Uα

Rn
openĄ xpU X Uαq xαpU X Uαq openĂ Rn

x

xα

xα˝x´1

x˝x´1

α

By the assumption of C0-compatibility, the two maps in the bottom row of this diagram are both
continuous, and since they are inverse to each other, they are homeomorphisms, meaning they
define a bijection between the open subsets of xpU XUαq and xαpU XUαq. Now suppose O ĂM is
open, which means xαpO X Uαq Ă xαpU X Uαq Ă Rn is open for every α. Feeding this set into the
homeomorphism x ˝ x´1

α gives xpO X Uαq, proving that the latter is an open set, and therefore so
is xpOq “ Ť

αPI xpO X Uαq. Conversely, if O Ă M is an arbitrary subset such that xpOq is open,
then for every α P I, xpO X Uαq is the intersection of two open sets xpOq and xpU X Uαq, and is
thus also open. Feeding it into xα ˝ x´1 then shows that xαpO X Uαq is also open, proving that
O ĂM is open. �

Whenever we discuss a setM with an atlas A from now on, we will assume thatM is endowed
with the topology described in Proposition 2.12.

Remark 2.13. Notice that according to the last statement in Proposition 2.12, the topologies
induced on M by A or any extension of A to a larger (e.g. maximal) atlas are the same.

Remark 2.14. It is rarely actually necessary to apply Proposition 2.12 for defining a topology
on a manifold. The much more common situation is that our manifoldM comes equipped with some
natural topology that is clear from the context (e.g. becauseM is a subset or quotient of Rn or some
other manifold that we already understand), and when specifying an atlasA “ tpUα, xαquαPI forM ,

12Recall that xαpUαq is an open subset of a Euclidean space Rn, so it is understood in this statement to carry
the obvious topology that it inherits from the Euclidean metric on Rn.
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we just need to check that the topology determined by the atlas is the same as the natural topology.
In other words, we need to check that the sets Uα are open and the maps xα : Uα Ñ xαpUαq Ă Rn

are all homeomorphisms with respect to the natural topology. In most situations, this will be
obvious.

Exercise 2.15. We now have two ways of defining what it means for a function f :M Ñ R to
be continuous: one is the case k “ 0 of Definition 2.3, in terms of the atlas A, and the other is the
standard notion of continuity in topological spaces, using the topology determined by A according
to Proposition 2.12. Convince yourself that these two definitions are equivalent.

Since the atlas identifies small neighborhoods in M with neighborhoods in Euclidean space,
and the topology of Euclidean space is pleasantly familiar to us, one might intuitively expect the
topology induced on M by A to have similarly pleasant properties. The next example shows that
this intuition is wrong.

Example 2.16. Define an equivalence relation „ on the set ĂM :“ R ˆ t0, 1u such that every
element is equivalent to itself and pt, 0q „ pt, 1q for all t P Rzt0u, but not for t “ 0. Let

M :“ ĂML „
denote the set of equivalence classes. We can think ofM intuitively as a “real line with two zeroes”,
because it mostly looks just the same as R (each number t ‰ 0 corresponding to the equivalence
class of pt, 0q and pt, 1q), but t “ 0 is an exception, where there really are two distinct points rp0, 0qs
and rp0, 1qs in M . The following pair of 1-dimensional charts define a smooth atlas on M : let

Uα :“  rpt, 0qs PM ˇ̌
t P R

(
, Uβ :“  rpt, 1qs PM ˇ̌

t P R
(
,

and define both xα : Uα Ñ R and xβ : Uβ Ñ R by rpt, kqs ÞÑ t for k “ 0, 1. The transition
maps relating these two charts are both the identity map on Rzt0u, thus the charts are smoothly
compatible, and clearly M “ Uα Y Uβ .

Now consider the sequence
pj :“ rp1{j, 0qs PM.

Does it converge? We need to think for a moment about what convergence means in the topology
induced by an atlas: if p P Uα, then since xα is a homeomorphism onto its image, pj will converge to
p if and only if xαppjq converges to xαppq in R, and a moment’s thought reveals that that condition
holds for p :“ rp0, 0qs. However, if we use the other chart xβ , then since p1{j, 0q „ p1{j, 1q for
every j, the same condition also holds for the point p1 :“ rp0, 1qs P Uβ , and we have thus found two
distinct points p ‰ p1 such that pj Ñ p and pj Ñ p1.

This seems like a contradiction if you have not seen any topology before, but it is not: it merely
shows that M is a much stranger topological space than our intuition about metric spaces had led
us to expect. In fact, the points p and p1 have the peculiar property that every neighborhood of
p intersects every neighborhood of p1, so even though they are distinct points, the topology of M
does not “separate” them; the technical term for this is that the topology ofM is not Hausdorff.13

We do not want our notion of manifolds to include pathological examples in which a sequence
can converge to two distinct points at once. Among other issues, it would clearly be impossible
to define a metric compatible with that notion of convergence, as the triangle inequality ensures
that limits of sequences are unique in metric spaces. Since the notion of distance on manifolds is
one of the main things we plan to study when we get further into this subject, we would like to
have a guarantee that every manifold admits a metric that is compatible with its natural topology,

13Or, as my topology professor in grad school once put it, the points p and p1 are not “housed off” from each
other. The proper delivery of this joke requires a Brooklyn accent.
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i.e. we will insist that all manifolds be metrizable. This condition will turn out to have many
advantages beyond the study of distance, though we will rarely need to make explicit use of it: it
will only become important when we discuss the construction of global geometric structures (such
as Riemannian metrics) via partitions of unity.

Although it will play no significant role in this course, we need one more topological notion in
order to understand the main definition: a topological space is called separable (separabel) if it
contains a countable dense subset. Euclidean spaces, for example, are separable, because Qn Ă Rn

is a countable dense subset. Every space of interest in this course will be separable, and one can
often use the result of the following exercise to prove it.

Exercise 2.17. Show that every subset of a separable metric space pX, dq is also a separable
metric space.
Hint: Given a countable dense subset E Ă X and another subset Y Ă X , show first that every
open set in X is a union of open balls of the form Brpxq :“  

y P X ˇ̌
dpy, xq ă r

(
for x P E and

r P Q. (This depends on the density of E.) Then define E0 Ă Y to consist of exactly one element
from each of the sets Brpxq X Y for x P E and r P Q, whenever those sets are nonempty. Show
that E0 is countable and dense in Y .

2.3. The definition of a manifold. Hopefully you now have sufficient motivation to accept
the following definition.

Definition 2.18. Assume k P N Y t8u. A differentiable manifold of class Ck (differen-
zierbare Mannigfaltigkeit von der Klasse Ck) or Ck-manifold (Ck-Mannigfaltigkeit) is a set M
endowed with a Ck-structure (see Definition 2.6) such that the induced topology onM is metrizable
and separable. In the case k “ 8, we also call M a smooth manifold (glatte Mannigfaltigkeit).
We say that M is n-dimensional and refer to M as an n-manifold, written

dimM “ n,

if every chart in its differentiable structure is n-dimensional.14

Remark 2.19. For the purposes of this course, you are essentially free to ignore the separability
condition in Definition 2.18, as nothing in our study of differential geometry will truly depend on it.
An example of something that satisfies every condition in the definition except separability would
be the disjoint union of uncountably many copies of a manifold (see §2.4.3 below for more on disjoint
unions); in fact, one can show that the condition on separability in our definition is equivalent to
requiring M to have at most countably many connected components. One does sometimes need
to know this for important results in differential topology, e.g. there is a theorem guaranteeing
that every smooth n-manifold M can be embedded as a smooth submanifold of R2n`1, and this
would clearly contradict Exercise 2.17 ifM were not separable. (This issue is related to the second
countability axiom—see Remark 2.21.)

Remark 2.20. If you prefer never to think about topological spaces, then you can read
Definition 2.18 as saying that a manifold M is a separable metric space endowed with an at-
las tpUα, xαquαPI for which the sets Uα Ă M are open and the bijections xα : Uα Ñ xαpUαq Ă Rn

are continuous with continuous inverses. Calling M a “metric space” comes however with the fol-
lowing caveat: while the existence of a suitable metric on M is an important condition, the choice
of metric onM is not considered a part of its intrinsic structure, i.e. you are free to replace it with
any other metric that has the above properties with respect to the atlas. This is why we have used
the word “metrizable” in Definition 2.18 instead of just calling M a “metric space”.

14Note that in our general definition of a manifold, M might admit multiple charts of different dimensions.
One can show however that each individual connected component of M is itself a manifold with a uniquely defined
dimension. For this reason we will usually only consider manifolds that have a well-defined dimension.
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Remark 2.21. For students who have seen some topology, the more standard definition of a
manifold found in many textbooks would replace the conditions of metrizability and separability
with the conditions thatM is Hausdorff and second countable. This gives an equivalent definition,
though proving this equivalence would require more of a digression into point-set topology than
we have space for here; the details can (mostly) be found in [Lee11, Chapter 2].

Remark 2.22. Another reasonable guess for a good definition of a manifold would be to
drop metrizability and separability from Definition 2.18 but still require M to be Hausdorff (thus
excluding things like Example 2.16). It turns out that this also does not include enough conditions
to rule out some pathological behavior. The issue here is that a locally Euclidean Hausdorff
space may fail to be paracompact, in which case the construction of basic geometric objects like
Riemannian metrics becomes impossible. (We will discuss paracompactness and its applications
later in the course.) If you have some topological background and would like to see some examples
of the kinds of pathological behavior I’m talking about, see the discussion of the long line and
Prüfer surface in [Wen18, Lecture 18].

In this course, we will almost always consider only the case k “ 8 of Definition 2.18, so that
we speak of smooth manifolds. Actually, a large portion of differential geometry still makes sense
for C1-manifolds, though the important notion of curvature on a Riemannian manifold depends
on second derivatives of the metric, and thus only makes sense on manifolds of class C2. In
either case, one has to be very careful in every proof so as not to differentiate anything more
times than is allowed, and since the most important examples of manifolds are of class C8, it
is conventional to avoid this annoyance by restricting attention to the smooth case. There is an
additional reason to allow this restriction: according to a standard theorem in differential topology
(see [Hir94, Theorem 2.9]), every manifold of class C1 can be made into a smooth manifold by
removing some of the charts in its maximal C1-atlas. In this sense, one does not lose any significant
generality by ignoring manifolds that are differentiable but not smooth.

You may have noticed on the other hand that Definition 2.18 also makes sense for k “ 0,
though in this case one cannot use the word “differentiable”; manifolds of class C0 are called
topological manifolds (topologische Mannigfaltigkeiten). These really are a different beast than
differentiable manifolds: for every n ě 4, there exist topological n-manifolds that do not admit any
differentiable structure, i.e. their topology is not compatible with any atlas of class Ck for k ě 1.
Proving such things typically requires very advanced techniques, e.g. from mathematical gauge
theory, which uses nonlinear PDEs to derive topological restrictions on smooth manifolds. (The
classic introduction to this subject is [DK90].) In any case, the study of topological manifolds as
such belongs squarely to the subject of topology, not differential geometry, so we will say no more
about it here.

2.4. Some basic examples.
2.4.1. Vector spaces. For each integer n ě 0, Rn admits a canonical smooth atlas consisting

of a single n-dimensional chart, namely pRn, Idq. The smoothness of this atlas is a triviality: since
there is only one chart, there is only one transition map to consider, which is the identity map and
is therefore smooth. The unique extension of this atlas to a maximal smooth atlas on Rn defines
what we will call the standard smooth structure on Rn. The topology induced by this atlas is
the standard one, which can also be defined in terms of the standard Euclidean metric; this follows
via Remark 2.14 from the observations that Rn Ă Rn is an open subset and Id : Rn Ñ Rn is a
homeomorphism. It follows that Rn with its standard smooth structure is metrizable and (in light
of the countable dense subset Qn Ă Rn) separable. We conclude that Rn is, in a natural way, a
smooth n-dimensional manifold. Note that it is possible to define different smooth structures on
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Rn, as shown by Example 2.7 in the case n “ 1, but whenever we discuss Rn as a manifold in this
course, we will always assume unless stated otherwise that it carries its standard smooth structure.

Since every real n-dimensional vector space V is isomorphic to Rn, one can always choose such
an isomorphism Φ : V Ñ Rn and similarly regard V as a smooth n-manifold with an atlas consisting
of the global chart pV,Φq. While the choice of isomorphism Φ here is typically not canonical, the
resulting smooth structure on V is, since any other choice of isomorphism Ψ : V Ñ Rn would
produce a chart pV,Ψq that is related to pV,Φq by the transition map Φ ˝ Ψ´1 : Rn Ñ Rn. The
latter is a vector space isomorphism, and thus a smooth map with a smooth inverse. In this way,
we can regard every real n-dimensional vector space naturally as a smooth n-manifold.

2.4.2. Open subsets. IfM is an n-dimensional Ck-manifold with atlas A “ tpUα, xαquαPI , then
any open subset O ĂM admits a natural atlas

AO :“ tpUα XO, xα|UαXOquαPI ,
which is also of class Ck since its transition maps are all restrictions of transition maps from A to
open subsets. The key point here is that since O ĂM is open, each Uα XO is an open subset of
Uα and is thus mapped homeomorphically by xα to another open subset of Rn, making it an n-
dimensional chart on O. This atlas endows O with a natural Ck-structure, and since it is a subset
of a separable metrizable space, Exercise 2.17 implies that it is also separable and metrizable, and
is thus an n-dimensional Ck-manifold. Combining this with §2.4.1, we can now regard every open
subset of Rn as a smooth n-manifold in a natural way.

2.4.3. Disjoint unions. The disjoint union (disjunkte Vereinigung) of a collection of sets
tMjujPJ can be defined as the setž

jPJ
Mj :“  pj, tq ˇ̌ j P J, t PMj

(
.

Here J can be an arbitrary index set, finite, countable or uncountable. In the special case where
J is finite, e.g. if J “ t1, . . . , Nu, we also use the notation

M1 \ . . .\MN :“
Nž
j“1

Mj :“
ž

jPt1,...,Nu
Mj .

Identifying each of the individual sets Mj with the subset tju ˆMj Ă š
jPJMj , we can think ofš

jPJ Mj as literally a union of all the sets Mj, with the caveat that for j ‰ k, Mj and Mk are
always disjoint as subsets of

š
jPJMj , even if as abstract sets they have elements in common. For

example, the set S1\S1 contains two copies of every point on the circle, and is thus not the same
set as S1 Y S1 “ S1. If you think of S1 as the unit circle in R2, then the definition above gives
S1 \ S1 “ t1, 2u ˆ S1 Ă R3, so the disjoint union consists of two copies of the circle that live in
disjoint planes in R3.

Suppose now that each of the sets Mj is a Ck-manifold with atlas Apjq “ tpU pjqα , x
pjq
α quαPIj .

Regarding each set Mj as a subset of
š
jPJ Mj makes each of the sets U

pjq
α also into subsets ofš

jPJ Mj , such that U pjqα X U
pkq
β “ H whenever j ‰ k. It follows that the union

A :“ ď
jPJ

Apjq

defines an atlas of class Ck on
š
jPJ Mj , whose set of transition maps is just the union of the sets

of transition maps for all the atlases Apjq. (Transition maps relating two charts pU pjqα , x
pjq
α q with

pU pkqβ , x
pkq
β q with j ‰ k do not arise here since their overlap is always empty.)
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It does not follow however that every disjoint union of a collection of Ck-manifolds is naturally
a Ck-manifold—this is one of the few situations where we have to pay attention to the condition
of separability. The topology induced by the atlas A on

š
jPJ Mj is the so-called disjoint union

topology, in which a subset O Ă š
jPJ Mj is open if and only if O XMj is an open subset of

Mj for every j P J . If the sets Mj are nonempty for uncountably many distinct values of j P J ,
then no countable subset E Ă š

jPJ Mj can have an element in every one of the subsets Mj, and
it follows that E cannot be dense, so the disjoint union cannot be separable. On the other hand,
one can show (see Exercise 2.23 below) that every finite or countable disjoint union of separable
metrizable spaces is also separable and metrizable. We conclude that for any N P N Y t8u and
any finite or countable collection tMjuNj“1 of Ck-manifolds, the disjoint union

šN
j“1Mj is also a

Ck-manifold in a natural way. Moreover, if dimMj “ n for every j, then the disjoint union is also
n-dimensional.

Exercise 2.23.

(a) Show that for any metric space pX, dq, the formula

d1px, yq :“
#
dpx, yq if dpx, yq ă 1,

1 if dpx, yq ě 1

defines another metric d1 on X that induces the same topology as d.
(b) Show that for any collection of metric spaces tpXj , djqujPJ with djpx, yq ď 1 for all j P J

and x, y P Xj , the formula

dpx, yq :“
#
djpx, yq if x, y P Xj for some j P J,
2 if x P Xj and y P Xk for some j, k P J with j ‰ k

defines a metric on
š
jPJ Xj that induces the disjoint union topology.

(c) Show that the metric d on
š
jPJ Xj in part (b) is separable if J is a finite or countable

set and all of the metric spaces pXj , djq are separable.
Exercise 2.24. Recall that a metrizable space15 is called compact (kompakt) if every open

covering has a finite subcover. Show that a disjoint union
š
jPJ Mj is compact if and only if J is

finite and Mj is compact for every j P J .
2.4.4. Dimension zero. You may not have thought about the case n “ 0 when we defined the

notion of an n-dimensional chart, but the definition in that case does make sense: R0 consists of
a single point, and its only nontrivial open subset is itself, so if pU , xq is a 0-dimensional chart
on M , then U Ă M is a single point. It follows that if M is a 0-dimensional manifold with
atlas A “ tpUα, xαquαPI , then every point of M is its own open set, implying that every subset
of M is open. This is known as the discrete topology, and it is always metrizable; a suitable
metric is the discrete metric, defined by

dpx, yq :“
#
0 if x “ y,

1 if x ‰ y.

The only dense subset of M in this topology is M itself, so separability requires M to be finite or
countable. We conclude: a 0-dimensional manifold is simply a finite or countable discrete set, and
it is compact if and only if it is finite. Equivalently, every 0-dimensional manifold can be identified
with the disjoint union of at most countably many copies of the manifold R0, which is a single

15In fact this definition is also valid for arbitrary topological spaces.
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point. Notice that since every map from R0 to itself is trivially smooth, every atlas on a 0-manifold
is automatically a smooth atlas.

2.4.5. Dimension one. We have seen two explicit examples thus far of 1-dimensional manifolds:
R and S1, where the former carries its standard smooth structure as defined in §2.4.1, and the latter
has a smooth structure that we defined using two charts based on polar coordinates in Lecture 1.
We can now add to this list arbitrary open subsets of each, and arbitrary finite or countable disjoint
unions of such open subsets. In this entire list, the only actual compact examples are S1 and its
finite disjoint unions; the compactness of the circle S1 Ă R2 follows from the general fact that closed
and bounded subsets of Euclidean space are compact. Up to a natural notion of equivalence for
smooth manifolds that we will discuss in the next lecture, it turns out that these really are the only
examples: in particular, every compact and connected 1-manifold is “diffeomorphic” to S1. Later
when we discuss manifolds with boundary, we will have to add the compact interval r0, 1s to the
list of compact 1-manifolds up to diffeomorphism. Similarly, it turns out that every noncompact
connected 1-manifold is diffeomorphic to R. We will not prove such classification results in this
course, nor make use of them, but the curious reader will find a sketch of the corresponding result
about connected topological 1-manifolds up to homeomorphism in [Wen18, Lecture 18]. Note
that this is one of the important results that becomes false if one drops the metrizability condition
from the definition of a manifold; we already saw one peculiar counterexample in Example 2.16,
and another is the so-called “long line”, which is essentially a union of uncountably many compact
intervals glued together at their end points (see [Wen18, Lecture 18] or [Spi99a, Appendix to
Chapter 1]).

2.4.6. Cartesian products. Since we have no plans to discuss infinite-dimensional manifolds in
this course, we will not talk about infinite products, but finite products still provide a useful way
of producing new manifolds from old ones. Assume M and N are Ck-manifolds of dimensions m
and n respectively, with atlases A “ tpUα, xαquαPI on M and B “ tpVβ, yβquβPJ on N . For each
pα, βq P I ˆ J , one can then define a product chart on M ˆN with domain Uα ˆ Vβ by

Uα ˆ Vβ Ñ Rmˆn : pp, qq ÞÑ pxαppq, yβpqqq.

Each of the transition maps relating two product charts is just the Cartesian product of a transition
map from A with one from B, thus they are all of class Ck, and the collection of all product charts
therefore defines an atlas of class Ck and makes M ˆN into a Ck-manifold of dimension m` n.16
One can of course repeat this construction finitely many times to make any finite product of
manifolds M1 ˆ . . .ˆMN into a manifold.

An important special case of this construction is the compact smooth n-manifold known as
the n-torus, defined by

Tn :“ S1 ˆ . . .ˆ S1looooooomooooooon
n

.

In the case n “ 1, this is just another name for the circle, but the most popular torus is the case
n “ 2: as we’ve defined it, T2 is literally a subset of R4, but for visualization purposes there is also
a favorite way of embedding it in R3, as shown in Figure 5.

16Note that even if A and B are maximal atlases, the set of all product charts is generally not maximal, but
this is immaterial since it has a unique maximal extension.
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Figure 5. A representation of the torus T2 as a submanifold of R3.

The n-torus for n ě 3 is less straightforward to visualize, but it is often useful to think of it17

as the quotient of Rn by the lattice Zn, using the bijection

Rn{Zn Ñ S1 ˆ . . .ˆ S1looooooomooooooon
n

: rpθ1, . . . , θnqs ÞÑ pe2πiθ1 , . . . , e2πiθnq,

where for computational convenience we have replaced R2 with C in order to describe points in
the unit circle S1 as complex exponentials. Under this identification, a point in Tn is represented
by a vector in Rn, with the understanding that two vectors represent the same point in the torus
if and only if they differ by a vector with integer coordinates. This perspective is especially useful
in the study of Fourier series, as a function f : Rn Ñ C that is 1-periodic in each of the n variables
can now be regarded equivalently as a function f : Tn Ñ C.

Exercise 2.25. Convince yourself that the natural smooth structure on Rˆ . . .ˆ Rlooooomooooon
n

derived

from the standard smooth structure of R is the same as the standard smooth structure of Rn.

2.4.7. The projective plane and the Klein bottle. We conclude with two explicit examples of
surfaces (i.e. smooth 2-manifolds) that are somewhat harder to visualize, because they cannot be
embedded in R3.18

The projective plane (projektive Ebene) is the set of equivalence classes

RP
2 :“ S2

L „,
where the equivalence relation is defined by p „ p and p „ ´p for all p P S2 Ă R3, meaning
that every point p in the unit sphere gets identified with its antipodal point ´p. (For more on
why this might be a natural object to define, see Exercise 2.26 below.) If you have ever been on
a long-haul international flight, then you are familiar with the notion of traversing a continuous
path along S2. In order to picture a continuous path on RP

2, you should imagine that there are

17In fact, many sources in the literature prefer to define Tn as the quotient group Rn{Zn, in which case its
smooth structure can be derived from the standard smooth structure of Rn using a general result about quotients
by discrete group actions.

18The claim that embedding them into R3 is impossible is something I expect you to find plausible, but not
obvious. Proving it would require some methods from topology which we do not yet have at our disposal in this
course, though we may come back to this later.
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always two identical and interchangeable airplanes, containing identical copies of the same crews
and passengers, constrained to fly at exact antipodal points over the Earth. If one of those airplanes
flies from Shanghai to Buenos Aires while the other one flies along the antipodal path,19 then since
the two planes are completely interchangeable, they can be understood to describe a closed loop
on RP

2. Got it? Good.
It is relatively easy to see that RP2 is a smooth 2-manifold in a natural way. First, it has a

natural metric, in which one can describe each point of RP2 as a set consisting of two points in S2

and define the distance between two points in RP2 as the distance between those two sets. The fact
that S2 is separable (as a subset of the separable metric space R3) implies easily that RP2 is also
separable. One can also derive a smooth atlas on RP2 from the one that we already constructed
on S2 in Exercise 1.7: the only issue is that some of the charts need to have their domains shrunk
so that they no longer contain any pairs of antipodal points, as the coordinate map will otherwise
fail to be injective, but this can easily be done.

The second example is the Klein bottle (Kleinsche Flasche), a picture of which is shown in
Figure 6. The picture must be interpreted with caution, since what it shows is not really a manifold
in the usual sense, but if you imagine perturbing part of it in an unseen fourth dimension so that
part of the surface no longer has to pass through another part, then you get the right intuition.
The picture also shows a “grid” structure similar to the coordinate grid one would obtain on T2

after identifying it with R2{Z2, but the Klein bottle is not the same thing as the torus. The latter
can be identified with the quotient

pRˆ pR{Zqq
M
„

by the smallest equivalence relation on R ˆ pR{Zq such that ps, rtsq „ ps ` 1, rtsq for all s, t P R.
One obtains a rigorous definition of the Klein bottle from this via a reversal of orientation: instead
of ps, rtsq „ ps` 1, rtsq, one takes the smallest equivalence relation on Rˆ pR{Zq such that

ps, rtsq „ ps` 1, r´tsq
for all s, t P R. If you think about what grid lines of the form ts “ constu and tt “ constu look like
in the set of equivalence classes defined via this relation, you will end up with something resembling
Figure 6. It is not difficult to construct an atlas of smoothly compatible 2-dimensional charts on
this quotient: the basic idea is to view it as a quotient of R2, and restrict the canonical global
chart of R2 to neighborhoods that are sufficiently small so as to contain at most one element from
every equivalence class.

Exercise 2.26. The projective plane is the n “ 2 case of the real projective n-space (reeller
projektiver Raum)

RPn :“ Sn
L „,

where here again the equivalence relation identifies antipodal points x „ ´x P Sn Ă Rn`1. A
useful interpretation of this definition comes from the observation that there is a unique line
through the origin passing through each pair of points tx,´xu Ă Rn`1. One can therefore view
RPn equivalently as the space of all lines through the origin in Rn`1, which can be defined more
precisely as the quotient

RP
n “ pRn`1zt0uqL „

where two nontrivial vectors v, w P Rn`1 are now considered equivalent if and only if v “ λw

for some λ P R. From this perspective, it is convenient to denote points in RPn via so-called

19According to the British science fiction TV series Torchwood, Buenos Aires and Shanghai are at exact
antipodal points on the Earth. Wikipedia says this is true up to an error of about 400km. Let’s just pretend it’s
true.
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PSfrag replacements

p q
p q

p X q
p X q
˝ ´

Figure 6. An immersion of the Klein bottle into R3. It is not an embedding
because it intersects itself. (We will discuss the precise meanings of the words
“immersion” and “embedding” in Lecture 4.)

homogeneous coordinates, in which the symbol

rx0 : . . . : xns P RPn

means the equivalence class containing the vector px0, . . . , xnq P Rn`1zt0u.
The homogeneous coordinates can be used to define an explicit smooth atlas on RPn. For

j “ 0, . . . , n, define
Uj :“  rx0 : . . . : xns P RPn

ˇ̌
xj ‰ 0

(
and a map ϕj : Rn Ñ RPn by

ϕjpt1, . . . , tnq :“ rt1 : . . . : tj : 1 : tj`1 : . . . : tns.
Show that ϕj is an injective map onto Uj , so pUj , ϕ´1

j q is a chart, and compute the transition maps
relating any two of the charts constructed in this way for different values of j “ 0, . . . , n. Show
that these n` 1 charts together form a smooth atlas.

3. Smooth maps and tangent vectors

We have several more definitions to get through before the subject of differential geometry gets
seriously underway. In this lecture we clarify what it means for a map between two manifolds to
be differentiable, and what kind of object its derivative is.

3.1. Smooth maps between manifolds. We defined in §2.1 what it means for a real-valued
function on a smooth manifold to be smooth (see Definition 2.3). The following is based on the
same idea.

Definition 3.1. Assume M and N are manifolds of dimensions m and n respectively, with
differentiable structures AM and AN of class Ck. A continuous map f : M Ñ N is said to be of
class Cr for some r ď k (or smooth in the case r “ k “ 8) if for every pair of charts pU , xq P AM

and pV , yq P AN , the map

Rm
openĄ xpU X f´1pVqq y˝f˝x´1ÝÑ ypVq openĂ Rn

is of class Cr.
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In other words, a map f : M Ñ N is of class Cr if it looks like a map of class Cr when
expressed in local coordinates on both the domain and the target. The assumption r ď k is again
crucial here, and guarantees that for any given point p P M , the question of whether f is of class
Cr near p does not depend on the charts one has to choose near p P M and fppq P N . Note that
we had to explicitly assume f was continuous in this definition: this assumption guarantees that
f´1pVq Ă M is an open set, so that xpU X f´1pVqq is open in Rn, and differentiability on this
domain can therefore be checked.

The set of Ck maps from M to N is often denoted by

CkpM,Nq “  
f :M Ñ N

ˇ̌
f is of class Ck

(
.

One can endow this space with various natural topologies to make it into a topological (and
sometimes also metrizable) space, though you should be aware that it is generally not a vector
space, since N is not. On the other hand, the special case N “ R is quite important, and is often
abbreviated

CkpMq :“ CkpM,Rq.
This is a vector space in a natural way, i.e. real-valued functions on a manifold M can be added
and multiplied by constants.

Exercise 3.2. Show that for the standard smooth structure on R defined in §2.4.1, the notion
of differentiability for a map f :M Ñ R as given in Definition 3.1 matches our previous definition
for real-valued functions (Definition 2.3).

Up until this point I have been including non-smooth manifolds in the picture. I could continue
doing this, but it would require frequently including slightly annoying extra hypotheses (like r ď k)
in statements of results, and the generality one gains by doing this does not fully compensate for
the annoyance, so I will mostly assume k “ 8 from now on.

We can now define the natural notion of equivalence for smooth manifolds.

Definition 3.3. For two smooth manifolds M and N , a smooth map f : M Ñ N is called a
diffeomorphism (Diffeomorphismus) if it is bijective and its inverse f´1 : N ÑM is also smooth.
Two smooth manifolds are called diffeomorphic (diffeomorph) if there exists a diffeomorphism
between them.

Exercise 3.4. Viewing S1 as the unit circle in C, the quotient group Rn{Zn admits a natural
bijection to the n-torus Tn “ S1 ˆ . . .ˆ S1, given by

Rn{Zn Ñ Tn : rpθ1, . . . , θnqs ÞÑ pe2πiθ1 , . . . , e2πiθnq.
For each v P Rn, choose a neighborhood rUv Ă Rn of v that is small enough to contain at most
one element from each equivalence class in Rn{Zn, and use this to define an n-dimensional chart
pUv, xvq of the form

Uv “
!
rws P Rn{Zn ˇ̌

w P rUv) , xvprwsq “ w.

Show that the collection of all charts of this form determines a smooth atlas on Rn{Zn such that
the bijection to Tn described above is a diffeomorphism.

3.2. Tangent and cotangent spaces. Let us start this discussion with a concrete example:
on the unit sphere S2 Ă R3, a tangent vector to S2 at a point p P S2 is by definition any vector of
the form

γ1p0q P R3,

where γ : p´ǫ, ǫq Ñ S2 is any choice of smooth path in R3 whose image is in S2 and satisfies
γp0q “ p. It should be easy to convince yourself that the set of all vectors of this form is a linear
subspace of R3, namely, it is the orthogonal complement of p. We would now like to generalize
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this notion to an arbitrary smooth manifold, without needing to assume that is a subset of some
Euclidean space.

For the rest of this subsection, assume M is a smooth manifold and p P M . Having defined
what a smooth map between manifolds is, we can fix the standard smooth structure on small
intervals such as p´ǫ, ǫq Ă R and talk about smooth maps γ : p´ǫ, ǫq ÑM . If γp0q “ p PM , then
we will refer to any such smooth map as a path through p in M . Note that the value of ǫ ą 0

here is not fixed, so it is allowed to be arbitrarily small.
Let us say that two paths α, β through p in M are tangent if for some some chart pU , xq with

p P U ,
d

dt
px ˝ αq

ˇ̌̌̌
t“0

“ d

dt
px ˝ βq

ˇ̌̌̌
t“0

.

It is easy to show that this condition does not depend on the choice of chart: indeed, if pV , yq
is another chart with p P V , then for all t close enough to 0 so that αptq P U X V , we have
py ˝ αqptq “ py ˝ x´1q ˝ px ˝ αqptq and thus by the chain rule,

(3.1) py ˝ αq1p0q “ Dpy ˝ x´1qpxppqqpx ˝ αq1p0q,
where Dpy ˝ x´1qpxppqq : Rn Ñ Rn denotes the derivative of the transition map y ˝ x´1 at xppq,
which is an invertible linear map since y ˝x´1 is smooth and has a smooth inverse. Since py ˝βq1p0q
is related to px˝βq1p0q in the same way, it is equal to py˝αq1p0q if and only if px˝βq1p0q “ px˝αq1p0q.

Definition 3.5. A tangent vector (Tangentialvektor) to M at p is an equivalence class rγs
of paths γ through p in M , where two paths are considered equivalent if and only if they are
tangent. The set of all tangent vectors to M at p is called the tangent space (Tangentialraum)
to M at p, and is denoted by

TpM “  rγs ˇ̌ γ a path through p in M
(
.

This definition of TpM has many intuitive advantages, but it leaves several details unclear,
foremost among them the fact that TpM is a vector space. In order to see this, we’ll need to make
more use of coordinates.

Proposition 3.6. The tangent space TpM has a unique vector space structure such that for
any smooth n-dimensional chart pU , xq with p P U , the map

(3.2) dpx : TpM Ñ Rn : rγs ÞÑ px ˝ γq1p0q
is a vector space isomorphism. In particular, every tangent space of a smooth n-manifold is natu-
rally an n-dimensional vector space.

Proof. The map (3.2) is a bijection by definition, so one can clearly always choose a chart
pU , xq and define a vector space structure on TpM so as to make this map an isomorphism. The
point is then to show that any other choice of chart pV , yq would have given the same vector space
structure on TpM . This follows from the formula

dpy ˝ pdpxq´1 “ Dpy ˝ xqpxppqq : Rn Ñ Rn,

which follows from (3.1) and shows that this transformation is itself a vector space isomorphism. �

Example 3.7. If M is an open subset of an n-dimensional vector space V , then the derivative
γ1p0q for a smooth path γ : p´ǫ, ǫq Ñ V can be defined in the classical way as a vector in V , giving
rise to a canonical map

TpM Ñ V : rγs ÞÑ γ1p0q
for every p P M . It is a straightforward exercise to show that this map is a vector space isomor-
phism.
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In the future, we shall always use this isomorphism to identify tangent spaces on open subsets
of a vector space V with V itself, so that we do not need to talk about equivalence classes of paths.
In particular, every tangent space on an open subset of Rn is in this way canonically identified
with Rn. We will see in §4.3 below that whenever N is a submanifold ofM , one can also naturally
regard TpN for each p P N as a linear subspace of TpM , so in the special case where N is a
submanifold of Rn, its tangent spaces will all naturally be subspaces of Rn. This means that for
the vast majority of examples we are interested in, it will not be necessary to use the original
definition in terms of equivalence classes of paths for describing a tangent space.

Exercise 3.8. Show that for two smooth manifolds M,N and any two points p P M and
q P N , there is a canonical vector space isomorphism Tpp,qqpM ˆNq “ TpM ˆ TqN .

In linear algebra, it is often useful to associate to any vector space V its dual space (Dual-
raum), which is the space of all scalar-valued linear maps on V . Assuming V is a real (rather than
complex) vector space, this can be denoted by

V ˚ :“ HompV,Rq,
where for two real vector spaces V,W in general we denote by HompV,W q the vector space of
linear maps V Ñ W . When V is a tangent space TpM on a manifold M , its dual space is called
the cotangent space (Kotangentialraum) to M at p and denoted by

Tp̊M :“ HompTpM,Rq.
Its elements are called cotangent vectors (Kotangentialvektoren), or sometimes also covectors.

Remark 3.9. Among physicists, covectors are often called “covariant vectors”, while ordinary
tangent vectors are called “contravariant vectors”. I will not use this terminology.

3.3. The tangent bundle. The usefulness of the following definition will probably not be
obvious to you at first glance, but it will become more apparent when we start differentiating
smooth maps.

Definition 3.10. The tangent bundle (Tangentialbündel) TM of a smooth manifold M is
the union of all its tangent spaces:

TM :“ ď
pPM

TpM.

The map π : TM Ñ M such that π´1ppq “ TpM Ă TM for each p P M is called the tangent
projection, and the subset in TM consisting of the zero vectors 0 P TpM for all p PM is called the
zero-section (Nullschnitt) of TM . As subsets of TM , the individual tangent spaces TpM Ă TM

for each p PM are sometimes referred to as the fibers (Fasern) of the tangent bundle.

Note that for distinct points p ‰ q P M , the tangent spaces TpM and TqM are by definition
disjoint sets. Do not be tempted to think that the zero vector in TpM is the same point as the
zero vector in TqM for p ‰ q; in fact, there is a natural identification of the zero-section with M ,
giving rise to a natural inclusion

(3.3) i :M ãÑ TM : p ÞÑ 0 P TpM.

At the level of set theory, we could just as well have used the disjoint union notation
š
pPM TpM

in Definition 3.10, but we did not do this because it would give a misleading impression about the
topology and smooth structure we intend to define on TM .

Lemma 3.11. On a manifold M , any n-dimensional chart pU , xq determines a 2n-dimensional
chart pTU , T xq on the tangent bundle TM , where TU “ Ť

pPU TpM is the tangent bundle of the open
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subset U ĂM , and Tx : TU Ñ R2n is defined in terms of the linear isomorphism dpx : TpM Ñ Rn

of (3.2) by
TU Ą TpM Q X ÞÑ pxppq, dpxpXqq P Rn ˆ Rn “ R2n.

If pV , yq is another chart on M , then transition maps relating the charts pTV , T yq and pTU , T xq
on TM are given by

Ty ˝ pTxq´1pq, vq “ `
y ˝ x´1pqq, Dpy ˝ x´1qpqqv˘ .

Proof. The map Tx : TU Ñ R2n is clearly injective, and its image is xpUq ˆ Rn, which is
open. The stated formula for the transition map Ty ˝ pTxq´1 follows from (3.1). �

Corollary 3.12. For any smooth manifold M , the tangent bundle TM can be endowed nat-
urally with the structure of a smooth manifold such that the tangent projection π : TM Ñ M , the
inclusion i : M ãÑ TM of the zero-section (3.3) and the natural inclusions TpM ãÑ TM for all
p PM are smooth maps.20 If dimM “ n, then dimTM “ 2n.

Proof. We endow TM with the unique maximal smooth atlas containing all charts of the
form pTU , T xq determined via Lemma 3.11 from smooth charts pU , xq on M .

To check that π : TM ÑM is a smooth map, one can now write its coordinate expression with
respect to any chart pU , xq onM and the corresponding chart pTU , T xq on TM : the resulting map
from an open subset of R2n to Rn takes the form pq, vq ÞÑ q, and is thus clearly smooth. Writing
down the inclusion of the zero-section M ãÑ TM in similar coordinates produces q ÞÑ pq, 0q, and
for the inclusion TpM ãÑ TM , one obtains v ÞÑ pq, vq. All of these maps are smooth.

I hope you find it plausible that TM with the atlas constructed above is metrizable and
separable. Separability is easy to prove, e.g. one can take the union of countable dense subsets
of individual fibers TpM for all p in some countable dense subset of M , thus forming a countable
dense subset of TM . The easiest way I can think of to prove metrizability is by constructing a
Riemannian metric on TM , which we will do in Lecture 15. That construction will rely on the
assumption that M is metrizable; we will not need to assume this about TM . �

Exercise 3.13. Find a diffeomorphism from the tangent bundle TS1 to the product manifold
S1 ˆ R.

One can similarly define a cotangent bundle (Kotangentialbündel)

T ˚M :“ ď
pPM

Tp̊M,

which satisfies a result analogous to Corollary 3.12. We will postpone the proof of this fact, since
it follows from more general results about vector bundles to be discussed later in the course, and
we will not really have use for it until then.

3.4. Tangent maps. We can now answer a question you may have wondered about: we know
how to define whether a map f : M Ñ N between manifolds is differentiable, but how does one
actually differentiate it, i.e. what is its derivative at a point? In the special case M

openĂ Rm and
N “ Rn, the answer you learned from first-year analysis is to view the derivative Dfppq at a point
p PM as a linear map Rm Ñ Rn, and according to the chain rule, it satisfies the relation

pf ˝ γq1p0q “ Dfppqγ1p0q
for any smooth path γ through p. In fact, since any vector in Rm can be the derivative of some
smooth path through p, this formula uniquely characterizes the linear map Dfppq : Rm Ñ Rn. It

20Here we are using the vector space structure of TpM to regard it as a smooth manifold as in §2.4.1.
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also admits an obvious generalization to the setting of smooth manifolds, using the fact that if
γ : p´ǫ, ǫq ÑM is a path through p PM , then f ˝ γ : p´ǫ, ǫq Ñ N is a path through fppq P N .

Definition 3.14. For two smooth manifolds M,N and a smooth map f : M Ñ N , the
tangent map (Tangentialabbildung) of f is the map

Tf : TM Ñ TN : rγs ÞÑ rf ˝ γs.
Its restriction to the tangent space at a specific point p PM can be denoted by

Tpf : TpM Ñ TfppqN,

and is also called the derivative of f at p.21

Lemma 3.15. The map Tpf : TpM Ñ TfppqN defined above for a smooth map f :M Ñ N and
a point p PM is independent of choices, and it is linear. Moreover, if f :M Ñ N is smooth, then
Tf : TM Ñ TN is also smooth.

Proof. All of these statements will become obvious if we write down a local coordinate
expression for the map Tf : TM Ñ TN . Choose charts pU , xq on M and pV , yq on N with p P U

and fppq P V . These give rise to charts pTU , T xq on TM and pTV , T yq on TN as in Lemma 3.11, so
that given any rγs P TpM , Txprγsq “ pxppq, px˝γq1p0qq P RmˆRm, and according to the definition
of Tf ,

TypTfprγsqq “ pypfppqq, py ˝ pf ˝ γqq1p0qq P Rn ˆ Rn.

The assumption that f is smooth means that y ˝ f ˝ x´1 is smooth on its domain of definition,
which is a neighborhood of xppq in Rm. On this neighborhood, we can then write y ˝ pf ˝ γq “
py ˝ f ˝ x´1q ˝ px ˝ γq and apply the chain rule to derive from the above expression,

Ty ˝ Tf ˝ pTxq´1pxppq, px ˝ γq1p0qq “ py ˝ f ˝ x´1pxppqq, Dpy ˝ f ˝ x´1qpxppqqpx ˝ γq1p0qq,
or if we simplify by writing q :“ xppq P Rm and v :“ px ˝ γq1p0q P Rm,

Ty ˝ Tf ˝ pTxq´1pq, vq “ py ˝ f ˝ x´1pqq, Dpy ˝ f ˝ x´1qpqqvq.
This formula does not depend on any choice of path γ to represent the tangent vector rγs P TpM ,
thus it proves that Tfprγsq also does not depend on this choice, and moreover, it defines a smooth
map TM Ñ TN with a linear restriction TpM Ñ TfppqN . �

The tangent bundle provides a more elegant language for talking about derivatives than was
available in your first-year analysis course. As justification for this claim, I offer the following
reformulation of the chain rule in the language of manifolds; it follows directly from the definitions
of tangent spaces and tangent maps (which are in themselves crucially dependent on the chain rule
from first-year analysis).

Proposition 3.16 (chain rule). For any pair of smooth maps f : M Ñ N and g : N Ñ Q

between smooth manifolds, T pg ˝ fq “ Tg ˝ Tf : TM Ñ TQ. �

Corollary 3.17. If f : M Ñ N is a diffeomorphism, then so is Tf : TM Ñ TN , and
pTfq´1 “ T pf´1q : TN Ñ TM .

Proof. Observe first that the tangent map to the identity map on M is the identity map on
TM . The chain rule then implies IdTM “ T pf ˝ f´1q “ Tf ˝ T pf´1q. �

21You will find a variety of alternative notation in the literature for what I am calling Tpf , e.g. dfppq and Dfppq
are also popular choices. In these notes, I will try to consistently reserve Dfppq for the notion of derivatives defined
in first-year analysis, where one only considers maps between open subsets of Euclidean spaces. The notation df will
be reserved for the differential of a function valued in R or another vector space, to be defined in the next lecture.
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Remark 3.18. Since TqRn is canonically isomorphic to Rn for every q P Rn, the tangent
bundle TRn has a canonical identification with Rn ˆ Rn in which TqR

n “ tqu ˆ Rn. Under
this identification, the chart Tx : TU Ñ Rn ˆ Rn on TM derived in Lemma 3.11 from a chart
x : U Ñ Rn on M is simply the tangent map of x.

Remark 3.19. If you are familiar with the language of categories and functors, then you might
appreciate the following interpretation of Proposition 3.16. One can define a category Diff whose
objects are the smooth manifolds, with morphisms M Ñ N defined to be smooth maps, hence the
isomorphisms in this category are the diffeomorphisms. The construction of the tangent bundle
now gives rise to a functor T : Diff Ñ Diff which sends each manifold M to TM and associates to
any morphism f : M Ñ N its tangent map Tf : TM Ñ TN . The formula T pg ˝ fq “ Tg ˝ Tf is
the main step required for proving that T is a functor.

Remark 3.20. If M is a manifold of class Ck for some finite k P N, then the definition of
tangent spaces requires a slight adjustment since the notion of smooth paths in M might not
make sense; it is good enough however (and gives an equivalent definition) if we consider all paths
γ : p´ǫ, ǫq Ñ M of class C1. Inspecting the proof of Corollary 3.12 now reveals that TM is
naturally a manifold of class Ck´1; one derivative is lost because the transition maps for TM
involve derivatives of the transition maps for M . Similarly, if f : M Ñ N is of class Cr with
1 ď r ď k, then the tangent map Tf : TM Ñ TN can be defined as a map of class Cr´1.

4. Submanifolds

The overarching message of this lecture will be that sometimes, understanding what is hap-
pening in a manifold is just a matter of finding the right coordinates.

4.1. Partial derivatives and differentials. There are two special situations in which the
tangent map of f : M Ñ N can be expressed in slightly more convenient forms. First, if U Ă Rn

is an open subset of Euclidean space, M is a manifold and f : U Ñ M is smooth, then f can
be regarded (without needing to make a choice of coordinates) as an M -valued function of n
variables, fpx1, . . . , xnq. For each point x0 “ px10, . . . , xn0 q P U , f now determines n smooth paths
through fpx0q, namely

γjptq :“ fpx10, . . . , xj´1
0 , x

j
0 ` t, x

j`1
0 , . . . , xn0 q, j “ 1, . . . , n.

The equivalence classes of these paths are called the partial derivatives of f at x0,

Bjfpx0q :“ Bf
Bxj px0q :“ rγjs P Tfpx0qM.

They are actually just particular values of the tangent map, i.e. Bjfpx0q “ Tx0
fpejq, where we are

using the fact that Tx0
U is canonically isomorphic to Rn (see Example 3.7) and thus comes with a

canonical basis e1, . . . , en. The n tangent vectors B1fpx0q, . . . , Bnfpx0q P Tfpx0qM all together thus
contain the same information as the tangent map Tx0

f : Tx0
U Ñ Tfpx0qM .

The second special situation is in some dense dual to the first: we consider a smooth function
on a smooth manifold M with values in a finite-dimensional vector space V ,

f :M Ñ V.

The most important special case of this is when V “ R, so that f is a real-valued function. Taking
advantage again of the canonical isomorphisms TfppqV “ V from Example 3.7, we can rewrite
TfpXq P TfppqV for each p P M and X P TpM as a vector in V , denoted by dfpXq P V . This
associates to every smooth function f :M Ñ V a smooth function

df : TM Ñ V,
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called the differential (Differential) of f . We will denote its restriction to each individual tangent
space TpM for p PM by

dpf : TpM Ñ V.

In terms of equivalence classes of paths through p, a direct formula for dpf is given by

(4.1) dpfprγsq “ pf ˝ γq1p0q,
and one can deduce from Lemma 3.15 that this is independent of the choice of path γ in the
equivalence class, and moreover, dpf : TpM Ñ V is a linear map. In particular, for a smooth
real-valued function f :M Ñ R, dpf is an element of the cotangent space at p,

dpf P Tp̊M (for f :M Ñ R).

This makes the differentials df of smooth real-valued functions f :M Ñ R into our first examples
of differential forms ; we will have a lot more to say about them when we discuss integration in a
few weeks.

Example 4.1. The differentials defined above directly generalize the linear map dpx : TpM Ñ
Rn in (3.2), which can be associated to any smooth chart pU , xq onM and a point p P U . This map
can also be constructed out of the differentials of the coordinate functions x1, . . . , xn : U Ñ R; it
is given by

dpxpXq “ pdpx1pXq, . . . , dpxnpXqq P Rn.

4.2. The inverse function theorem. In the examples of manifolds we have dealt with so
far, we have always had charts that were explicitly constructed, but such explicit constructions are
not always convenient in more general situations. A nice tool for obtaining less explicit but often
more useful constructions of charts is provided by the inverse function theorem from first-year
analysis. Let us recall the statement:

Theorem (inverse function theorem). Suppose U Ă Rn is open, f : U Ñ Rn is a map of class
Ck for some k P NY t8u, and x0 P U is a point at which the derivative Dfpx0q : Rn Ñ Rn is an
isomorphism. Then there exist open neighborhoods x0 P Ω Ă U and fpx0q P Ω1 Ă Rn such that f
maps Ω bijectively onto Ω1 and the inverse pf |Ωq´1 : Ω1 Ñ Ω is also of class Ck. �

We will now turn this standard analytical result into a pair of criteria for proving that certain
maps we construct define smooth charts.

Lemma 4.2. Suppose M is a smooth n-manifold, U Ă Rn is an open set, ϕ : U Ñ M is a
smooth map and x0 P U is a point at which the partial derivatives B1ϕpx0q, . . . , Bnϕpx0q form a
basis of Tϕpx0qM . Then there exist open neighborhoods x0 P Ω Ă U and p :“ ϕpx0q P O ĂM such
that ϕ maps Ω bijectively onto O and pO, pϕ|Ωq´1q defines a smooth chart on M .

Proof. Choose any smooth chart pV , yq on M with p “ ϕpx0q P V , and observe that
dpypBjϕpx0qq “ Bjpy˝ϕqpx0qIn for each j “ 1, . . . , n. Since dpy : TpM Ñ Rn is an isomorphism, our
assumption on the basis B1ϕpx0q, . . . , Bnϕpx0q P TpM means that B1py ˝ϕqpx0q, . . . , Bnpy ˝ϕqpx0q is
similarly a basis of Rn, which is equivalent to saying that the linear map Dpy ˝ϕqpx0q : Rn Ñ Rn is
an isomorphism. The inverse function theorem thus provides open neighborhoods x0 P Ω Ă U and
yppq P Ω1 Ă Rn such that y˝ϕ is a diffeomorphism between Ω and Ω1, implying that ϕ “ y´1˝py˝ϕq
sends Ω bijectively to an open neighborhood O :“ y´1pΩ1q of p. Denoting the inverse of this bi-
jection by x : O Ñ Ω Ă Rn, the transition map y ˝ x´1 is now just y ˝ϕ|Ω, so it is smooth and has
a smooth inverse. �

Lemma 4.3. Suppose M is a smooth n-manifold, U Ă M is an open set, x1, . . . , xn : U Ñ R

are smooth functions and p P U is a point such that the differentials dpx1, . . . , dpxn form a basis of
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Tp̊M . Then there exists an open neighborhood p P O Ă U such that pO, xq with x :“ px1, . . . , xnq :
O Ñ Rn defines a smooth chart on M .

Proof. Since dpx1, . . . , dpxn is a basis of Tp̊M , it is dual to a unique basisX1, . . . , Xn of TpM ,
meaning the two bases are related by

dpx
ipXjq “ δij :“

#
1 if i “ j,

0 if i ‰ j.

Define the linear map dpx :“ pdpx1, . . . , dpxnq : TpM Ñ Rn as in Example 4.1, so dpx is the
tangent map Tpx : TpM Ñ TxppqRn after identifying TxppqRn “ Rn. Since dpx sends the basis
X1, . . . , Xn to the standard basis of Rn, it is an isomorphism. Now if pV , yq is any smooth chart
with p P V , the map x ˝ y´1 is smooth on a neighborhood of p, and the chain rule gives

Dpx ˝ y´1qpyppqq “ dpx ˝ pdpyq´1,

hence the latter is also an isomorphism Rn Ñ Rn. The inverse function theorem now provides
open neighborhoods yppq P Ω Ă Rn and xppq P Ω1 Ă Rn such that x˝ y´1 is a diffeomorphism from
Ω onto Ω1, so O :“ y´1pΩq “ x´1pΩ1q is then a neighborhood of p on which the restriction of x
defines a chart that is smoothly compatible with pV , yq. �

4.3. Slice charts. We have used the word “submanifold” already a few times in an informal
way, e.g. the unit circle S1 is a manifold that lives inside the manifold R2, so we called it a
submanifold. It is now time to clarify more precisely what this word means.

The archetypal example of a submanifold is a linear subspace of a vector space, for instance

Rℓ ˆ t0u “  px1, . . . , xℓ, 0, . . . , 0q P Rn
ˇ̌ px1, . . . , xℓq P Rℓ

( Ă Rn.

Basic results in linear algebra imply that any ℓ-dimensional subspace of an n-dimensional vector
space looks like this example after a suitable linear change of coordinates. The notion of a smooth
submanifold generalizes this by allowing nonlinear (but smooth) changes of coordinates.

Definition 4.4. A chart pU , xq on an n-manifold M is called an ℓ-dimensional slice chart
(Bügelkarte) for a subset L ĂM if

LX U “ x´1pRℓ ˆ t0uq,
i.e. the points in U belong to L if and only if their coordinates xℓ`1, . . . , xn vanish.

Definition 4.5. Suppose M is a smooth n-manifold. A subset L Ă M is called an ℓ-
dimensional smooth submanifold (Untermannigfaltigkeit) of M if M admits a collection of
smooth slice charts for L whose domains cover every point of L.

Remark 4.6. More generally, if M is a manifold of class Ck but not necessarily smooth,
one can speak of submanifolds of class Ck, in which the transition maps between slice charts are
required to be of class Ck. Note that a Ck-manifold can also be regarded as a Cr-manifold for
any r ď k, so under this condition it makes sense to talk about Cr-submanifolds, but e.g. there is
no such thing as a smooth submanifold of M if the latter is of class Ck for some k ă 8 but not
equipped with a smooth structure.

Example 4.7. The smooth structure we constructed on S1 Ă R2 in Lecture 1 was obtained
from polar coordinates by restricting to the unit circle tr “ 1u; this gave rise to two charts pU , θq
and pV , φq, where θ and φ both had the meaning of an angle in polar coordinates, but with different
ranges of values, namely θpUq “ p0, 2πq and φpVq :“ p´π, πq. These two coordinates were defined
on open subsets of S1, but they also have natural extensions to open subsets of R2, namely

U
1 :“  

tv P R2
ˇ̌
v P U , t ą 0

(
, V

1 :“  
tv P R2

ˇ̌
v P V , t ą 0

(
.
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The radial coordinate r is defined on R2zt0u and takes all positive values; if we now set ρ :“ r´ 1

so that tr “ 1u “ tρ “ 0u, we obtain a pair of smoothly compatible slice charts pU 1, pθ, ρqq and
pV 1, pφ, ρqq for S1 such that S1 Ă U 1 Y V 1. This means that S1 is a smooth submanifold of R2.

One can similarly turn the atlas for S2 in Exercise 1.7 into a family of slice charts to prove that
S2 is a submanifold of R3. In practice, however, constructing slice charts by hand is not usually
necessary, as we will see in §4.4 that some much more general and powerful tools for this purpose
are provided by the inverse function theorem.

Let us first clarify the fact that a submanifold of a manifold is also a manifold in its own right.

Proposition 4.8. If L is an ℓ-dimensional Ck-submanifold of an n-dimensional Ck-manifoldM ,
then L inherits naturally from M the structure of an ℓ-dimensional Ck-manifold such that the in-
clusion map L ãÑ M is of class Ck. Moreover, for each p P L, the tangent space TpL is naturally
an ℓ-dimensional linear subspace of TpM .

Proof. We associate to every slice chart pU , xq for L Ă M a chart of the form pU X L, xLq
on L, where we use the coordinate projection πℓpx1, . . . , xnq :“ px1, . . . , xℓq to define

xL “ πℓ ˝ x|UXL : U X LÑ Rℓ.

By assumption, L can be covered by slice charts, so the collection of all charts of this form defines
an atlas on L. Given two such charts pU XL, xLq and pV XL, yLq derived from two Ck-compatible
slice charts px,Uq and py,Vq, the transition map y ˝x´1 preserves the subspace Rℓˆt0u Ă Rn, and
its restriction to the intersection of its domain with this subspace is the transition map yL ˝ x´1

L ,
which is therefore of class Ck. Moreover, the fact that M is metrizable and separable implies the
same for L by Exercise 2.17, thus L is a Ck-manifold. The local coordinate expression for the
inclusion i : L ãÑM with respect to any slice chart pU , xq and the associated chart pU XL, xLq on
L is px1, . . . , xℓq ÞÑ px1, . . . , xℓ, 0, . . . , 0q, which is clearly smooth, thus the inclusion is of class Ck.22

For each p P L, the tangent map Tpi : TpLÑ TpM is simply the canonical inclusion TpL ãÑ TpM

defined by regarding each path in L as a path in M . Since its image is a linear subspace, it gives
a canonical isomorphism of TpL to a linear subspce of TpM . �

Whenever we speak of a submanifold L ĂM from now on, we will assume that L is endowed
with the differentiable structure described in Proposition 4.8, so that it can also be regarded as a
manifold in its own right. We will often make use of the canonical identification of tangent spaces
TpL with subspaces of TpM , especially in the case M “ Rn, where (in light of Example 3.7) this
identification allows us to view each tangent space TpL as a subspace of Rn.

Exercise 4.9. Assume in the following thatM and N are both Ck-manifolds and f :M Ñ N

is a map of class Ck. Prove:
(a) For any Ck-submanifold L ĂM , the restriction f |L : LÑ N is also a map of class Ck.
(b) If L Ă N is a Ck-submanifold such that fpMq Ă L, then the resulting map f : M Ñ L

is also of class Ck.

4.4. Immersions and submersions.

Definition 4.10. A smooth map f : M Ñ N is called an immersion at p P M if the linear
map Tpf : TpM Ñ TfppqN is injective, and similarly, f is a submersion at p if Tpf : TpM Ñ

22Recall that if both L and M are manifolds of class Ck but k ă 8, then it does not make sense to say that
the inclusion L ãÑ M is smooth, even though it looks smooth in the particular local coordinates we chose. The
point is that one could also choose different coordinates in which it would still appear to be a map of class Ck, but
not necessarily C8.
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TfppqN is surjective. If one says that f is an immersion/submersion without specifying a point p,
the meaning is that it is true for all points in M . One sometimes uses the notation

f :M í N

to indicate when f is an immersion.

Recall that for any two finite-dimensional vector spaces V,W , the sets of linear maps V ÑW

that are injective or surjective are open. It follows that if f is an immersion or submersion at some
point p PM , then this is also true on a neighborhood of p; equivalently, the set of points at which
f is an immersion or submersion is open.

There is a good reason to single out these two particular classes of smooth maps between
manifolds: it turns out that up to choices of smooth coordinates near p P M and fppq P N , all
immersions look the same, and similarly for all submersions. This fact will give us a new user-
friendly tool for identifying smooth submanifolds. The main tool required in its proof is the inverse
function theorem, or more precisely, the two lemmas in §4.2 that used the inverse function theorem
to construct charts.

Theorem 4.11. Assume M is a smooth m-manifold, N is a smooth n-manifold, f : M Ñ N

is a smooth map, p PM and q “ fppq P N . If f is either an immersion or a submersion at p, then
there exist smooth charts pU , xq on M with xppq “ 0 P Rm and pV , yq on N with ypqq “ 0 P Rn

such that the coordinate expression y ˝ f ˝ x´1 for f is given by

Rm Q px1, . . . , xmq ÞÑ
#
px1, . . . , xnq P Rn if m ě n (submersion case),
px1, . . . , xm, 0, . . . , 0q P Rn if m ă n (immersion case).

Proof. Assume first that Tpf : TpM Ñ TfppqN is injective, so n ě m, and set ℓ :“ n ´m.
Choose a smooth chart pU , xq on M with p P U and xppq “ 0 P Rm; note that the latter can
be assumed without loss of generality by taking any chart with p P U and composing the map
U Ñ Rn with a translation on Rn sending the image of p to the origin. With this understood,
Ω :“ xpUq Ă Rm is an open neighborhood of the origin, and we observe that F :“ f ˝x´1 : ΩÑ N

is now a smooth map such that F p0q “ q and T0F “ Tpf ˝ pdpxq´1 : Rm Ñ TqN is injective.
The latter is equivalent to the condition that the partial derivatives B1F p0q, . . . , BmF p0q P TqN are
linearly independent.

We claim that after possibly shrinking Ω to a smaller neighborhood of 0 P Rm, and choosing
ǫ ą 0 sufficiently small, F : ΩÑ N can be extended to a smooth maprF : Ωˆ p´ǫ, ǫqℓ Ñ N

such that rF px1, . . . , xm, 0, . . . , 0q “ F px1, . . . , xmq and the partial derivatives B1 rF , . . . , Bn rF at the
origin form a basis of TqN . This extension is not canonical, but it is also not difficult: if N
were simply Rn, we could define it by choosing any extension of the linearly independent set
B1F p0q, . . . , BmF p0q to a basis B1F p0q, . . . , BmF p0q, Ym`1, . . . , Yn of TqN and then defining

rF px1, . . . , xnq :“ F px1, . . . , xmq `
nÿ

j“m`1

xjYj .

This formula does not make sense in general if N is not a vector space, but one could more generally
choose a chart on N near q in order to express F in local coordinates, and define the extension
in this way in coordinates. Lemma 4.2 now implies that on a sufficiently small neighborhood of
0 P Rn, rF can be inverted to define a chart pV , yq on N with the stated properties.

Next suppose Tpf : TpM Ñ TfppqN is surjective, thus m ě n, and we can set ℓ :“ m´ n. The
idea now is to choose any chart pV , yq on N with ypqq “ 0 and define the first n coordinates over
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the neighborhood f´1pVq ĂM of p by

xi :“ yi ˝ f, i “ 1, . . . , n.

Writing px :“ px1, . . . , xnq : f´1pVq Ñ Rn, we have dppx “ dqy ˝ Tpf , thus dppx : TpM Ñ Rn is
surjective, which is equivalent to the condition that the n covectors dpx1, . . . , dpxn P Tp̊M are
linearly independent.

To define the remaining ℓ coordinates on M near p, first choose an extension of the linearly-
independent set dpx1, . . . , dpxn to a basis dpx1, . . . , dpxn,Λn`1, . . . ,Λm of Tp̊M . For each i “
n` 1, . . . ,m, we can then define a smooth function xi on a neighborhood of p such that xippq “ 0

and dpxi “ Λi; this is another step that would be trivial to carry out ifM were the vector space Rm,
so the idea is to choose a chart near p and write down suitable functions in local coordinates. With
this done, Lemma 4.3 implies that after possibly shrinking to a smaller neighborhood U ĂM of p,
x “ px1, . . . , xmq becomes a smooth chart with the desired properties. �

Remark 4.12. For a continuous map f : M Ñ N between topological manifolds, one can
define f to be a topological immersion or topological submersion at p PM if there exist continuous
charts near p and q :“ fppq in which f satisfies the coordinate formula in Theorem 4.11. Note that
without having at least one continuous derivative at our disposal, there is no alternative way to
characterize either of these conditions in terms of a tangent map being injective or surjective, nor
is there any inverse function theorem available for proving such statements. On the other hand,
Theorem 4.11 does make sense in the setting of Ck-manifolds for any k P N; in this case one must
assume that f :M Ñ N is of class Ck, and the resulting charts will be as well. (One should not be
fooled by the fact that f will then look like a smooth map with respect to those charts—if k ă 8,
it will not look smooth after arbitrary changes of Ck-coordinates.)

4.5. Embeddings and regular level sets. We now have enough technology to produce
many more examples of submanifolds.

Definition 4.13. A smooth map f : M Ñ N is called an embedding (Einbettung) if it is

an injective immersion whose inverse fpMq f´1Ñ M is also continuous. The notation

f :M ãÑ N

is sometimes used to indicate that f is an embedding.

The typical example of an embedding is the natural inclusion M ãÑ N that exists whenever
M is a submanifold of N . The next result states that, up to diffeomorphism, all examples are this
one.

Theorem 4.14. If f :M Ñ N is an embedding, then its image fpMq is a smooth submanifold
of N .

Proof. Suppose q P fpMq. By injectivity, there is a unique point p PM such that fppq “ q,
and Theorem 4.11 provides charts pU , xq on M and pV , yq on N with xppq “ 0 and ypqq “ 0 such
that y ˝ f ˝x´1 takes the form px1, . . . , xmq ÞÑ px1, . . . , xm, 0, . . . , 0q. Since the inverse fpMq ÑM

is also continuous, we are free to assume after possibly shrinking V Ă N to a smaller neighborhood
of q that

f´1pV X fpMqq Ă U ,

or in other words, VXfpMq “ fpUq. This proves that pV , yq is a slice chart for the subset fpMq. �

The following consequence appears in some books as an alternative definition of the notion of
a submanifold:
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Corollary 4.15. A subset L Ă M of a smooth manifold M is a smooth submanifold if and
only if it admits a smooth structure for which the inclusion map L ãÑM is a smooth embedding. �

It is worth pausing a moment to consider what an immersion f : M í N can look like if it
is not an embedding. Theorem 4.11 implies that every immersion is locally an embedding, i.e. for
every p P M , one can find a neighborhood U Ă M of p such that f |U : U ãÑ N is an embedding
and fpUq Ă N is therefore a submanifold. On the other hand, f may fail to be an embedding
globally because it is not injective, meaning it has self-intersections fppq “ fpp1q with p ‰ p1. The
notation “f :M í N ” is meant to evoke this possibility by allowing the arrow to loop around and
intersect itself. A classic example of a non-injective immersion is the picture of the Klein bottle
in Figure 6, which shows the image of an immersion of a compact smooth 2-manifold into R3.
Images of immersions are sometimes called immersed submanifolds in the literature, though I
am personally not fond of this terminology,23 so I will not use it.

For slightly subtler reasons, an injective immersion can also fail to be an embedding:

Example 4.16. Let N “ R2 and M “ R\ p0, πq, and defne the immersion f :M í R2 by

fptq :“ pt, 0q for t P R,

fpθq :“ pcos θ, sin θq for θ P p0, πq.
Omitting the points 0 and π from the interval p0, πq makes this map an injective immersion, but

the inverse fpMq f´1Ñ M is discontinuous at the two points p˘1, 0q, which are precisely the points
at which it fails to be a submanifold.

Turning our attention to submersions, we can now state a popular corollary of the implicit
function theorem that you may have heard referred to before as the “regular value theorem”.

Definition 4.17. For a smooth map f :M Ñ N , p PM is called a regular point (regulärer
Wert) of f if f is a submersion at p, and a critical point (kritischer Wert) otherwise. A point
q P N is a critical value (kritischer Wert) of f if q “ fppq for some critical point p, and q is
otherwise called a regular value (regulärer Wert) of f .

Theorem 4.18 (implicit function theorem). For any smooth map f : M Ñ N with regular
value q P N , L :“ f´1pqq Ă N is a smooth submanifold with dimL “ dimM ´ dimN , and its
tangent space at any point p P L is TpL “ kerTpf Ă TpM .

Proof. For each p P L “ f´1pqq, f is by assumption a submersion at p, so Theorem 4.11
provides charts x near p and y near q such that xppq and ypqq are both the origin in their respective
Euclidean spaces and y ˝ f ˝ x´1 becomes the map px1, . . . , xmq ÞÑ px1, . . . , xnq. The zero-set of
this map is a neighborhood of p in f´1pqq as seen in the x-coordinates, thus x is a slice chart. To
see that TpL “ kerTpf , observe first that for any path γ in L through p, f ˝ γ is a constant path
at q P N , thus Tpfprγsq “ 0 P TqN , proving TpL Ă kerTpf . The rest is dimension counting, as the
surjectivity of Tpf : TpM Ñ TqN implies

dimTpL “ dimL “ dimM ´ dimN “ dimTpM ´ dimTqN “ dimkerTpf.

�

23I have two objections to the term “immersed submanifold”: first, it sounds as if it should be a type of
submanifold, but it isn’t. Second, one cannot always uniquely recover the manifold M from the image of an
immersion M í N . For example (the following is only for readers with a background in topology), a closed surface
Σg of genus g ě 2 admits smooth covering maps Σh Ñ Σg by surfaces of arbitrarily large genus h (the degree of the
cover will be correspondingly large). If one chooses an embedding of Σg into R3, one obtains a submanifold that is
also the image of an immersion Σh í R3 for arbitrarily large values of h.
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Submanifolds of the form f´1pqq ĂM for regular values q P N are sometimes called regular
level sets of f . In particular, a submersion f : M Ñ N is distinguished by the property that all
of its level sets are regular, and are thus smooth submanifolds.

4.6. Examples. We now have a very easy way of proving that simple examples like the unit
spheres Sn Ă Rn`1 really are smooth submanifolds.

Example 4.19. Define f : Rn`1 Ñ R in terms of the standard Euclidean inner product by
fpxq “ |x|2 “ xx, xy. This is a smooth map, with differential at any point x P Rn`1 given by
dxfpvq “ 2xx, vy, so it is a submersion everywhere except at the origin. This makes Sn “ f´1p1q
into a smooth submanifold of dimension pn ` 1q ´ 1 “ n, so in particular, Sn inherits a natural
smooth structure for which the inclusion Sn ãÑ Rn`1 is a smooth embedding. The kernel of dxf
at a point x P Sn is the orthogonal complement of x, hence

TxS
n “ xK Ă Rn`1.

Example 4.20. The smooth map f : R2 Ñ R : px, yq ÞÑ xy has only one critical point, at
px, yq “ p0, 0q, thus f´1ptq is a smooth submanifold (a hyperbola) for every t ‰ 0, and so is
f´1p0qztp0, 0qu, but f´1p0q fails to be a submanifold at the origin.

Exercise 4.21. Identifying the torus T2 with R2{Z2 via Exercise 3.4, find an explicit formula
for an embedding T2 ãÑ R3 whose image looks like Figure 5.

For the next set of exercises, the symbol F always denotes either the real numbers R or complex
numbers C, and we denote the vector space of m-by-n matrices over F by

Fmˆn :“ tm-by-n matrices over Fu .
If F “ R, this is a real vector space of dimension mn. In the case F “ C, it is a complex
vector space of this same dimension, which means it can also be regarded as a real vector space
of dimension 2mn. (Indeed, if V is any complex vector space with complex basis v1, . . . , vk, then
a basis of V as a real vector space is given by v1, iv1, . . . , vk, ivk.) Since they are vector spaces,
Rmˆn and Cmˆn carry natural smooth structures and are thus smooth manifolds of dimensions
mn and 2mn respectively. For m “ n, there is a distinguished open subset

GLpn,Fq “  
A P Fnˆn

ˇ̌
A is invertible

(
,

which is therefore also naturally a smooth manifold of dimension n2 or (in the complex case) 2n2.
That GLpn,Fq Ă Fnˆn is open can be deduced easily from the observation that the determinant

det : Fnˆn Ñ F

defines a continuous function for which GLpn,Fq “ det´1pFzt0uq. In fact, detpAq is a polynomial
in the entries of A, which are all linear functions of A, thus det : Fnˆn Ñ F is a smooth real- or
complex-valued function. By Cramer’s rule, the function

GLpn,Fq Ñ GLpn,Fq : A ÞÑ A´1

is also smooth.

Exercise 4.22. The n-dimensional orthogonal group Opnq Ă Rnˆn is the set of all real
n-by-n matrices A with the property

ATA “ 1,

where 1 is the n-by-n identity matrix and AT denotes the transpose of A, i.e. if A has entries Aij ,
then the corresponding entries of AT are Aji. This is precisely the set of all linear transformations
Rn Ñ Rn which preserve the Euclidean inner product, which means geometrically that they
preserve lengths of vectors and angles between them. We will show in this exercise that Opnq is a
smooth submanifold of Rnˆn.



38 FIRST SEMESTER (DIFFERENTIALGEOMETRIE I)

(a) Define the linear subspace consisting of all symmetric matrices,

Σpnq :“  
A P Rnˆn

ˇ̌
A “ AT

( Ă Rnˆn.

There is a map
f : Rnˆn Ñ Σpnq : A ÞÑ ATA,

such that the orthogonal group is the level set Opnq “ f´1p1q. The entries of fpAq are
quadratic functions of the entries of A, thus f is clearly a smooth map. Show that its
derivative at any A P Rnˆn is the linear map

DfpAq : Rnˆn Ñ Σpnq : H ÞÑ ATH`HTA.

Hint: In theory you can do this by computing all the partial derivatives of f with respect
to the entries of A, but it’s much, much easier to use the definition of the derivative,
i.e. regarding Rnˆn and Σpnq simply as vector spaces, show that a “remainder” formula
of the form

fpA`Hq “ fpAq `DfpAqH`RpHq ¨ |H|
with limHÑ0RpHq “ 0 is satisfied. One useful thing you may want to assume: for a
reasonable choice of norm on Rnˆn, matrix products satisfy |AB| ď |A||B|.

(b) Show that DfpAq is surjective if A P Opnq. In fact, you won’t even need to assume
A P Opnq, but it is useful to assume that A is invertible (which is automatically true
for orthogonal matrices). It is also crucial that the target space is Σpnq rather than the
entirety of Rnˆn—DfpAq is certainly not surjective onto Rnˆn.

(c) It follows now from the implicit function theorem that Opnq is a smooth submanifold of
Rnˆn. What is its dimension? (For a sanity check I will tell you: dimOp2q “ 1 and
dimOp3q “ 3.)

(d) Show that T1Opnq Ă T1R
nˆn “ Rnˆn is the space of all antisymmetric matrices H,

i.e. those which satisfy HT “ ´H.

Exercise 4.23. The complex analogue of Exercise 4.22 involves the unitary group

Upnq “  
A P Cnˆn

ˇ̌
A:A “ 1

(
,

where A: denotes the Hermitian adjoint of A, defined as the complex conjugate of its transpose.
Prove that Upnq is a smooth submanifold of Cnˆn, compute its dimension, and show

T1 Upnq “  
H P Cnˆn

ˇ̌
H: “ ´H(

.

Exercise 4.24. The special linear group over F P tR,Cu is defined by

SLpn,Fq “  
A P Fnˆn

ˇ̌
detpAq “ 1

(
.

(a) Show that the derivative of det : Fnˆn Ñ F at 1 is given by the trace (Spur):

Dpdetqp1qH “ trpHq.
Hint: Write H in terms of n column vectors as

`
v1 ¨ ¨ ¨ vn

˘
, so

detp1` tHq “ det
`
e1 ` tv1 ¨ ¨ ¨ en ` tvn

˘
,

where e1, . . . , en denotes the standard basis of Fn. Differentiate this expression with
respect to t at t “ 0, using the fact that the determinant of a matrix is a multilinear
function of its columns.

(b) Use the relation detpABq “ detpAq ¨ detpBq to generalize the formula in part (a) to

DpdetqpAqH “ detpAq ¨ trpA´1Hq for any A P GLpn,Fq.
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(c) Prove that SLpn,Fq is a smooth submanifold of Fnˆn, compute its dimension, and show

T1 SLpn,Fq “  
H P Fnˆn

ˇ̌
trpHq “ 0

(
.

(d) Consider the set of non-invertible n-by-n matrices,

M :“  
A P Fnˆn

ˇ̌
detpAq “ 0

(
.

Is 0 a regular value of det : Fnˆn Ñ F? Is M a submanifold of Fnˆn?
Hint: Clearly M contains the trivial matrix 0 P Fnˆn. If M is a submanifold, what can
you say about the tangent space T0M Ă Fnˆn? In how many different directions can you
find smooth paths γ : p´ǫ, ǫq Ñ Fnˆn through 0 that are contained in M?

Exercise 4.25. The special orthogonal and special unitary groups are defined as

SOpnq “ Opnq X SLpn,Rq, and SUpnq “ Upnq X SLpn,Cq
respectively. Prove:

(a) SOpnq is an open (and also closed) subset of Opnq, hence it is a smooth submanifold with
the same dimension and T1 SOpnq “ T1 Opnq.

(b) SUpnq is a smooth submanifold of Upnq with dim SUpnq “ dimUpnq ´ 1, and

T1 SUpnq “  
H P Cnˆn

ˇ̌
H: “ ´H and trpHq “ 0

(
.

Hint: Use Exercise 4.9 to show that the determinant defines a smooth map det : Upnq Ñ
S1, where S1 in this case denotes the unit circle in C. Prove that 1 is a regular value of
this map.

Finally, we consider an interesting space of matrices that does not form a group, but is nonethe-
less a manifold.

Exercise 4.26. For F P tR,Cu and nonnegative integers m,n and r ď mintm,nu, let
Vrpm,n,Fq :“  

A P Fmˆn
ˇ̌
rankpAq “ r

(
.

By the standard formula relating ranks and kernels, Vrpm,n,Fq is the set of all m-by-n matrices A
over F such that dimF kerA “ n´ r, and the latter condition is also equivalent to dimF cokerA “
m ´ r, where the cokernel of A is defined from its image impAq Ă Fm as the quotient space
Fm{ impAq.

Given any M0 P Vrpm,n,Fq, one can find splittings Fn “ V ‘K and Fm “W ‘ C such that
K “ kerM0 and W “ imM0. Regarding any other matrix M P Fmˆn as a linear map Fn Ñ Fm,
these splittings of Fn and Fm give rise to a block decomposition

M “
ˆ
ApMq BpMq
CpMq DpMq

˙
: V ‘K ÑW ‘ C,

thus defining linear (and therefore smooth) maps A : Fmˆn Ñ HompV,W q, B : Fmˆn Ñ
HompK,W q, C : Fmˆn Ñ HompV,Cq and D : Fmˆn Ñ HompK,Cq. By construction, the
functions B, C and D all vanish at M0, while ApM0q : V Ñ W is invertible. Observe that
the invertible maps in HompV,W q form an open subset; this is true for the same reason that
GLpn,Fq is an open subset of Fnˆn. We can therefore fix an open neighborhood O Ă Fmˆn of M0

such that ApMq : V Ñ W is invertible for all M P O, and use this to define two smooth maps
Φ : O Ñ HompK,Cq and Ψ : O Ñ Fnˆn by

ΦpMq :“ DpMq ´CpMqApMq´1BpMq, and ΨpMq :“
ˆ
1 ´ApMq´1BpMq
0 1

˙
,

where in the latter expression we are regarding ΨpMq as a linear map Fn Ñ Fn and writing its
block decomposition with respect to the splitting Fn “ V ‘K.
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(a) Show that ΨpMq P Fnˆn is invertible for every M P O.
(b) Show that for every M P O, the kernel of the matrix product MΨpMq : Fn Ñ Fm is

t0u ‘ kerΦpMq Ă V ‘K “ Fn.
(c) Deduce from parts (a) and (b) that O X Vrpm,n,Fq “ Φ´1p0q.

Hint: What is the largest dimension that kerM can have for M P O?
(d) Show that M0 is a regular point of Φ, and deduce from this that Vrpm,n,Fq Ă Fmˆn is

a smooth submanifold with

TMVrpm,n,Fq “  
H P Fmˆn

ˇ̌
HpkerMq Ă imM

(
for every M P Vrpm,n,Fq, and
dimVrpm,n,Rq “ mn´ pm´ rqpn ´ rq, dimVrpm,n,Cq “ 2 dimVrpm,n,Rq.

(e) A matrix M P Fmˆn is said to have maximal rank if its rank is mintm,nu, which
means it is either injective or surjective. Deduce from the result of part (d) that the set
of maximal rank matrices is open and dense in Fmˆn.

The result of this exercise produces what is called a stratification of Fmˆn, meaning that it
decomposes Fmˆn into a collection of smooth submanifolds of various dimensions such that every
matrix belongs to exactly one of them.

5. Vector fields

A vector field (Vektorfeld) X on a smooth manifold M associates to every point p P M a
vector in the corresponding tangent space,

Xppq P TpM.

For example, on S2 Ă R3, the tangent space TpS2 is the orthogonal complement of the vector
p P S2 Ă R3, thus a vector field associates to each such point another vector that is orthogonal to
it. We say that a vector field X is smooth if the map

M Ñ TM : p ÞÑ Xppq
is smooth. The set of all smooth vector fields on M forms a vector space, which we will denote by

XpMq :“  
X P C8pM,TMq ˇ̌ Xppq P TpM for every p PM(

.

As with real-valued functions, one can define the support (Träger) of a vector field X as the
closure in M of the set tp PM | Xppq ‰ 0u.

5.1. The flow of a vector field. The most important fact about vector fields on manifolds
is that they determine dynamical systems. For a smooth path γ : pa, bq ÑM , the derivative

9γptq :“ dγ

dt
ptq P TγptqM

can be defined for each t P pa, bq as a special case of our definition of partial derivatives in §3.4.
In important special cases such as when M is a submanifold of Rn, 9γptq means exactly what you
think it should; more generally, it is the equivalence class rγts represented by the reparametrized
path γtpsq :“ γpt` sq that passes through γptq at s “ 0. Given X P XpMq, a path γ : pa, bq ÑM

is called a flow line or orbit of X if it satisfies

9γptq “ Xpγptqq.
The following fundamental result translates most of the basic existence/uniqueness theory for
ordinary differential equations into the language of differential geometry.
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Theorem 5.1. For any smooth vector field X P XpMq on a manifold M , there exists a unique
open subset O Ă RˆM and smooth map

O ÑM : pt, pq ÞÑ ϕtXppq,
called the flow (Fluss) of X, such that for every p PM , the set

ℓp :“  
t P R

ˇ̌ pt, pq P O
( Ă R

is an open interval containing 0, and

γp : ℓp ÑM : t ÞÑ ϕtX ppq
is the maximal solution to the initial value problem

9γptq “ Xpγptqq, γp0q “ p.

Moreover, if X has compact support, then O “ RˆM .

Proof. For the most part, this result is proved by choosing local coordinates so as to rewrite
the initial value problem in Rn and then applying standard results from the theory of ODEs. We
will merely add a few observations in order to see how this works. First, given p0 P M , choose
a smooth chart pU , xq with p0 P U , which gives rise to a smooth chart pTU , T xq on TM . The
smoothness of X means that p ÞÑ TxpXppqq “ pxppq, dpxpXppqqq is a smooth function U Ñ R2n,
thus in particular, so is the function

Φ : U Ñ Rn : p ÞÑ dpxpXppqq.
A path γ : p´ǫ, ǫq Ñ U with γp0q “ p0 will now satisfy 9γptq “ Xpγptqq if and only if

px ˝ γq1ptq “ dγptqxp 9γptqq “ dγptqxpXpγptqqq,
meaning that α :“ x ˝ γ : p´ǫ, ǫq Ñ xpUq Ă Rn must be a solution to the initial value problem

(5.1) 9αptq “ F pαptqq, αp0q “ xpp0q,
where we define F : xpUq Ñ Rn by

F pqq :“ dx´1pqqxpXpx´1pqqqq “ Φ ˝ x´1pqq.
This last expression shows that F is a smooth function, so in particular it is Lipschitz, and the
Picard-Lindelöf theorem therefore applies, telling us that a solution α : p´ǫ, ǫq Ñ xpUq to (5.1)
exists for some ǫ ą 0 and is unique. Since F is smooth, this solution also depends smoothly on the
initial point xpp0q. Replacing α with γ “ x´1 ˝ α : p´ǫ, ǫq Ñ U , we similarly obtain existence and
uniqueness of a solution to 9γptq “ Xpγptqq with γp0q “ p0, along with smooth dependence on the
point p0. This uniquely defines the flow map pt, pq ÞÑ ϕtX ppq for all pt, pq in some neighborhood of
t0u ˆM Ă RˆM .

It remains to establish that the flow map has a unique extension to a maximal domain which
is an open subset O Ă RˆM , and is all of RˆM if X has compact support. This follows via the
same tricks that are used to prove the corresponding statement in Rn, e.g. whenever a flow line
γ : r0, T s Ñ M with γp0q “ p0 exists, one can find a finite partition 0 “ t0 ă t1 ă . . . ă tN´1 ă
tN “ T such that the subintervals rtj´1, tjs are each sufficiently small for γprtj´1, tjsq to lie within
the domain of a single chart. One can then make use of the formula

γpT q “ ϕTXpp0q “ ϕ
tN´tN´1

X ˝ . . . ˝ ϕt2´t1X ˝ ϕt1Xpp0q,
in which each map in the composition is already known to be smooth and defined on an open
neighborhood of the relevant point as long as the increments tj ´ tj´1 are small enough. This
establishes that O Ă RˆM is open and pt, pq ÞÑ ϕtX ppq is smooth. Finally, if the support K ĂM

of X is a compact subset, then clearly every flow line through a point p0 PMzK is constant, so that
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pt, p0q P O for all t P R. For the same reason, uniqueness of solutions implies that a flow line with
initial value at a point p0 P K can never escape from K; if it did, then it would become constant
outside of K, and must therefore have always been a constant path outside of K. We claim now
that for every p0 P K, the maximal solution to 9γptq “ Xpγptqq with γp0q “ p0 is defined for all
t P R. If not, then suppose γ : pa, bq Ñ M is the maximal solution and either a ą ´8 or b ă 8;
for concreteness we will assume the latter since there is no substantial difference between the two
cases. Then pa, bq contains a sequence tj with tj Ñ b, and after restricting to a subsequence, the
compactness of K implies that we can assume γptjq converges to some point p1 P K. But solutions
to the initial value problem starting at points near p1 also exist and are unique on some sufficiently
small interval, so for j large enough, γptjq must eventually lie on one of these solutions. The only
way to have γptjq Ñ p1 is then if γ eventually matches (up to parametrization) the unique flow
line through p1, in which case it must reach that point at time t “ b and can be continued past it;
this contradicts the assumption that γ could not be extended beyond the interval pa, bq. �

We say that X P XpMq admits a global flow if the domain O Ă R ˆM of the flow map
pt, pq ÞÑ ϕtXppq is RˆM . This can sometimes be true even if X does not have compact support,
e.g. it is easy to show that every C0-bounded smooth vector field on Rn has a global flow. (There
are also easy counterexamples if X is allowed to be unbounded, such as Xpxq :“ x2 on R.) In the
general case, ϕtX defines for each t P R a smooth map Ot

X ÑM on the open set

Ot
X :“  

p PM ˇ̌ pt, pq P O
(
,

and in fact, ϕtX is a diffeomorphism from Ot
X to O

´t
X , with inverse

pϕtXq´1 “ ϕ´tX .

In particular, if the flow is global, then Ot
X “M for each t P R, and ϕtX is therefore a diffeomor-

phism from M to itself. It is also possible however to have Ot
X “ H for t ‰ 0, though this cannot

happen when t is close to 0. Indeed, it follows directly from the definition that

O
s
X Ą O

t
X whenever 0 ď s ď t or t ď s ď 0,

and short-time existence of solutions also implies

O0
X “ ď

tą0

Ot
X “ ď

tă0

Ot
X “M.

The most important properties of the flow are perhaps

ϕ0
X “ Id, and ϕs`tX “ ϕsX ˝ ϕtX on O

s
X XO

t
X XO

s`t
X for every s, t P R,

which follow from the uniqueness of solutions to the initial value problem. Whenever the flow is
global, this means that the map t ÞÑ ϕtX defines a group homomorphism from R to the group
DiffpMq of diffeomorphisms M Ñ M . This is, in practice, the single easiest way to produce a
diffeomorphism on a manifold: one need not write it down explicitly, but can instead often write
down an appropriate vector field more-or-less explicitly and deduce the existence of a suitable
diffeomorphism via its flow. The following exercise is a demonstration of this technique:

Exercise 5.2. A manifold M is called connected (zusammenhängend)24 if for every pair of
points p, q P M , there exists a continuous path γ : r0, 1s Ñ M from γp0q “ p to γp1q “ q. Show
that under this assumption, there exists a diffeomorphism ϕ : M Ñ M that is the identity map
outside of a compact subset and satisfies ϕppq “ q.

24If you know some topology, you may notice that what we are defining here is actually the notion of a path-
connected space, and connectedness (without mentioning paths) usually means something else. However, every
manifold is locally path-connected, so a general theorem from point-set topology (see [Wen18, Theorem 7.17])
implies that connectedness and path-connectedness on a manifold are equivalent conditions.
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Hint: You should first convince yourself that the path γ : r0, 1s Ñ M can be assumed to be a
smooth embedding without loss of generality. (This is obvious if γ happens to lie in the domain of
a chart pU , xq such that xpUq Ă Rn is convex, and notice that γpr0, 1sq ĂM can always be covered
by finitely many such charts.) Then choose a vector field that has a flow line containing this path.

Remark 5.3. If the vector field X is not smooth but is of class Ck for some k P N, then the
proof of Theorem 5.1 above can be adapted to produce a flow map pt, pq ÞÑ ϕtXppq that is also
of class Ck. As you may recall from your analysis courses, all bets are off if X is continuous but
not C1: in this case local solutions exist but may not be unique, so the flow cannot be defined.

5.2. Pullbacks and pushforwards. A diffeomorphism

ψ :M Ñ N

between two manifolds can be viewed as a way of “translating” all geometric data from M into
equivalent geometric data on N or vice versa. The exact mechanism for the translation depends on
the kind of data we are talking about: for points p PM , the translation in N is simply ψppq P N .
For a function f P C8pMq, the equivalent data on N is a function

ψ˚f P C8pNq
that has the same value at the equivalent point ψppq that f has at the original point p, thus

ψ˚f ˝ ψ “ f, or equivalently ψ˚f “ f ˝ ψ´1.

We call ψ˚f the pushforward of f via the diffeomorphism ψ. This process is invertible: one can
associate to any f P C8pNq a pullback

ψ˚f P C8pMq
via ψ, which takes the same value at p that f takes at ψppq; the definition is thus

ψ˚f “ f ˝ ψ.
To do the same trick with tangent vectors, we need to recall that the tangent map of a

diffeomorphism ψ : M Ñ N is also a diffeomorphism Tψ : TM Ñ TN , one which sends TpM
isomorphically to TψppqN for each p P M . This gives the natural way of “translating” tangent
vectors between M and N , so for each X P TM and Y P TN , we denote

ψ˚X :“ TψpXq P TN, ψ˚Y :“ Tψ´1pY q P TM.

The pushforward of a vector field X P XpMq should then be a vector field

ψ˚X P XpNq
whose value at ψppq for each p P M is the corresponding translation of the tangent vector Xppq,
namely ψ˚pXppqq. This gives

pψ˚Xq ˝ ψ “ Tψ ˝X, or equivalently ψ˚X “ Tψ ˝X ˝ ψ´1.

The pullback of a vector field Y P XpNq is obtained by inverting this procedure, thus

ψ˚Y :“ Tψ´1 ˝ Y ˝ ψ P XpMq.
Proposition 5.4. Suppose ψ : M Ñ N is a diffeomorphism, X P XpNq is a vector field, and

t P R. Then a point p P M is in the domain of the flow ϕtψ˚X if and only if ψppq belongs to the
domain of ϕtX , and ψ ˝ ϕtψ˚X “ ϕtX ˝ ψ.
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Proof. The result follows from the observation that ψ provides a natural bijective correspon-
dence between the flow lines of X on N and flow lines of ψ˚X on M . Indeed, suppose a ă 0 ă b

and γ : pa, bq Ñ N is a flow line of X , satisfying 9γptq “ Xpγptqq and γp0q “ q :“ ψppq. Then
α :“ ψ´1 ˝ γ : pa, bq ÑM satisfies αp0q “ p and

9αptq “ Tψ´1
`
9γptq˘ “ Tψ´1

`
Xpγptqq˘ “ Tψ´1 ˝X ˝ ψpαptqq “ pψ˚Xqpαptqq.

Conversely, the same computation implies that if α is a flow line of ψ˚X , then γ :“ ψ ˝α is a flow
line of X . �

Exercise 5.5. For two diffeomorphisms ψ : M Ñ N and ϕ : N Ñ Q, prove the following
relations:

(a) pϕ ˝ ψq˚f “ ϕ˚pψ˚fq P C8pQq for f P C8pMq.
(b) pϕ ˝ ψq˚g “ ψ˚pϕ˚gq P C8pMq for g P C8pQq.
(c) pϕ ˝ ψq˚X “ ϕ˚pψ˚Xq P XpQq for X P XpMq.
(d) pϕ ˝ ψq˚Y “ ψ˚pϕ˚Y q P XpMq for Y P XpQq.
We will see later that when ψ : M Ñ N is a diffeomorphism, pullbacks and pushforwards

can be defined for any meaningful geometric data one might want to consider on M or N . A
special case that arises quite often is where M “ N and ψ : M Ñ M is defined by the flow of a
vector field; we will see an example of this in the next lecture when we discuss the Lie derivative
of a vector field. It will also be important to know that for certain types (but not all types) of
data, either the pushforward or the pullback (but not both) can be defined via arbitrary smooth
maps ψ : M Ñ N , not only for diffeomorphisms. One example of this is already apparent: for
f P C8pNq, the pullback

ψ˚f :“ f ˝ ψ P C8pMq
makes sense for any smooth map ψ :M Ñ N , soM and N need not be diffeomorphic. One cannot
similarly define pushforwards of functions in this context, since ψ´1 might not be defined. We will
see many more examples of this phenomenon when we discuss tensors and differential forms.

5.3. Derivations. For real-valued functions f :M Ñ R, there is no natural notion of “partial
derivatives” of f , unless M happens to be an open subset of Rn. It is still natural however to talk
about the directional derivative (Richtungsableitung) of f at a point p P M with respect to a
tangent vector X P TpM : this is known as the Lie derivative (Lie-Ableitung) LXf P R of f with
respect to X , and can be evaluated using the differential df , i.e.

LXf :“ dfpXq.
If X is not just a tangent vector at a single point but a smooth vector field, then the Lie derivative
defines another smooth function M Ñ R, written

pLXfqppq “ dfpXppqq.
The differential operator LX associated to any X P XpMq thus defines a map

LX : C8pMq Ñ C8pMq,
and one can check using the usual rules of differentiation that this map is linear:

LX pf ` gq “ LXf ` LXg, LXpcfq “ cLXf, for all f, g P C8pMq, c P R.

Moreover, the product rule for differentiation translates into the following so-called Leibniz rule:

LXpfgq “ pLXfqg ` fLXg.

This formula motivates a short digression on algebras and Lie algebras.
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Definition 5.6. An algebra is a vector space A that is endowed with the additional structure
of a bilinear multiplication operation

AˆAÑ A : px, yq ÞÑ xy

that is also associative, i.e. pxyqz “ xpyzq for all x, y, z P A.25 A derivation on A is a linear map
L : AÑ A that satisfies the Leibniz rule

Lpxyq “ pLxqy ` xpLyq for all x, y P A.

An algebra endowed with a derivation is called a differential algebra (Differentialalgebra).

Definition 5.7. A Lie algebra (Lie-Algebra) is a vector space V that is endowed with the
additional structure of a bilinear operation

r¨, ¨s : V ˆ V Ñ V,

its so-called Lie bracket (Lie-Klammer), which satisfies:
‚ antisymmetry: ru, vs “ ´rv, us for all u, v P V ;
‚ the Jacobi identity: ru, rv, wss ` rv, rw, uss ` rw, ru, vss “ 0 for all u, v, w P V .

Exercise 5.8. Show that on any algebra A, the space D of all derivations on A can be made
into a Lie algebra by defining the bracket

rL1, L2s :“ L1 ˝ L2 ´ L2 ˝ L1.

In this course, the most important example of an algebra is the space of smooth real-valued
functions C8pMq on a manifold M , in which multiplication is defined pointwise by pfgqppq :“
fppqgppq. The previous remarks show that for any smooth vector field X P XpMq, the associated
Lie derivative operator LX defines a derivation on C8pMq. A somewhat less obvious class of
examples comes from the observation in Exercise 5.8 that the commutator bracket of any two
derivations is also a derivation, so in particular, any pair of vector fields X,Y P XpMq gives rise to
a derivation on C8pMq defined by

rLX ,LY sf “ LXLY f ´ LY LXf.

One says that the vector fields X and Y commute (kommutieren) whenever this bracket vanishes.
This will turn out to be an important condition, but its meaning will take some effort to unpack.
We first need to make the surprising and useful observation that the examples we have seen so far
of derivations on C8pMq are the only examples that exist:

Theorem 5.9. Every derivation L : C8pMq Ñ C8pMq is of the form L “ LX for some
(unique) smooth vector field X P XpMq.

Proof. The uniqueness of X is clear, since different vector fields define different derivations.
The proof of existence follows from a series of claims.

Claim 1: If f :M Ñ R is a constant function, then Lf “ 0 for every derivation L on C8pMq.
Indeed, if f is constant, then multiplication of an arbitrary function g P C8pMq by f is the

same as scalar multiplication, so linearity implies Lpfgq “ f Lg, and combining this with the
Leibniz rule gives pLfqg “ 0. Plugging in the function g ” 1, we conclude Lf ” 0.

25If you’re into algebra, you may notice that the definition of an algebra is quite similar to that of a ring.
The difference is that while a ring is also an abelian group with respect to its “`” operation and has a distributive
product operation, it does not generally come with any notion of scalar multiplication and is thus not a vector space.
One can however define the notion of an algebra more generally, so that it is a module over a commutative ring R

instead of a vector space. The case where R is a field then agrees with the definition we’ve given, but one can also
speak of an algebra over Z, which is the same thing as a ring since modules over Z are the same thing as abelian
groups.
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Claim 2: The stated result is true in the special case where M is a convex open subset of
Euclidean space, Ω Ă Rn.

This is the heart of the proof, and it depends on an important fact in first-year analysis that
follows from the fundamental theorem of calculus. Assume Ω Ă Rn is open and convex, and fix a
point x0 “ px10, . . . , xn0 q P Ω. For any other point x “ px1, . . . , xnq P Ω, the convexity of Ω implies
that it contains the line segment between x0 and x, so using the fundamental theorem of calculus
and the chain rule, we find that any smooth function f : ΩÑ R satisfies

fpxq “ fpx0q `
ż 1

0

d

dτ
fpx0 ` τpx ´ x0qq dτ “ fpx0q `

ż 1

0

Dfpx0 ` τpx ´ x0qqpx´ x0q dτ

“ fpx0q `
nÿ
j“1

ˆż 1

0

Bjfpx0 ` τpx ´ x0qq dτ
˙
pxj ´ x

j
0q “: fpx0q `

nÿ
j“1

hjpxqpxj ´ x
j
0q,

(5.2)

where we’ve defined smooth functions hj : Ω Ñ R by hjpxq :“ ş1
0
Bjfpx0 ` τpx ´ x0qq dτ . To

make use of this formula, we can regard each of the coordinates x1, . . . , xn as smooth real-valued
functions on Ω and associate to these the smooth functions

Xj :“ Lpxjq P C8pΩq, j “ 1, . . . , n.

Linearity and the Leibniz rule, together with Claim 1, now produce from (5.2) the formula Lfpxq “řn
j“1

”
Lhjpxq ¨ pxj ´ x

j
0q ` hjpxqXjpxq

ı
, so in particular,

Lfpx0q “
nÿ
j“1

hjpx0qXjpx0q “
nÿ
j“1

Xjpx0qBjfpx0q.

The definition of the functions Xj P C8pΩq did not depend on the choice of point x0 P Ω, thus
this formula is valid for every such point, giving an equality of functions

Lf “
nÿ
j“1

XjBjf “ LXf on Ω,

where we define the smooth vector field X P XpΩq by Xpxq “ pX1pxq, . . . , Xnpxqq P Rn “ TxΩ.
Claim 3: If the theorem holds for a particular manifold M , then it also holds for every

manifold that is diffeomorphic to M .
Assume ψ : N Ñ M is a diffeomorphism between two manifolds, and the theorem is already

known to hold for M . Any derivation L on C8pNq then determines a “pushforward” derivation
ψ˚L on C8pMq via the formula

(5.3) pψ˚Lqf :“ Lpf ˝ ψq ˝ ψ´1.

By assumption, the latter is LX for some vector field X P XpMq, and it is reasonable to guess that
L will therefore correspond to the pullback vector field ψ˚X P XpNq as defined in §5.2. Let’s check
this: ψ˚X is defined by

ψ˚Xppq “ Tψ´1pXpψppqqq.
For g P C8pNq and p P N , we define f :“ g ˝ ψ´1 P C8pMq and use (5.3) to write

pLgqppq “ Lpf ˝ ψqppq “ rpψ˚Lqf spψppqq “ pLXfqpψppqq “ dfpXpψppqqq
“ dpg ˝ ψ´1qpXpψppqqq “ dg ˝ Tψ´1pXpψppqqq “ dgpψ˚Xppqq “ Lψ˚Xgppq,

so the guess is correct!
For the remaining claims, assume M is a fixed manifold and L : C8pMq Ñ C8pMq is a

derivation.
Claim 4: If f P C8pMq vanishes on a neighborhood of some point p PM , then Lfppq “ 0.
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To see this, suppose U Ă M is a neighborhood of p on which f P C8pMq vanishes, and
choose any g P C8pMq so that gppq “ 1 but g has compact support in U .26 Then fg “ 0, thus
0 “ pLfqg ` fpLgq, and evaluating the right hand side at p gives 0 “ Lfppq ¨ gppq “ Lfppq.

In light of linearity, a corollary of Claim 4 is that for any f P C8pMq, the value of Lfppq at
any given point p PM depends only on the values of f on an arbitrarily small neighborhood of p.

Claim 5: For any open subset U Ă M , L determines a unique derivation LU : C8pUq Ñ
C8pUq such that for every f P C8pMq, LUpf |Uq “ pLfq|U .

This follows from the observation at the end of Claim 4 that Lfppq depends on f only in
a neighborhood of p. Indeed, for any f P C8pUq, there is a unique function LUf P C8pUq
characterized by the property that for each p P U and fp P C8pMq with fp ” f near p, Lpf ” LUf

near p. It is straightforward to verify that LU defined in this way is a derivation.
Conclusion: Choose an open cover M “ Ť

αPI Uα such that for every α, there is a chart
pUα, xαq whose image xpUαq Ă Rn is convex. Claims 2 and 3 imply that the theorem holds for
each of the open subsets Uα ĂM , thus for the derivation Lα determined on C8pUαq by Claim 5,
we have Lα “ LXα

for some vector field Xα P XpUαq. We claim that for every pair α, β P I,
Xα and Xβ match on Uα X Uβ . Indeed, if Xαppq ‰ Xβppq for some point p, then we can find a
function f P C8pMq with compact support in Uα X Uβ such that LXα

fppq ‰ LXβ
fppq, which is a

contradiction since Lαpf |Uα
q and Lβpf |Uβ

q should both have the same restriction as Lf on UαXUβ.
The claim now implies that the vector fields Xα can be patched together to form a smooth vector
field X P XpMq, and in light of Claim 4, the relation Lf “ LXf now follows on each Uα from
Lpf |Uα

q “ LXα
pf |Uα

q. �

Remark 5.10. In light of Theorem 5.9, it is common in differential geometry to blur the
distinction between smooth vector fields on M and derivations on C8pMq, and many books even
use exactly the same notation for both, thus writing

Xf :“ LXf P C8pMq
so as to view the vector fieldX P XpMq as a differential operator acting on the function f P C8pMq.
I personally prefer not to do this, and will thus continue writing LX to distinguish the derivation
defined by a vector field X P XpMq from the vector field itself; the sole exception to this will be
the coordinate vector fields discussed in the next subsection. Many authors would probably call
this practice overly pedantic, and I cannot say with confidence that they are wrong.

Exercise 5.11. For a diffeomorphism ψ : M Ñ N , vector field X P XpMq and function
f P C8pMq, prove Lψ˚Xpψ˚fq “ ψ˚pLXfq P C8pNq.

5.4. Coordinate vector fields. Given a smooth chart pU , xq on a manifold M , the coordi-
nate functions x1, . . . , xn : U Ñ R define a natural family of derivations on C8pUq, namely the n
partial derivative operators

Bj :“ B
Bxj : C8pUq Ñ C8pUq, j “ 1, . . . , n,

which are defined by writing any function f P C8pUq in its local coordinate representation
px1, . . . , xnq ÞÑ fpx1, . . . , xnq and differentiating the resulting function of n variables as one would
in first-year analysis. The more precise way to say this is that for each f P C8pUq and p P U , the
function Bjf P C8pUq is given by

pBjfqppq :“ Bjpf ˝ x´1qpxppqq,
26Such a function can be constructed in local coordinates our of functions of the form Rn Ñ r0, 1s : x ÞÑ βp|x|2q,

where β : R Ñ r0, 1s is a smooth function with βptq “ 0 for all t ě ǫ ą 0 and βp0q “ 1. The construction of β is
an easy exercise once you’ve seen examples like hptq :“ e´1{t2 , a smooth function on p0,8q admitting a smooth
extension to R that vanishes on p´8, 0s.



48 FIRST SEMESTER (DIFFERENTIALGEOMETRIE I)

where the right-hand side is a perfectly ordinary partial derivative of a real-valued function of n real
variables. The fact that the operators B1, . . . , Bn define derivations on C8pUq follows immediately
from the usual product rule. The corresponding vector fields in XpUq are also easy to identify:
they come from the standard basis e1, . . . , en of Rn as transferred over to U by the chart, i.e. the
derivation Bj corresponds to the vector field

vjppq :“ pdpxq´1pejq, p P U .

Since this notation is bit clumsy, it has become conventional in differential geometry to use the
notation

B1, . . . , Bn or equivalently
B
Bx1 , . . . ,

B
Bxn P XpUq

not just for the derivations but also for the corresponding vector fields on U , and I will follow
that convention in these notes, in spite of what I said in Remark 5.10 above. We call these the
coordinate vector fields determined on U by the chart pU , xq. Two issues are very important to
understand:

(1) The vector fields B
Bxj are only defined on U Ă M ; it does not make sense to write

down formulas involving Bj everywhere on M unless pU , xq happens to be a global chart,
meaning U “M .

(2) For each individual j P t1, . . . , nu, the vector field B
Bxj depends not only on the coordinate

function xj : U Ñ R but on all n of the coordinates x1, . . . , xn. Indeed, the vector
B
Bxj points in the unique direction where xj increases but all the other coordinates are
constant. The issue is easy to see in simple examples, e.g. using the standard polar
coordinates pr, θq and Cartesian coordinates px, yq on suitable regions in R2, one can
define both pr, θq and pr, yq as smooth charts on the open right half-plane tx ą 0u Ă R2.
But the partial derivative operator B

Br has different meanings in these two coordinate
systems, because differentiating in a direction where r increases but θ is constant does
not typically give the same result as differentiating in a direction where r increases but y
is constant.

6. The Lie algebra of vector fields

We saw in the last lecture that there is a natural equivalence between the space of smooth
vector fields XpMq on a smooth manifoldM and the space of all derivations L : C8pMq Ñ C8pMq
on the algebra of smooth functions. It was also observed in Exercise 5.8 that the latter has a natural
Lie algebra structure defined via the commutator bracket

rL1, L2s :“ L1L2 ´ L2L1,

which is antisymmetric and satisfies the Jacobi identity (see Definition 5.7). Lie algebras are a
large topic that we will discuss in more detail next semester; if you have not seen them at all
before, then I would not expect you to have any intuition as to why a bilinear bracket satisfying
antisymmetry and the Jacobi identity might be an interesting or useful object to study. But we
will see a first example of the answer to that question in this lecture: the Lie algebra structure
on the space of vector fields characterizes the commutativity (or lack thereof) of their respective
flows. This will be easily the deepest result we have proved so far in this course, and it will serve
as a foundation for several later results involving curvature and integrability.

6.1. Components and the summation convention. Recall that any smooth chart pU , x “
px1, . . . , xnqq on a manifold M defines an associated set of coordinate vector fields B

Bx1 , . . . ,
B
Bxn P
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XpUq. These form a basis of TpM at each point p P U , so any X P XpMq restricted to U ĂM can
now be written uniquely in the form

(6.1) X “
nÿ
i“1

X iBi “
nÿ
i“1

X i B
Bxi

for uniquely defined smooth functions X1, . . . , Xn P C8pUq, called the components of X with
respect to the chart pU , xq. This observation will be useful for computations, but it becomes more so
if we can make the notation a bit less cumbersome. Einstein introduced a nice trick for this, which
is known as the Einstein summation convention: the trick is to omit the summation symbol,
but assume that whenever a matching pair of “upper” and “lower” indices appears, a summation
of that index over all coordinates (in this case from 1 to n) is implied. Using this convention, (6.1)
becomes

X “ X iBi “ X i B
Bxi ,

where the convention is also to interpret the upper index in B
Bxi as a lower index because it appears

in the denominator. (I advise you not to search for any deeper meaning behind this—just take it as
a definition for now, and you will see presently why it is useful.) The simplicity of this expression in
comparison with (6.1) is perhaps not so dramatic, but the Einstein convention becomes especially
useful in situations where multiple indices need to be summed over at the same time, which will
happen a lot once we start talking about tensors next week.

Let us derive a coordinate transformation formula: suppose p rU , rxq is a second chart with
U X rU ‰ H, and the components of X in these alternative coordinates over rU are denoted by rX i,
so X “ rX i B

Brxi on rU . How do the components X i and rX i relate to each other on the region U X rU
where their domains overlap?

To answer this, we start with the observation that for any f P C8pU X rUq, the chain rule
relates the partial derivatives of f with respect to the two different coordinate systems by

(6.2)
Bf
Bxi “

Bf
Brxj BrxjBxi ,

where the Einstein convention gives an implied summation
řn
j“1 on the right hand side. This

formula is hopefully familiar to you from analysis, at least when applied to functions on open
subsets of Rn; in the present setting, the partial derivatives on both sides are interpreted as
derivations applied to smooth functions on U X rU Ă M , but these have been defined in terms
of ordinary partial derivatives of functions on Rn. In that context, the left hand side is the ith
component of the gradient ∇f of f in coordinates px1, . . . , xnq, interpreted as a row vector, while
the right hand side is the ith component of the product of the row vector r∇f (the gradient of
f is coordinates prx1, . . . , rxnq with the Jacobian matrix Brx

Bx of the transition map px1, . . . , xnq ÞÑ
prx1px1, . . . , xnq, . . . , rxnpx1, . . . , xnqq. Equation (6.2) is thus equivalent to the relation

Dpf ˝ x´1qpxppqq “ Dpf ˝ rx´1qprxppqq ˝Dprx ˝ x´1qpxppqq,
which follows directly from the chain rule. Now, the function f was not actually important in this
discussion at all: what we are really interested in is a formula relating derivations, namely

(6.3)
B
Bxi “

Brxj
Bxi

B
Brxj ,

which can now equally well be interpreted as a formula for the coordinate vector field B
Bxi as a

linear combination of the other set of coordinate vector fields B
Brxj where they overlap. This implies

X “ X i B
Bxi “ X i Brxj

Bxi
B
Brxj “ rXj B

Brxj ,
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from which we derive (after interchanging the indices i and j just for good measure) the transfor-
mation formula

(6.4) rX i “ Brxi
BxjX

j.

You may agree that if we’d had to write summation symbols in all of these expressions, we would
be slightly more tired now. Notice that this formula has an easy interpretation in terms of
matrix-vector multiplication: if we package the components together into Rn-valued functions
ξ :“ pX1, . . . , Xnq : U Ñ Rn and rξ :“ p rX1, . . . , rXnq : rU Ñ Rn, then (6.4) relates these two
functions to each other via multiplication with the Jacobian matrix Brx

Bx :

rξ “ Brx
Bxξ.

The Einstein convention has nothing intrinsically to do with differential geometry—it is actually
just linear algebra. Once you get used to it, you may begin to wish you had always been doing
linear algebra this way.

We will use the Einstein convention consistently throughout the rest of this course, and only
include explicitly written summation symbols in situations where their omission might cause con-
fusion.

Remark 6.1. Using the summation convention requires being very careful and consistent
about the distinction between upper and lower indices: coordinates and components of vector
fields are always written with upper indices, while partial derivative operators (and their associated
coordinate vector fields) always carry lower indices. Forgetting these conventions can cause grave
confusion and should be avoided at all costs. Unfortunately, not all differential geometry books
written by mathematicians are completely consistent about this, though books by physicists are—
Einstein was one of them, after all, so his mathematical innovations are taken as gospel.

6.2. The Lie bracket. The Lie bracket (Lie-Klammer) of two vector fields X,Y P XpMq
on a manifold M is defined to be the unique vector field

rX,Y s P XpMq such that LrX,Y s “ LXLY ´ LY LX .

This definition makes sense as a consequence of Exercise 5.8 and Theorem 5.9. In particular, we
say that X and Y commute if rX,Y s ” 0.

Exercise 6.2. Suppose pU , xq is a chart on M and we express two vector fields X,Y P XpMq
over U in this chart as X “ X iBi and Y “ Y iBi.

(a) Show that the components rX,Y si of rX,Y s with respect to the same chart are given by

(6.5) rX,Y si “ Xj BY i
Bxj ´ Y j

BX i

Bxj .
(b) Use the coordinate transformation formulas (6.3) and (6.4) to give a direct computational

proof (without using the result of part (a)) that the vector field defined on U via the right
hand side of (6.5) depends only on X,Y P XpUq and not on the choice of chart pU , xq. In
other words, show that for any other chart p rU , rxq,ˆ

Xj BY i
Bxj ´ Y j

BX i

Bxj
˙ B
Bxi “

˜ rXj BrY i
Brxj ´ rY j B rX i

Brxj
¸

B
Brxi on U X rU .
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Hint: The matrices with entries Brxi

Bxj and Bxi

Brxj are Jacobi matrices for transformations that
are inverse to each other, thus they satisfy

Brxi
Bxj

Bxj
Brxk “ δik :“

#
1 if i “ k,
0 if i ‰ k.

Remark 6.3. Physicists like being able to do explicit computations, so they tend to emphasize
coordinate-based formulas in this subject much more than mathematicians do. For example, some
physics books take the formula (6.5) as a definition of the Lie bracket rX,Y s, without first talking
about commutators of derivations. The price for doing this is that one must prove that switching to
a different local coordinate system would not change the definition, i.e. one must do Exercise 6.2(b).
The exercise is tedious, but I recommend doing it exactly once in your life, as it may give you some
useful insight into the way that physicists do mathematics, and in any case, it is never bad to get
better at explicit computations. As a cautionary tale, I also recommend convincing yourself that
the simpler formula

Xj BY i
Bxj

B
Bxi “ rXj BrY i

Brxj B
Brxi on U X rU

is false in general, thus one cannot define a vector field Z “ ZiBi by Zi :“ XjBjY i and expect the
definition to be independent of the choice of coordinates.

Exercise 6.4. For X,Y P XpMq and f P C8pMq, give two proofs of the formulas

rfX, Y s “ f rX,Y s ´ pLY fqX, rX, fY s “ f rX,Y s ` pLXfqY,
using different methods:

(a) Directly from the definition of the Lie bracket via Theorem 5.9;
(b) Using the coordinate formula (6.5).

Exercise 6.5. For a diffeomorphism ψ : M Ñ N and two vector fields X,Y P XpMq, prove
ψ˚rX,Y s “ rψ˚X,ψ˚Y s P XpNq.

Example 6.6. The coordinate vector fields B1, . . . , Bn defined from any chart on an open subset
all commute with each other. One can deduce this either from the fact that BiBjf “ BjBif for all
smooth functions f ,27 or as a trivial application of the formula in Exercise 6.2.

My goal for the rest of this lecture is to explain not just what the Lie bracket of two vector fields
is, but what it means. The discussion starts with the following observation related to Example 6.6
above. Consider the manifoldM “ Rn with the standard Cartesian coordinates x1, . . . , xn regarded
as a global chart on M ; this chart is actually just the identity map Rn Ñ Rn. The resulting
coordinate vector fields B1, . . . , Bn produce the standard basis of the tangent space TpRn “ Rn at
every point p P Rn. It is easy to write down the flow of Bj for each j “ 1, . . . , n: it is

ϕtBj px1, . . . , xnq “ px1, . . . , xj´1, xj ` t, xj`1, . . . , xnq.
We see from this that for any two i, j P t1, . . . , nu and s, t P R, the corresponding flows commute:

ϕsBi ˝ ϕtBj “ ϕtBj ˝ ϕsBi .
This is a generalization of the basic observation that if you start from some point px, yq in the
plane R2, move a distance s to the right and then a distance t upward, you’ll end up at the same
point as if you had made those two moves in the reverse order, namely px`s, y`tq. In other words,

27And since this is not an analysis course, there is no need to worry about the fact that BiBjf “ BjBif does not
generally hold for functions whose second-order derivatives exist but are discontinuous. With very few exceptions,
all functions that we choose to worry about in the remainder of this course will be of class C8.
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the two paths, each consisting of two straight line segments, combine to form a closed rectangle.
This observation is not as trivial as it may seem: in particular, it becomes false in general if
you replace Bi and Bj by different vector fields, e.g. in the example of R2, one could replace the
“horizontal” coordinate vector field B1 with one that still points in the x-direction but flows at
different speeds along the lower and upper segments of the rectangle, in which case the rectangle
fails to close up. There is no reason in general why the flows of two vector fields should always
commute. They do commute in the case of coordinate vector fields on Rn, and it follows easily
that flows of coordinate vector fields determined by a chart pU , xq on a manifold M will generally
commute as long as one keeps s and t close enough to 0 so that the flow lines do not escape from U .
But pairs of coordinate vector fields are special, and one symptom of this is the fact that their Lie
brackets vanish. We will show in §6.4 that this is a general phenomenon: in particular, for any two
vector fields X,Y P XpMq whose flows exist globally, one has ϕsX ˝ϕtY “ ϕtY ˝ϕsX for all s, t P R if
and only if rX,Y s ” 0.

6.3. The Lie derivative of a vector field. Before we can prove a result on commuting flows,
we need a short digression to address the following question: What might it mean to differentiate a
vector field Y P XpMq at a point p PM in the direction X P TpM? A naive attempt to define this
would proceed as follows: choose any smooth path γ : p´ǫ, ǫq Ñ M with γp0q “ p and 9γp0q “ X ,
and set

LXY ppq ?
:“ d

dt
Y pγptqq

ˇ̌̌̌
t“0

“ lim
tÑ0

Y pγptqq ´ Y ppq
t

?

If Y were a real-valued function instead of a vector field, then we would be on solid ground with
this definition, but for a vector field the right hand side does not make sense: outside of the
uninteresting special case where γ is a constant path, Y pγptqq P TγptqM and Y ppq P TpM generally
belong to different vector spaces, so there is no well-defined way of subtracting one from the other.

A solution to this conundrum arises if one allows X to be a vector field onM , rather than just
a single tangent vector. In this case, the flow of X gives a natural choice of the path

γptq “ ϕtXppq,
which is defined for t in a sufficiently small interval p´ǫ, ǫq even if the flow does not globally exist.
More importantly, the tangent map of the flow gives rise to natural isomorphisms,

Tpϕ
t
X : TpM Ñ Tϕt

X
ppqM “ TγptqM

for t close to 0, which gives us a way of identifying with each other the distinct tangent spaces in
which Y ppq and Y pγptqq live. Since the inverse of TϕtX is Tϕ´tX , it now makes sense to define the
Lie derivative (Lie-Ableitung) of Y P XpMq with respect to X P XpMq as the vector field

LXY P XpMq, LXY ppq :“ d

dt
Tϕ´tX

`
Y pϕtXppqq

˘ˇ̌̌̌
t“0

“ lim
tÑ0

Tϕ´tX
`
Y pϕtX ppqq

˘´ Y ppq
t

.

Recalling the definition of the pullback of a vector field in §5.2, we can abbreviate this formula as

LXY “ d

dt
pϕtXq˚Y

ˇ̌̌̌
t“0

.

It turns out that LXY is just a new perspective on the Lie bracket:

Proposition 6.7. For any X,Y P XpMq, LXY “ rX,Y s.
Proof. We need to show that for every f P C8pMq,

(6.6) LLXY f “ LXLY f ´ LY LXf.
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In the following, when writing expressions such as ϕtXppq, we always assume that t is close enough
to 0 for this flow to be defined. With this understood, we claim that

f ˝ ϕtX “ f ` tgt

for some smooth family of smooth real-valued functions gt onM with g0 “ LXf P C8pMq.28 This
follows from the fundamental theorem of calculus: for p PM and t P R close to 0, we write

fpϕtXppqq ´ fppq “
ż 1

0

d

ds
fpϕstX ppqq ds “

ż 1

0

df
`BsϕstX ppq˘ ds

“
ż 1

0

df
`
tXpϕstXppqq

˘
ds “ t

ż 1

0

df
`
XpϕstXppqq

˘
ds,

define gtppq to be the integral on the right, and compute

g0ppq “
ż 1

0

df
`
Xpϕ0

Xppqq
˘
ds “

ż 1

0

dfpXppqq ds “ dfpXppqq “ LXfppq,
proving the claim. Using this formula, we find

df
`rpϕtXq˚Y sppq˘ “ df

`
Tϕ´tX pY pϕtXppqqq

˘ “ dpf ˝ ϕ´tX qpY pϕtX ppqqq
“ dpf ´ tgtq`Y pϕtX ppqq˘ “ df

`
Y pϕtX ppqq

˘´ t dgt
`
Y pϕtXppqq

˘
“ LY fpϕtXppqq ´ tLY gtpϕtXppqq.

If we now differentiate this relation with respect to t and set t “ 0, the left hand side becomes
dfpLXY ppqq “ LLXY fppq, while the right hand side becomes

dpLY fqpXppqq ´ LY g0ppq “ LXLY fppq ´ LY LXfppq,
proving (6.6). �

Remark 6.8. The formula LXY “ rX,Y s reveals that the Lie derivative of a vector field
does not quite admit the interpretation we were hoping for: if LXY ppq were merely the directional
derivative of Y P XpMq at p in the direction of X P TpM , then it should only depend on Y and
the specific value Xppq, but as we see in (6.5), rX,Y sppq also depends on the first derivatives of
X at p in coordinates, not just on its value. We will see later that a straightforward directional
derivative of anything more complicated than a real-valued function cannot typically be defined
without making additional choices, e.g. the definition of LXY ppq requires extending Xppq to a
vector field that takes that value at p, and the resulting derivative depends on that choice. We will
see a different and in some sense simpler way to define directional derivatives of vector fields when
we study connections later in the semester, but a connection is also a choice that is not canonically
defined in general.

6.4. Commuting flows. We can now discuss the relationship between the Lie bracket rX,Y s
and the question of whether the flows of X and Y commute. To understand the statement, recall
from §5.1 that for each X P XpMq and s P R, the flow defines a diffeomorphism

ϕsX : Os
X Ñ O

´s
X

between two open subsets Os
X ,O

´s
X Ă M , which may in general be empty, but are guaranteed

to be nonempty if s is close enough to 0; in fact, we have O0
X “ Ť

są0 O
s
X “ Ť

să0 O
s
X “ M .

28Saying that gt is a “smooth family” of functions on M means literally that the function pt, pq ÞÑ gtppq for
pt, pq in some open subset of R ˆ M is smooth. A slightly subtle point here is that we do not need the function
gt : M Ñ M to be well-defined everywhere on M for some t ‰ 0; for our purposes, it will suffice if gtppq is defined
for all pt, pq in some neighborhood of the set t0u ˆ M . If M is not compact, it may happen that the domain of
pt, pq ÞÑ gtppq does not contain any set of the form ttu ˆM for t ‰ 0, but is still an open neighborhood of t0u ˆM .
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For another vector field Y P XpMq and another t P R, the composition ϕtY ˝ ϕsX is defined on
pϕsX q´1pOt

Y q ĂM , which is also open and could be empty, but is definitely not empty if both |s|
and |t| are sufficiently small. The domain of ϕsX ˝ ϕtY may be a different open subset of M , but
is also guaranteed to overlap the domain of ϕtY ˝ ϕsX if |s| and |t| are sufficiently small; in fact
for every p P M , there exists ǫ such that both ϕsX ˝ ϕtY ppq and ϕtY ˝ ϕsXppq are defined whenever
|s|, |t| ă ǫ.

Theorem 6.9. For two smooth vector fields X,Y P XpMq on a manifold M , the following
conditions are equivalent:

(i) rX,Y s ” 0;
(ii) Suppose p P M and s, t P R are such that ϕσX ˝ ϕτY ppq is defined for all σ between 0 and

s and all τ between 0 and t. Then ϕτY ˝ ϕσXppq is also defined for all such σ and τ , and
it equals ϕσX ˝ ϕτY ppq. In particular, if X and Y both have global flows, then they define
commuting diffeomorphisms

ϕsX ˝ ϕtY “ ϕtY ˝ ϕsX P DiffpMq
for all s, t P R.

Proof. We prove first that (ii) ñ (i), so suppose X and Y are two vector fields whose flows
commute in the sense described in the statement. For each p P M , one can find a neighborhood
U Ă R2 of p0, 0q small enough so that the smooth map

α : U ÑM : ps, tq ÞÑ ϕsX ˝ ϕtY ppq “ ϕtY ˝ ϕsX ppq
is well-defined via either of the compositions on the right hand side. This map satisfies Bsαps, tq “
Xpαps, tqq and Btαps, tq “ Y pαps, tqq, where the proof of the first identity requires the first version
of the composition, and the second requires the second. Given f P C8pMq, we now define g :“
f ˝ α : U Ñ R and observe that

LXfpαps, tqq “ Bsgps, tq and LY fpαps, tqq “ Btgps, tq,
and similarly,

LXLY fpαps, tqq “ BsBtgps, tq “ BtBsgps, tq “ LY LXfpαps, tqq.
This proves in particular that pLXLY ´ LY LXqfppq “ 0, hence rX,Y sppq “ 0 for all p PM .

To prove (i) ñ (ii), assume rX,Y s ” 0, and fix p P M and s, t P R satisfying the condition
specified in (ii). Then for each σ in the interval between 0 and s, ϕσX defines a diffeomorphism

M
openĄ Oσ

X

ϕσ
XÝÑ O

´σ
X

openĂ M

whose domain and target satisfy Oσ
X Ą Os

X and O
´σ
X Ą O

´s
X respectively, and moreover, the flow

line γpτq :“ ϕτY ppq exists and has image in Os
X for τ in the interval between 0 and t. The main

step in the proof will be to show that for every σ between 0 and s, the pullback of the vector field
Y from O

´σ
X to Oσ

X via ϕσX matches Y itself on Os
X , i.e.

(6.7) Y “ pϕσX q˚Y on Os
X .

Assuming this for the moment, it then follows from Proposition 5.4 and (6.7) that the path τ ÞÑ
ϕσX ˝γpτq for τ between 0 and t is also a flow line of Y , namely the unique one beginning at ϕσXppq,
which proves

ϕτY pϕσX ppqq “ ϕσX pγpτqq “ ϕσXpϕτY ppqq.
It remains only to prove (6.7). Since the statement is clearly true for σ “ 0, it will suffice

to prove that the derivative of the family of vector fields pϕσX q˚Y with respect to the parameter
σ vanishes at every point on Os

X for all σ between 0 and s. To see this, we use the identities
rX,Y s “ LXY “ 0 and ϕσ`τX “ ϕτX ˝ ϕσX , which gives pϕσ`τX q˚ “ pϕσX q˚pϕτX q˚ by Exercise 5.5.



7. TENSORS 55

In the following, we will only need the latter relation for values of τ P R that are arbitrarily close
to 0, thus we will be free to assume that any given point in the domain of ϕσX is also in the domain
of ϕσ`τX . Working over the open set Os

X , we now compute,

d

dσ
pϕσXq˚Y “ d

dτ
pϕσ`τX q˚Y

ˇ̌̌̌
τ“0

“ d

dτ
pϕσXq˚pϕτX q˚Y

ˇ̌̌̌
τ“0

“ pϕσX q˚
ˆ
d

dτ
pϕτXq˚Y

ˇ̌̌̌
τ“0

˙
“ pϕσXq˚pLXY q “ 0.

�

7. Tensors

It will turn out that many types of “geometric structure” on manifolds can be expressed in
terms of multilinear maps on tangent and cotangent spaces, known collectively as tensor fields.
Before beginning with the contents of this lecture, I should remind you that the Einstein summation
convention (see §5.4) is in effect from now on—we are going to be needing it a lot. We will also
need the following convenient notational device: for any pair of indices i, j P t1, . . . , nu, we define

δij “ δij “ δij :“
#
1 if i “ j,

0 if i ‰ j.

The choice of whether each index is an upper or lower index will depend on the context, but the
meaning will always be the same. So for example, if A P GLpn,Rq is a matrix with entries Aij ,
the matrix-multiplication relation AA´1 “ 1 becomes

AijpA´1qjk “ δik.

Here it is very important to remember that by the summation convention, the symbol “
řn
j“1” has

been omitted from the left hand side; we chose to write the first index of Aij as an upper index
and the second as a lower index mainly so that this use of the summation convention would work.
Here is another example that already came up in our discussion of vector fields (cf. Exercise 6.2):
if pU , xq and p rU , rxq are two overlapping charts on a manifold M , then at every point in U X rU , the
matrices with entries Brxi

Bxj and Bxi

Brxj are inverse to each other, as they are Jacobi matrices of inverse
transition maps, thus

Brxi
Bxj

Bxj
Brxk “ δik.

Other versions of δ will sometimes arise with the indices placed in various ways in order to make
the summation convention work. This symbol is known as the Kronecker delta, and maybe it
would have been called something different if it had been invented in the age of Covid-19, but here
we are.

7.1. Motivational examples. In order to motivate the idea of a tensor field on a manifold,
it’s best to start with a few examples that are already somewhat familiar.

7.1.1. One-forms. Any smooth function f :M Ñ R has a differential

df : TM Ñ R,

whose restriction to each individual tangent space TpM is a linear map TpM Ñ R and thus an
element of the cotangent space Tp̊M . In this sense, df is analogous to a vector field, but instead
of associating a tangent vector Xppq P TpM to every point p PM , it associates a cotangent vector
dpf P Tp̊M , thus defining a map

M Ñ T ˚M : p ÞÑ dpf.
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In general, a map
λ : TM Ñ R

whose restriction to each individual tangent space is linear is called a 1-form on M , or sometimes
also a dual vector field or covector field. For each p PM , it is common to denote the restriction
λ|TpM : TpM Ñ R by

λp P Tp̊M “ HompTpM,Rq,
hence one can equivalently view a 1-form λ as associating to each point p PM a cotangent vector
λp P Tp̊M . For the special case where λ is the differential of a function f , we have been writing
dpf P Tp̊M for the restriction to TpM , but the notation pdfqp would also be sensible, and is
preferred by many authors.29

Since we have not yet endowed the cotangent bundle T ˚M with a smooth structure, we need
to put some thought into defining what it means for a 1-form to be “smooth”. The easiest way
to do this is by writing it in local coordinates. Any chart pU , xq on M gives rise to coordinate
functions xi : U Ñ R for i “ 1, . . . , n, whose differentials dxi are 1-forms on U .

Proposition 7.1. For each p P U , every element λ P Tp̊M can be expressed as a linear
combination λ “ λi dpx

i for unique real numbers λ1, . . . , λn P R. In other words, the differentials
dpx

1, . . . , dpx
n form a basis of Tp̊M .

Proof. What’s actually happening here is that dpx1, . . . , dpxn is the dual basis to the basis of
coordinate vector fields B1, . . . , Bn defined by the chart pU , xq at p; indeed, for each i, j P t1, . . . , nu,

dxipBjq “ dxi
ˆ B
Bxj

˙
“ L B

Bxj
xi “ Bxi

Bxj “ δij .

The coefficients λi are thus given by λi “ λpBiq. �

The 1-forms dx1, . . . , dxn on U defined by a chart pU , xq are known as the coordinate differ-
entials, and Proposition 7.1 implies that every 1-form λ can be written over the region U as

λ “ λi dx
i,

where its uniquely determined component functions λi : U Ñ R are given by

λippq :“ λ

ˆ B
Bxi ppq

˙
, p P U .

For example, the component functions of the differential df are precisely the partial derivatives
of f , namely pdfqi “ dfpBiq “ Bif : U Ñ R, giving rise to the formula

df “ Bif dxi on U ,

which was understood for at least two centuries in terms of “infinitessimal quantities” before it was
given a mathematically rigorous meaning in terms of 1-forms.

Remark 7.2. Notice that while components of vector fields are written with upper indices,
components of 1-forms get lower indices. This is necessary in order for the summation convention
to work properly, since coordinate differentials come with upper indices.

29Or if one prefers to think of df as a function M Ñ T˚M , one can write dfppq instead of dpf or pdfqp . I have
done that in some of my research papers, but will avoid it in these notes for the sake of consistency, as we have
defined df as a function TM Ñ R rather than M Ñ T˚M .
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Exercise 7.3. Suppose pU , xq and p rU , rxq are two smooth charts with UX rU ‰ H, so any 1-form
λ can be written as both λi dxi and rλi drxi in the overlap region. Prove the following coordinate
transformation formulas on U X rU , analogous to the formulas (6.3) and (6.4) for vector fields:

(7.1) dxi “ Bxi
Brxj drxj and rλi “ λj

Bxj
Brxi .

The formula (7.1) shows that if a 1-form has smooth component functions with respect to any
given chart, its component functions in any other chart defined on the same domain will also be
smooth, due to the fact that transition maps (and therefore also their derivatives Bxi

Brxj ) are smooth.
The following definition therefore makes sense.

Definition 7.4. A 1-form on M is said to be smooth if and only if its component functions
with respect to every chart are smooth. The set of all smooth 1-forms on M forms a vector space,
which we denote by

Ω1pMq :“ tsmooth 1-forms on Mu .
Exercise 7.5. Show that a 1-form λ onM is smooth if and only if the function M Ñ R : p ÞÑ

λpXppqq is smooth for every smooth vector field X P XpMq.
From now on, we will assume that all 1-forms we consider are smooth unless stated otherwise.
7.1.2. Vector fields. Recall that every finite-dimensional vector space V is naturally isomorphic

to the dual of its dual space, with a canonical isomorphism Φ : V Ñ V ˚˚ given by

Φpvqλ :“ λpvq.
If we choose to, we can therefore also think of every tangent space TpM as a dual space, namely
pTp̊Mq˚, meaning that every vector field X P XpMq can equivalently be viewed as associating
to each p P M a linear map τp : Tp̊M Ñ R, defined by τppλq :“ λpXppqq. I’m sure you can
imagine why we didn’t define vector fields this way in the first place, but we could have done so
if we’d wanted to. From this perspective, the notion of smoothness for a vector field can also be
characterized analogously to Exercise 7.5:

Exercise 7.6. Show that a vector field X on M is smooth if and only if the function M Ñ
R : p ÞÑ λpXppqq is smooth for every smooth 1-form λ P Ω1pMq.

7.1.3. Riemannian metrics. A Riemannian metric g on a manifoldM associates to every point
p PM an inner product gp on TpM , so in particular, gp is a bilinear map

gp : TpM ˆ TpM Ñ R

that is also symmetric and positive-definite. We can think of g itself as a function

g : TM ‘ TM Ñ R,

where TM ‘ TM :“ Ť
pPM pTpM ˆ TpMq. As a provisional notion of smoothness for Riemannian

metrics, we can define g to be smooth if and only if the function

M Ñ R : p ÞÑ gpXppq, Y ppqq
is smooth for every pair of smooth vector fields X,Y P XpMq. Under this condition, g is an example
of something we will shortly define as a “smooth covariant tensor field of rank 2” on M .
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7.1.4. Almost complex structures. Here is an example you may not have heard of before. One
can make any 2n-dimensional real vector space V into an n-dimensional complex vector space by
choosing a linear map J : V Ñ V with J2 “ ´1 and defining complex scalar multiplication on V
by pa ` ibqv :“ av ` bJv. Such a linear map J is therefore called a complex structure on V .
It is sometimes useful to introduce such a structure on the tangent spaces of an even-dimensional
manifold M . An almost complex structure (fast komplexe Struktur) on M is a map

J : TM Ñ TM

whose restriction to each individual tangent space is a complex structure Jp : TpM Ñ TpM . We
can define J to be smooth if and only if the vector field p ÞÑ JXppq is smooth for all smooth
vector fields X P XpMq. The following lemma gives an alternative algebraic way of understanding
what an almost complex structure is.

Lemma 7.7. For a finite-dimensional real vector space V , let EndpV q “ HompV, V q denote the
vector space of all linear maps V Ñ V , V ˚ “ HompV,Rq the dual space of V , and HompV ˚bV,Rq
the vector space of all bilinear maps V ˚ ˆ V Ñ R. There exists a canonical isomorphism

Φ : EndpV q Ñ HompV ˚ b V,Rq, ΦpAqpλ, vq :“ λpAvq.
Proof. It is easy to check that Φ is a linear injection, and if dimV “ n, then dimEndpV q “

dimHompV ˚ b V,Rq “ n2, thus Φ is also surjective. �

For an almost complex structure J on M , Lemma 7.7 allows us to view Jp : TpM Ñ TpM

equivalently as a bilinear map Tp̊MˆTpM Ñ R, and from this perspective, one can check that J is
smooth (according to our previous definition) if and only if the function M Ñ R : p ÞÑ Jpλp, Xppqq
is smooth for all choices of smooth vector field X P XpMq and smooth 1-form λ P Ω1pMq.

7.2. Tensor fields in general. We now describe a more general notion that encompasses all
of the examples in §7.1 as special cases.

Recall that for vector spaces V1, . . . , Vn and W , a map

T : V1 ˆ . . .ˆ Vn Ñ W

is called multilinear if it is linear with respect to each variable individually, i.e. for every i “
1, . . . , n and every fixed tuple of vectors vj P Vj for j “ 1, . . . , i´ 1, i` 1, . . . , n, the map

Vi ÑW : vi ÞÑ T pv1, . . . , vnq
is linear. Observe that the space of all multilinear maps V1 ˆ . . . ˆ Vn Ñ W is naturally also a
finite-dimensional vector space. We will sometimes denote it by30

HompV1 b . . .b Vn,W q.
Definition 7.8. For integers k, ℓ ě 0 with k ` ℓ ą 0 and a finite-dimensional real vector

space V , we will denote by V kℓ the vector space of multilinear maps

V ˚ ˆ . . .ˆ V ˚loooooooomoooooooon
k

ˆV ˆ . . .ˆ Vloooooomoooooon
ℓ

Ñ R,

where V ˚ as usual denotes the dual space HompV,Rq. In the case k “ ℓ “ 0, we define V 0
0 “ R.

30We will not make use of the abstract algebraic notion of the tensor product of vector spaces in this lecture,
but readers already familiar with that notion may want to pause and consider why our definition of the symbol
“HompV1b . . .bVn,W q” is equivalent to the one they’ve seen before. It is important that we are explicitly assuming
all vector spaces to be finite dimensional in this discussion; if we did not assume this, then some more serious
digressions into the meaning of the symbol “b” would be necessary.
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Remark 7.9. To motivate the convention V 0
0 “ R, you can imagine perhaps that a “real-valued

multilinear function of zero variables” is the same thing as a real number. If that doesn’t convince
you, the convention will at least begin to seem more natural when we discuss tensor products
(cf. Remark 7.19).

Definition 7.10. For a smooth manifoldM and integers k, ℓ ě 0, a tensor field (Tensorfeld)
S of type pk, ℓq associates to each point p PM an element

Sp P pTpMqkℓ .
If k ` ℓ ą 0, then the tensor field S is said to be smooth if and only if the function M Ñ R :

p ÞÑ Sppλ1p, . . . , λkp, X1ppq, . . . , Xℓppqq is smooth for every tuple of smooth vector fields X1, . . . , Xℓ P
XpMq and smooth 1-forms λ1, . . . , λk P Ω1pMq. We will denote the vector space of smooth tensor
fields by

ΓpT kℓ Mq :“ tsmooth tensor fields of type pk, ℓqu .
For k “ ℓ “ 0, a tensor field is just a real-valued function on M , so we define ΓpT 0

0Mq :“ C8pMq.
The support (Träger) of a tensor field S P ΓpT kℓ Mq is defined as the closure in M of the set

tp PM | Sp ‰ 0u.
Example 7.11. A smooth 1-form is equivalently a smooth tensor field of type p0, 1q:

Ω1pMq “ ΓpT 0
1Mq.

Just as 1-forms λ P Ω1pMq are regarded as functions TM Ñ R, it will often be useful to regard
a tensor field S P ΓpT kℓ Mq in the case k ` ℓ ą 0 as a function

S : T ˚M‘k ‘ TM‘ℓ Ñ R,

where we introduce the notation

T ˚M‘k ‘ TM‘ℓ :“ ď
pPM

¨̊
˝Tp̊M ˆ . . .ˆ Tp̊Mlooooooooooomooooooooooon

k

ˆTpM ˆ . . .ˆ TpMloooooooooomoooooooooon
ℓ

‹̨‚.
The key property of S is then that its restriction Sp to Tp̊M ˆ . . .ˆ Tp̊M ˆ TpM ˆ . . .ˆ TpM Ă
T ˚M‘k ‘ TM‘ℓ for each p PM is a multilinear map.

In the setting of smooth manifolds, the term “tensor field” is often abbreviated simply as
tensor. The terminology for tensors of type pk, ℓq can also vary among different sources, e.g. one
sometimes says that a tensor S P ΓpT kℓ Mq is contravariant of rank k and covariant of rank ℓ.
The latter terminology is especially favored among physicists.

Example 7.12. Under the canonical isomorphism identifying each tangent space TpM with
HompTp̊M,Rq, a smooth vector field becomes the same thing as a smooth tensor field of type p1, 0q,
hence

XpMq “ ΓpT 1
0Mq.

Here the function T ˚M Ñ R corresponding to a given vector field X P XpMq sends λ P Tp̊M to
λpXppqq.

Example 7.13. Every Riemannian metric (see §7.1.3) is an example of a tensor field of type
p0, 2q.

Example 7.14. Every almost complex structure (see §7.1.4) is an example of a tensor field of
type p1, 1q.
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Exercise 7.15. Generalize Lemma 7.7 to show the following: for any finite-dimensional real
vector spaces V1, . . . , Vn,W , there exists a canonical isomorphism

HompV1 b . . .b Vn,W q ΦÑ HompW˚ b V1 b . . .b Vn,Rq,
ΦpAqpλ, v1, . . . , vnq :“ λpApv1, . . . , vnqq.

Example 7.16. For arbitrary integers ℓ ě 1, Exercise 7.15 identifies any tensor field S of type
p1, ℓq with a map ď

pPM

¨̋
TpM ˆ . . .ˆ TpMloooooooooomoooooooooon

ℓ

‚̨“: TM‘ℓ pSÝÑ TM

whose restriction pSp to TpM ˆ . . .ˆTpM for each p PM is a multilinear map TpM ˆ . . .ˆTpM Ñ
TpM . The precise correspondence between S and pS is given by

Spλ,X1, . . . , Xℓq “ λ
`pSpX1, . . . , Xℓq˘,

and it is straightforward to show that S is smooth if and only if pSpX1, . . . , Xℓq defines a smooth
vector field for all choices of smooth vector fields X1, . . . , Xℓ P XpMq. The case ℓ “ 0 also fits
into this picture if one adopts the perspective that a “TpM -valued function of zero variables” just
means an element of TpM : this reproduces the observation in Example 7.12 that tensor fields of
type p1, 0q are equivalent to vector fields.

Remark 7.17. The alternative perspective on tensors of type p1, ℓq in Example 7.16 will
generally be quite useful, and from now on we will typically use the same notation for the objects
that are called S and pS in that example. We have already adopted this convention in our discussion
of vector fields and almost complex structures as tensors of type p1, 0q and p1, 1q respectively.

Definition 7.18. For S P ΓpT kℓ Mq and T P ΓpT rsMq, the tensor product (Tensorprodukt)
of S and T is the tensor field S b T P ΓpT k`rℓ`s Mq defined at each point p PM by

pS b T qppλ1, . . . , λk, µ1, . . . , µr, X1, . . . , Xℓ, Y1, . . . , Ysq :“
Sppλ1, . . . , λk, X1, . . . , Xℓq ¨ Tppµ1, . . . , µr, Y1, . . . , Ysq.

Remark 7.19. For f P C8pMq “ ΓpT 0
0Mq, the tensor product of f with S P ΓpT kℓ Mq is just

the ordinary point-wise product of S with a scalar-valued function, i.e. pfbSqp “ pSbfqp “ fppqSp.
7.3. Coordinate representations. We’ve seen that a chart pU , xq on M gives rise to co-

ordinate vector fields B1, . . . , Bn P XpUq and coordinate differentials dx1, . . . , dxn P Ω1pUq which
define bases of TpM and Tp̊M respectively at each point p P U . Regarding vector fields as tensors
of type p1, 0q, it turns out that a natural basis of pTpMqkℓ can then be constructed by taking all
possible tensor products of k coordinate vector fields with ℓ coordinate differentials. Indeed:

Proposition 7.20. Given a chart pU , xq on an n-manifold M , every tensor field S of type
pk, ℓq can be written uniquely over U as

(7.2) S “ Si1...ikj1...jℓ
B
Bxi1 b . . .b B

Bxik b dxj1 b . . .b dxjℓ ,

where the nk`ℓ component functions Si1...ikj1...jℓ : U Ñ R are given by

Si1...ikj1...jℓ :“ Spdxi1 , . . . , dxik , Bj1 , . . . , Bjℓq.
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Remark 7.21. Writing down (7.2) without the Einstein summation convention would have
required inserting the symbols

nÿ
i1“1

. . .

nÿ
ik“1

nÿ
j1“1

. . .

nÿ
jℓ“1

just to the right of the equal sign, so the right hand side is actually a sum of nk`ℓ terms.

Proof of Proposition 7.20. Any ℓ vector fields can be written over U as Xa “ X i
a Bi for

a “ 1, . . . , ℓ with unique component functions X i
a : U Ñ R, and similarly, any k 1-forms can be

written as λb “ λbj dx
j with unique components λbj : U Ñ R. By multilinearity, we then have

Spλ1, . . . , λk, X1, . . . , Xℓq “ Spλ1i1 dxi1 , . . . , λkik dxik , Xj1
1 Bj1 , . . . , Xjℓ

ℓ Bjℓq
“ Si1...ikj1...jℓλ

1
i1
. . . λkikX

j1
1 . . .X

jℓ
ℓ .

(7.3)

It is straightforward to check that the tensor field on the right hand side of (7.2) gives the same
result when evaluated on the same tuple of vector fields and 1-forms. �

Exercise 7.22. Show that a tensor field of type pk, ℓq is smooth if and only if for every smooth
chart, the corresponding component functions are all smooth.

Exercise 7.23. Show that in local coordinates, the components of two tensor fields S P
ΓpT kℓ Mq, T P ΓpT rsMq and their tensor product S b T P ΓpT k`rℓ`s Mq are related by

pS b T qi1...ika1...arj1...jℓb1...bs “ Si1...ikj1...jℓT
a1...ar

b1...bs
.

Exercise 7.24. Suppose pU , xq and p rU , rxq are two smooth charts with UX rU ‰ H, and denote
the component functions of a tensor field S P ΓpT kℓ Mq with respect to each chart by Si1...ikj1...jℓ
and rSi1...ikj1...jℓ respectively. Prove that on the overlap region U X rU ,
(7.4) rSi1...ikj1...jℓ “ Brxi1

Bxa1 . . .
Brxik
Bxak S

a1...ak
b1...bℓ

Bxb1
Brxj1 . . . BxbℓBrxjℓ .

Hint: Use (6.3) and (7.1).

Remark 7.25. We have been writing all tensor fields so far as functions that take covectors
λ1, . . . , λk followed by vectors X1, . . . , Xℓ, but in some circumstances, one may want to be more
flexible with the ordering, so that e.g. a tensor of type p1, 2q could be written as a multilinear
function

TM ‘ T ˚M ‘ TM Ñ R : pX,λ, Y q ÞÑ SpX,λ, Y q.
The component functions of such a tensor would then be written as S j

i k , with evaluation on
X “ X i Bi, λ “ λj dxj and Y “ Y k Bk defined by the rule

SpX,λ, Y q “ S
j
i kX

iλjY
k.

Example 7.26. Suppose J : TM Ñ TM is an almost complex structure, so Jp : TpM Ñ TpM

is a linear map satisfying J2
p “ ´1 for every p PM . As we’ve seen, J can be regarded as a tensor

field of type p1, 1q and thus defines a function T ˚M ‘ TM Ñ R, with component functions with
respect to a chart pU , xq written as

J ij “ Jpdxi, Bjq :“ dxipJBjq, i, j P t1, . . . , nu.
In this line, the second expression views Jp as a bilinear map Tp̊M ˆ TpM Ñ R, while the third
views it as a linear map TpM Ñ TpM . This means that for two tangent vectors X “ X i Bi and
Y “ Y i Bi at a point p P U , we have

JX “ Y ðñ Y i “ dxipY q “ dxipJXq “ dxipJpXj Bjqq “ Xj dxipJBjq “ J ijX
j ,
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so in other words, the linear map Jp : TpM Ñ TpM is represented in coordinates by matrix-vector
multiplication: the n-by-n matrix with entries J ij gets multiplied by the n-dimensional row vector
with entries Xj to produce the row vector with entries pJXqi. The condition J2 “ ´1 can thus
be expressed in local coordinates on U as

J ij J
j
k ” ´δik on U .

From this perspective, the transformation formula (7.4) also ends up looking like something familiar
from linear algebra: the component functions J ij and rJ ij for two overlapping charts pU , xq and
p rU , rxq are related by rJ ij “ Brxi

Bxk J
k
ℓ

Bxℓ
Brxj .

In terms of matrices, this just says

rJ “ ˆBrx
Bx

˙
J

ˆBrx
Bx

˙´1

,

where J and rJ denote the n-by-n matrices with entries J ij and rJ ij respectively, while Brx
Bx is the

n-by-n Jacobian matrix with entries Brxi

Bxj .

8. Derivatives of tensors and differential forms

We motivate this lecture with the following question: for a smooth tensor field S P ΓpT kℓ Mq,
can one define a “directional derivative” of S at a point p P M in the direction X P TpM? We
considered this question for the special case of vector fields Y P XpMq “ ΓpT 1

0Mq in §6.3, and the
answer we came up with there was not entirely satisfactory: a vector field Y can be differentiated
with respect to another vector field X , producing the Lie derivative LXY P XpMq, but LXY ppq
depends on X as a vector field, not just on the value Xppq (see Remark 6.8). Naively, one might
hope for instance that if S P ΓpT kℓ Mq has components Si1...ikj1...jℓ with respect to some chart
pU , xq, then one could define a tensor “dS” of type pk, ℓ` 1q whose components are

(8.1) “pdSqi1...ikj0...jℓ “ Bj0Si1...ikj1...jℓ ”,
so that for any p PM andX P TpM , the multilinear map pdSqp. . . , X, . . .q : pTp̊MqˆkˆpTpMqˆℓ Ñ
R could be interpreted as the derivative of S in the direction X . But I put that expression in
quotation marks because, indeed, it doesn’t work: outside of the special case k “ ℓ “ 0 where the
objects we are differentiating are just real-valued functions, one cannot define from S P ΓpT kℓ Mq
any tensor field dS P ΓpT kℓ`1Mq whose components are given in all choices of local coordinates by
(8.1). (Exercise 8.1(b) below asks you to prove this in the case pk, ℓq “ p0, 1q.) In other words, the
formula (8.1) is not coordinate invariant.

Before discussing directional derivatives further, we should talk about a sticky issue that arose
in the previous paragraph: what practical methods do we have for writing down the definition
of a tensor field? What we attempted above could be called the physicists’ method : it starts by
choosing a chart pU , xq and writing down a formula for the component functions of the tensor with
respect to those local coordinates. That is fine if one only needs a tensor field defined on the subset
U ĂM , but the hope of course is that the formula we write down might be valid in arbitrary local
coordinates, in which case it gives a well-defined tensor field everywhere on M . The important
step is therefore to check, using the transformation formula (7.4), that the definition we’ve written
is coordinate invariant, and that is what fails in the case of (8.1). On the other hand, sometimes
it succeeds, for instance:

Exercise 8.1. Prove:
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(a) For any λ P ΓpT 0
1Mq, there exists a tensor field S P ΓpT 0

2Mq whose components Sij with
respect to arbitrary charts pU , xq are related to the corresponding components λi of λ by

Sij “ Biλj ´ Bjλi.
(b) For general choices of λ, one cannot similarly define S P ΓpT 0

2Mq so that its relation to
λ in arbitrary local coordinates is Sij “ Biλj .

Physicists like to summarize the result of Exercise 8.1(a) by saying that the expression Biλj ´
Bjλi “defines a tensor” of type p0, 2q. In fact, many textbooks on general relativity give a definition
of tensors that is cosmetically quite different from ours: without mentioning multilinear maps, they
define a tensor S of type pk, ℓq as an association to each chart pU , xq of a collection of real-valued
functions Si1...ikj1...jℓ : U Ñ R that satisfy the transformation formula (7.4). There are good
theoretical reasons why mathematicians do not usually give that as the definition of a tensor field,
and contrary to what many physicists may tell you, it is also not true that defining a tensor or
computing something from it always requires choosing local coordinates.

8.1. C8-linearity. Here is a trick for writing down tensor fields that mathematicians tend
to prefer, because it does not require local coordinates. For example, let us regard a tensor field S
of type p1, ℓq as associating to each point p PM an ℓ-fold multilinear map Sp : TpMˆ . . .ˆTpM Ñ
TpM , as described in Example 7.16. It therefore also defines a multilinear map

(8.2) S : XpMq ˆ . . .ˆ XpMqloooooooooooomoooooooooooon
ℓ

Ñ XpMq,

by interpreting SpX1, . . . , Xℓq for any tuple of smooth vector fields X1, . . . , Xℓ as the vector field

p ÞÑ SppX1ppq, . . . , Xℓppqq.
We already know one important concrete example of multilinear map of this type: the Lie bracket
is a bilinear map

r¨, ¨s : XpMq ˆ XpMq Ñ XpMq.
But does the Lie bracket therefore define a tensor field of type p1, 2q? It would be surprising if
this were true, because being a tensor field would imply that the value rX,Y sppq for each p P M
depends only on the valuesXppq and Y ppq, whereas we saw in Exercise 6.2 that in local coordinates,
rX,Y sppq also depends on the first derivatives of X and Y at p. An easy way to make this intuition
more precise is via the following observation: if S is a tensor field, then the map in (8.2) is not
just multilinear, it also satisfies

(8.3) SpX1, . . . , Xj´1, fXj, Xj`1, . . . , Xℓq “ fSpX1, . . . , Xℓq for all f P C8pMq
for every j “ 1, . . . , ℓ. The key point here is that the function f does not need to be constant, so
this is a much stronger statement than just saying that (8.2) respects scalar multiplication (as every
multilinear map must). A multilinear map on the space of vector fields is said to be C8-linear
in its jth argument if it satisfies (8.3). In general, the notion of C8-linearity can be defined for
multilinear maps between any vector spaces on which there is a natural notion of multiplication
by smooth functions31, e.g. we had XpMq in the above example because the product of a smooth
vector field with a smooth function is also a smooth vector field, but for similar reasons, one could
just as well work with Ω1pMq, the other spaces of smooth tensor fields ΓpT kℓ Mq, or C8pMq itself.
From this perspective, the obvious reason why the Lie bracket does not define a tensor field is that
it is not C8-linear: according to Exercise 6.4, it satisfies

rfX, Y s “ f rX,Y s ´ pLY fqX, rX, fY s “ f rX,Y s ` pLXfqY,
31in other words, spaces that are naturally modules over C8pMq
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for f P C8pMq, which is not the desired relation except in the special case where f is constant.
It will be exceedingly useful to observe that C8-linearity is not only necessary for a multilinear

map on vector fields or 1-forms to define a tensor field—it is also sufficient.

Proposition 8.2. For a multilinear map

S : Ω1pMq ˆ . . .ˆ Ω1pMqlooooooooooooomooooooooooooon
k

ˆXpMq ˆ . . .ˆ XpMqloooooooooooomoooooooooooon
ℓ

Ñ C8pMq

that is C8-linear in every argument, there exists a unique tensor field pS P ΓpT kℓ Mq such that for
every p PM , X1, . . . , Xℓ P XpMq and λ1, . . . , λk P Ω1pMq,pSpλ1p, . . . , λkp , X1ppq, . . . , Xℓppqq “ Spλ1, . . . , λk, X1, . . . , Xℓqppq.

Before proving the theorem, let us observe that it can be adapted easily for the slightly different
situation in (8.2), where our multilinear map takes values in XpMq instead of C8pMq:

Exercise 8.3. Deduce from Proposition 8.2 that for any multilinear map

S : XpMq ˆ . . .ˆ XpMqloooooooooooomoooooooooooon
ℓ

Ñ XpMq

that is C8-linear in every argument, there exists a unique tensor field pS P ΓpT 1
ℓMq such that for

every p PM , X1, . . . , Xℓ P XpMq, the multilinear map pSp : TpM ˆ . . .ˆ TpM Ñ TpM satisfiespSpX1ppq, . . . , Xℓppqq “ SpX1, . . . , Xℓqppq.
Proof of Proposition 8.2. Let us consider only the case ℓ “ 1 and k “ 0, as there is no

substantial difference in the general case beyond requiring more complicated notation. We therefore
assume Λ : XpMq Ñ C8pMq is a linear map satisfying ΛpfXq “ fΛpXq for all f P C8pMq and
X P XpMq, and we need to find a smooth 1-form λ P Ω1pMq such that λpXppqq “ ΛpXqppq for all
p P M and X P XpMq. The uniqueness of λ is clear, since every tangent vector at a point p P M
can be the value at that point of a smooth vector field (just write it down in local coordinates,
multiply by a smooth cutoff function and extend outside of the coordinate neighborhood as 0).

To prove existence, it suffices to show that for any point p P M , the value of ΛpXqppq is
completely determined by Xppq and does not otherwise depend on the choice of vector field X

having this particular value at p. This will follow from linearity after proving two claims:
Claim 1: If X P XpMq vanishes in a neighborhood of p, then ΛpXqppq “ 0.
Indeed, if U Ă M is an open neighborhood on which X vanishes, choose a smooth function

β :M Ñ r0, 1s with compact support in U satisfying βppq “ 1. Then βX ” 0, thus by C8-linearity,
0 “ ΛpβXq “ βΛpXq P C8pMq,

implying in particular that ΛpXqppq “ βppqΛpXqppq “ 0.
Claim 2: If X P XpMq satisfies Xppq “ 0, then ΛpXqppq “ 0.
To see this, choose a chart pU , xq with p P U , and write X “ X iBi on U , so the functions

X i P C8pUq satisfy X1ppq “ . . . “ Xnppq “ 0. Using smooth cutoff functions, we can also choose
global vector fields e1, . . . , en P XpMq and functions f1, . . . , fn P C8pMq such that

f i “ X i and ei “ Bi near p, for all i “ 1, . . . , n,

producing another vector field Y :“ f iei P XpMq which matches X on some small neighborhood of
p within U . Claim 1 then implies ΛpY ´Xqppq “ ΛpY qppq ´ΛpXqppq “ 0. In light of C8-linearity
and the condition f ippq “ X ippq “ 0 for i “ 1, . . . , n, we then have

ΛpXqppq “ ΛpY qppq “ Λpf ieiqppq “ f ippqΛpeiqppq “ 0.

�
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From now on, we will say that a multilinear map on the spaces of vector fields and/or 1-
forms defines a tensor whenever it is C8-linear in every argument, so that Proposition 8.2 or its
obvious corollaries such as Exercise 8.3 apply. We can now carry out the “coordinate free” version
of Exercise 8.1:

Exercise 8.4. Show that for any given 1-form λ P Ω1pMq, the tensor of type p0, 2q that was
defined via coordinates in Exercise 8.1 can also be defined via the bilinear map

XpMq ˆ XpMq Ñ C8pMq : pX,Y q ÞÑ LX rλpY qs ´ LY rλpXqs ´ λprX,Y sq,
which is C8-linear in both arguments. (In this expression, we associate to each vector field Z P
XpMq the smooth real-valued function λpZq P C8pMq whose value at p PM is λpZppqq.)

Exercise 8.5. Suppose J P ΓpT 1
1Mq is a smooth almost complex structure, which we will

regard as a smooth map J : TM Ñ TM whose restriction to each tangent space TpM is a linear
map Jp : TpM Ñ TpM with J2

p “ ´1. The Nijenhuis tensor32 is defined from J via the map

N : XpMq ˆ XpMq Ñ XpMq, NpX,Y q :“ rJX, JY s ´ JrJX, Y s ´ JrX, JY s ´ rX,Y s.
(a) Use Exercise 8.3 to prove that this formula defines a tensor field of type p1, 2q.
(b) Show that in local coordinates, the components of N and J are related by

N i
jk “ Jℓj BℓJ ik ´ Jℓk BℓJ ij ` J iℓ

`BkJℓj ´ BjJℓk ˘ .
(c) Show that N vanishes identically if dimM “ 2.

Hint: Notice that NpX,Y q is antisymmetric in X and Y . What is NpX, JXq?
(d) An almost complex structure J is called integrable if near every point p PM there exists

a chart pU , xq in which the components J ij become the entries of the constant matrix

J0 :“
ˆ
0 ´1
1 0

˙
P R2nˆ2n,

where each of the four blocks is an n-by-n matrix and dimM “ 2n. Show that if J is
integrable, then N ” 0.
Advice: One can use the formula in part (b) for this, but an argument based directly on
the definition of N via Lie brackets is also possible.

Remark: The matrix J0 represents the linear transformation Cn Ñ Cn : z ÞÑ iz if one identifies
Cn with R2n via the correspondence Cn Q x ` iy Ø px,yq P Rn ˆ Rn “ R2n, thus an integrable
almost complex structure makes M into a “complex manifold”. By a deep theorem of Newlander
and Nirenberg from 1957, the converse of part (d) is also true: if the Nijenhuis tensor vanishes,
then J is integrable.

8.2. Differential forms and the exterior derivative. In Exercises 8.1 and 8.4, we saw
that if we “antisymmetrize” the partial derivatives of the components of a 1-form, the result is a
well-defined tensor field of type p0, 2q. We shall now generalize this observation, and in the process,
introduce an important special class of tensor fields that will play a major role when we discuss
integration on manifolds.

A multilinear map T : V ˆ . . . ˆ V Ñ W is called antisymmetric (antisymmetrisch) or
skew-symmetric (schiefsymmetrisch) or alternating if the value T pv1, . . . , vnq changes by a sign
whenever any two of its arguments are interchanged. One can express this condition equivalently
in terms of arbitrary permutations: let Sn denote the symmetric group on n elements, which
consists of all bijections from the set t1, . . . , nu to itself, also known as permutations (Permu-
tationen). There are exactly n! elements in Sn, and the group is generated by the so-called flips,

32Approximate pronounciation: “NIGH-en-house”, where “nigh” rhymes with English “sigh”.
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which satisfy σpiq “ j and σpjq “ i for two distinct elements i, j P t1, . . . , nu while leaving every
other element fixed. Every permutation can therefore be expressed as a composition of flips, and
while a given permutation will generally admit many distinct decompositions into varying numbers
of flips, one can show that for any fixed σ P Sn, the number of flips required is always either even
or odd, i.e. a composition of evenly many flips cannot also be expressed as a composition of an odd
number of flips, or vice versa. We call each permutation σ P Sn even (gerade) or odd (ungerade)
accordingly, and define its parity by33

|σ| :“
#
0 if σ is even,
1 if σ is odd.

In applications, the parity usually appears in the form p´1q|σ|, thus one sometimes also refers
to odd or even permutations as negative or positive respectively. With this notion in place, a
multilinear map T : V ˆ . . .ˆ Vloooooomoooooon

n

ÑW is antisymmetric if and only if it satisfies

T pvσp1q, . . . , vσpnqq “ p´1q|σ|T pv1, . . . , vnq
for all v1, . . . , vn P V and σ P Sn. One can turn any multilinear map T : V ˆ . . . ˆ V Ñ W into
one that is antisymmetric by defining

pAltT qpv1, . . . , vnq :“ 1

n!

ÿ
σPSn

p´1q|σ|T pvσp1q, . . . , vσpnqq.

We observe that AltpT q “ T if and only if T is antisymmetric, thus Alt defines a linear projection
map HompÂn

V,W q Ñ HompÂn
V,W q onto the subspace of antisymmetric maps.

Definition 8.6. For any integer k ě 0, an antisymmetric tensor field of type p0, kq on M is
called a differential k-form (or just k-form for short). The vector space of smooth k-forms on
M is denoted by

ΩkpMq :“ tsmooth k-forms on Mu .
Note that antisymmetry is a vacuous condition in the cases k “ 0, 1, which is why Ω1pMq “

ΓpT 0
1Mq and Ω0pMq “ ΓpT 0

0Mq “ C8pMq. Given a chart pU , xq, a k-form ω P ΩkpMq can be
written in local coordinates as

ω “ ωi1...ik dx
i1 b . . .b dxik on U ,

where antisymmetry means that the component functions ωi1...ik : U Ñ R change by a sign
whenever two of the indices are interchanged. In this context, the following notational device
is often useful. Suppose Ti1...ik is a collection of symbols associating to each k-tuple of integers
i1, . . . , ik P t1, . . . , nu an element of some vector space, e.g. C8pUq in the example above. We can
then antisymmetrize these symbols to define

Tri1...iks :“ 1

k!

ÿ
σPSk

p´1q|σ|Tiσp1q ...iσpkq ,

so the symbols Tri1...iks are antisymmetric with respect to interchanging pairs of indices, and one
has Tri1...iks “ Ti1...ik if and only if Ti1...ik already has this property. Note that in this definition,
there is no need to assume that Ti1...ik are the components of a well-defined tensor, but usefully,
it may nonetheless happen that Tri1...iks does define a tensor. We saw an example of this already

33One easy way to see that the parity is well defined is by associating to each permutation σ P Sn the unique
linear map Aσ : Rn Ñ Rn that permutes the standard basis vectors by σ. The matrix of Aσ is obtained from the
identity matrix by permuting its columns, and detAσ “ p´1q|σ|.
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in Exercise 8.1, where the tensor S P ΓpT 0
2Mq defined from any 1-form λ P Ω1pMq can now be

abbreviated in local coordinates by

Sij “ 2 Briλjs
Proposition 8.7. For every smooth differential form ω P ΩkpMq, k ě 0, there exists a unique

pk ` 1q-form dω P Ωk`1pMq determined by the formula

(8.4) dωpX0, . . . , Xkq “
kÿ
i“0

p´1qiLXi

”
ωpX0, . . . , pXi, . . . , Xkq

ı
` ÿ

0ďiăjďk
p´1qi`jω`rXi, Xjs, X0, . . . , pXi, . . . , pXj, . . . , Xk

˘
for X0, . . . , Xk P XpMq, where the hats over certain terms in sequences like “X0, . . . , pXi, . . . , Xk”
mean that those terms do not appear in the sequence but every other term does. For any chart
pU , xq, the components of dω in local coordinates over U ĂM are given by

pdωqi0...ik “ pk ` 1qBri0ωi1...iks.
Proof. We claim first that both terms on the right hand side of (8.4) are antisymmetric

functions of the vector fields X0, . . . , Xk. In fact, the first term satisfies

(8.5)
kÿ
i“0

p´1qiLXi

”
ωpX0, . . . , pXi, . . . , Xkq

ı
“ 1

k!

ÿ
σPSk`1

p´1q|σ|LXσp0q
“
ωpXσp1q, . . . , Xσpkqq

‰
,

where the right hand side is manifestly antisymmetric, and in this setting Sk`1 means the group
of permutations of the elements t0, . . . , ku. This can be seen by considering separately for each
i “ 0, . . . , k the permutations σ with σp0q “ i, and then exploiting the antisymmetry of ω to place
Xσp1q, . . . , Xσpkq in a canonical order. A similar approach shows that the second term is a constant
multiple of the antisymmetric expression

ř
σPSk`1

p´1q|σ|ω`rXσp0q, Xσp1qs, Xσp2q, . . . , Xσpkq
˘
.

We claim next that the right hand side of (8.4) is C8-linear in Xi for every i “ 0, . . . , k.
By antisymmetry, it suffices to prove this for i “ 0, and the proof is then a straightforward
computation based on Exercise 6.4. We can now conclude from Proposition 8.2 that dω is a well-
defined pk` 1q-form. Finally, the coordinate formula for dω follows from (8.5) since rBi, Bjs ” 0 for
all i, j. �

Definition 8.8. For a smooth k-form on ω, the pk ` 1q-form dω defined in Proposition 8.7 is
called the exterior derivative (äußere Ableitung) of ω.

Example 8.9. For a 0-form f P C8pMq “ Ω0pMq, the definition above makes df P Ω1pMq
the usual differential of f .

For k ą 0, the exterior derivative dω of ω P ΩkpMq does not contain all information about
the first derivative of ω at each point, e.g. in local coordinates, the individual partial derivatives
Bjωi1...ik cannot be deduced from pdωqi0...ik , nor can ω be recovered from dω up to addition of
a constant. We will see more comprehensive (though non-canonical) ways of defining derivatives
of ω when we discuss connections. The exterior derivative will be essential, however, due to the
role it plays in Stokes’ theorem, the n-dimensional generalization of the fundamental theorem of
calculus.
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8.3. Pullbacks and pushforwards. For a diffeomorphism ψ : M Ñ N , pushforwards and
pullbacks of tensor fields can be defined in much the same way as for functions and vector fields
in §5.2. Recalling the notation

ψ˚ :“ Tψ : TM Ñ TN, ψ˚ :“ pTψq´1 : TN Ñ TM,

we can dualize to define

ψ˚ : T ˚N Ñ T ˚M, ψ˚ : T ˚M Ñ T ˚N
by

pψ˚λqpXq :“ λpψ˚Xq, pψ˚λqpXq :“ λpψ˚Xq.
Every S P ΓpT kℓ Mq with k ą 0 or ℓ ą 0 then has a pushforard ψ˚S P ΓpT kℓ Nq defined by

pψ˚Sqpλ1, . . . , λk, X1, . . . , Xℓq :“ Spψ˚λ1, . . . , ψ˚λk, ψ˚X1, . . . , ψ
˚Xℓq,

and similarly, S P ΓpT kℓ Nq has a pullback ψ˚S P ΓpT kℓ Mq defined by

pψ˚Sqpλ1, . . . , λk, X1, . . . , Xℓq :“ Spψ˚λ1, . . . ψ˚λk, ψ˚X1, . . . , ψ˚Xℓq.
The reader should take a moment to check that under the canonical identification XpMq “ ΓpT 1

0Mq,
this definition of the pushforward and pullback for tensor fields of type p1, 0q matches what we
defined in §5.2 for vector fields. The maps

ψ˚ : ΓpT kℓ Mq Ñ ΓpT kℓ Nq, ψ˚ : ΓpT kℓ Nq Ñ ΓpT kℓ Mq
are vector space isomorphisms, and are inverse to each other. It is straightforward to show that if
ϕ : N Ñ Q is another diffeomorphism, the composition ϕ ˝ ψ :M Ñ Q satisfies

(8.6) pϕ ˝ ψq˚ “ ϕ˚ψ˚, pϕ ˝ ψq˚ “ ψ˚ϕ˚.
Notice that the pushforward ψ˚X “ TψpXq P TN of a tangent vector X P TM is defined

without reference to the inverse ψ´1, and can therefore also be defined when ψ : M Ñ N is any
smooth map, not necessarily a diffeomorphism. The same thus holds for the pullback of a fully
covariant tensor field S P ΓpT 0

kNq: the definition of ψ˚S P ΓpT 0
kMq as

ψ˚SpX1, . . . , Xℓq “ Spψ˚X1, . . . , ψ˚Xℓq “ SpTψpX1q, . . . , TψpXℓqq
makes sense for any smooth map ψ : M Ñ N , though the resulting linear map ψ˚ : ΓpT 0

kNq Ñ
ΓpT 0

kMq need not be invertible if ψ is not a diffeomorphism. This applies in particular for differ-
ential forms: they can always be pulled back via smooth maps.

Exercise 8.10. Assume ψ : M Ñ N is a smooth map and pU , xq and pV , yq are charts on
M and N respectively such that U X ψ´1pVq ‰ H. Abbreviating ψi :“ yi ˝ ψ : ψ´1pVq Ñ R

for the component functions of ψ written in coordinates, show that the components of a k-form
ω P ΩkpNq in the coordinates y1, . . . , yn are related to those of its pullback ψ˚ω P ΩkpMq in
coordinates x1, . . . , xm by

pψ˚ωqi1...ik “ Bψj1
Bxi1 . . .

Bψjk
Bxik pωj1...jk ˝ ψq on U X ψ´1pVq.

8.4. The Lie derivative of a tensor field. As with vector fields in §6.3, there is a natural
way to differentiate any tensor field S P ΓpT kℓ Mq with respect to a vector field X P XpMq, giving
the most general version of the Lie derivative

LXS :“ d

dt
pϕtXq˚X

ˇ̌̌̌
t“0

P ΓpT kℓ Mq.
This is well defined even if none of the flow maps ϕtX are globally defined on M for t ‰ 0, since
for any point p P M , ϕtX is at least defined on a neighborhood of p for every t close enough to 0.
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As with the Lie derivative of vector fields, one should keep in mind that for each p P M , pLXSqp
depends on more than just S and the value of X at p, due to the fact that pulling back via the flow
requires differentiating it, and this derivative will also depend on the derivatives of X at p. The
only exception is the case k “ ℓ “ 0, in which S is just a function f : M Ñ R and LXf “ dfpXq
as before.

The Lie derivative has important applications to questions of invariance, e.g. if dimM “ n,
we will see that one can use a differential form ω P ΩnpMq to define a notion of volume for regions
in M , and the condition LXω ” 0 will then characterize vector fields whose flows are volume
preserving. We will need to develop the technology somewhat further before we can do nontrivial
things with this, as it is typically quite difficult to compute LXS directly from the definition, due
to the fact that the flow of a vector field is typically not easy to write down. Let us mention
however that there is a very user-friendly formula for the Lie derivative of a differential form:

Theorem 8.11 (Cartan’s formula). For any ω P ΩkpMq and X P XpMq,
LXω “ dpιXωq ` ιXpdωq,

where the interior product ιXα P Ωq´1pMq of a differential form α P ΩqpMq with a vector field
X P XpMq is defined by

pιXαqpY1, . . . , Yq´1q :“ αpX,Y1, . . . , Yq´1q.
We will prove this in Lecture 11, after we have discussed the algebra of differential forms in

more detail.

9. The algebra of differential forms

Our goal for the next two lectures is to make sense of symbols like
ş
M
f whenM is a manifold.

The naive hope would be that one could associate a real number
ş
M
f P R to every (let’s say

continuous and compactly supported) function f : M Ñ R, one that weights the values of f in
proportion to the amount of volume covered. We will see that this notion does not make sense in
general for real-valued functions, but if dimM “ n, it does make sense when f is replaced by a
differential n-form.

9.1. Measure and volume on manifolds. The basic problem with defining
ş
M
f for a

function f : M Ñ R is that we have not specified any measure on M with which to define what
“volume” means. Certain special classes of manifolds admit canonical measures, e.g. if M is a k-
dimensional submanifold of Rn, then one can derive a notion of “k-dimensional volume” on subsets
of M from the Euclidean geometry of Rn. But this measure on M will depend on the precise
embedding M ãÑ Rn, e.g. the volume of any given region in M will change by a factor of Lk if we
modify the embedding by multiplication with a scalar L ą 0. And in any case, not all manifolds
are presented as submanifolds of Euclidean space.

Another idea would be to use local coordinates, meaning that for any chart px,Uq on M ,
the measure of a subset O Ă U could be defined as the Lebesgue measure of xpOq Ă Rn. This
definition, however, clealy depends on the choice of chart: according to the change of variables
formula, the Lebesgue measure of ypOq Ă Rn for another chart pV , yq with O Ă V will be the
Lebesgue integral of | detDpy ˝ x´1q| over xpOq, and this integral is not typically the same as the
measure of xpOq.

Let us drop the question of whether M carries a canonical measure (usually it doesn’t), and
ask instead how one might go about choosing a measure onM , i.e. what kinds of properties should
a notion of n-dimensional volume on M have? Heuristically, one useful way to approach this
question is by thinking of the tangent space TpM at a point p P M is an “approximation” of a
neighborhood of p in M , so if we can define volumes of regions in that neighborhood, we should
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also be able to define volumes of regions in the vector space TpM . How does one define volume
in an n-dimensional vector space? For example, given vectors X1, . . . , Xn P TpM , consider the
so-called parallelepiped spanned by X1, . . . , Xn, meaning the set

P pX1, . . . , Xnq :“
 
tiXi P TpM

ˇ̌
t1, . . . , tn P r0, 1s( Ă TpM,

where as usual there is an implied summation in the expression tiXi. Suppose µ : TpM ˆ . . . ˆ
TpM Ñ r0,8q is a function that associates to each n-tuple pX1, . . . , Xnq the n-dimensional volume
of P pX1, . . . , Xnq. What kind of function is µ? Basic geometric considerations dictate the following:

(1) If one of the vectors Xi is multiplied by a nonnegative constant, the volume scales by the
same constant, i.e.

µpX1, . . . , cXi, . . . , Xnq “ cµpX1, . . . , Xi, . . . , Xnq
for c ě 0.

(2) The volume is additive34 with respect to each variable, i.e.

µpX1, . . . , Xi `X 1
i, . . . , Xnq “ µpX1, . . . , Xi, . . . , Xnq ` µpX1, . . . , X

1
i, . . . , Xnq.

An elementary geometric justification of this relation in the case n “ 2 is shown in
Figure 7. Using the letters A through E to denote the areas of the various regions in
this picture, one has µpX1, X2q “ A ` B, µpX 1

1, X2q “ C ` D, and µpX1 ` X 1
1, X2q “

A` C `E “ A` C `B `D “ µpX1, X2q ` µpX 1
1, X2q.

(3) If any two of the vectorsX1, . . . , Xn match, then P pX1, . . . , Xnq is contained in an pn´1q-
dimensional subspace and thus has zero n-dimensional volume, so

µpX1, . . . , Xnq “ 0 whenever Xi “ Xj for some i ‰ j.

The first two properties suggest multilinearity, though µ itself cannot be multilinear since it only
takes nonnegative values, and the scalar multiplication property only involves nonnegative scalars.
On the other hand, a good way to find functions µ that satisfy these two properties is by choosing
an actual multilinear function ω : TpM ˆ . . .ˆ TpM Ñ R and setting

µpX1, . . . , Xnq :“ |ωpX1, . . . , Xnq| .
The third property now imposes a serious restriction on ω:

Proposition 9.1. If V is a vector space and ω : V ˆ . . . ˆ V Ñ R is an n-fold multilinear
function that vanishes whenever two of its arguments are identical, then ω is alternating.

Proof. In the case n “ 2, it suffices to choose any v, w P V and use multilinearity to observe

0 “ ωpv ` w, v ` wq “ ωpv, vq ` ωpw,wq ` ωpv, wq ` ωpw, vq “ ωpv, wq ` ωpw, vq.
The general case works similarly. �

The upshot of this discussion is that a reasonable notion of volume for paralelepipeds in a
tangent space TpM can be defined by choosing an alternating n-fold multilinear form ω on TpM
and taking its absolute value. If the gaps in the discussion leading to this conclusion made you
uncomfortable, one could alternatively derive it from a basic result in measure theory: every
translation-invariant measure on Rn is a scalar c ě 0 multiplied by the Lebesgue measure (see
e.g. [Sal16, Chapter 2]). Moreover, the Lebesgue measure of the parallelepiped spanned by n

vectors v1, . . . ,vn in Rn is given by
ˇ̌
det

`
v1 ¨ ¨ ¨ vn

˘ˇ̌
. As you learned in linear algebra, the

34Strictly speaking, some extra condition on the vectors X1, . . . ,Xn is needed in order for the additivity
property to hold, as not all possible configurations (even in the case n “ 2) can be described by something like
Figure 7. Since this is only meant to be a heuristic discussion, let’s not worry about this for now.
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PSfrag replacements

p q
p q

p X q
p X q
˝ ´

X1

X2

X 1
1

X1 `X 1
1

A

B

C

D

E

Figure 7. A geometric “proof” that volumes of parallelepipeds are determined
by multilinear functions of their spanning vectors.

determinant of a matrix is an alternating multilinear function of its columns, thus we can now
write µ “ |ω| where ωpv1, . . . ,vnq :“ c det

`
v1 ¨ ¨ ¨ vn

˘
defines an alternating multilinear form.

Since everything in this course is smooth, it will also make sense to assume that for reasonable
notions of volume on regions in M , the associated notions of volume on the tangent spaces TpM
depend smoothly on the point p. We can now say precisely what kind of geometric object defines
a smoothly varying notion of volume on tangent spaces: it is a smooth n-form ω P ΩnpMq.

9.2. Exterior algebra. The previous section provided some motivation to believe that dif-
ferential forms are the right objects with which to define integration on manifolds. Before we can
fully unpack this idea, we need to develop the algebra of differential forms a bit further.

The tasks of this section are fundamentally algebraic, so there will be no manifolds, only an n-
dimensional vector space V with basis e1, . . . , en P V . Let e1˚, . . . , en˚ P V ˚ denote the corresponding
dual basis, determined by the condition

ei˚pejq “ δij .

Recall from §7.2 that V kℓ denotes the space of multilinear functions V ˚ˆ . . .ˆV ˚ˆV ˆ . . .ˆV Ñ R

that take k dual vectors in V ˚ and ℓ vectors in V as arguments; in particular, V 0
1 “ V ˚ and

V 1
0 is the “double dual” pV ˚q˚ of V , which is canonically isomorphic to V itself. The tensor

product b : V kℓ ˆ V rs Ñ V k`rℓ`s can be defined in the same way as for tensor fields, and it is
associative, so in particular, the tensor product of k dual vectors α1, . . . , αk is a k-fold multilinear
map α1 b . . .b αk : V ˆ . . .ˆ V Ñ R defined by

pα1 b . . .b αkqpv1, . . . , vkq “ α1pv1q ¨ . . . ¨ αkpvkq.
The vector space of real-valued alternating k-fold multilinear maps on V is denoted by

ΛkV ˚ :“  
ω P V 0

k

ˇ̌
ωp. . . , v, . . . , w, . . .q “ ´ωp. . . , w, . . . , v, . . .q for all v, w P V ( ,

and we often refer to its elements as alternating k-forms on V . The antisymmetry condition is
vacuous for k ď 1, thus Λ0V ˚ “ R and Λ1V ˚ “ V ˚. Using multilinearity as in Proposition 7.20,
any ω P ΛkV ˚ for k ě 1 can be written in terms of the basis e1˚, . . . , en˚ P V ˚ as

ω “ ωi1...ik e
i1˚ b . . .b eik˚ ,
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with unique coefficients

(9.1) ωi1...ik :“ ωpei1 , . . . , eikq P R.

These coefficients are not all independent of each other: the antisymmetry of ω dictates that they
satisfy

ωi1...j...ℓ...ik “ ´ωi1...ℓ...j...ik ,
i.e. there is a sign change whenever two distinct indices are interchanged, and ωi1...ik can only
be nontrivial when all of its indices i1, . . . , ik P t1, . . . , nu have distinct values. It follows that
ωi1...ik must always vanish if k ą n, and otherwise, the number of distinct components that can
be specified independently before the rest are determined is

`
n
k

˘ “ n!
k!pn´kq! , hence

dimΛkV ˚ “
#`

n
k

˘ “ n!
k!pn´kq! for k ď n,

0 for k ą n.

Observe that while the case k “ 0 was excluded from the discussion above, the formula dimR “
dimΛ0V ˚ “ `

n
0

˘ “ 1 is also correct in that case. The most interesting case is k “ n: the
elements of ΛnV ˚ are sometimes called top-dimensional forms, since n is the largest value of
k for which ΛkV ˚ is a nontrivial space. The space is 1-dimensional in this case, due to the fact
that all nontrivial components of ω P ΛnV ˚ are obtained by permuting the indices of ω1...n. This
elementary observation has nontrivial consequences that will be concretely useful to us, such as:

Proposition 9.2. For any basis v1, . . . , vn P V of a vector space V , every ω P ΛnV ˚ is
uniquely determined by the number ωpv1, . . . , vnq P R; in particular, this number vanishes if and
only if ω “ 0. �

Example 9.3. The determinant det : Rnˆn Ñ R can be characterized by the property
that Rn ˆ . . . ˆ Rn Ñ R : pv1, . . . ,v1q ÞÑ det

`
v1 ¨ ¨ ¨ vn

˘
is the unique element of ΛnpRnq˚

satisfying det
`
e1 ¨ ¨ ¨ en

˘ “ 1 for the standard basis e1, . . . , en P Rn. Using the dual basis
e1˚, . . . , en˚ P pRnq˚ to the standard basis, one can write down a concrete element of ΛnpRnq˚ with
this property in the form ÿ

σPSn

p´1q|σ|eσp1q˚ b . . .b e
σpnq
˚ P ΛnpRnq˚.

Plugging in the columns of a matrix A P Rnˆn with entries Aij , an explicit formula for the
determinant is thus given by

(9.2) detpAq “ ÿ
σPSn

p´1q|σ|Aσp1q1 ¨ . . . ¨ Aσpnqn.

Proposition 9.2 now implies that every ω P ΛnpRnq˚ can be written as

ωpv1, . . . ,vnq “ c ¨ det `v1 ¨ ¨ ¨ vn
˘
,

with a constant given by c :“ ωpe1, . . . , enq P R.

For k ě 1, a natural linear projection Alt : V 0
k Ñ V 0

k onto the subspace ΛkV ˚ Ă V 0
k is defined

by

Altpωqpv1, . . . , vkq :“ 1

k!

ÿ
σPSk

p´1q|σ|ωpvσp1q, . . . , vσpkqq.

Indeed, one readily checks that Altpωq is alternating for every ω P V 0
k , and ω itself is alternating

if and only if Altpωq “ ω. If we write ω “ ωi1...ik e
i1˚ b . . . b eik˚ for a general ω P V 0

k , applying
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Alt changes the components via the antisymmetrization operation introduced in §8.2, which can
be written succinctly as

Altpωqi1...ik “ ωri1...iks.
Note that for k “ 1, Alt is simply the identity map V ˚ Ñ V ˚. It will be a useful convention to
extend this definition to k “ 0 so that Alt is also the identity map on V 0

0 “ R.
We would now like to define a product operation on alternating forms that has geometric

meaning. Let us regard each of the chosen basis 1-forms ei˚ P Λ1V ˚ as defining a notion of length
(also known as “1-dimensional volume”) for vectors in the 1-dimensional subspace Vi :“ Rei Ă V ,
so by this definition, the basis vectors ei P Vi have unit length. The fact that each ei˚ vanishes on all
the other subspaces Vj Ă V for j ‰ i can be interpreted moreover as an “orthogonality” condition,
so that we regard all the subspaces V1, . . . , Vn Ă V as orthogonal to each other. Geometrically, the
paralelepiped in V spanned by e1, . . . , en should then have volume 1, and we would like to define
the product n-form e1˚ ^ . . .^ en˚ P ΛnV ˚ to reproduce this notion of volume, i.e. it should satisfy

pe1˚ ^ . . .^ en˚qpe1, . . . , enq “ 1.

Since dimΛnV ˚ “ 1, there is exactly one element of ΛnV ˚ that satisfies this condition, and it is
given by

e1˚ ^ . . .^ en˚ “ n! Altpe1˚ b . . .b en˚q “
ÿ
σPSn

p´1q|σ|eσp1q˚ b . . .b e
σpnq
˚ .

We take this observation as motivation for the general definition of the wedge product, which is
contained in the theorem below. To state it properly, we define the vector space

Λ˚V ˚ :“
8à
k“0

ΛkV ˚,

which is finite dimensional since ΛkV ˚ “ t0u for k ą n, hence Λ˚V ˚ is equivalent to the finite
product Λ0V ˚ ˆ . . . ˆ ΛnV ˚. We can regard each of the spaces ΛkV ˚ as subspaces of Λ˚V ˚ in
the obvious way. A nontrivial element α P Λ˚V ˚ is said to be homogeneous of degree k if it
belongs to the subspace ΛkV ˚ Ă Λ˚V ˚, in which case we also sometimes write its degree as

degpαq “ |α| :“ k for α P ΛkV ˚.
One should keep in mind that not all elements of Λ˚V ˚ are homogeneous, but this is of little im-
portance in practice because every nontrivial element is a sum of a unique finite set of homogeneous
elements of various degrees.

Theorem 9.4. There exists a unique bilinear map Λ˚V ˚ ˆ Λ˚V ˚ Ñ Λ˚V ˚ : pα, βq ÞÑ α ^ β

that satisfies
c^ α “ α^ c :“ cα for all α P Λ˚V ˚ and c P Λ0V ˚ “ R,

the associativity property

pα^ βq ^ γ “ α^ pβ ^ γq for all α, β, γ P Λ˚V ˚,
and

(9.3) α1 ^ . . .^ αk “ ÿ
σPSk

p´1q|σ|ασp1q b . . .b ασpkq for all k P N, α1, . . . , αk P Λ1V ˚,

where the k-fold product on the left hand side is defined by arbitrarily inserting parentheses to
produce a sequence of binary operations. Moreover, the following conditions are satisfied:

(1) For any integers k, ℓ ě 0 and α P ΛkV ˚, β P ΛℓV ˚,

(9.4) α^ β “ pk ` ℓq!
k!ℓ!

Altpα b βq P Λk`ℓV ˚.
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(2) The wedge product is graded commutative, i.e. for homogeneous elements α, β P Λ˚V ˚,

α^ β “ p´1q|α|¨|β|β ^ α.

Before proving the theorem, we make the useful observation that if one defines k-fold wedge
products of 1-forms via the right hand side of (9.3), then they can be used to turn any basis of V ˚
into a basis of ΛkV ˚:

Proposition 9.5. Given the basis e1, . . . , en P V and its dual basis e1˚, . . . , en˚ P V ˚, every
ω P ΛkV ˚ can be written as

(9.5) ω “ ÿ
i1ă...ăik

ωi1...ik e
i1˚ ^ . . .^ eik˚

for unique coefficients ωi1...ik P R, which are given by35

ωi1...ik “ ωpei1 , . . . , eikq P R.

Proof. One uses the formula (9.3) to show that both sides of (9.5) match when evaluated on
any tuple of basis vectors pei1 , . . . , eikq with i1 ă . . . ă ik, and by antisymmetry, it follows that
they also match when evaluated on any tuple of basis vectors. Multilinearity then implies that
they match when evaluated on arbitrary k-tuples of vectors. �

Remark 9.6. Proposition 9.5 is one of the few places where we are not using the Einstein
summation convention. The reason is that the summation here does not cover all choices of tuples
i1, . . . , ik P t1, . . . , nu, as the summation convention would dictate, but rather only those for which
the i1, . . . , ik are in strictly increasing order. Including all permutations of such tuples would
produce extra terms that (due to the antisymmetry of both ωi1...ik and ei1˚ ^ . . .^ eik˚ ) match the
terms already present in the sum, i.e. exactly k! copies of each term, plus some trivial terms for
tuples in which some of the indices i1, . . . , ik match. This overcounting results in the formula

ω “ 1

k!
ωi1...ik e

i1˚ ^ . . .^ eik˚ ,

in which the coefficients are defined the same as before but the summation convention is in effect.

Example 9.7. The following case of (9.3) is worth drawing special attention to: for two
1-forms α, β P Λ1V ˚, α^ β P Λ2V ˚ is given by α^ β “ αb β ´ β b α, thus

pα^ βqpv, wq “ αpvqβpwq ´ βpvqαpwq.
One sees easily from this formula that the wedge product of 1-forms is anticommutative, i.e. it
satisfies α^ β “ ´β ^ α, and in particular, α^ α “ 0.

Proof of Theorem 9.4. By Proposition 9.5, every α P ΛkV ˚ and β P ΛℓV ˚ for k, ℓ ě 1

can be expressed as sums of wedge products of the basis 1-forms e1˚, . . . , en˚ P V ˚ as determined by
(9.3), so bilinearity and associativity together with (9.3) then uniquely determine α^β P Λk`ℓV ˚.
The only problem with taking the resulting formula as a general definition of α^ β is that it may
a priori depend on the choice of the basis e1˚, . . . , en˚. In order to dismiss this concern, we will show
that this definition of α ^ β also satisfies the formula (9.4), and observe that the right hand side
of this expression is clearly independent of choices. By bilinearity and Proposition 9.5, it suffices
to check that this is true when α and β are themselves products of the form

α “ ei1˚ ^ . . .^ eik˚ , β “ e
j1˚ ^ . . .^ e

jℓ˚

35Notice that the coefficients in Proposition 9.5 are the same ones that appeared in (9.1).
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for some choice of i1, . . . , ik, j1, . . . , jℓ P t1, . . . , nu, and to show this, it is enough to evaluate both
α^ β (as defined via (9.3)) and the right hand side of (9.4) on the ordered tuple of basis vectors

ea1 , . . . , eak , eb1 , . . . , ebℓ P V
for an arbitrary choice of a1, . . . , ak, b1, . . . , bℓ P t1, . . . , nu. By antisymmetry, both clearly vanish
unless the integers a1, . . . , ak, b1, . . . , bℓ are all distinct, so let us assume this. Both will also vanish
if any of those numbers are not contained in the set ti1, . . . , ik, j1, . . . , jℓu, so assume this as well
from now on, which implies that the numbers i1, . . . , ik, j1, . . . , jℓ must also be all distinct, and
thus

ta1, . . . , ak, b1, . . . , bℓu “ ti1, . . . , ik, j1, . . . , jℓu.
Using antisymmetry, we can now apply a permutation and assume without loss of generality that
the two ordered tuples are exactly the same, i.e. am “ im and bm “ jm for all m, so we need only
evaluate both α^ β and pk`ℓq!

k!ℓ!
Altpαb βq on the ordered tuple

pv1, . . . , vk`ℓq :“ ei1 , . . . , eik , ej1 , . . . , ejℓ .

The result for α ^ β is immediate from (9.3): only the trivial permutation produces a nontrivial
term, and the answer is 1. Now consider
pk ` ℓq!
k!ℓ!

Altpαb βqpv1, . . . , vk`ℓq “ 1

k!ℓ!

ÿ
σPSk`ℓ

p´1q|σ|αpvσp1q, . . . , vσpkqq ¨ βpvσpk`1q, . . . , vσpk`ℓqq.

Since the sets ti1, . . . , iku and tj1, . . . , jℓu are disjoint, the only permutations that contribute non-
trivially to the right hand side of this expression are those which preserve the subsets t1, . . . , ku and
tk`1, . . . , k`ℓu, and the sign of such a permutation is the product of the signs of the permutations
of these two subsets, so the sum can be rewritten as

1

k!ℓ!

ÿ
pσ1,σ2qPSkˆSℓ

p´1q|σ1|αpeiσ1p1q , . . . , eiσ1pkq q ¨ p´1q|σ2|βpejσ2p1q , . . . , ejσ2pℓqq.

Finally, observe that since α and β are both antisymmetric, every term in this last sum is identical,
and there are exactly k!ℓ! of them, so we can restrict to the trivial permutation and simplify the
expression to

αpei1 , . . . , eikq ¨ βpej1 , . . . , ejℓq “ 1,

since both terms in the product equal 1 by (9.3). This establishes the existence of the associative
product ^ : Λ˚V ˚ˆΛ˚V ˚ Ñ Λ˚V ˚ and the formula (9.4). One still has to show that it also satisfies
(9.3), i.e. not just for the basis 1-forms ei˚ but for arbitrary tuples of 1-forms α1, . . . , αk P Λ1V ˚.
This can be derived from (9.4) by induction on k and a bit of combinatorics; we leave the details
as an exercise.

To prove graded commutativity, it suffices again to consider the case where α and β are
both products of 1-forms, and the relation then follows from the case k “ ℓ “ 1 which was
observed in Example 9.7. The key observation is that the number of flips required for permuting
i1, . . . , ik, j1, . . . , jℓ to j1, . . . , jℓ, i1, . . . , ik is kℓ. �

The wedge product turns the vector space Λ˚V ˚ into an algebra; it is called the exterior
algebra (äußere Algebra) over V ˚.36

36You may at this point be wondering what the “exterior algebra over V ”, presumably denoted by Λ˚V , might
be. Since V is finite dimensional, the cheap way to define it is by identifying V with the dual space of V ˚, so
that homogeneous elements of Λ˚V are antisymmetric multilinear maps V ˚ ˆ . . . ˆ V ˚ Ñ R. That is a correct
definition, but not the most elegant formulation possible, and it also does not generalize to the case where V is
infinite-dimensional since it may then fail to be isomorphic to its double dual. One can define Λ˚V in terms of the
abstract tensor product of vector spaces, and the details can be found in many standard algebra textbooks, but we
will not need them here.
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Exercise 9.8. Prove that a set of dual vectors α1, . . . , αk P V ˚ is linearly independent if and
only if its wedge product α1 ^ . . .^ αk P ΛkV ˚ is nonzero.
Hint: Consider products of the form

´řk
i“1 ciα

i
¯
^ α2 ^ . . .^ αk.

Exercise 9.9. Show that if α P ΛkV ˚ and β P ΛℓV ˚ are written in terms of the basis
e1˚, . . . , en˚ P V ˚ as α “ αi1...ik e

i1˚ b . . . b eik˚ and β “ βi1...iℓ e
i1˚ b . . . b eiℓ˚ , then α ^ β “

pα^ βqi1...ik`ℓ
ei1˚ b . . .b e

ik`ℓ˚ where

pα ^ βqi1...ik`ℓ
“ pk ` ℓq!

k!ℓ!
αri1...ikβik`1...ik`ℓs.

The following formula for top-dimensional forms will have many useful applications:

Proposition 9.10. Given a basis e1, . . . , en P V with dual basis e1˚, . . . , en˚ P V ˚, we have

λ1 ^ . . .^ λn “ det

¨̊
˝λ

1pe1q ¨ ¨ ¨ λ1penq
...

. . .
...

λnpe1q ¨ ¨ ¨ λnpenq
‹̨‚e1˚ ^ . . .^ en˚

for any λ1, . . . , λn P Λ1V ˚.

Proof. Use (9.3) to evaluate pλ1 ^ . . . ^ λnqpe1, . . . , enq, then plug in the formula (9.2) for
the determinant. �

Exercise 9.11. Find a second proof of Proposition 9.10 using the following idea. Associate to
each v “ pv1, . . . , vnq P Rn the 1-form v5 :“ vie

i˚ P Λ1V ˚. What can you say about the multilinear
function ω : Rn ˆ . . .ˆ Rn Ñ R defined by ωpv1, . . . ,vnq :“ pv15 ^ . . .^ vn5 qpe1, . . . , enq?

Remark 9.12. The formula (9.4) for the product of α P ΛkV ˚ and β P ΛℓV ˚ can be written
in more verbose form as

(9.6) pα^ βqpv1, . . . , vk`ℓq “ 1

k!ℓ!

ÿ
σPSk`ℓ

p´1q|σ|αpvσp1q, . . . , vσpkqq ¨ βpvσpk`1q, . . . , vσpk`ℓqq.

The factor in front makes this formula a bit hard to memorize, but there is a combinatorial trick
that makes it easier. Let

Sk,ℓ Ă Sk`ℓ
denote the subset consisting of permutations σ that satisfy

σp1q ă . . . ă σpkq and σpk ` 1q ă . . . ă σpk ` ℓq;
such permutations are sometimes called shuffles. They do not form a subgroup, but every permu-
tation in Sk`ℓ is obtained from a unique shuffle by composing it with something in the subgroup
SkˆSℓ Ă Sk`ℓ consisting of permutations that preserve the subsets t1, . . . , ku and tk`1, . . . , k`ℓu.
The key observation is that there are exactly k!ℓ! elements in this subgroup, and applying them
has the effect of permuting the sets of vectors that are plugged into each of α and β in (9.6), while
simultaneously changing the sign p´1q|σ| in a way that cancels the resulting change in the product
of α and β. The result is that (9.6) contains k!ℓ! times as many terms as it actually needs: it is
equivalent to the simpler formula

(9.7) pα^ βqpv1, . . . , vk`ℓq “
ÿ

σPSk,ℓ

p´1q|σ|αpvσp1q, . . . , vσpkqq ¨ βpvσpk`1q, . . . , vσpk`ℓqq,

in which no combinatorial factor is needed because the sum ranges only over shuffles.
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9.3. The differential graded algebra of forms. Everything stated in the previous section
implies a statement about differential forms on a manifoldM , simply by replacing the vector space
V with a tangent space TpM and then letting p PM vary. In particular, a k-form ω P ΩkpMq can
now be understood as a function that associates to each p PM an element

ωp P ΛkTp̊M :“ ΛkpTpMq˚.
It follows that if dimM “ n, then k-forms for k ą n are identically 0, hence the direct sum

Ω˚pMq :“
8à
k“0

ΩkpMq

has only finitely many nontrivial summands. (It is an infinite-dimensional space nonetheless, since
each ΩkpMq for k “ 0, . . . , n is infinite dimensional.) The wedge product of differential forms is
now defined pointwise, i.e. given α P ΩkpMq and β P ΩℓpMq, we define α^ β P Ωk`ℓpMq by

pα^ βqp “ αp ^ βp P Λk`ℓTp̊M.

The smoothness of α^ β by this definition will become clear momentarily when we write it down
in local coordinates. Given a chart pU , xq, the natural basis of TpM to use at points p P U is given
by the coordinate vector fields B1, . . . , Bn, and its dual basis consists of the coordinate differentials
dx1, . . . , dxn. Any smooth k-form ω P ΩkpMq can thus be written over U as

ω “ ωi1...ik dx
i1 b . . .b dxik “ 1

k!
ωi1...ik dx

i1 ^ . . .^ dxik

“ ÿ
i1ă...ăik

ωi1...ik dx
i1 ^ . . .^ dxik ,

(9.8)

where the Einstein summation convention is in effect for the first line but (in order to eliminate
redundancy caused by antisymmetry) not for the second, and the smooth component functions are
given by

ωi1...ik “ ωpBi1 , . . . , Bikq P C8pUq.
A coordinate formula for the wedge product can then be extracted from Exercise 9.9, namely

pα ^ βqi1...ik`ℓ
“ pk ` ℓq!

k!ℓ!
αri1...ikβik`1...ik`ℓs,

so assuming that α and β have smooth components, the same is clearly true for α^β. Theorem 9.4
now carries over to the statement that ^ defines a bilinear map

Ω˚pMq ˆ Ω˚pMq Ñ Ω˚pMq : pα, βq ÞÑ α^ β

that is associative and graded commutative, where the latter again means that for homogeneous
elements α P ΩkpMq and β P ΩℓpMq, α ^ β “ ˘β ^ α, with the minus sign appearing if and only
if k and ℓ are both odd.

Example 9.13. Using Cartesian coordinates px, y, zq on R3, the second line of (9.8) says that
every ω P Ω2pR3q has a unique presentation in the form

ω “ ωxy dx^ dy ` ωxz dx^ dz ` ωyz dy ^ dz,

determined by three smooth functions ωxy, ωxz, ωyz : R3 Ñ R.

Example 9.14. For k “ n, the summation in the second line of (9.8) contains only one term.
It follows that on an n-manifold M with smooth chart pU , xq, every ω P ΩnpMq can be written in
local coordinates as

ω “ f dx1 ^ . . .^ dxn on U ,

where the real-valued function f P C8pUq is given by f “ ωpB1, . . . , Bnq.
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Exercise 9.15. Beginners sometimes fixate on the antisymmetry of the wedge product for
1-forms and thus expect ω ^ ω “ 0 to hold always, but graded commutativity only implies this
when ω has odd degree. Find a concrete example of a 2-form ω on R4 such that ω ^ ω ‰ 0.

We can now give a more practically useful characterization of the exterior derivative d :

ΩkpMq Ñ Ωk`1pMq, which was defined in §8.2 via C8-linearity. A quick word about signs:
you’ve already noticed that in the wedge product, a minus sign gets introduced whenever the order
of two elements with odd degree is changed. One can use this same rule to remember the sign in
the Leibniz rule below if one thinks of the operator d itself as an object with odd degree; it makes
sense in fact to define its degree as 1, since that is the amount by which it raises the degree of any
homogeneous element of Ω˚pMq fed into it.

Proposition 9.16. The exterior derivative d : Ω˚pMq Ñ Ω˚pMq is the unique linear map
that satisfies the following conditions:

(1) d is local, meaning that for every form ω P Ω˚pMq and every p P M , pdωqp P Λ˚Tp̊M
depends only on the restriction of ω to a neighborhood of p.

(2) For each f P Ω0pMq “ C8pMq, df P Ω1pMq is the differential of f .
(3) For any homogeneous elements α, β P Ω˚pMq, d satisfies the “graded Leibniz rule”

dpα^ βq “ dα^ β ` p´1q|α|α^ dβ.

(4) d ˝ d “ 0.

Corollary 9.17. For any chart pU , xq and any smooth function f : U Ñ R,

(9.9) d
`
f dxi1 ^ . . .^ dxik

˘ “ df ^ dxi1 ^ . . .^ dxik “ Bjf dxj ^ dxi1 ^ . . .^ dxik on U .

�

Proof of Proposition 9.16. Let us start by ignoring the definition of d : Ω˚pMq Ñ Ω˚pMq
given in §8.2 and showing that a map satisfying the four properties stated above exists and is unique.
The uniqueness follows from the observation that for any chart pU , xq, every k-form on U is a sum
of terms of the form f dxi1 ^ . . .^ dxik , and if d satisfies properties (2)–(4) then its action on this
particular product is given by (9.9). To prove existence, suppose first that M “ U is the domain
of a global chart x, in which case the only possible definition of d satisfying the required properties
is again via (9.9). It is immediate that d by this definition satisfies properties (1) and (2); let us
verify that it also satisfies (3) and (4). To prove the graded Leibniz rule, we observe first that it
is true for a pair of 0-forms f, g P Ω0pMq “ C8pMq, as the product rule from first-year analysis
implies

dpfgq “ df ¨ g ` f ¨ dg.
For the general case, bilinearity allows us to restrict attention to a pair α, β P Ω˚pUq of the form
α “ f dxi1 ^ . . .^ dxik and β “ g dxj1 ^ . . . ^ dxjℓ . To make the notation more manageable, let
us abbreviate dxI :“ dxi1 ^ . . .^ dxik and dxJ :“ dxj1 ^ . . .^ dxjℓ ; then

dpα^ βq “ d
`
fg dxI ^ dxJ

˘ “ dpfgq ^ dxI ^ dxJ “ pdf ¨ g ` f ¨ dgq ^ dxI ^ dxJ

“ `
df ^ dxI

˘^ `
g dxJ

˘` p´1qk `f dxI˘^ `
dg ^ dxJ

˘ “ dα^ β ` p´1qkα^ dβ,

where the sign p´1qk arose when we changed the order of dg P Ω1pUq and dxI P ΩkpUq. To prove
d ˝ d “ 0, we can similarly consider α “ f dxI and compute

dpdαq “ dpdf ^ dxIq “ dpBjf dxj ^ dxIq “ dpBjfq ^ dxj ^ dxI “ BkBjf dxk ^ dxj ^ dxI .

This last expression contains implied summations over both k and j, and we observe that while
exchanging the roles of k and j leaves BkBjf unchanged, it switches the sign of dxk ^ dxj , so that
every term in this sum is balanced by a cancelling term, and the sum if therefore 0.
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Observe next that while our definition of d : Ω˚pUq Ñ Ω˚pUq above was expressed in terms
of the specific coordinates x1, . . . , xn, the fact that it satisfies properties (1)–(4) implies that
any other choice of coordinates would have given the same result, as it would also have given a
definition satisfying properties (1)–(4). On a general manifoldM , one can now define d : Ω˚pMq Ñ
Ω˚pMq on small neighborhoods using local coordinates and appeal to the fact that the definition
is independent of coordinates, producing a global definition.

It remains only to prove that our definition of d via properties (1)–(4) matches the definition in
§8.2. We will prove this by showing that (9.9) implies the same local coordinate formula that was
derived in Proposition 8.7. Recall that in a local chart pU , xq, an arbitrary k-form with components
ωi1...ik “ ωpBi1 , . . . , Bikq can be written as

ω “ ÿ
i1ă...ăik

ωi1...ik dx
i1 ^ . . .^ dxik “ 1

k!
ωi1...ik dx

i1 ^ . . .^ dxik ,

where the summation convention is in effect only in the second expression, in which the combina-
torial factor accounts for the fact that each term in the implied summation appears in k! identical
copies arising from permutations of the indices i1, . . . , ik. The formula (9.9) then implies

dω “ 1

k!
dωi1...ik ^ dxi1 ^ . . .^ dxik “ 1

k!
Bi0ωi1...ik dxi0 ^ . . .^ dxik .

In this last sum, nonzero contributions come only from terms in which the numbers i0, . . . , ik P
t1, . . . , nu are all distinct, and if we write Sk`1 for the group of bijections on t0, . . . , ku, each
of these terms can be permuted by some σ P Sk`1 to produce a product dxi0 ^ . . . ^ dxik with
i0 ă . . . ă ik, at the cost of applying the inverse permutation to the indices of Bi0ωi1...ik and
multiplying by the sign p´1q|σ|. The expression therefore becomes

1

k!

ÿ
i0ă...ăik

ÿ
σPSk`1

p´1q|σ|Biσp0qωiσp1q ...iσpkq dxi0 ^ . . .^ dxik

“ pk ` 1q!
k!

ÿ
i0ă...ăik

Bri0ωi1...iks dxi0 ^ . . .^ dxik “ pk ` 1q ÿ
i0ă...ăik

Bri0ωi1...iks dxi0 ^ . . .^ dxik ,

which matches Proposition 8.7. �

The wedge product and exterior derivative make Ω˚pMq into an example of a (commutative)
differential graded algebra (graduierte Differentialalgebra), or “DGA” for short. The inclu-
sion of the word “graded” refers in the first place to the direct sum decomposition Ω˚pMq “À

kě0 Ω
kpMq, but more importantly it refers to the sign appearing in the Leibniz rule of Proposi-

tion 9.16. A similar sign prevents Ω˚pMq from satisfying the commutativity relation α^β “ β^α
in general, but the convention is nonetheless to call it a “commutative DGA” if it satisfies the
graded commutativity relation α^ β “ p´1q|α||β|β ^ α.

Recall from §8.3 that pullbacks of differential forms can be defined for arbitrary smooth maps
ϕ : M Ñ N , not just diffeomorphisms.

Proposition 9.18. For any smooth map ϕ :M Ñ N :
(1) ϕ˚pα ^ βq “ ϕ˚α^ ϕ˚β for all α, β P Ω˚pNq;
(2) ϕ˚pdωq “ dpϕ˚ωq for all ω P Ω˚pNq.
Proof. The first statement follows directly from the definitions. For the second, we start with

the case ω “ f P C8pNq “ Ω0pNq and use the chain rule: ϕ˚pdfq :“ df ˝Tϕ “ dpf ˝ϕq “: dpϕ˚fq.
Since every differential form is locally a finite sum of wedge products of functions and differentials,
the graded Leibniz rule then extends this result to all ω P ΩkpNq. �
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10. Oriented manifolds and the integral

10.1. Change of variables. One of the messages of the previous lecture was that on an n-
manifold M , one can use differential n-forms to define sensible notions of “n-dimensional volume”
and thus measures, from which a notion of integration should emerge. Let’s consider first how this
might work when M is an open subset U Ă Rn in Euclidean space.

There is a canonical choice of coordinates x1, . . . , xn on U Ă Rn, leading us naturally to
consider the n-form dx1 ^ . . . ^ dxn P ΩnpUq. It has the desirable property that at every point
p P U , if one feeds into it the standard basis e1, . . . , en of Rn “ TpU , the result (by (9.3)) is 1, which
happens also to be the Lebesgue measure of the paralelepiped spanned by these vectors, i.e. the
n-dimensional unit cube. It follows that if one interprets dx1 ^ . . . ^ dxn as a way of computing
volumes on tangent spaces TpU “ Rn, the volume it computes is the standard notion of volume,
i.e. the Lebesgue measure.

This observation motivates the following definition, which (in light of Example 9.14) tells us
how to integrate an arbitrary compactly supported n-form on U Ă Rn.

Definition 10.1. For any integer n ě 1, any compactly supported smooth function f : U Ñ R

on an open subset U Ă Rn and any Lebesgue-measurable subset A Ă U , the integral of the n-form
ω :“ f dx1 ^ . . .^ dxn over A is defined to be the Lebesgue integral of f on A with respect to the
standard Lebesgue measure m on Rn, i.e.ż

A

ω “
ż
A

f dx1 ^ . . .^ dxn :“
ż
A

f dm P R.

Remark 10.2. If you prefer to think in terms of Riemann integrals rather than Lebesgue
integrals, you are free to do so in Definition 10.1 at the cost of being slightly more restrictive about
the subset A Ă U , e.g. for almost all37 applications it suffices to imagine that A is an open or closed
subset. Nothing in our discussion of integration will depend in any serious way on the distinction
between the Riemann and Lebesgue integrals. We will continue to use the language of Lebesgue
integration because it seems the most natural.

Analysis conventions sometimes denote the Lebesgue measure on Rn more suggestively as
“dx1 . . . dxn”, so that Definition 10.1 becomes the easy-to-remember formulaż

A

f dx1 ^ . . .^ dxn :“
ż
A

fpx1, . . . , xnq dx1 . . . dxn.
Let’s get a bit more ambitious now: supposeM is a more general n-manifold and ω P ΩnpMq is

a compactly supported top-dimensional differential form that happens to have its support contained
in the domain U ĂM of some chart pU , xq. In the corresponding local coordinates, ω can therefore
also be written within U as f dx1^ . . .^dxn for a smooth compactly supported function f : U Ñ R.
Expressing f as a function of the coordinates x1, . . . , xn on U , it now seems natural to define

(10.1)
ż
A

ω :“
ż
xpAq

fpx1, . . . , xnq dx1 . . . dxn

for any subset A Ă U such that xpAq Ă xpUq Ă Rn is measurable, i.e. the function whose Lebesgue
integral we are actually computing is f ˝ x´1 : xpUq Ñ R. To see why this might be a sensible
definition, write the standard Cartesian coordinates on Rn as t1, . . . , tn so as to distinguish them
from the coordinates x1, . . . , xn on U ; regarding both sets of coordinates as functions on their
respective domains, they are related by

(10.2) ti ˝ x “ xi on U , i “ 1, . . . , n.

37no pun intended
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Definition 10.1 now identifies the Lebesgue integral we just described with the integral of the n-
form pf ˝ x´1q dt1 ^ . . .^ dtn over xpAq Ă xpUq Ă Rn. According to Proposition 9.18 and (10.2),
the diffeomorphism M Ą U

xÝÑ xpUq Ă Rn pulls this n-form back to U as

x˚
`pf ˝ x´1q dt1 ^ . . .^ dtn

˘ “ f ¨ `x˚dt1 ^ . . .^ x˚dtn
˘ “ f ¨ `dpx˚t1q ^ . . .^ dpx˚tnq˘

“ f dx1 ^ . . .^ dxn “ ω,

so (10.1) follows from Definition 10.1 if we stipulate that the integral should satisfyż
A

x˚α “
ż
xpAq

α

for all compactly supported n-forms α on xpUq Ă Rn. This identity is consistent with our intuition
about pullbacks via diffeomorphisms: x˚ gives a bijection allowing geometric data on xpUq Ă Rn

to be identified with geometric data on U ĂM , and it would make sense for our definition of the
integral to respect such identifications.

But there is still a crucial question to be answered: does our definition of
ş
A
ω as described

above depend on the choice of chart x : U Ñ Rn?
Suppose y : U Ñ Rn is a second chart defined on the same domain, so ω can also be written

as ω “ g dy1 ^ . . . ^ dyn for some function g : U Ñ R, and
ş
A
ω according to this chart should

be
ş
ypAq g ˝ y´1 dm, so we need to know whether this is the same as

ş
xpAq f ˝ x´1 dm. To clarify

this, let us abbreviate ψ :“ y ˝x´1 : xpUq Ñ ypUq for the transition map relating x and y, and use
Proposition 9.10 to write

dy1 ^ . . .^ dyn “ det

ˆBy
Bx

˙
dx1 ^ . . .^ dxn on U ,

where we abbreviate the matrix-valued function

By
Bx :“

¨̊
˝

By1
Bx1 ¨ ¨ ¨ By1

Bxn

...
. . .

...
Byn
Bx1 ¨ ¨ ¨ Byn

Bxn

‹̨‚: U Ñ Rnˆn.

The identity f dx1 ^ . . .^ dxn “ ω “ g dy1^ . . .^ dyn thus implies f “ g ¨ det
´ By
Bx
¯
. At any point

p P U , ByBxppq is just the Jacobian matrix of the transition map ψ at xppq, and this last identity thus
implies

f ˝ x´1 “ `
g ˝ x´1

˘ ¨ detDψ.
If we now write G :“ g ˝ y´1, then f ˝ x´1 becomes pG ˝ ψq ¨ detDψ, and the identity we were
hoping for becomes

(10.3)
ż
ypAq

g ˝ y´1 dm “
ż
ψpxpAqq

Gdm
?“
ż
xpAq

pG ˝ ψq ¨ detDψ dm “
ż
xpAq

f ˝ x´1 dm.

This should look familiar, as it is almost the classical change-of-variables formula, except for one
detail: in the classical formula, the Jacobian determinant detpDψq is replaced by its absolute value.
That is fine if detpDψq happens to be positive—we do of course know that it can never be 0, since
ψ is a diffeomorphism and Dψpqq : Rn Ñ Rn is therefore an isomorphism for all q P xpUq. But
nothing in our discussion so far has ruled out the possibility that detpDψq may sometimes be
negative, and there certainly do exist diffeomorphisms between regions in Rn that have negative
Jacobian determinant, e.g. the reflection px, yq ÞÑ px,´yq on R2. The answer to the crucial question
about (10.1) is therefore a resounding sometimes :
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Proposition 10.3. In the setting of (10.1), two charts defined on U give matching definitions
of

ş
A
ω if the Jacobian determinant of their transition map is everywhere positive. �

10.2. Orientations. The upshot of our change-of-variables discussion is that integrating an
n-form ω P ΩnpMq by writing it in local coordinates as ω “ f dx1 ^ . . . ^ dxn and then in-
tegrating the function f in coordinates does not give a fully coordinate-invariant result, but it
will become coordinate-invariant if for some reason we never have to worry about transition maps
whose Jacobian determinant is negative. This is our first encounter in this course with the notion
of orientation.

Definition 10.4. Given open subsets U ,V Ă Rn for n ě 1, a diffeomorphism ψ : U Ñ
V is called orientation preserving (orientierungserhaltend) if the Jacobian matrix Dψppq P
GLpn,Rq at every point p P U has positive determinant. It is called orientation reversing
(orientierungsumkehrend) if detDψppq ă 0 for all p.

We will say more about the intuitive meaning of this definition in a moment, but for now, you
may want to keep the following linear examples in mind:

(1) Every rotation
ˆ
x

y

˙
ÞÑ

ˆ
cos θ ´ sin θ

sin θ cos θ

˙ˆ
x

y

˙
defines an orientation-preserving diffeomor-

phism R2 Ñ R2. More generally, every element of the special orthogonal group SOpnq
(cf. Exercise 4.25) defines an orientation-preserving diffeomorphism Rn Ñ Rn.

(2) The reflection px, yq ÞÑ px,´yq is an orientation-reversing diffeomorphism R2 Ñ R2, and
more generally, every element of Opnqz SOpnq defines an orientation-reserving diffeomor-
phism Rn Ñ Rn. In particular, this includes every linear transformation on Rn that is
defined by reflecting across an pn´ 1q-dimensional subspace.

Definition 10.5. A smooth atlas A “ tpUα, xαquαPI on a manifold M of dimension n ě 1 is
called oriented (orientiert) if all of its transition maps xα ˝ x´1

β are orientation preserving. An
orientation (Orientierung) of a manifold M with maximal smooth atlas A is a subset A` Ă A

that forms a maximal oriented atlas for M . A smooth manifold that has been equipped with an
orientation A` is called an oriented manifold (orientierte Mannigfaltigkeit), and the smooth
charts in A` are then called the oriented charts. A manifold is called orientable (orientierbar)
if it admits an orientation.

One can argue as in Lemma 2.5 that given a smooth structure A, every oriented atlas A` Ă A

has a unique extension to a maximal one and thus determines an orientation. In practice, we will
see that there are usually more convenient ways to specify an orientation than by explicitly finding
an oriented atlas, but here are a few examples where the latter can easily be done:

Exercise 10.6. Show that the atlas we defined on S1 in Lecture 1 is oriented.

Exercise 10.7. Use the atlas from Exercise 1.7 to show that S2 is orientable. (Depending on
how you constructed the charts in that exercise, you might now have to modify them slightly for
the sake of orientations.)

Example 10.8. The manifold Rn carries a canonical global chart defined by the identity map,
so this chart forms an oriented atlas and thus endows Rn with a canonical orientation.

Example 10.9. If M has an oriented atlas A` and O ĂM is an open subset, then the atlas
A
`
O

on O constructed as in §2.4.2 is automatically also oriented, thus open subsets of oriented
manifolds inherit natural orientations. In light of the previous example, this applies in particular
to open subsets of Rn.

Exercise 10.10. Show that if M and N are both orientable, then so is M ˆN .
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Exercise 10.11. Convince yourself that the atlases on the projective plane and Klein bottle
described in §2.4.7 are not oriented. (This does not yet prove that these manifolds are not ori-
entable, since one might imagine that there are other ways to construct an oriented atlas. But we
will see below that this is impossible.)

Definition 10.12. For two oriented smooth manifoldsM andN , a diffeomorphism f :M Ñ N

is called orientation preserving or orientation reversing if the map y ˝ f ˝ x´1 is orientation
preserving / reversing respectively for every choice of oriented smooth charts pU , xq on M and
pV , yq on N .

Exercise 10.13. Show that for the orientations of S1 and S2 defined in Exercises 10.6 and 10.7,
the antipodal map Sn Ñ Sn : p ÞÑ ´p is orientation preserving for n “ 1 but orientation reversing
for n “ 2.

Remark 10.14. In light of Definition 10.12 and the canonical orientations of Rn and open
subsets specified by Examples 10.8 and 10.9, a smooth chart pU , xq on an oriented manifold M is
an oriented chart if and only if the diffeomorphismM Ą U

xÑ xpUq Ă Rn is orientation preserving.

Let’s discuss next some useful alternative perspectives on the notion of orientation. We recall
first the basic notion from topology of connected components. In topology one distinguishes between
two slightly different notions of connectedness, but we will not need to worry about this distinction
since for manifolds, they are equivalent.

Definition 10.15. A manifold M is connected (zusammenhängend) if for every pair of
points p, q P M , there exists a continuous path γ : r0, 1s Ñ M with γp0q “ p and γp1q “ q.
The connected components (Zusammenhangskomponenten) of M are the maximal connected
subsets.

It should be easy to convince yourself that each connected component of a manifold is both
closed and open as a subset, hence it is also a manifold. In fact, if M has connected components
tMαuαPI , then there is a natural diffeomorphism

š
αPIMα –M .

Returning to the subject of orientations, consider a 2-dimensional subspace P Ă R3, i.e. a
plane. One common way of characterizing what it should mean intuitively for P to be “oriented”
in one way or the other is to decide which side of P is the “top” and which is the “bottom”; in
other words, we draw a distinction between the two connected components of R3zP , labelling one
component as “above” the plane and the other as “below” it. An equivalent way to say this is
that one makes a choice of a unit vector n P R3 orthogonal to P , so that one can then decide to
call the direction indicated by n “above” and the opposite direction “below”. There are obviously
two possible choices of the vector n, and for an arbitrary plane P Ă R3, neither choice can be
considered canonical.

Now, the case of a plane P Ă R3 is rather special since it is a submanifold of R3, and we do not
want to have to assume all manifolds we consider are presented to us as submanifolds of Euclidean
space. But actually, there is another way to characterize the choice of normal vector n in terms
of vectors that are tangent to P . You may have learned it as the “right hand rule” when you first
encountered vectors and the cross product in school: imagine positioning your right hand along
the plane P Ă R3 so that your thumb points orthogonal to it in the direction of n, but your other
four fingers are tangent to P . Those four fingers will want to curl in a particular manner, defining
a direction of rotation on the plane that one might choose to label “counterclockwise”. (This is
exactly what one does—at least in the northern hemisphere—when one visualizes the Earth “from
above” and says that it rotates counterclockwise. In that situation, “from above” means that one
chooses to view the Earth from a vantage point that is centered on the north pole; if one centered
the picture on the south pole instead, the rotation would look clockwise! For the same reason, it
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is important to consistently use the right hand rather than the left hand when implementing the
right hand rule, as switching hands would indicate a rotation in the other direction.)

The upshot of this heuristic discussion is this: our intuitive notion of what it means to orient
a plane P Ă R3 is equivalent to making a choice of which direction of rotation on P should be
labelled as counterclockwise instead of clockwise. This notion can be defined on any surface Σ

by talking about rotations in the tangent spaces TpΣ, and there is no longer any need to discuss
normal vectors or assume an embedding Σ ãÑ R3 is given. Moreover, we will see presently that
instead of specifying a preferred direction of rotation in TpΣ, it is equivalent to specify a preferred
class of ordered bases.

Definition 10.16. For a vector space V of dimension n ě 1, let

BpV q Ă V ˆn :“ V ˆ . . .ˆ Vloooooomoooooon
n

denote the set of all ordered n-tuples pv1, . . . , vnq that form bases of V .

Observe that BpV q is an open subset of V ˆn since linear independence cannot be destroyed
by small perturbations. In fact, after choosing any isomorphism V Ñ Rn, the vectors in any tuple
pv1, . . . , vnq P BpV q can be put together as columns of an n-by-nmatrix, thus identifying BpV q with
the general linear group GLpn,Rq, which is indeed an open subset of the space of matrices Rnˆn.

Now consider the case V “ R2. Given any pv1, v2q P BpR2q, moving from the direction of v1 to
that of v2 requires a rotation of less than 180 degrees that is either counterclockwise or clockwise;
for example, a counterclockwise rotation is required in order to move from the first standard basis
vector e1 “ p1, 0q to the second one e2 “ p0, 1q, but if we exchange their roles and order the
standard basis as pe2, e1q P BpR2q, then getting from e2 to e1 requires a clockwise rotation. For
a tangent space TpΣ to a surface Σ, the implication is that if one has chosen which rotations to
call counterclockwise as opposed to clockwise, then one has also chosen a preferred class of ordered
bases pX1, X2q P BpTpΣq, i.e. we call pX1, X2q a positively oriented basis of the rotation moving
from X1 to X2 is counterclockwise, and negatively oriented if that rotation is clockwise. The
following facts should now be apparent:

(1) If pX1, X2q P BpTpΣq is positively oriented, then every pX 1
1, X

1
2q P BpTpΣq that can

be connected to pX1, X2q by a continuous path in BpTpΣq is also positively oriented.
Conversely, any two choices of positively oriented basis are related to each other by a
continuous deformation of ordered bases, meaning they are connected by a continuous
path in BpTpΣq. Both statements also apply of course to negatively oriented bases.

(2) Any choice of basis pX1, X2q P BpTpΣq can be used to define the distinction between
clockwise and counterclockwise rotation in TpΣ: one simply chooses it so that pX1, X2q
is a positively oriented basis.

(3) An ordered basis pX1, X2q is positively oriented if and only if pX2, X1q is negatively
oriented.

There is a basic fact about GLp2,Rq in the background of the first observation above: it has
exactly two connected components, characterized by the conditions detpAq ą 0 and detpAq ă 0.
This turns out to be true in every dimension:

Proposition 10.17. For every n P N, the sets of GL`pn,Rq :“  
A P GLpn,Rq ˇ̌ detpAq ą 0

(
and GL´pn,Rq :“  

A P GLpn,Rq ˇ̌ detpAq ă 0
(
are both connected.

Proof. Since detpABq “ detpAq detpBq, it suffices to prove that GL`pn,Rq is connected. To
start with, we use polar decomposition to reduce this to a statement about the special orthogonal
group SOpnq. Given A P GL`pn,Rq, the matrix ATA is symmetric and positive definite, thus it
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is diagonalizable with only positive eigenvalues, and therefore admits a “square root”

P :“ ?
ATA,

defined in the same orthogonal basis by taking the square roots of the eigenvalues. Clearly P

is also symmetric and positive definite, and it is now straightforward to check that R :“ AP´1

satisfies RTR “ 1, i.e. it is orthogonal; moreover, R P SOpnq since A and P´1 each have positive
determinant. Now choose a continuous path of symmetric positive-definite matrices tPtutPr0,1s
such that P1 “ P and P0 “ 1; such a path can be found by fixing the orthonormal eigenbasis of
P while deforming all its (positive!) eigenvalues to 1. The path At :“ RPt then connects A1 “ A

to A0 “ R P SOpnq, so we will be done if we can show that SOpnq is connected.
We argue the latter by induction: the case n “ 1 is already clear since SOp1q “ t1u. Assuming

SOpn ´ 1q is already known to be connected, suppose A P SOpnq is given. We claim that there
exists a continuous path tAt P SOpnqutPr0,1s such that A1 “ A and A0 is a matrix of the form

A0 “
ˆ
1 0

0 B

˙
, for some B P SOpn´ 1q.

Observe that this claim implies the inductive step, as SOpn´ 1q is already known to be connected.
To prove the claim, first choose any continuous path of unit vectors v1ptq P Rn such that v1p1q
is the first column of A and v1p0q is the first standard basis vector e1 “ p1, 0, . . . , 0q; this is
possible since the unit sphere Sn´1 is connected. For any t0 P r0, 1s, one can complete v1pt0q to an
orthonormal basis v1pt0q, . . . , vnpt0q P Rn, and then find a connected neighborhood J Ă r0, 1s of t0
such that the set of vectors v1ptq, v2pt0q, . . . , vnpt0q remains linearly independent for every t P J .
Now define a continuous family of orthonormal bases v1ptq, v2ptq, . . . , vnptq for t P J by applying
the Gram-Schmidt algorithm to v1ptq, v2pt0q, . . . , vnpt0q; regarding these as columns of a matrix, we
have in this way constructed a continuous family of orthogonal matrices tpAt P OpnqutPJ whose first
columns are v1ptq. Their determinants depend continuously on t and are thus either `1 or ´1 for
all t P J ; in the latter case, we can replace vnptq by ´vnptq in order to assume pAt P SOpnq without
loss of generality. Since r0, 1s is compact, we can cover it with finitely many neighborhoods J as
described above, and in this way construct a family of matrices tpAt P SOpnqutPr0,1s that satisfy
A1 “ A and A0 “

ˆ
1 0

0 B

˙
, and such that the first column of At depends continuously on t, while

the other columns are continuous except at finitely many points 0 ă t1 ă . . . tN ă 1, where there
are jump discontinuities. At any of these points tj , the two matricespAt́j

:“ lim
tÑt´j

pAt, pAt̀j
:“ lim

tÑt`j

pAt

may differ, but they have the same first column, namely v1ptjq. But expressing these matrices in

any orthonormal basis that starts with v1ptjq puts both of them in the form
ˆ
1 0

0 B˘

˙
for some

B˘ P SOpn ´ 1q, and by the inductive hypothesis, there exists a continuous path in SOpn ´ 1q
from B´ to B`. In this way, we can insert extra intervals at each of the points tj and fill in
the discontinuities, then reparametrize the interval to construct the continuous family At in the
claim. �

Corollary 10.18. For any vector space V of dimension n ě 1, the set of ordered bases BpV q
has exactly two connected components. �

Remark 10.19. It is very important in this entire discussion that we are talking about real
vector spaces, not complex. In particular, the analogous set of ordered complex bases on a complex
vector space is connected, due to the fact that GLpn,Cq is connected. A hint of this is provided by
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the fact that the determinant on GLpn,Cq takes values in Czt0u, which is connected, unlike Rzt0u.
As a consequence, there is no meaningful notion of orientations for complex manifolds; actually,
every complex manifold can also be regarded as a real manifold and is orientable as a real manifold,
but the orientation is canonically determined by its complex structure. The reason for the latter is
that if we identify Cn with R2n via the correspondence Cn Q x`iy Ø px,yq P RnˆRn “ R2n, then
every complex-linear isomorphism A P GLpn,Cq becomes an element of GLp2n,Rq with positive
determinant.

Exercise 10.20 (just for fun). Adapt the proof of Proposition 10.17 to prove that GLpn,Cq
is connected for every n P N.
Hint: Op1q is not connected, but Up1q is.

We can now give a general definition of orientations of vector spaces and relate it to the
previously defined notion of oriented manifolds.

Definition 10.21. An orientation oV of an n-dimensional vector space V for n ě 1 is a
labelling of the two connected components of BpV q as B`pV q and B´pV q, which are then said to
consist of the positively oriented and negatively oriented bases respectively. An oriented
vector space is a vector space that has been equipped with an orientation. A linear isomorphism
A : V Ñ W between two oriented vector spaces is called orientation preserving if for every
positively-oriented basis pv1, . . . , vnq of V , pAv1, . . . , Avnq is a positively-oriented basis of W , and
A is otherwise called orientation reversing.

Notice that unlike manifolds, vector spaces always admit orientations, and there are always
exactly two possible choices of orientation.

Example 10.22. As a vector space, Rn carries a canonical orientation for which the standard
basis is regarded as positively oriented.

Exercise 10.23. Show that for the vector space Rn with its canonical orientation, an invertible
linear map A : Rn Ñ Rn is orientation preserving if and only if detpAq ą 0.
Hint: The identity map Rn Ñ Rn is clearly orientation preserving.

In light of Exercise 10.23, a diffeomorphism ψ : U Ñ V between two open subsets U ,V Ă Rn

is orientation preserving as in Definition 10.4 if and only if its derivative at every point is an
orientation-preserving isomorphism Rn Ñ Rn in the sense of Definition 10.21. We only need one
more notion before we can set up a precise correspondence between orientations of manifolds and
of their tangent spaces:

Definition 10.24. Suppose M is an n-manifold with n ě 1, P is a topological space, φ :

P ÑM is a continuous map, and we consider the family of tangent spaces tTφpsqMusPP at points
parametrized by the map φ. A continuous family of orientations along φ : P ÑM is a family
tosusPP , where os is an orientation of TφpsqM for each s P P , such that for every s0 P P , there
exists a neighborhood O Ă P of s0 and a collection of continuous maps X1, . . . , Xn : O Ñ TM

for which pX1psq, . . . , Xnpsqq is a positively-oriented basis of TφpsqM with respect to os for each
s P O. In the case P “M with φ chosen to be the identity map, we will simply refer to this as a
continuous family of orientations of the tangent spaces of M .

Proposition 10.25. On smooth manifolds M of dimension n ě 1, there is a natural bijective
correspondence between orientations of M and continuous families of orientations of the tangent
spaces ofM , and it is uniquely determined by the condition that for any diffeomorphism f :M Ñ N

between two smooth oriented manifolds, f is orientation preserving if and only if the isomorphism
Tpf : TpM Ñ TfppqN is orientation preserving for every p P M . Equivalently, a chart pU , xq is
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oriented if and only if the corresponding basis of coordinate vector fields pB1, . . . , Bnq is positively
oriented for every p P U .

Proof. If M is oriented, one defines the orientation of TpM for any p PM such that for any
oriented chart pU , xq with p P U , the isomorphism dpx : TpM Ñ Rn is orientation preserving (for the
canonical orientation of Rn). This is equivalent to the condition stated above involving coordinate
vector fields, and the definition is independent of the choice of oriented chart since if pV , yq is a
different choice, then dpy is the composition of dpx with an isomorphism Rn Ñ Rn (defined by
differentiating a transition map) that is orientation preserving. Conversely, given a continuous
family of orientations of the tangent spaces TpM , one defines the corresponding orientation of M
such that a chart pU , xq is oriented if and only if dpx : Tpx Ñ Rn is orientation preserving for
every p P U . We leave it as an exercise to check that these definitions satisfy all of the stated
properties. �

The fact that the orientations of the tangent spaces TpM vary continuously with p is cru-
cial, and it provides the easiest means of proving statements about orientations in many concrete
examples.

Exercise 10.26. For a smooth n-manifold M with n ě 1, prove:
(1) If M is connected and orientable, then it admits exactly two choices of orientation.
(2) M is orientable if and only if for every continuous path γ : r0, 1s ÑM with γp0q “ γp1q

and every continuous family of orientations totutPr0,1s along γ, o0 “ o1.

Exercise 10.27. Show that Sn is orientable for every n P N.
Hint: For every p P Sn and any basis X1, . . . , Xn of TpSn, pX1, . . . , Xn, pq forms a basis of Rn`1.
Use the fact that Rn`1 is orientable.

Exercise 10.28. Use Exercise 10.26 to show that the projective plane RP
2 and the Klein

bottle are not orientable.

Example 10.29. The physical universe is a 3-manifold, as you can plainly see by looking
around you; from your local perspective it looks like R3, but since you cannot see the whole thing,
it could in theory be diffeomorphic to any 3-manifold, even one that is not orientable. If indeed it is
not orientable, then it is possible in theory for an astronaut to return from a long journey through
space and find that what she used to call her right hand is now on the left side, and vice versa.
She would not see it that way since her right and left eyes would also have been interchanged, but
she would think that all writing now appears backwards, and the Earth (when viewed from the
north pole) is now rotating clockwise. I am not aware of any law of physics that would rule out
this scenario.

10.3. Definition of the integral. We are now in a position to define the integral of a
compactly supported n-form on an oriented n-manifold for each n ě 1. Denote the support
(Träger) of a k-form ω P ΩkpMq by

supppωq :“  
p PM ˇ̌

ωp ‰ 0
( ĂM,

and define the vector space

Ωkc pMq :“  
ω P ΩkpMq ˇ̌ supppωq ĂM is compact

( Ă ΩkpMq.
In the most interesting examples for our purposes, M will often be a compact manifold, in which
case Ωkc pMq “ ΩkpMq. We will call a subset A ĂM measurable if for every smooth chart pU , xq
onM , the set xpUXAq Ă Rn is Lebesgue measurable. The following theorem serves simultaneously
as a definition.
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Theorem 10.30. For n P N, one can uniquely associate to every smooth oriented n-manifold
M and measurable subset A ĂM a linear map

Ωnc pMq Ñ R : ω ÞÑ
ż
A

ω

such that the following conditions are satisfied:
(1) If U ĂM is an open subset containing supppωq XA, then then

ş
UXA ω “

ş
A
ω.

(2) For M “ U Ă Rn an open subset of Euclidean space with its canonical orientation and
the standard Cartesian coordinates x1, . . . , xn,ż

A

f dx1 ^ . . .^ dxn “
ż
A

f dm

for all smooth compactly supported functions f : U Ñ R, where the right hand side is the
standard Lebesgue integral of f .

(3) For any orientation-preserving diffeomorphism ψ : M Ñ N between a pair of oriented
n-manifolds, ż

A

ψ˚ω “
ż
ψpAq

ω

holds for all ω P Ωnc pNq and measurable subsets A ĂM .

To summarize, the integral on arbitrary oriented manifolds is uniquely determined by its
definition on open subsets of Rn and the change-of-variables formula, which now appears as the
condition that integrals are invariant under pullbacks via orientation-preserving diffeomorphisms.
We will prove this in the next lecture, but it is already easy to explain the idea. For forms
ω P Ωnc pMq with supppωq contained in the domain of a single oriented chart pU , xq, one can write

ω “ f dx1 ^ . . .^ dxn “ x˚
`pf ˝ x´1q dt1 ^ . . .^ dtn

˘
on U

in terms of the standard Cartesian coordinates t1, . . . , tn on xpUq Ă Rn and a uniquely determined
function f : U Ñ R. The three properties in the statement above then reproduce the definition ofş
A
ω that we saw in §10.1, namelyż

A

ω “
ż
UXA

ω “
ż
UXA

x˚ppf ˝ x´1q dt1 ^ . . .^ dtnq “
ż
xpUXAq

pf ˝ x´1q dt1 ^ . . .^ dtn

“
ż
xpUXAq

f ˝ x´1 dm.

The restriction to oriented charts guarantees moreover in light of Proposition 10.3 that this result
does not depend on the choice of the chart pU , xq, though it does depend on the orientation.
Linearity will then determine

ş
A
ω uniquely for every ω P Ωnc pMq if we can be assured that every

such form is a finite sum of forms that each have compact support in the domain of some oriented
chart. This is true, but not completely obvious—it will require a brief digression on the topic of
partitions of unity, which will have many further uses as we move forward.

11. Integration and volume

11.1. Existence of the integral. I owe you a proof of Theorem 10.30 on the existence and
properties of the linear map Ωnc Ñ R : ω ÞÑ ş

A
ω for all oriented n-manifolds M and measurable

subsets A ĂM . The following will serve as a useful tool for “localizing” such constructions:

Lemma 11.1. Given a smooth manifold M , a compact subset K ĂM and a finite collection of
open sets tUαuαPI that cover K, there exists a collection of smooth functions tϕα : M Ñ r0, 1suαPI
satisfying the following two conditions:
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(1) For each α P I, ϕα has compact support contained in Uα;
(2)

ř
αPI ϕα ” 1 on K.

Proof. For each p P K, choose any αp P I such that p P Uαp
, and choose also a smooth

function ψp :M Ñ r0, 1swith compact support in Uαp
such that ψp ą 0 on some open neighborhood

Vp Ă Uαp
of p. The sets tVpupPK then form an open cover of the compact set K and therefore

admit a finite subcover, i.e. there is a finite subset K0 Ă K such that K Ă Ť
pPK0

Vp. Now for
each α P I, define a smooth function ψα :M Ñ r0,8q by

ψα :“ ÿ
tpPK0 | αp“αu

ψp.

By construction, ψα has compact support in Uα, and for each q P K, there exists p P K0 such that
q P Vp and thus ψppqq ą 0, implying ψαp

pqq ą 0. It follows that
ř
αPI ψα ą 0 everywhere on K,

and therefore also on some neighborhood V ĂM of K. On the neighborhood V , we define

ϕα :“ ψαř
βPI ψβ

, for each α P I,

so that each ϕα takes values in r0, 1s and ř
αPI ϕα ” 1 by construction. Now choose any smooth

function f : M Ñ r0, 1s that equals 1 on K and has compact support in V , modify each ϕα by
multiplying it by f , and extend the modified function to the rest of M so that it vanishes outside
of V . �

The collection of functions tϕαuαPI in this lemma is a special case of a general construction
called a partition of unity subordinate to the cover tUαuαPI (eine der Überdeckung untergeord-
nete Zerlegung der Eins). We will extend this notion later, when we discuss more general existence
theorems for geometric structures such as Riemannian metrics.

Proof of Theorem 10.30. Given an oriented n-manifoldM with measurable subset A ĂM

and ω P Ωnc pMq, choose an open subsetM0 ĂM that contains supppωqXA but has compact closureĎM0 Ă M . By compactness, we can cover ĎM0 with a finite collection of open sets tUα Ă MuαPI
that are domains of oriented charts pUα, xαq, and Lemma 11.1 provides a partition of unity tϕα :

M Ñ r0, 1suαPI such that
(i) ϕα has compact support contained in Uα for each α P I;
(ii)

ř
αPI ϕα ” 1 on M0.

We can now write
ω “ ÿ

αPI
ϕαω on M0,

and observe that ϕαω P Ωnc pUαq, so if the integral satisfies the properties stated in the theorem,
then

(11.1)
ż
A

ω “
ż
M0XA

ω “ ÿ
αPI

ż
M0XA

ϕαω “
ÿ
αPI

ż
UαXA

ϕαω “
ÿ
αPI

ż
xαpUαXAq

fα dm,

where fα : xαpUαq Ñ R is the unique function such that ϕαω “ xα̊pfα dx1 ^ . . . ^ dxnq on Uα.
This specifies the integral uniquely.

We claim next that if
ş
A
ω P R is defined via (11.1), then the result is independent of all

choices, namely the open subset M0 ĂM containing supppωq XA, the finite collection of oriented
charts tpUα, xαquαPI and the functions tϕαuαPI satisfying (i) and (ii) above. Independence of
the choice of charts follows from the discussion in §10.1, in particular Proposition 10.3. This is
the step at which it is crucial that M comes with an orientation, so the transition maps that
we feed into Proposition 10.3 are all orientation preserving. With this out of the way, suppose
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tpVβ , yβquβPJ is another finite collection of oriented charts and tψβ : M Ñ r0, 1suβPJ a collection
of smooth functions that each have compact support in the corresponding subsets Vβ and satisfyř
βPJ ψβ ” 1 on some open set M1 Ă M containing supppωq X A. The open set M0 XM1 Ă M

then also contains supppωq XA, and is covered by the finite collection of open sets

tUα X Vβupα,βqPIˆJ ,
with the functions tϕαψβ :M Ñ r0, 1supα,βqPIˆJ having compact support in UαXVβ and satisfyingř
pα,βqPIˆJ ϕαψβ ” 1 on M0 X M1. Any oriented chart xα defined on Uα is also defined on

Uα X Vβ for each β P J , so we can use it to compute
ş
UαXVβXA ϕαψβω as a Lebesgue integral over

xαpUαXAq Ă Rn of a function with compact support in the region xαpUαXVβq, and the additivity
of the Legesgue integral then impliesż

UαXA
ϕαω “

ÿ
βPJ

ż
UαXVβXA

ϕαψβω,

and therefore also ÿ
αPI

ż
UαXA

ϕαω “
ÿ

pα,βqPIˆJ

ż
UαXVβXA

ϕαψβω.

But if we carry out the same argument instead with the charts pVβ , yβq and write ψβω “ ř
αPI ϕαψβω,

we find that the right hand side is also equal to
ř
βPJ

ş
VβXA ψβω, proving that the two definitions

of
ş
A
ω obtained from these different partitions of unity match.
It remains to check that our general definition of

ş
A
ω satisfies the three properties stated in

the theorem, but this is easy, so we will leave it as an exercise with the following hint: the freedom
to choose any convenient collection of oriented charts makes the formula

ş
A
ψ˚ω “ ş

ψpAq ω for
orientation-preserving diffeomorphisms ψ :M Ñ N virtually a tautology. �

11.2. Computational tools. The notion of integration defined in Theorem 10.30 has several
useful properties that were not mentioned yet, some of which can be applied to make actual
calculations considerably easier, e.g. it is rarely actually necessary in practice to choose a partition
of unity. We begin with two properties whose proofs are easy exercises.

Exercise 11.2. Prove that for an oriented n-manifold M and ω P Ωnc pMq, the following
properties hold:

(1) If A,B ĂM are two disjoint measurable subsets, then
ş
AYB ω “

ş
A
ω ` ş

B
ω.

(2) If A Ă M has the property that xpU X Aq Ă Rn has Lebesgue measure zero38 for all
smooth charts pU , xq, then ş

A
ω “ 0.

One frequently occurring situation in simple examples is that the domain A Ă M where we
want to integrate lies almost entirely inside the domain of a single chart, where the word “almost”
in this case carries its usual measure-theoretic meaning, i.e. “outside of a set of measure zero”. In
combination with the exercise above, the next result will then allow us to dispense entirely with
partitions of unity and compute the integral in a single chart:

Proposition 11.3. Suppose M is an oriented n-manifold and pU , xq is an oriented chart
on M . Then for any measurable subset A Ă U and ω P Ωnc pMq taking the form f dx1 ^ . . .^ dxn

in U , the function f ˝ x´1 is Lebesgue integrable on xpAq Ă Rn andż
A

ω “
ż
xpAq

f ˝ x´1 dm.

38We say in this case that A Ă M has measure zero. Note that it is not actually necessary to define a
measure on M in order to define this notion.
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Proof. Let K Ă M denote the closure of supppωq X A Ă M , and observe that this set is
compact since it is a closed subset of supppωq, and it is also contained in the closure of U since
A Ă U . In particular, the set

BK :“ K X pMzUq
is contained in the boundary of the closure of U , and by assumption it is disjoint from A. Next
choose a finite collection of oriented charts tpOα, xαquαPI such that

K Ă U Y ď
αPI

Oα,

and for each N P N and α P I, let
ON
α :“  

p P O
ˇ̌ |xαppq ´ xαpqq| ă 1{N for some q P BK XOα

(
.

We observe the following:
(1) K Ă U YŤ

αPI ON
α for every N P N.

(2) For each α P I, O1
α Ą O2

α Ą O3
α Ą . . ., and, since AX BK “ H,

(11.2) AX č
NPN

ON
α “ H.

For each N P N, we can choose a partition of unity consisting of functions ϕN , ϕNα :M Ñ r0, 1s for
each α P I with compact supports supppϕN q Ă U and supppϕNα q Ă ON

α such that ϕN`řαPI ϕNα ” 1

on K. Since K contains AX supppωq, we then haveż
A

ω “
ż
A

ϕNω ` ÿ
αPI

ϕNα ω

for every N P N. But for each α P I, (11.2) implies that the Lebesgue measure of xαpON
α X Aq

converges to 0 as N Ñ8, thus

lim
NÑ8

ż
A

ϕNα ω “ 0,

from which follows ż
A

ϕNω Ñ
ż
A

ω as N Ñ8.
Writing ω “ x˚pf dx1^ . . .^ dxnq on U for a suitable function f : xpUq Ñ R,

ş
A
ϕNω becomes the

Lebesgue integral ż
xpAq

pϕN ˝ x´1qf dm,
in which the integrand converges pointwise to f since each point in A is outside the support of
all the ϕNα for N sufficiently large. If you already believe that f is Lebesgue integrable on xpAq,
then since |pϕN ˝ x´1qf | ď |f |, the dominated convergence theorem now implies that this integral
converges to

ş
xpAq f dm as N Ñ8, and the latter is therefore

ş
A
ω.

Here is a quick sketch of the proof that f really is Lebesgue integrable on xpAq: suppose ω is
replaced by a continuous n-form |ω| onM that equals ´ω at any point where ω evaluates negatively
on some positive basis, but is otherwise identical to ω. In general |ω| will not be smooth—just as
|f | need not be smooth when f is a smooth function—but continuity is good enough for defining
the integral

ş
A
|ω| as in Theorem 10.30. Changing ω to |ω| has the effect of replacing f with |f |

in the calculation above, and similarly in all other oriented charts. The same argument as above
then proves ż

xpAq
pϕN ˝ x´1q|f | dmÑ

ż
A

|ω| as N Ñ8.
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Since ϕN equals 1 on subsets that exhaust all of A as N Ñ8, this implies a uniform upper bound
for the integral of |f | over arbitrary compact subsets of xpAq, and thus

ş
xpAq |f | dm ă 8. �

Exercise 11.4. For every oriented n-manifold M with n ě 1, there exists another oriented
manifold ´M that is defined as the same manifold with the “reversed” orientation, meaning that
one changes the orientation of every tangent space TpM . Show that for every ω P Ωnc pMq,ż

´M
ω “ ´

ż
M

ω.

Hint: If you fix the reflection map rpt1, t2, . . . , tnq :“ p´t1, t2, . . . , tnq on Rn and take any oriented
chart pU , xq on M , then pU , r ˝ xq will be an oriented chart on ´M .

Remark 11.5. At long last, we can now clarify a notational issue that often bothers newcomers
to integral calculus: what does

şa
b
fpxq dx actually mean when a ă b? It is traditional to define this

as a synonym for ´ şb
a
fpxq dx :“ ´ ş

ra,bs f dm and regard it as a meaningless but useful convention,
but now we can assign a deeper meaning to it: for the 1-manifoldM :“ pa, bq Ă R with its canonical
orientation and the 1-form f dx P Ω1

cpMq defined via the canonical coordinate x and a compactly
supported39 function f : pa, bq Ñ R, the correct definition isż a

b

fpxq dx :“
ż
´pa,bq

f dx,

where ´pa, bq, denotes the manifold pa, bq with the opposite of its canonical orientation. This
is consistent with the way that substitution is typically applied in calculations of 1-dimensional
integrals: orientation-reversing diffeomorphisms are sometimes used for substitution, but they
produce integrals over intervals with reversed orientation.

11.3. Volume forms. We now consider the first true geometric application of integration:
how does one compute volumes of subsets in a manifold?

In an ordinary measure space X with measure µ, the volume of A Ă X is simply
ş
A
dµ. We

have seen that in n-dimensional oriented manifolds, the role of measures is played by differential
n-forms; however, not all of these define geometrically appropriate notions of volume. Indeed, a
form ω P ΩnpMq gives a way to define volumes of paralelepipeds in each tangent space TpM , but it
can happen that ωp “ 0 at some point p PM , implying that all regions in TpM have volume zero,
which is not very reasonable geometrically. The objects that we will refer to as “volume forms”
specifically exclude this possibility:

Definition 11.6. A volume form (Volumenform) on an n-manifold M is an n-form ω P
ΩnpMq such that ωp ‰ 0 for all p PM .

Notation. In these notes, we will usually denote volume forms by

dvol P ΩnpMq,
or sometimes dvolM if there are various manifolds in the picture and we want to specify which one
dvol is defined on. The notation is slightly misleading since in many cases, our volume form will
not actually be the exterior derivative of anything; nonetheless, the presence of the symbol “d” is
consistent with the way that measures are often written in integrals, and that is the role that we
intend for dvol to play.

39We are assuming compact support in pa, bq here because we have not yet defined manifolds with boundary,
and thus cannot define an integral over the closed interval ra, bs. This will come in the next lecture, however.
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Observe that since dimΛnTp̊M “ 1 for every p P M , dvol :“ ω P ΩnpMq is a volume form if
and only if ωp is a basis of ΛnTp̊M for every p, and it follows in this case that any other n-form
α P ΩnpMq can be written as

α “ f dvol

for a unique function f P C8pMq. In this situation, α is also a volume form if and only if the
function f is nowhere zero.

Proposition 11.7. Any volume form dvol P ΩnpMq on a manifold M determines a unique
orientation of M such that for each p P M , an ordered basis pX1, . . . , Xnq P TpM is positively
oriented if and only if dvolpX1, . . . , Xnq ą 0.

Proof. Assuming dvolp ‰ 0, Proposition 9.2 implies that dvolpX1, . . . , Xnq ‰ 0 for every
basis X1, . . . , Xn of TpM . It follows that dvol determines a continuous map BpTpMq Ñ R :

pX1, . . . , Xnq ÞÑ dvolpX1, . . . , Xnq that is never zero, and since it clearly can take values of both
signs, it must take positive values on one connected component of BpTpMq and negative values on
the other. Since its values also vary continuously with the point p, this distinction between the signs
of dvolpX1, . . . , Xnq determines a continuous family of orientations of the tangent spaces TpM . �

If M is equipped with the orientation determined by a volume form dvol via Proposition 11.7,
then it is common to write this condition as

dvol ą 0,

meaning literally that dvolpX1, . . . , Xnq ą 0 for every p P M and every positively-oriented basis
pX1, . . . , Xnq of TpM , and dvol is in this case called a positive volume form on the oriented
manifold M . Another n-form α “ f dvol is then also a positive volume form if and only if f ą 0

everywhere. In particular, for any oriented chart pU , xq, dx1 ^ . . .^ dxn is a positive volume form
on U since pdx1 ^ . . . ^ dxnqpB1, . . . , Bnq “ 1, thus a positive volume form dvol P ΩnpMq always
locally takes the form

(11.3) dvol “ f dx1 ^ . . .^ dxn, f : U Ñ p0,8q.
If pM,dvolq is an oriented manifold equipped with a positive volume form, the volume of a

measurable subset A ĂM is now defined simply as

VolpAq :“
ż
A

dvol,

which is always nonnegative due to (11.3).
The definition of volume in M clearly depends on a choice of volume form, and for arbitrary

manifolds there is generally no canonical choice—this reflects the fact that volumes of regions can
appear very different when viewed in different coordinate systems. However, there are situations
in which extra data determines a natural choice of volume form.

Suppose for instance that M Ă Rn is a k-dimensional submanifold of Euclidean space. Each
tangent space TpM is then a k-dimensional linear subspace of TpRn “ Rn, and can thus be assigned
the standard Euclidean inner product x , y, which we can then use to define lengths of vectors
in TpM and angles between them. In particular, this defines the notion of an orthonormal basis
of TpM . The paralelepiped spanned by an orthonormal basis of a k-dimensional subspace in Rn

has the same dimensions as the k-dimensional unit cube, so its k-dimensional volume is 1, and it
would therefore be natural to choose a volume form dvol P ΩkpMq that evaluates to 1 on some
orthonormal basis.

To bring this discussion into its most natural setting, recall that a Riemannian metric
(Riemannsche Metrik) on a manifold M is a smooth type p0, 2q tensor field g P ΓpT 0

2Mq such
that gp : TpM ˆ TpM Ñ R defines an inner product on TpM for every p P M . The pair pM, gq
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is in this case called a Riemannian manifold (Riemannsche Mannigfaltigkeit). The data of a
Riemannian metric makes it possible to define norms of tangent vectors and angles between them,
so in particular, every tangent space TpM acquires a well-defined notion of orthonormality.

Definition 11.8. On a Riemannian manifold pM, gq, a volume form dvol P ΩnpMq is said to be
compatible with the metric g if for every p PM and every orthonormal basis X1, . . . , Xn P TpM ,
|dvolpX1, . . . , Xnq| “ 1.

Since dimΛnTp̊M “ 1 for an n-manifold M , there are clearly at most two volume forms
compatible with a given metric g at any given point p P M . The following algebraic lemma
guarantees that there are, in fact, exactly two, corresponding to the two possible orientations
of TpM .

Lemma 11.9. Suppose V is an n-dimensional oriented vector space equipped with an inner
product x , y, v1, . . . , vn P V is a positively-oriented orthonormal basis and v1˚, . . . , vn˚ P V ˚ denotes
its dual basis. Then the top-dimensional form

ω :“ v1˚ ^ . . .^ vn˚ P ΛnV ˚

satisfies ωpw1, . . . , wnq “ 1 for every positively-oriented orthonormal basis w1, . . . , wn P V .
Proof. By (9.3), it will suffice to establish that if w1˚, . . . , wn˚ P V ˚ is the dual basis of another

positively-oriented orthonormal basis w1, . . . , wn P V , then
v1˚ ^ . . .^ vn˚ “ w1˚ ^ . . .^ wn˚ .

By Proposition 9.10, the scaling factor relating these two n-forms is the determinant of the matrix
A P Rnˆn with entries Aij :“ wi˚pvjq. Writing vk as a linear combination of the wi gives vk “
wi˚pvkqwi, and orthonormality then implies

δkℓ “ xvk, vℓy “ xwi˚pvkqwi, wj˚pvℓqwjy “ wi˚pvkqwj˚pvℓqxwi, wjy “ wi˚pvkqwj˚pvℓqδij
“

nÿ
i“1

wi˚pvkqwi˚pvℓq “
nÿ
i“1

AikA
i
ℓ,

where in the second line we can no longer use the summation convention since the index to be
summed does not appear in an upper-lower pair. This calculation implies that the rows of A
form an orthonormal set, meaning A P Opnq and thus detpAq “ ˘1. Since both bases are also
positively oriented, there exists a continuous family of orthonormal bases connecting one to the
other, implying that there is also a continuous family of orthogonal matrices connecting A to 1,
thus detpAq “ 1. �

Corollary 11.10. Every oriented Riemannian n-manifold pM, gq admits a unique so-called
Riemannian volume form dvol P ΩnpMq that is positive and compatible with g.

Proof. The existence and uniqueness of dvolp P ΛnTp̊M for each p P M follows from
Lemma 11.9, so it remains only to check that the n-form defined in this way is smooth. To
see this, note that for any p P M , one can find a neighborhood U Ă M of p and smooth vector
fields X1, . . . , Xn P XpUq that form a positively-oriented orthonormal basis at every point in U ;
simply start e.g. with a basis of coordinate vector fields near p and then use the Gram-Schmidt
process to make them orthonormal at each point. Now if λ1, . . . , λn P Ω1pUq are defined so that
λ1q , . . . , λ

n
q P Tq̊ M is the dual basis to X1pqq, . . . , Xnpqq P TqM for every q P U , then λ1 ^ . . .^ λn

is a smooth n-form on U that matches dvol according to Lemma 11.9. �
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Example 11.11. On Rn, there is a standard choice of Riemannian metric defined by assigning
to each TpRn “ Rn the Euclidean inner product. This makes the standard coordinate vector fields
B1, . . . , Bn into a positively-oriented orthonormal basis at every point, and the unique positive
volume form compatible with the standard metric is thus the so-called standard volume form
dx1 ^ . . . ^ dxn. The notion of volume defined by integrating it is of course just the Lebesgue
measure.

Exercise 11.12. In local coordinates with respect to an oriented n-dimensional chart pU , xq,
a Riemannian metric g P ΓpT 0

2Mq is described in terms of its components gij :“ gpBi, Bjq, so that
vectors X,Y P TpM at points p P U satisfy gpX,Y q “ gijX

iY j . The goal of this exercise is to
prove that the Riemannian volume form is then given by

(11.4) dvol “a
det g dx1 ^ . . .^ dxn on U ,

where g : U Ñ Rnˆn denotes the matrix-valued function whose ith row and jth column is gij .
Note that this matrix necessarily has positive determinant since g is positive definite. Fix a point
p P U and a positively-oriented orthonormal basis pX1, . . . , Xnq of TpM , whose dual basis we
will denote by λ1, . . . , λn P Tp̊M . According to Lemma 11.9, dvolp “ λ1 ^ . . . ^ λn. Define
matrices X,λ P Rnˆn whose ith row and jth column are dxipXjq and λipBjq respectively. By
Proposition 9.10, pλ1 ^ . . .^ λnqpB1, . . . , Bnq “ detλ.

(1) Prove λ “ X´1.
(2) Prove XTgX “ 1.
(3) Deduce (11.4).

Most people’s favorite manifolds are submanifolds of Euclidean space—especially surfaces
in R3. Generalizing this notion slightly, an pn´1q-dimensional submanifoldM of an n-manifold N
is called a hypersurface (Hyperfläche) in N . Any Riemannian metric g on N induces a Riemann-
ian metric on any submanifold M Ă N , defined simply by restricting each of the inner products gp
on tangent spaces TpN to the subspaces TpM Ă TpN . To put this another way, one can denote the
inclusion map ofM into N by i :M ãÑ N and observe that for every p PM , i˚ : TpM ãÑ TpN is the
corresponding inclusion map of vector spaces, so the Riemannian metric induced by g P ΓpT 0

2Nq
on M is the pullback i˚g P ΓpT 0

2Mq. With this understood, we will show next that there is an
easy way to derive from the compatible volume form on an oriented Riemannian manifold the
compatible volume form on any oriented hypersurface.

Definition 11.13. For an n-dimensional vector space V and an integer k “ 1, . . . , n, the
interior product is the bilinear map

V ˆ ΛkV ˚ Ñ Λk´1V ˚ : pv, αq ÞÑ ιvα

defined by ιvαpw1, . . . , wk´1q :“ αpv, w1, . . . , wk´1q. On a manifold M , the map

XpMq ˆ ΩkpMq Ñ Ωk´1pMq : pX,ωq ÞÑ ιXω

is defined similarly by pιXωqp :“ ιXppqωp for all p PM .

Proposition 11.14. Assume pN, gq is a Riemannian manifold, M Ă N is a hypersurface with
inclusion map i : M ãÑ N , and ν : M Ñ TN is a continuous map40 such that for every p P M ,
νppq P TpN is a unit vector orthogonal to TpM . (In this situation we call ν a unit normal vector
field for M .) Then if dvolN P ΩnpNq is a volume form on N compatible with g,

dvolM :“ pινdvolN q|TM P Ωn´1pMq
40In fact it will follow from these assumptions that ν is also smooth, but one does not need to know that in

advance.
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is a volume form on M compatible with the induced metric i˚g.

Proof. For any p PM and an orthonormal basisX1, . . . , Xn´1 of TpM , the n-tuple νppq, X1, . . . , Xn´1

forms an orthonormal basis of TpN , thus

|ινdvolN pX1, . . . , Xn´1q| “ |dvolpνppq, X1, . . . , Xn´1q| “ 1.

�

Exercise 11.15. Using Cartesian coordinates px, y, zq on R3, let ω :“ x dy^ dz` y dz^ dx`
z dx^ dy P Ω2pR3q, and let i : S2 ãÑ R3 denote the inclusion of the unit sphere.

(a) Show that dvolS2 :“ i˚ω P Ω2pS2q is a volume form compatible with the Riemannian
metric on S2 induced by the Euclidean inner product.
Hint: Pick a good vector field X P XpR3q with which to write ω as ιXpdx ^ dy ^ dzq.

(b) Show that in the spherical coordinates pθ, φq of Exercise 1.7, dvolS2 “ cosφdθ ^ dφ.
(c) On the open upper hemisphere U` :“ tz ą 0u Ă S2 Ă R3, one can define a chart px, yq :

U` Ñ R2 by restricting to U` the usual Cartesian coordinates x and y, which are then
related to the z-coordinate on this set by z “a

1´ x2 ´ y2. Show that dvolS2 “ 1
z
dx^dy

on U`.
(d) Compute the surface area of S2 Ă R3 in two ways: once using the formula for dvolS2 in

part (b), and once using part (c) instead. In both cases, the results of §11.2 will allow
you to express the answer in terms of a single Lebesgue integral over a region in R2, and
there will be no need for any partition of unity.

11.4. Densities. 41

You may have wondered: what if M is non-orientable, but I still want to compute its volume?
There are two problems in this situation: one is that according to Proposition 11.7, M cannot

admit a volume form if it does not also admit an orientation, but there is also the more fundamental
issue that the integral of an n-form over an n-manifold is not defined unless M comes with an
orientation. Recall from §10.1: the trouble was that if ω “ f dx1 ^ . . . ^ dxn “ g dy1 ^ . . .^ dyn

for two different local coordinate systems x, y : U Ñ Rn on the same region, then the Legesgue
integrals

ş
xpUXAq f˝x´1 dm and

ş
ypUXAq g˝y´1 dm cannot generally be assumed to match unless the

transition map ψ :“ y ˝ x´1 : xpUq Ñ ypUq is orientation preserving. This problem is summarized
by Equation (10.3), which resembles the classical change-of-variables formula, but does not match
it exactly unless detpDψq is everywhere positive.

One way to circumvent this problem is to give up on intergrating the real-valued functions f
and g and instead integrate their absolute values, so that (10.3) gives rise to the completely true
statementż

ypAq

ˇ̌
g ˝ y´1

ˇ̌
dm “

ż
ψpxpAqq

|G| dm “
ż
xpAq

|pG ˝ ψq| ¨ |detDψ| dm “
ż
xpAq

ˇ̌
f ˝ x´1

ˇ̌
dm,

in which we are again writing G :“ g ˝y´1. The message of this calculation is that if we are willing
to ignore the sign of an n-form and pay attention only to its magnitude, then we will no longer
need to restrict ourselves to orientation-preserving transition maps.

Definition 11.16. A (nonnegative) density on a smooth n-manifold M is a map

µ : pTMq‘n Ñ r0,8q

41The contents of §11.4 were not covered in the lecture and will not be referred to again in this course, at least
not in any serious way. This section of the notes is provided only for your information.
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whose restriction to TpMˆ. . .ˆTpM for each p PM takes the form µppX1, . . . , Xnq “ |ωppX1, . . . , Xnq|
for some ωp P ΛnTp̊M . In a smooth chart pU , xq, every density can thus be written in terms of
the standard volume form dx1 ^ . . .^ dxn P ΩnpUq as

µ “ f ¨ ˇ̌dx1 ^ . . .^ dxn
ˇ̌

for a unique function f : U Ñ r0,8q. We call µ a smooth density if the function f defined in
this way is smooth for all choices of smooth chart on M .

Remark 11.17. It is also possible to define densities with negative values (see e.g. [Lee13a]),
but we will not need this. Our refusal to define negative densities means that the space

DpMq :“ tsmooth densities on Mu
is not a vector space, but it does admit natural notions of addition and multiplication by nonneg-
ative scalars.

The support of a density µ P DpMq is of course the closure of the set tp PM | µp ‰ 0u ĂM ,
and we will denote

DcpMq :“  
µ P DpMq ˇ̌ µ has compact support

(
.

For smooth maps ϕ :M Ñ N , there is a natural pullback operation ϕ˚ : DpNq Ñ DpMq defined
by

pϕ˚µqpX1, . . . , Xnq :“ µpϕ˚X1, . . . , ϕ˚Xnq.
If we revise the discussion of §10.1 to work with densities instead of n-forms, then the key fact

is that for any two charts x and y defined on the same domain U , we haveˇ̌
dy1 ^ . . .^ dyn

ˇ̌ “ ˇ̌̌̌
det

ˆBy
Bx

˙ˇ̌̌̌
¨ ˇ̌dx1 ^ . . .^ dxn

ˇ̌
on U ,

thus if µ “ f |dx1^ . . .^ dxn| “ g |dy1^ . . .^ dyn| on this region, the nonnegative functions f and
g are related by f “ g ¨

ˇ̌̌
det

´ By
Bx
¯ˇ̌̌
. The presence of the absolute value in this expression repairs

our previous problem with orientations, and it now follows that the integrals
ş
xpAq f ˝ x´1 dm

and
ş
ypAq g ˝ y´1 dm will always match, even if y ˝ x´1 is orientation reversing. The proof of

Theorem 10.30 can now easily be adapted to establish the following:

Theorem 11.18. For n P N, one can uniquely associate to every smooth n-manifold M and
measurable subset A ĂM a map

DcpMq Ñ r0,8q : µ ÞÑ
ż
A

µ

such that the following conditions are satisfied:

(1)
ş
A
pµ1 ` µ2q “ ş

A
µ1 ` ş

A
µ2 for any µ1, µ2 P DcpMq.

(2) If U ĂM is an open subset containing supppµq XA, then then
ş
UXA µ “

ş
A
µ.

(3) For M “ U Ă Rn an open subset of Euclidean space and the standard Cartesian coordi-
nates x1, . . . , xn, ż

A

f
ˇ̌
dx1 ^ . . .^ dxn

ˇ̌ “ ż
A

f dm

for all smooth compactly supported functions f : U Ñ r0,8q, where the right hand side is
the standard Lebesgue integral of f .
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(4) For any diffeomorphism ψ :M Ñ N between a pair of n-manifolds,ż
A

ψ˚µ “
ż
ψpAq

µ

holds for all µ P DcpNq and measurable subsets A ĂM .
�

The freedom in this theorem to allow non-orientable manifolds and diffeomorphisms that are
not orientation preserving is paid for by the fact that integrals of nonnegative densities are always
nonnegative, and thus tend to deliver less information than the real -valued integrals of differential
forms. As mentioned in Remark 11.17 above, one can also allow densities with negative values
and thus obtain negative integrals, but this does not add very much generality: it is tantamount
to defining a measure µ via integrals of a positive density and then computing integrals

ş
A
f dµ of

functions f that are also allowed to have negative values. Integration of densities is a somewhat
less elegant and less useful construction on the whole than integration of forms; in particular, there
are many more beautiful theorems involving the latter. Nonetheless, there are of course geometric
situations in which an integral that is guaranteed to be nonnegative is exactly what one wants:

Definition 11.19. A volume element on a smooth n-manifoldM is a density dvol such that
dvolp ‰ 0 for every p PM . If M is equipped with a volume element dvol, one defines the volume
of measurable sets A ĂM by

VolpAq :“
ż
A

dvol ě 0.

We can now state a version of Corollary 11.10 that does not depend on orientability; its proof
is an easy adaptation of arguments in the previous section.

Proposition 11.20. Every Riemannian manifold pM, gq admits a unique volume element dvol
such that for all p PM and every orthonormal basis X1, . . . , Xn of TpM , dvolpX1, . . . , Xnq “ 1. �

We will not have any more occasions to talk about densities and volume elements in this course,
but it is good to be aware that a theory of integration exists for non-orientable manifolds, even if
it is less versatile and less powerful than the orientable case.

12. Stokes’ theorem

It is finally time to tell you the true reason why the exterior derivative is important: it is
“dual” in some sense to the operation of replacing a manifold by its boundary. First we will have
to discuss what is meant by the boundary of a manifold, and we will have to be fairly careful with
orientations if we want to get all the signs right.

12.1. A word about dimension zero. You may or may not have noticed that manifolds of
dimension zero have been explicitly excluded from all discussion of orientations and integration so
far. You probably didn’t miss it, because in truth, integrals of 0-forms on 0-manifolds are not very
interesting. But we have to define them now, because as soon as we start talking about manifolds
with boundary, 0-manifolds will inevitably arise, namely as boundaries of 1-manifolds.

A 0-manifold M , you may recall, is simply a discrete set, and it can have at most countably
many elements; it is compact if and only if it is finite. A 0-form onM is then an arbitrary function
f : M Ñ R. There is no need to worry about continuity or smoothness since M is discrete, and
the support of f is just the set of all points p where fppq ‰ 0, so f : M Ñ R has compact support
if and only if it is zero outside of a finite set.

Since there is no such thing as a “basis” of a 0-dimensional vector space and no meaningful
sense in which one can say that a (the) map R0 Ñ R0 preserves or reverses orientation, the entire
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discussion of orientations in §10.2 is useless for n “ 0. What we will use instead looks terribly
naive at first glance, but we will see that it works:

Definition 12.1. An orientation of a 0-manifold M is a function ε : M Ñ t1,´1u, i.e. it
a assigns to each point of M a label as either “positive” or “negative”. A bijection ϕ : M Ñ N

between two oriented 0-manifolds is orientation preserving if it maps all positive points to
positive points and all negative points to negative points, and it is orientation reversing if it
exchanges the sets of positive and negative points.

Definition 12.2. For M a 0-manifold with orientation ε : M Ñ t1,´1u and f P Ω0
cpMq, the

integral of f on a subset A ĂM is defined byż
A

f :“ ÿ
pPA

εppqfppq,

where the sum is necessarily finite since f has compact support.

The only other thing worth saying for now about this definition is that it trivially satisfies the
usual change-of-variables formulaż

A

ϕ˚f “
ż
ϕpAq

f, f P Ω0
cpNq

whenever ϕ :M Ñ N is an orientation-preserving bijection of oriented 0-manifolds.

12.2. Manifolds with boundary. The definitions from Lectures 1 and 2 need to be gener-
alized if we want to accommodate examples like the unit n-disk

Dn :“  
x P Rn

ˇ̌ |x| ď 1
(
,

whose interior is accurately described as a smooth n-manifold, but there are no n-dimensional
charts (by our current definition) describing neighborhoods in Dn of points on the boundary

BDn :“ Sn´1 Ă Dn.

An even simpler example is the half-plane

Hn :“ p´8, 0s ˆ Rn´1 Ă Rn,

whose boundary is the linear subspace

BHn :“ t0u ˆ Rn´1 Ă Rn.

Just as subspaces of this form serve as local models of submanifolds as seen through slice charts,
the half-plane will serve as our local model for a manifold with boundary.

Definition 12.3. An n-dimensional boundary chart pU , xq on a set M consists of a subset
U ĂM and an injective map x : U ãÑ Hn whose image xpUq Ă Hn is an open set.42

The only difference between this and Definition 1.4 is the replacement of Rn by the half-
space Hn. A boundary chart pU , xq will sometimes also be a chart according to our original
definition, because an open subset xpUq Ă Hn might also be an open subset of Rn; indeed, it will
be so if xpUq X BHn “ H. For this reason, any set that is covered by charts can equally well be
covered by boundary charts: one need only modify each chart pU , xq by a translation so that its

42One finds a few variations on this definition in the literature, in which the half-space Hn “ p´8, 0s ˆ Rn´1

gets replaced by different half-spaces such as r0,8q ˆ Rn´1 or Rn´1 ˆ r0,8q. This detail makes no meaningful
difference for the definition of a smooth manifold with boundary, but it starts to matter as soon as one has to think
about orientations. The definition in the form we’ve given here leads to the simplest possible definition of boundary
orientations, and a relatively straightforward proof of Stokes’ theorem.
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image lies in the interior of the half-plane, or if this is impossible because xpUq is unbounded in the
x1-direction, first break it up into countably many open subsets so that this can be done. However,
if xpUq does contain points in the boundary BHn, then it is not open in Rn. A typical example is
the “open” half-disk

D̊n´ :“  px1, . . . , xnq P Rn
ˇ̌ px1q2 ` . . .` pxnq2 ă 1 and x1 ď 0

(
,

which is open in Hn but not open in Rn since it does not contain any ball around points in
D̊n´ X BHn. In this sense, Definition 12.3 is strictly more general than our original definition of a
chart.

The notion of transition maps between two charts pU , xq and pV , yq generalizes in an obvious
way to boundary charts,

Hn Ą xpU X Vq y˝x´1ÝÑ ypU X Vq Ă Hn,

Hn Ą ypU X Vq x˝y´1ÝÑ xpU X Vq Ă Hn,

(12.1)

though since xpU X Vq and ypU X Vq may be open in Hn but not in Rn, the notion of smooth
compatibility requires a bit of clarification. The quickest approach is to say that a map f : O Ñ Rm

defined on some (not necessarily open) subset O Ă Rn is of class Ck if and only if it admits an
extension of class Ck to some open neighborhood of O in Rn. With this understood, we will call
pU , xq and pV , yq smoothly compatible if both of the transition maps in (12.1) admit smooth
extensions over open (in Rn) neighborhoods of their domains.

Remark 12.4. For open subsets O Ă Hn in half-space, the notion of a Ck-map f : O Ñ
Rm admits various alternative characterizations that do not require extending f over a larger
neighborhood in Rn. Denote BO :“ O X BHn and O̊ :“ OzBO. Then f : O Ñ Rm is of class Ck

if and only if its restriction f |
O̊

: O̊ Ñ Rm is of class Ck and either of the following equivalent
conditions are satisfied:

‚ All partial derivatives of f |
O̊
: O̊ Ñ Rm up to order k admit continuous extensions overO;

‚ All partial derivatives of f |
O̊

: O̊ Ñ Rm up to order k are uniformly continuous on
bounded subsets of O̊.

It is an easy analysis exercise to show that these two conditions are equivalent, and they clearly
also follow from the assumption that f : O Ñ Rm admits a Ck-extension to a neighborhood, but
the converse takes more effort to prove. We will not do so here since we will never need to use this
fact, but the details can be found e.g. in [AF03, §5.19–§5.21].

A smooth n-manifold with boundary can now be defined by generalizing our previous
definition of a smooth n-manifold so that all charts in its maximal smooth atlas are allowed to
be boundary charts. Implicit in this definition is the fact that an atlas of boundary charts on
M determines a natural topology on M such that the domains of boundary charts are also open
sets in M and the charts themselves are homeomorphisms onto their images. This definition is
strictly more general than what we have been working with so far: a manifold with boundary can
sometimes also be a manifold in our previous sense, because its atlas might consist only of regular
charts whose images are open subsets of Rn. But if M is a manifold with boundary, it contains a
distinuished subset

BM :“  
p PM ˇ̌

xppq P BHn for some smooth boundary chart pU , xq( ,
called its boundary (Rand). It should be easy to convince yourself that if xppq P BHn for some
particular boundary chart pU , xq, then this also holds for every other boundary chart pV , yq with p P
V ; this is because by the inverse function theorem, the transition maps in (12.1) necessarily preserve
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the interior of Hn, and therefore also preserve its boundary BHn. Moreover, every boundary chart
whose domain intersects BM can be viewed as a slice chart for BM , so that it is appropriate to
call BM a smooth pn ´ 1q-dimensional submanifold of M . In particular, BM inherits from M a
natural smooth structure and becomes a smooth pn´ 1q-manifold. We observe that M itself is a
manifold in our previous sense if and only if BM “ H; one sometimes says in this case that M is
a manifold without boundary. Since xpUq X BHn is always an open subset of BHn “ t0uˆRn´1 for
a boundary chart pU , xq, the manifold BM never has boundary, i.e.

BpBMq “ H.
Remark 12.5. One can define even more general notions such as a “manifold with boundary

and corners,” in which images of charts are allowed to be open subsets of quadrants like p´8, 0sˆ
p´8, 0sˆRn´2, in which case BM may also be a manifold with nonempty boundary (and possibly
corners). The literature on these objects seems however to be not entirely unanimous on what the
correct definitions are. In this course, we will occasionally mention corners in heuristic discussions,
but we will not study them in any serious way.

Remark 12.6. From now on, you must pay careful attention whenever you see the word
“manifold” without further modifiers, as its default meaning may be either “manifold without
boundary” or “manifold with boundary” depending on the context. Keep in mind also that these
categories are not mutually exclusive: a “manifold with boundary” may have BM “ H. I generally
make a point of saying “manifold with nonempty boundary” if I want to explicitly assume BM ‰ H.
I also will often refer to boundary charts simply as “charts” when working in the context of manifolds
with boundary.

Example 12.7. Suppose N is an n-manifold without boundary and M Ă N is an open subset
such that ĎMzM Ă N is a smooth pn´ 1q-dimensional submanifold, i.e. a hypersurface. Then the
closure ĎM Ă N is naturally a smooth n-manifold with boundary and

BĎM “ ĎMzM,

because every slice chart for ĎMzM can be modified in straightforward ways so as to be interpreted
as a boundary chart for ĎM . Most interesting examples of manifolds with boundary arise in this
way, and it can be shown that all manifolds with boundary are diffeomorphic to examples of this
type, though the ambient manifold N might not always be a natural part of the picture. As
an important special case, if f : N Ñ R is a smooth function with c P R as a regular value,
then f´1pp´8, csq and f´1prc,8qq are naturally manifolds with boundary, the boundary in each
case being the regular level set f´1pcq Ă N . Examples of this type include the n-disk Dn Ă Rn

mentioned at the beginning of this section.

Almost all of the notions we have discussed in this course so far—tangent vectors and tangent
maps, vector fields, tensors, forms, orientations—can be generalized in straightforward ways for
manifolds with boundary so long as one remembers what smoothness means on open sets in half-
space. The tangent spaces TpM are defined exactly as before for p PMzBM , though it takes a bit
more thought to arrive at the right definition for p P BM . Here it is useful to keep Example 12.7
in mind and imagine M as a closed subset of a larger manifold N without boundary such that
BM Ă N is a smooth hypersurface: the correct definition for p P BM is then TpM :“ TpN , so that
TpM is still a vector space of the same dimension as M . If there is no ambient manifold N in
the picture, then one can instead modify the original definition of TpM in terms of paths through
p by allowing paths of the form γ : p´ǫ, 0s Ñ M or γ : r0, ǫq Ñ M that run “out of” or “into”
M through its boundary. The crucial thing to remember is that for any chart pU , xq with p P U ,
dpx : TpM Ñ Rn is still a linear isomorphism, even if p P BM . Since BM Ă M is an pn ´ 1q-
dimensional submanifold, TppBMq Ă TpM is an pn ´ 1q-dimensional subspace. The complement
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TpMzTppBMq has two connected components: one consists of all vectors that point outward,
meaning they are derivatives of “departing” paths γ : p´ǫ, 0s ÑM , and the other contains vectors
that point inward, which are derivatives of “entering” paths γ : r0, ǫq ÑM . It should go without
saying that flows of vector fields X P XpMq require extra care when BM ‰ H, because e.g. if
p P BM and Xppq points outward/inward, then there is no forward/backward flow line starting
at p for any nonzero time. There is no problem however if X |BM is everywhere tangent to the
boundary, since it then also defines a flow on BM , and Theorem 5.1 in this case goes through
without changes.

The notion of a submanifold also requires slight modification when boundaries are involved:
the appropriate definition is to call M Ă N a submanifold (with boundary) whenever it is the
image of an embedding of some manifold with boundary. This allows a few possibilities that were
not covered by our original definition in terms of slice charts: one of them was already mentioned
above, namely the natural embedding of the boundary BM ãÑM . Another is Example 12.7: if N is
an n-manifold andM Ă N is an open subset such that BĎM :“ ĎMzM is a smooth hypersurface inM ,
then ĎM is a smooth n-dimensional submanifold with boundary in N . This opens the previously
excluded possibility that a manifold and submanifold may have the same dimension without one
being an open subset of the other.

Proposition 12.8. If M is an oriented manifold of dimension n ě 2 with boundary, then
the pn ´ 1q-manifold BM inherits a natural orientation such that for every oriented boundary
chart pU , xq on M , pU X BM,x|UXBMq is an oriented chart on BM . This orientation can also be
characterized as follows: for every point p P BM and any tangent vector ν P TpMzTppBMq that
points outward, a basis pX1, . . . , Xn´1q of TppBMq is positively oriented if and only if the basis
pν,X1, . . . , Xn´1q of TpM is positively oriented.

The orientation defined on BM from an orientation of M via this proposition is called the
boundary orientation. We will always assume unless otherwise specified that when M is ori-
ented, BM is endowed with the boundary orientation.

Proof of Proposition 12.8. The main point is that any orientation-preserving transition
map ψ :“ y ˝ x´1 : xpU X Vq Ñ ypU X Vq not only preserves the subset BH but is also orientation
preserving on this subset. To see this, observe that the derivative Dψpqq : Rn Ñ Rn at any point
q must be an isomorphism that preserves each of the subsets Hn and BHn, thus it is represented
by a matrix of the form

Dψpqq “
ˆ
a 0

v B

˙
, a ą 0, v P Rn´1, B P Rpn´1qˆpn´1q,

where B is the derivative at q of the restricted transition map on BH. Clearly detDψpqq ą 0 if and
only if detB ą 0. This shows that the restriction of an oriented atlas of M to BM is an oriented
atlas of BM .

To characterize the boundary orientation in terms of bases, choose any oriented chart pU , xq
near a point p P BM , so the coordinate vector fields B1, . . . , Bn define a positively-oriented basis
of TpM . The restriction of pU , xq to BM now defines an oriented chart for BM near p, and the
coordinate vector fields for this restricted chart are pB2, . . . , Bnq, which therefore form a positively-
oriented basis of TppBMq, and this can then be deformed continuously through bases to any other
positively-oriented basis pX1, . . . , Xn´1q of TppBMq. Since B1 points outward at p, it follows that
for any other vector ν P TpMzTppBMq pointing outward, the basis pν,X1, . . . , Xn´1q of TpM can be
deformed continuously through bases to pB1, . . . , Bnq, simply by deforming pX1, . . . , Xn´1q through
bases of TppBMq to pB2, . . . , Bnq and simultaneously deforming ν through outward-pointing vectors
to B1. This proves that pν,X1, . . . , Xn´1q is a positively-oriented basis of TpM , and conversely, if
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pX1, . . . , Xn´1q had been negatively oriented, we could apply the same argument to the positively-
oriented basis p´X1, X2, . . . , Xn´1q and thus conclude that pν,X1, . . . , Xn´1q is also negatively
oriented. �

We had to exclude the case dimM “ 1 from Proposition 12.8 because orientations of 0-
manifolds cannot be described in terms of charts or bases.

Definition 12.9. If M is an oriented 1-manifold with boundary, the boundary orientation
of the 0-manifold BM is defined by calling a point p P BM positive if the basis of TpM formed by
an outward-pointing vector ν P TpM is positively oriented, and negative otherwise.

Example 12.10. Any nontrivial compact interval ra, bs Ă R is a 1-manifold with boundary,
and if we assign it the canonical orientation of R then the boundary orientation of Bra, bs “ ta, bu
makes b a positive point and a a negative point. Informally, we write

Bra, bs “ ´tau \ tbu.
A slightly different example is

Bp´8, 0s “ t0u,
in which the point 0 is assigned a positive orientation; this will be relevant in the proof of Stokes’
theorem below.

12.3. The boundary operator is a graded derivation. I want to point out something
about boundary orientations that is not an essential part of this discussion, but it may help you
to understand more intuitively why graded Leibniz rules keep showing up.

In the previous section we defined an operator “B” that takes an oriented n-manifold M (with
boundary) and returns an oriented pn´ 1q-manifold BM . It satisfies BpBMq “ H for all M , which
seems formally similar to the relation d ˝ d “ 0 satisfied by the exterior derivative. We will see
in the next section that the operators B and d are in fact dual to each other in a sense that can
be made precise, thus it should not be surprising that they have formally similar properties. We
claim in particular that B also satisfies a graded Leibniz rule.

To understand what this means, supposeM and N are two oriented manifolds with boundary,
with dimM “ m and dimN “ n. This discussion will be heuristic, so we will choose not to worry
about the fact thatM ˆN might not actually be a smooth manifold with boundary: in particular,
the neighborhood of a point pp, qq P BM ˆ BN Ă M ˆ N cannot be described smoothly via our
usual notion of a boundary chart, and a completely correct description would require the notion
of manifolds with boundary and corners (cf. Remark 12.5). Nonetheless, it seems sensible to write

(12.2) BpM ˆNq “ pBM ˆNq Y pM ˆ BNq ,
and outside of the exceptional subset BMˆBN , it is literally true thatMˆN is a smooth manifold
whose boundary is the union of these two pieces. Formally, M ˆ N is a smooth manifold with
boundary and corners, and its boundary consists of two smooth faces BMˆN andMˆBN , each of
which are smooth manifolds with boundary, and they are attached to each other at their common
boundary BM ˆ BN .

Now, let’s say all that again but pay attention to orientations. The product of two ori-
ented manifolds M and N carries a natural product orientation such that for any pp, qq P
M ˆN and any pair of positively oriented bases pX1, . . . , Xmq of TpM and pY1, . . . , Ynq of TqN ,
pX1, . . . , Xm, Y1, . . . , Ynq is a positively-oriented basis of Tpp,qqpM ˆ Nq “ TpM ˆ TqN ; here we
identify each Xi P TpM with pXi, 0q P TpMˆTqN “ Tpp,qqpMˆNq and similarly identify Yj P TqN
with p0, Yjq P TpM ˆ TqN “ Tpp,qqpM ˆ Nq. Now, if BM and BN are each endowed with their
natural boundary orientations, then the two faces BM ˆ N and M ˆ BN of the boundary of
M ˆN inherit product orientations, but these may or may not match the boundary orientation of
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BpMˆNq. Indeed, at a point pp, qq P BMˆN , if we choose a positively-oriented basis pX2, . . . , Xmq
of TppBMq and an outward-pointing vector ν P TpMzTppBMq, then pν, 0q P Tpp,qqpM ˆ Nq also
points outward through BM ˆN and pν,X2, . . . , Xm, Y1, . . . , Ynq forms a positively-oriented basis
of Tpp,qqpM ˆNq, implying that the boundary orientation of BpM ˆNq does match the product
orientation of BM ˆN . But things are different at a point pp, qq PM ˆBN . Choosing a positively-
oriented basis pY2, . . . , Ynq of TqpBNq and an outward-pointing vector ν P TqY zTqpBY q, a positively-
oriented basis ofMˆN is given by pX1, . . . , Xm, ν, Y2, . . . , Ynq, but m flips are required in order to
permute this basis to pν,X1, . . . , Xm, Y2, . . . , Ynq, in which ν serves as an outward-pointing vector
in Tpp,qqpM ˆNqzTpp,qqpBpM ˆNqq and pX1, . . . , Xm, Y2, . . . , Ynq as a positively-oriented basis for
the product orientation on M ˆBN . This means that the product orientation of M ˆBN matches
the boundary orientation of BpM ˆ Nq if and only if p´1qm “ 1, i.e. if m is even. The oriented
version of (12.2) can thus be written as

(12.3) BpM ˆNq “ pBM ˆNq Y pp´1qm pM ˆ BNqq ,
where we define ´pM ˆ BNq to mean the oriented manifold obtained from M ˆ BN by assigning
it the opposite of the product orientation. The formal resemblance of this formula to a graded
Leibniz rule is difficult to ignore, though we cannot make this notion precise in the present context
since we have not defined any algebraic structure on the “set” of manifolds with boundary and
corners. The easiest way to make such notions precise is probably by defining homology theory,
which is a topic for a topology course and not for this one, but I wanted in any case to provide
(12.3) as further evidence of a formal similarity between the operators B and d.

12.4. The main result. We can now define precisely what is meant by the informal state-
ment that the operators d and B are “dual” to each other. To understand the following statement,
note that a k-form ω P ΩkpMq induces a k-form ΩkpLq on every submanifold L ĂM by restriction,
and this applies in particular to the boundary BM ĂM . Strictly speaking, the induced k-form on
BM in this situation is i˚ω P ΩkpBMq for the inclusion map i : BM ãÑM , but in the following we
will also denote it by ω P ΩkpBMq instead of i˚ω.

Theorem 12.11 (Stokes). Assume M is an oriented n-manifold with boundary, where n ě 1,
and BM is equipped with its natural boundary orientation. Then for every ω P Ωn´1

c pMq,ż
M

dω “
ż
BM

ω.

Proof. As in the proof of Theorem 10.30, we can choose an open subset M0 Ă M with
compact closure ĎM0 such that supppωq ĂM0, and then choose a finite covering of ĎM0 by oriented
charts tpUα, xαquαPI and a partition of unity tϕα : M Ñ r0, 1su such that each ϕα has compact
support in Uα and

ř
αPI ϕα ” 1 on M0. Then each ωα :“ ϕαω belongs to Ωn´1

c pUαq, and we have
ω “ ř

αPI ωα and dω “ ř
αPI dωα on M0. If we can then prove

ş
Uα
dωα “ ş

BUα
ωα for each α, we

will haveż
M

dω “
ż
M0

dω “ ÿ
αPI

ż
M0

dωα “
ÿ
αPI

ż
Uα

dωα “
ÿ
αPI

ż
BUα

ωα “
ÿ
αPI

ż
BM

ωα “
ż
BM

ω.

In this way, the problem has been reduced to the special case in which M is covered by a single
chart.

Next, observe that if the theorem has been proven to hold on another oriented manifold N

and there is an orientation-preserving diffeomorphism ψ : M Ñ N , then we can write ω “ ψ˚α
for α :“ ψ˚ω P Ωn´1

c pNq and use Proposition 9.18 along with the invariance of the integral under
pullbacks to concludeż

M

dω “
ż
M

dpψ˚αq “
ż
M

ψ˚pdαq “
ż
N

dα “
ż
BN

α “
ż
BM

ψ˚α “
ż
BM

ω,
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where we have also used the fact that a diffeomorphism M Ñ N necessarily maps BM to BN .
The latter is true since diffeomorphisms between regions in Rn map open sets to open sets, and
neighborhoods of boundary points in Hn are not open in Rn.

The combined result of the previous two paragraphs is that it will suffice to prove Stokes’
theorem in the case where M is an open subset U Ă Hn in half-space; in fact, since we are
going to assume ω P Ωn´1

c pUq has compact support, we may as well also assume M is the whole
half-space Hn. The proof now becomes a simple computation based on Fubini’s theorem and the
fundamental theorem of calculus. We can write ω in terms of n compactly supported smooth
functions f1, . . . , fn : Hn Ñ R as

ω “ fi α
i, where αi :“ dx1 ^ . . .^xdxi ^ . . .^ dxn P Ωn´1pHnq,

and the hat indicates again that the corresponding term does not appear. Then dαi “ 0 for each i,
and dxj ^ αi “ 0 for every j ‰ i, thus

dω “ dfi ^ αi “
nÿ
i“1

Bifi dxi ^ αi “
nÿ
i“1

p´1qi´1Bifi dx1 ^ . . .^ dxn,

where we have refrained from using the summation convention in the last two expressions in order
to avert confusion. Of the n terms in this sum, we claim that n´1 of them vanish when integrated
over Hn. Let us check this specifically for i “ n: choosing N ą 0 large enough for the supports
of the functions f1, . . . , fn to be contained in r´N{2, 0sˆ r´N{2, N{2sn´1, we use Fubini and the
fundamental theorem of calculus to computeż

Hn

Bnfnpx1, . . . , xnq dx1 . . . dxn “
ż
p´8,0sˆRn´2

ˆż
R

Bnfnpx1, . . . , xnq dxn
˙
dx1 . . . dxn´1 “ 0

since the assumption on the support of fn impliesż
R

Bnfnpx1, . . . , xnq dxn “
ż N
´N

Bnfnpx1, . . . , xnq dxn

“ fnpx1, . . . , xn´1, Nq ´ fnpx1, . . . , xn´1,´Nq “ 0.

This calculation works out the same way for each i “ 2, . . . , n, thus we findż
Hn

ω “
ż
Hn

B1f1px1, . . . , xnq dx1 . . . dxn “
ż
Rn´1

˜ż
p´8,0s

B1f1px1, . . . , xnq dx1
¸
dx2 . . . dxn

“
ż
Rn´1

ˆż 0

´N
B1f1px1, . . . , xnq dx1

˙
dx2 . . . dxn

“
ż
Rn´1

`
f1p0, x2, . . . , xnq ´ f1p´N, x2, . . . , xnq˘ dx2 . . . dxn

“
ż
Rn´1

f1p0, x2, . . . , xnq dx2 . . . dxn “
ż
BHn

f1 dx
2 ^ . . .^ dxn.

This last expression is
ş
BHn ω, as all other terms in ω contain dx1, which vanishes when restricted

to BHn. �

Example 12.12. For a smooth function f : ra, bs Ñ R on a nontrivial compact interval, we
can denote the standard coordinate on R by x and write df “ f 1 dx. The fundamental theorem of
calculus then amounts to the following special case of Stokes’ theorem,ż b

a

f 1pxq dx “
ż
ra,bs

df “
ż
´tau\tbu

f “ fpbq ´ fpaq.
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With this example in mind, Stokes’ theorem is considered to be the natural n-dimensional gener-
alization of the fundamental theorem of calculus.

Exercise 12.13. Prove the following version of integration by parts : ifM is a compact oriented
n-manifold with boundary, α P ΩkpMq and β P ΩℓpMq with k ` ℓ “ n´ 1, thenż

M

dα ^ β “
ż
BM

α^ β ´ p´1qk
ż
M

α^ dβ.

Example 12.14. Heuristically, the discussion of §12.3 suggests that if M and N are compact
manifolds with boundary having dimensions m and n respectively, then for any ω P Ωm`n´1pM ˆ
Nq, one should have

(12.4)
ż
MˆN

dω “
ż
BMˆN

ω ` p´1qm
ż
MˆBN

ω.

Here the right hand side is obtained from the integral of ω over BpM ˆNq by splitting the latter
into the two almost disjoint subsets BM ˆN and M ˆ BN (whose intersection BM ˆ BN is a set
of measure zero in either one), and then including a sign (cf. Exercise 11.4) to account for the
fact that the product orientation of M ˆ BN only matches the boundary orientation of BpM ˆNq
when m is odd. As it stands, the left hand side of (12.4) does not immediately make sense unless
either BM or BN is empty (in which case (12.4) follows from Stokes’ theorem), because M ˆ N

is otherwise not a smooth manifold with boundary. There are at least two ways that one could
nonetheless make sense of (12.4):

(1) Define the notion of an oriented manifold with boundary and corners by allowing open
subsets of p´8, 0s2 ˆ Rn´2 as local coordinate models, generalize the definition of the
integral to this wider class of manifolds and prove that Stokes’ theorem still holds if
BpM ˆNq is understood in the sense of §12.3. This requires a bit of extra bookkeeping,
but is not fundamentally more difficult than what we have already done.

(2) Choose a nested sequence of closed subsets A1 Ă A2 Ă . . .
Ť
jPN Aj “ M ˆN such that

each Aj is a smooth manifold with boundary (obtained by “smoothing the corner” of
M ˆN in progressively small neighborhoods of BM ˆBN), then define

ş
MˆN dω to mean

limjÑ8
ş
Aj
dω and deduce (12.4) from

ş
Aj
dω “ ş

BAj
ω.

Remark 12.15. Much time and effort has been wasted by well-intentioned mathematicians
trying to determine whether the correct orthography should be “Stokes’ theorem” or “Stokes’s
theorem”. After a years-long struggle I came to the conclusion that it is, essentially, a matter of
personal taste. What I can say with absolute certainty is that it is not “Stoke’s theorem”.

12.5. The classical integration theorems. Various results that are considered central in
classical vector calculus are easy consequences of Stokes’ theorem.

12.5.1. Divergence. The divergence (Divergenz) of a vector field X P XpMq with respect to
a volume form dvol P ΩnpMq is defined as the unique real-valued function divpXq : M Ñ R such
that

(12.5) dpιXdvolq “ divpXq ¨ dvol.
The definition makes sense because ιXdvol is an pn ´ 1q-form and thus dpιXdvolq is an n-form,
and every n-form is at each point a scalar multiple of the given volume form. It may not seem
obvious at this stage why divpXq is a natural thing to define—we will address this question more
thoroughly next week—but the following exercise should at least make it look familiar.
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Exercise 12.16. Assume M is an n-manifold with a fixed volume form dvol P ΩnpMq, pU , xq
is a chart on M and f : U Ñ R is the unique function such that dvol “ f dx1 ^ . . . ^ dxn on U .
Show that for any X P XpMq,

divpXq “ 1

f
BipfX iq on U .

In particular for the standard volume form dvol “ dx1 ^ . . . ^ dxn on Rn, this reduces to the
standard definition of divergence in vector calculus.

IfM is a compact oriented n-manifold with boundary carrying a positive volume form dvolM P
ΩnpMq and X P XpMq is a vector field, Stokes’ theorem now implies

(12.6)
ż
M

divpXq dvolM “
ż
M

dpιXdvolM q “
ż
BM

ιXdvolM .

The geometric meaning of this last integral is best understood in the special case where dvolM is
the Riemannian volume form compatible with a Riemannian metric g on M , which we shall write
in the following using the usual notation for inner products,

xX,Y y :“ gpX,Y q for X,Y P TpM , p PM .

By Proposition 11.14, the Riemannian volume form dvolBM on BM is then

dvolBM :“ ινdvolM |T pBMq P Ωn´1pBMq,
where ν is the unique outward-pointing normal vector field to BM . (You should take a moment to
convince yourself that we are getting the orientations right, i.e. dvolBM really is a positive volume
form with respect to the boundary orientation of BM .) To relate this to ιXdvolM , observe that
along BM , X “ xX, νyν ` Y for a unique vector field Y P XpBMq, but ιY dvolM vanishes when
restricted to the boundary because feeding it any pn ´ 1q-tuple of vectors Y1, . . . , Yn´1 tangent
to BM means evaluating dvolM on pY, Y1, . . . , Yn´1q, and those are all tangent to the pn ´ 1q-
dimensional boundary and thus cannot be linearly independent. We conclude

ιXdvolM |T pBMq “ xX, νy ινdvolM |T pBMq “ xX, νy dvolBM ,
and the implication of (12.6) is thus

(12.7)
ż
M

divpXq dvolM “
ż
BM
xX, νy dvolBM .

This is a mild generalization of the classical result known as Gauss’s divergence theorem.43 Physics
textbooks like to write their favorite special case of this result in some form such as

(12.8)
¡
Ω

p∇ ¨Xq dV “
£
BΩ

X ¨ da,

where Ω Ă R3 is assumed to be a compact region bounded by a smooth surface BΩ Ă R3, ∇ ¨X
is the divergence of a vector field X P XpΩq with respect to the standard volume form dvolR3 :“
dx ^ dy ^ dz, the “V” in dV :“ dvolR3 stands for “volume” and the “a” in X ¨ da :“ xX, νy dvolBΩ
stands for “area”. (The symbol da in this situation is thought of as a “vector-valued measure” that
encodes not only the 2-dimensional measure on BΩ but also its normal vector field.) The repetition
of the integral signs corresponds to the dimension of the manifold and can be seen as a reference
to Fubini’s theorem; the additional loop in

ů
merely refers to the fact that BΩ is a “closed” surface

(the 2-dimensional analogue of a closed loop), i.e. it is compact and has no boundary. Gauss’s
theorem has an important interpretation in electrostatics: if X represents the electric field on a

43or possibly “Gauss’ divergence theorem”, I don’t know
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region Ω Ă R3, then its divergence is the electrical charge density, and (12.8) thus says that the
total electrical charge in the region Ω is equal to the total flux of the electric field through the
boundary of Ω.

12.5.2. Curl. The next example only makes sense in the case

dimM “ 3.

It relies on the observation that for any n-dimensional vector space V with a nontrivial top-
dimensional form ω P ΛnV ˚, the map

V Ñ Λn´1V ˚ : v ÞÑ ιvω

is an isomorphism. Indeed, it is clearly injective since ω ‰ 0 and any v ‰ 0 can be extended to
a basis of V , so surjectivity then follows from the fact that dimΛn´1V ˚ “ `

n
n´1

˘ “ n “ dimV .
With this understood, any volume form dvolM on a 3-manifold M determines an isomorphism

XpMq –ÝÑ Ω2pMq : X ÞÑ ιXdvolM .

Let us now assume pM, gq is an oriented Riemannian 3-manifold and dvolM is its Riemannian
volume form. The metric x , y :“ g also determines an isomorphism

XpMq –ÝÑ Ω1pMq : X ÞÑ X5 :“ xX, ¨y.
The curl (Rotation) of X P XpMq is then defined as the unique vector field curlpXq P XpMq such
that

ιcurlpXqdvolM “ dpX5q.
Exercise 12.17. Convince yourself that on M :“ R3 with its standard Riemannian metric

defined via the Euclidean inner product, the curl of a vector field is the same thing that you learned
about once upon a time in vector calculus.

Now if Σ Ă M is an oriented 2-dimensional submanifold with boundary, Σ and BΣ each
inherit Riemannian metrics as submanifolds of M , and thus have canonical Riemannian volume
forms dvolΣ and dvolBΣ respectively. For an appropriate choice44 of normal vector field ν along Σ,
Proposition 11.14 implies

dvolΣ “ ινdvolM |TΣ P Ω2pΣq,
and a repeat of the same argument we used for the divergence theorem then implies that for any
Y P XpMq,

ιY dvolM |TΣ “ xY, νy dvolΣ.
If Y “ curlpXq for some X P XpMq, Stokes’ theorem now impliesż

Σ

xcurlpXq, νy dvolΣ “
ż
Σ

dpX5q “
ż
BΣ
X5.

To understand the integral on the right, let τ P XpBΣq denote the unique positively-oriented unit
vector field on BΣ, so dvolBΣpτq “ 1, and X5pτq “ xX, τy thus implies X5|T pBΣq “ xX, τy dvolBΣ,
and we obtain

(12.9)
ż
Σ

xcurlpXq, νy dvolΣ “
ż
BΣ
xX, τy dvolBΣ .

44One can deduce from the assumption that both M and Σ are oriented that a normal vector field ν along Σ

exists, and there are multiple choices—if Σ is connected, then there are exactly two choices, differing by a sign. The
appropriate choice is the one that makes the volume form ινdvolM on Σ positive.
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This generalizes what is usually called the “classical” Stokes’ theorem in vector calculus. In physics
textbooks, one finds it written for the case Σ Ă R3 with the standard metric asĳ

Σ

p∇ˆXq ¨ da “
¿
BΣ

X ¨ dl,

where ∇ˆX denotes the curl of X P XpR3q, da is the same “vector-valued measure” that appeared
in (12.8), and dl similarly denotes a 1-dimensional vector-valued measure that encodes both the
volume form dvolBΣ and the tangent vector field τ .

13. Closed and exact forms

13.1. Some easy applications of Stokes. The following terminology is used consistently
throughout differential geometry.

Definition 13.1. A manifoldM is closed (geschlossen) if it is compact and BM “ H. We say
thatM is open (offen) if none of its connected components are closed, i.e. they all are noncompact
and/or have nonempty boundary.45

Example 13.2. Manifolds of dimension 0 never have boundary, so a 0-manifold is closed if
and only if it is compact, i.e. it is a discrete finite set.

Example 13.3. If M is a compact manifold with boundary, then BM is a closed manifold.

Definition 13.4. A differential form ω P ΩkpMq is called closed (geschlossen) if dω “ 0, and
it is called exact (exakt) of ω “ dα for some α P Ωk´1pMq. In the latter situation, the form α is
called a primitive of ω.

Example 13.5. A closed 0-form is the same thing as a locally constant function, and an exact
1-form is the same thing as a differential. There are no exact 0-forms since there is no such thing
as a p´1q-form.

Example 13.6. On an n-manifold, every n-form is closed since there are no nontrivial pn`1q-
forms.

Example 13.7. Given a volume form dvol P ΩnpMq, a vector field X P XpMq has vanishing
divergence if and only if the pn ´ 1q-form ιXdvol is closed. Similarly, if pM, gq is an oriented
Riemannian 3-manifold, X P XpMq has vanishing curl if and only if the 1-form X5 :“ gpX, ¨q is
closed.

Here is a bit of low-hanging fruit that can be picked as soon as one understands the above
definitions and the statement of Stokes’ theorem.

Proposition 13.8. If M is a closed oriented n-manifold and ω P ΩnpMq is exact, thenş
M
ω “ 0. Similarly, if M is a compact oriented n-manifold with boundary and α P Ωn´1pMq

is closed, then
ş
BM α “ 0.

45Be aware that the word “closed” has a different meaning when referring to a manifold than it does when
referring to a subset of a topological space. For instance, if M is a manifold, then a compact submanifold Σ Ă M

with boundary is a closed subset of M , but it is not a closed manifold if BΣ ‰ H. The German language uses two
different words for these separate meanings of “closed”: a subset in a topological space can be abgeschlossen, but a
manifold can be geschlossen.
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Proof. If you review the proof of Stokes’ theorem, you will find that it is valid in the case
BM “ H so long as one understands every integral over H to be 0 by definition. Thus BM “ H
and ω “ dβ for some β P Ωn´1pMq impliesż

M

ω “
ż
M

dβ “
ż
H
β “ 0,

and if BM is not assumed empty but α P Ωn´1pMq is closed,ż
BM

α “
ż
M

dα “ 0.

�

Corollary 13.9. On a closed oriented n-manifoldM , every n-form ω P ΩnpMq with ş
M
ω ‰ 0

is closed but not exact. In particular, this is true whenever ω is a volume form. �

Remark 13.10. One can show that Corollary 13.9 fails whenever either BM ‰ H or M is
noncompact. In the former case,

ş
M
ω ‰ 0 for an exact form ω “ dα is not a contradiction,

since
ş
BM α might also be nonzero. There is a different problem if M has empty boundary but

is noncompact: the use of Stokes’ theorem to derive the contradiction 0 ‰ ş
M
dα “ ş

BM α “ 0 is
not valid unless α has compact support, so it can happen for instance that ω P Ωnc pMq satisfiesş
M
ω ‰ 0 and is the exterior derivative of an pn´ 1q-form whose support is noncompact. We will

see shortly that, indeed, every n-form on Rn for n ě 1 is exact (see Corollary 13.34 below).

Exercise 13.11. Show that for each k ě 0, a k-form ω P ΩkpMq is closed if and only for every
compact oriented pk ` 1q-dimensional submanifold L ĂM with boundary,

ş
BL ω “ 0.

Hint: For any point p P M and linearly-independent vectors X1, . . . , Xk`1 P TpM , you could
choose L ĂM to be a small pk`1q-disk through p tangent to the space spanned by X1, . . . , Xk`1.

13.2. The Poincaré lemma and simple connectedness. The observation in Example 13.3
that boundaries of compact manifolds are closed has a dual statement for differential forms: since
d2 :“ d ˝ d “ 0, every exact differential form is also closed. Corollary 13.9 reveals however that the
converse is generally false. Here is a more concrete example.

Example 13.12. On R2zt0u, one can define a smooth 1-form in Cartesian coordinates px, yq
by

λ :“ 1

x2 ` y2
px dy ´ y dxq .

This expression takes a more revealing form of one rewrites it in polar coordinates: assume U Ă
R2zt0u is a subset on which there is a well-defined chart of the form pr, θq : U Ñ R2 such that r
takes positive values and the relations x “ r cos θ and y “ r sin θ hold; concretely, we can take U

to be the complement of a ray ttv P R2 | t P r0,8qu for some v P R2zt0u, and the image of θ is then
an open interval of the form pc, c` 2πq. In terms of r and θ, we have dx “ pcos θq dr ´ pr sin θq dθ
and dy “ psin θq dr ` pr cos θq dθ, thus

λ “ 1

r2
rr cos θ psin θ dr ` r cos θ dθq ´ r sin θ pcos θ dr ´ r sin θ dθqs “ dθ,

so λ is exact on U . Since this computation holds independently of the choice of domain U Ă R2zt0u,
it follows that dλ “ 0 everywhere. But the restriction of pU , pr, θqq to tr “ 1u now defines a chart
on S1 Ă R2zt0u in the form pS1ztqu, θq for some point q P S1, which is a set of measure zero, thusş
S1 λ can be computed using the methods of §11.2, and the answer isż

S1

λ “
ż
pc,c`2πq

dθ “ 2π ‰ 0.
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This clearly could not happen if λ were df for some f P Ω0pR2zt0uq “ C8pR2zt0uq, as the restriction
of λ to S1 would then be dpf |S1q and we would have a contradiction to Proposition 13.8.

Remark 13.13. It is conventional to denote the 1-form in Example 13.12 by

dθ P Ω1pR2zt0uq
even though, strictly speaking, it is not the differential of any smooth function θ : R2zt0u Ñ R.
One reasonable way to think about it is that while θ cannot be defined on this domain as a smooth
real -valued function, it can be defined to take values in the quotient R{2πZ, which is a smooth
manifold and θ : R2zt0u Ñ R{2πZ in this sense is a smooth map. The latter means in practice that
any point p P R2zt0u admits a neighborhood U Ă R2zt0u on which the smooth function θ : U Ñ R

can be defined, though this function is not unique, as it can equally well be replaced by θ ` 2πm

for any m P Z. But modifying θ by addition of a constant does not change its differential, thus dθ
is uniquely defined.

Remark 13.13 illustrates a phenomenon that is generalized in the following result: every closed
differential form is “locally” exact.

Theorem 13.14 (the Poincaré Lemma). If ω P ΩkpMq is closed and k ě 1, then for every
p PM there exists a neighborhood U ĂM of p and a pk ´ 1q-form α P Ωk´1pUq such that dα “ ω

on U .

A proof of the Poincaré lemma will be given at the end of this lecture. The next two results
are easier to prove, but imply a stronger statement for the case k “ 1.

Lemma 13.15. A 1-form λ P Ω1pMq is exact if and only if
ş
S1 γ

˚λ “ 0 for all smooth maps
γ : S1 ÑM .

Proof. If λ “ df for some f P C8pMq, then Proposition 13.8 implies
ş
S1 γ

˚λ “ ş
S1 γ

˚df “ş
S1 dpγ˚fq “ 0 for every smooth map γ : S1 Ñ M . Conversely, assume

ş
S1 γ

˚λ always vanishes.
The following recipe for constructing a function f : M Ñ R with df “ λ can be applied on every
connected component of M separately, so we may as well assume M is connected. We claim that
if we fix a reference point p0 PM , then f : M Ñ R can be defined by

(13.1) fppq :“
ż a
0

λp 9γptqq dt for any a ą 0, γ P C8pr0, as,Mq with γp0q “ p0, γpaq “ p.

We must first show that fppq is independent of the choice of the path γ : r0, as Ñ M from p0
to p. To this end, here are two useful observations: first, by the substitution rule, the integral
in (13.1) does not change if we replace γ : r0, as Ñ M with γ ˝ ψ : r0, 1s Ñ M for any smooth
map ψ : r0, 1s Ñ r0, as with ψp0q “ 0 and ψp1q “ a. As a consequence, we lose no generality
by restricting our attention to paths γ : r0, 1s Ñ M that are constant on neighborhoods of 0 and
1, with values p0 and p respectively. The second observation is that if t denotes the standard
coordinate on the 1-manifold r0, 1s Ă R, then pγ˚λqtpBtq “ λγptqpγ˚Btq “ λγptqp 9γptqq, thus we can
also write

fppq “
ż
r0,1s

γ˚λ.

Now if γ1, γ2 : r0, 1s ÑM are two smooth paths from p0 to p that are both constant near 0 and 1,
we can concatenate γ1 with the reversal of γ2 to form a smooth loop ϕ : S1 ÑM in the form

ϕpeπitq “
#
γ1ptq for 0 ď t ď 1,

γ2p2´ tq for 1 ď t ď 2,
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where for convenience we are identifying R2 in the obvious way with C so that S1 Ă C. If we now
split S1 into its upper and lower semicircles S1˘ with parametrizations ψ˘ : r0, 1s Ñ S1˘ : t ÞÑ eπit,
we have γ1 “ ϕ ˝ ψ` and γ2 “ ϕ ˝ ψ´, but ψ` is orientation preserving while ψ´ is orientation
reversing, thus

0 “
ż
S1

ϕ˚λ “
ż
S1`
ϕ˚λ`

ż
S1´
ϕ˚λ “

ż
ψ`pr0,1sq

ϕ˚λ`
ż
ψ´pr0,1s

ϕ˚λ

“
ż
r0,1s

ψ˚̀ϕ˚λ´
ż
r0,1s

ψ˚́ϕ˚λ “
ż
r0,1s

pϕ ˝ ψ`q˚λ´
ż
r0,1s

pϕ ˝ ψ´q˚λ “
ż
r0,1s

γ1̊ λ´
ż
r0,1s

γ2̊ λ.

With independence of the choice of γ established, we observe that (13.1) implies d
dt
fpγptqq “ λp 9γptqq

for every t and every smooth path γ starting at p0, thus df “ λ. �

Exercise 13.16. Use a slight modification of the proof of Lemma 13.15 to show that on S1,
a 1-form λ P Ω1pS1q is exact if and only if

ş
S1 λ “ 0.

Definition 13.17. A smooth manifoldM is simply connected (einfach zusammenhängend)
if it is connected and every smooth map γ : S1 Ñ M admits a smooth extension over the 2-disk,
i.e. a map u : D2 ÑM such that u|BD2 “ γ.

Remark 13.18. In algebraic topology, a topological space is called simply connected if it is
path-connected and its fundamental group vanishes, but for smooth manifolds, Definition 13.17 is
equivalent to this condition. In particular, one could replace the word “smooth” by “continuous”
without changing anything, because by general perturbation results in differential topology (see
e.g. [Hir94]), continuous maps between smooth manifolds always admit smooth approximations.

Theorem 13.19. If M is a simply connected manifold, then every closed 1-form λ P Ω1pMq
is exact.

Proof. If λ P Ω1pMq is closed and every smooth map γ : S1 ÑM admits a smooth extension
u : D2 ÑM , then ż

S1

γ˚λ “
ż
BD2

u˚λ “
ż
D2

dpu˚λq “
ż
D2

u˚pdλq “ 0,

hence λ satisfies the criterion of Lemma 13.15 and is therefore exact. �

It should be easy to convince yourself that every convex subset of Rn is simply connected,
and every point in a manifold has a neighborhood that looks like a convex subset of Rn in local
coordinates, implying in turn that that neighborhood is simply connected. Theorem 13.19 thus
implies the k “ 1 case of the Poincaré lemma. But it also implies more, because there are many
simply connected manifolds that are more interesting than convex sets.

Example 13.20. For each n ě 2, the sphere Sn is simply connected. Here is an incomplete but
(maybe?) believable proof: since dimSn ą dimS1, no smooth map γ : S1 Ñ Sn can be surjective,46

i.e. it must miss at least one point p P Sn and can thus be viewed as a map S1 Ñ Snztpu. But
by stereographic projection, one can also find a diffeomorphism of Snztpu to Rn and then appeal
to the fact that Rn (as a convex set) is simply connected. It follows that closed 1-forms on Sn for
n ě 2 are always exact.

46I’m pretty sure that you cannot visualize any surjective smooth map f : M Ñ N when dimM ă dimN ,
though actually proving they don’t exist is not completely trivial. It follows easily from Sard’s theorem, a funda-
mental result in differential topology stating that the set of critical values of a smooth map f : M Ñ N always has
measure zero. This means that for almost every q P N , Tpf : TpM Ñ TqN is surjective for every p P f´1pqq; the
only way for this to hold when dimM ă dimN is if f´1pqq “ H. The much more surprising fact is that continuous
maps f : M Ñ N can be surjective, even when dimN ą dimM ; look up the term “space-filling curve”. Such maps
can never be smooth.
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Remark 13.21. You may have noticed that in Theorem 13.19, it would have sufficed to assume
that every smooth map γ : S1 Ñ M admits a smooth extension u : Σ Ñ M over some compact,
smooth, oriented surface Σ with boundary BΣ “ S1, i.e. not necessarily the disk, but any surface
whose boundary is a circle. (An easy example would be obtained by cutting a hole out of the
2-torus T2.) This means that Theorem 13.19 is true under a somewhat more general hypothesis
than simple connectedness. The natural language for this generalization is homology, i.e. the
theorem holds for any manifold M whose first homology group with real coefficients vanishes. A
full explanation of this statement would require a major digression into algebraic topology, so we
will not discuss it any further here, but suffice it to say that in dimension 2, there are no examples
for which this distinction makes a difference, but in dimension 3 there are. Poincaré famously
conjectured that every closed 3-manifold with vanishing first homology group is homeomorphic
to S3, but later found an example—now known as the Poincaré homology sphere—that satisfies
this hypothesis but (unlike S3) is not simply connected, and thus had to revise his conjecture. The
revised conjecture was proved over 100 years later.

Example 13.22. On a Riemannian manifold pM, gq, the inner product x , y :“ g determines
an isomorphism TpM Ñ Tp̊M : X ÞÑ X5 :“ xX, ¨y at every point p P M , which can be used
to associate to any smooth function f : M Ñ R its gradient vector field ∇f P XpMq, uniquely
determined by

df “ x∇f, ¨y.
A vector field X P XpMq cannot be the gradient of a function unless the 1-form X5 P Ω1pMq is
closed, and conversely, the Poincaré lemma implies that every vector field satisfying this condition
is locally the gradient of a function, though perhaps not globally (unless M is simply connected).
If M is oriented and 3-dimensional, then this result can also be expressed in terms of the curl
(cf. §12.5.2): any gradient X “ ∇f satisfies ιcurlpXqdvolM “ dpdfq “ 0, implying

curlp∇fq ” 0,

and conversely, any vector field X P XpMq with curlpXq ” 0 is locally the gradient of a function.
In the same context, the curl of any vector field X P XpMq satisfies ιcurlpXqdvolM “ dpX5q and

thus dpιcurlpXqdvolM q “ d2pX5q “ 0, implying

divpcurlpXqq ” 0.

Conversely, any divergenceless vector field Y P XpMq satisfies dpιY dvolM q “ 0, so that by the
Poincaré lemma, ιY dvolM P Ω2pMq can be written on any sufficienly small neighborhood U as
dλ for some λ P Ω1pUq. The latter is also X5 for a unique vector field X P XpUq, whose curl is
therefore Y : in other words, any divergenceless vector field is locally the curl of another vector
field.

While (13.1) provides a fairly straightforward recipe to find a local primitive of any closed
1-form, it is not as easy to derive local primitives for closed k-forms when k ě 2. One possible
approach is to work on “boxes” of the form M :“ pa1, b1q ˆ . . .ˆpan, bnq and proceed by induction
on the number of dimensions, showing that if one can already find primitives for closed k-forms
on the hypersurface Σc :“ pa1, b1q ˆ . . . ˆ pan´1, bn´1q ˆ tcu for some constant c P pan, bnq, then
primitives on Σc can be extended to primitives on M by integrating in the nth direction. I have
proved the Poincaré lemma in this way when I’ve taught analysis courses (see [Wen19]), but the
idea behind the argument has a tendency to get lost behind computational details. We will adopt
a different approach in these notes, and deduce the Poincaré lemma from a deeper theorem about
the homotopy-invariance of de Rham cohomology. We will see at the end that this approach does
lead to an explicit formula generalizing (13.1) to produce local primitives of closed k-forms (see
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in partiular Remark 13.39), but in contrast with (13.1), one would be very unlikely to find this
formula from an educated guess.

13.3. De Rham cohomology. By now we have gathered some evidence that the distinction
between closed and exact forms on a manifold M has something to do with the topology of M .
We shall now formalize this relation by defining an algebraic invariant of smooth manifolds.

Definition 13.23. For a smooth n-manifold M and each integer k P Z, let dk : ΩkpMq Ñ
Ωk`1pMq denote the restriction of the exterior derivative d : Ω˚pMq Ñ Ω˚pMq to the subspace
ΩkpMq Ă Ω˚pMq, with the convention that for k ă 0, ΩkpMq is the trivial subspace (hence d´1 is
the trivial map into Ω0pMq). The kth de Rham cohomology of M is the vector space

Hk
dRpMq :“ kerpdkqL impdk´1q,

i.e. it is the quotient of the space of closed k-forms by the subspace of exact k-forms. We write

Hd̊RpMq :“à
kPZ

Hk
dRpMq.

Remark 13.24. The case k ă 0 was included in Definition 13.23 only in order to make sure
that the definition of H0

dRpMq makes sense, but Hk
dRpMq for k ă 0 is just the trivial vector space,

and we will have no need to mention it again. It is similarly easy to see that Hk
dRpMq “ 0 whenever

k ą dimM , since the space of k-forms is already trivial in this case. Thus in practice, Hk
dRpMq is

potentially interesting only for k in the range 0 ď k ď dimM .

It may seem surprising at first glance that Hk
dRpMq is useful or computable: in typical cases

both kerpdkq and impdk´1q are infinite-dimensional vector spaces, and one would not normally ex-
pect the quotient of one infinite-dimensional space by another one to carry interesting information.
It turns out however that in almost all interesting cases, the quotient is finite dimensional, and its
dimension is a useful numerical invariant of manifolds. Let us first clarify what is meant by the
word “invariant”.

Proposition 13.25. For smooth maps f : M Ñ N , the linear map f˚ : ΩkpNq Ñ ΩkpMq
sends closed forms on N to closed forms on M , and it also descends47 to the quotients to define a
linear map f˚ : Hk

dRpNq Ñ Hk
dRpMq that satisfies the following properties:

(1) For another smooth map g : N Ñ Q, pg ˝ fq “ f˚g˚ : Hk
dRpQq Ñ Hk

dRpMq;
(2) For the identity map Id :M ÑM , Id˚ : Hk

dRpMq Ñ Hk
dRpMq is the identity map.

It follows in particular that whenever f : M Ñ N is a diffeomorphism, f˚ : Hk
dRpNq Ñ Hk

dRpMq
is a vector space isomorphism for each k.

Proof. The relation f˚pdωq “ dpf˚ωq implies that f˚ preserves both the spaces of closed
forms and exact forms, and thus descends to their quotient. The rest of the statement follows
immediately from the basic properties of pullbacks. �

Remark 13.26. For those who enjoy this kind of language, Proposition 13.25 says that Hk
dR

for each k P Z defines a contravariant functor from the category of smooth manifolds and smooth
maps to the category of real vector spaces and linear maps.

Example 13.27. The closed 0-forms on M are the locally constant functions, which can take
independent but constant values on each connected component of M , while the subspace of exact
0-forms is trivial, thus if M has N P N connected components, H0

dRpMq – RN .

47Recall that if A : V Ñ W is a linear map between vector spaces and X Ă V and Y Ă W are linear subspaces
such that ApXq Ă Y , then there is a well-defined linear map V {X Ñ W {Y sending the equivalence class rxs P V {X
of each x P V to the equivalence class rAxs P W {Y of Ax P W . One says in this situation that A : V Ñ W descends
to a map V {X Ñ W {Y .
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Example 13.28. IfM :“ tptu is the 0-manifold consisting of a single point, then Ω0ptptuq – R,
Ωkptptuq “ 0 for each k ą 0, and the exterior derivative is the trivial map, implying

Hk
dRptptuq –

#
R for k “ 0,

0 for k ą 0.

Example 13.29. Theorem 13.19 implies that H1
dRpMq “ 0 whenever M is simply connected.

Example 13.30. Corollary 13.9 implies that Hn
dRpMq ‰ 0 whenever M is a closed oriented

n-manifold.

Diffeomorphism-invariance is a nice property, but de Rham cohomology also satisfies a stronger
invariance property that makes it much easier to compute.

Definition 13.31. Two smooth maps f0, f1 :M Ñ N are called smoothly homotopic (glatt
homotop) if there exists a smooth map h : r0, 1s ˆM Ñ N such that hp0, ¨q “ f0 and hp1, ¨q “ f1.

Theorem 13.32. If f0, f1 : M Ñ N are smoothly homotopic maps, then for each k, the linear
maps Hk

dRpNq Ñ Hk
dRpMq defined by f0̊ and f1̊ are identical.

Before proving this, let’s think through some of the consequences. A map f :M Ñ N is called
a smooth homotopy equivalence (glatte Homotopieäquivalenz) if there exists another smooth
map g : N Ñ M such that f ˝ g : N Ñ N and g ˝ f : M Ñ M are each smoothly homotopic
to the identity map. Combining Proposition 13.25 with Theorem 13.32 in this situation implies
that f˚ : Hd̊RpNq Ñ Hd̊RpMq and g˚ : Hd̊RpMq Ñ Hd̊RpNq are inverses; in particular, f˚ is an
isomorphism:

Corollary 13.33. If two manifolds M and N are smoothly homotopy equivalent, then their
de Rham cohomologies are isomorphic. �

The power of Corollary 13.33 lies in the fact that two manifolds can easily be homotopy
equivalent without being diffeomorphic; in fact, homotopy equivalence does not even imply that
they have the same dimension. Here is an extreme example: a manifold M is called smoothly
contractible (glatt zusammenziehbar) if there exists a smooth homotopy of the identity map
M ÑM to a constant map. It is easy to see for instance that Rn is smoothly contractible, and so
is any convex subset of Rn. Given a smooth homotopy h : r0, 1sˆM ÑM with hp1, ¨q “ IdM and
hp0, ¨q ” p PM for some fixed point p PM , consider the maps

π :M Ñ tpu, i : tpu ãÑM,

where π is the unique map and i is the natural inclusion. Now π ˝ i is the identity map on tpu, and
i ˝ π : M Ñ M is hp0, ¨q, which is therefore smoothly homotopic to IdM . This proves that M is
smoothly homotopy equivalent to the one-point manifold tpu, so combining Corollary 13.33 with
Example 13.28 gives:

Corollary 13.34. If M is smoothly contractible, then Hk
dRpMq “ 0 for all k ą 0 and

H0
dRpMq – R.

Proof of the Poincaré lemma. Every point p PM has a neighborhood U ĂM that looks
like a convex set in some coordinate chart and is thus smoothly contractible. For k ą 0, it now
follows from Hk

dRpUq “ 0 that the spaces of closed and exact k-forms on U are identical. �

Proof of Theorem 13.32. We assume h : r0, 1sˆM Ñ N satisfies hp0, ¨q “ f0 and hp1, ¨q “
f1. Given ω P ΩkpNq, let us assume L ĂM is a compact oriented k-dimensional submanifold with
boundary and consider the integral of h˚dω P Ωk`1pr0, 1s ˆMq over the domain r0, 1s ˆ L. Note
that the latter is not a smooth manifold with boundary unless BL “ H; in general r0, 1sˆL can be
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understood as a manifold with boundary and corners. Nonetheless, one can make sense of Stokes’
theorem on this domain as described in Example 12.14, leading to the relationż

r0,1sˆL
h˚pdωq “

ż
r0,1sˆL

dph˚ωq “
ż
Bpr0,1sˆLq

h˚ω :“
ż
Br0,1sˆL

h˚ω ´
ż
r0,1sˆBL

h˚ω

“
ż
t1uˆL

h˚ω ´
ż
t0uˆL

h˚ω ´
ż
r0,1sˆBL

h˚ω

“
ż
L

f1̊ ω ´
ż
L

f0̊ ω ´
ż
r0,1sˆBL

h˚ω,

(13.2)

where in the last line we have used the obvious identifications of t1u ˆ L and t0u ˆ L with L, so
that the restrictions of h˚ω to these two submanifolds become f1̊ ω and f0̊ ω respectively. Now
observe that for any compact oriented m-dimensional submanifold Q Ă M and an pm ` 1q-form
α P Ωm`1pNq, there is a natural way of presenting şr0,1sˆQ h˚α as the integral of anm-form over Q:
we define Pα P ΩmpMq namely via the formula

pPαqppX1, . . . , Xmq :“
ż 1

0

ph˚αqpt,pqpBt, X1, . . . , Xmq dt P R,

where Bt here denotes the obvious unit vector field on r0, 1sˆM pointing in the positive direction
on the first factor, and each X1, . . . , Xm P TpM is regarded as living in the subspace t0uˆTpM Ă
Ttr0, 1s ˆ TpM “ Tpt,pqpr0, 1s ˆMq. In this way we have defined a linear operator

P : Ωm`1pNq Ñ ΩmpMq such that
ż
r0,1sˆQ

h˚α “
ż
Q

Pα

for all α P Ωm`1pNq and compact oriented m-dimensional submanifolds Q ĂM . We can use this
to transform (13.2) into the relationż

L

pf1̊ ω ´ f0̊ ωq “
ż
L

P pdωq `
ż
BL
Pω “

ż
L

rP pdωq ` dpPωqs ,
where we have again applied Stokes’ theorem to transform the integral over BL into one over L.
We now have an equality of the integrals of two k-forms over an arbitrary compact oriented k-
dimensional submanifold with boundary: in particular, one could pick any point p P M and any
vectors X1, . . . , Xk P TpM and then approximate the evaluation of both k-forms on pX1, . . . , Xkq
arbitrarily well by integrating them over a submanifold L that is chosen to be a small k-disk
through p tangent to the space spanned by X1, . . . , Xk. The conclusion is that these two k-forms
must be identical, so we have proved that f1̊ ω ´ f0̊ ω “ P pdωq ` dpPωq, or rewriting it as an
equality between two linear maps Hk

dRpNq Ñ Hk
dRpMq,

(13.3) f1̊ ´ f0̊ “ P ˝ d` d ˝ P.
This formula is well known in homological algebra: it is called the chain homotopy relation,
and the operator P : Ω˚pNq Ñ Ω˚pMq of degree ´1 is consequently called a chain homotopy
(Kettenhomotopie). Its existence has the following consequence: if ω P ΩkpNq is closed, then

f1̊ ω “ f0̊ ω ` dpPωq,
implying that f1̊ ω and f0̊ ω represent the same element in the quotient Hk

dRpMq. �

Exercise 13.35. Suppose O is an open subset of either Hn or Rn. We call O a star-shaped
domain if for every p P O, it also contains the points tp P Rn for all t P r0, 1s. It follows that
hpt, pq :“ tp defines a smooth homotopy h : r0, 1s ˆO Ñ O between the identity and the constant
map whose value is the origin, making O smoothly contractible. Use this homotopy to extract
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from the proof of Theorem 13.32 an explicit formula for a linear operator P : ΩkpOq Ñ Ωk´1pOq
for each k ě 1 satisfying

ω “ P pdωq ` dpPωq
for all ω P ΩkpOq. In particular, whenever ω is a closed k-form, Pω is a primitive of ω. (As a
sanity check, a formula for P is given in Remark 13.39 at the end of this lecture, but try to derive
it without knowing it in advance.)

One further property of Hd̊RpMq deserves to be mentioned, though a full explanation of it
would fall far outside the scope of this course. By a result known as de Rham’s theorem, Hk

dRpMq
is naturally isomorphic to another invariant that is a standard topic in algebraic topology, namely
the kth singular cohomology with real coefficients:

Hk
dRpMq – HkpM ;Rq.

The latter is defined for all topological spaces, not just smooth manifolds, and spaces that are
homeomorphic always have isomorphic singular cohomologies, implying that Hk

dRpMq is actually
a topological invariant. The topological invariance of Hd̊RpMq cannot be seen directly from its
definition, since pullbacks of differential forms via maps f :M Ñ N do not make sense in general
when f is continuous but not differentiable. As one learns in algebraic topology, HkpM ;Rq is
often surprisingly easy to compute, and for instance when M is compact, it can be derived from a
finite-dimensional chain complex, implying the highly non-obvious fact that

dimHk
dRpMq ă 8

whenever M is compact.

Exercise 13.36. Here is the most basic computation of Hd̊RpMq for a non-contractible man-
ifold: we will show in this exercise that for every n P N and k P t0, . . . , nu,

(13.4) dimHk
dRpSnq “

#
1 if k “ 0 or k “ n,

0 otherwise.

Clearly every sphere Sn for n ě 1 is connected,48 so Example 13.27 establishes H0
dRpSnq – R. For

the computation of Hk
dRpSnq when k ě 1, we proceed by induction on n.

(a) Show that if M is a closed oriented n-manifold, then there is a well-defined linear map

(13.5) Hn
dRpMq Ñ R : rωs ÞÑ

ż
M

ω,

and the following conditions are equivalent:
(i) Hn

dRpMq – R;
(ii) The map (13.5) is an isomorphism;
(iii) Every ω P ΩnpMq satisfying ş

M
ω “ 0 is exact.

(b) Deduce via Exercise 13.16 that (13.4) is correct for n “ 1.
(c) Suppose M is a closed n-manifold and ω`, ω´ is a pair of k-forms on M ˆ r´1, 1s such

that dω` “ dω´. Show that the following conditions are equivalent:
(i) ω` ´ ω´ is exact;
(ii) it̊ ω`´it̊ ω´ is an exact k-form onM for every t P r´1, 1s, where it :M ãÑMˆr´1, 1s

denotes the inclusion p ÞÑ pp, tq.
(iii) There exists a k-form ω on M ˆ r´1, 1s which matches ω˘ near M ˆ t˘1u and

satisfies dω “ dω` “ dω´.

48The 0-sphere is a discrete set of two points S0 “ t1,´1u Ă R, and is thus not connected. That’s why we
excluded the case n “ 0 from (13.4).
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Hint: First prove the equivalence of (i) and (ii), after convincing yourself that it : M ãÑ
M ˆ r´1, 1s is a smooth homotopy equivalence for each t.

(d) Under the same assumptions as in part (c), suppose also that M is oriented and k “ n.
Show that the number

ş
Mˆttu ω`´

ş
Mˆttu ω´ P R is the same for any choice of t P r´1, 1s.

Hint: Given ´1 ď t´ ă t` ď 1, integrate something over M ˆ rt´, t`s and apply Stokes’
theorem.

(e) Now given an integer n ě 2, assume (13.4) is true for Sn´1, and fix k P t1, . . . , nu.
Regarding Sn as the unit sphere in Rn`1 with standard coordinates px1, . . . , xn`1q, we can
decompose it into two overlapping n-dimensional disks Sn “ D`YD´ whose intersection
looks like Sn´1 ˆ r´1, 1s; specifically, define

D` :“ tx1 ě ´1{2u X Sn, D´ :“ tx1 ď 1{2u X Sn.

Take a moment to convince yourself that there is a diffeomorphism D` XD´ – Sn´1 ˆ
r´1, 1s. Observe next that D` and D´ are each smoothly contractible, thus any closed
k-form ω on Sn will then by exact over each of D` and D´, giving α˘ P Ωk´1pD˘q such
that dα˘ “ ω on D˘. The difficulty is that α` and α´ need not match on D` X D´.
Use the inductive hypothesis and the previous steps in this problem to show that if either
1 ď k ď n´1 or k “ n with

ş
Sn ω “ 0, then there exists α P Ωk´1pSnq satisfying dα “ ω;

show in fact that α can be chosen to match α˘ on the portions of D˘ where D` and D´
do not overlap. This completes the inductive proof of (13.4).
Hint: The case k “ n is trickiest, as you need to use the hypothesis

ş
Sn ω “ 0 to deduce

something about α` and α´. What can you say about the integrals of α˘ over the
“equator” Sn´1 – tx1 “ 0u Ă Sn? Try Stokes’ theorem, but be careful with orientations!

Exercise 13.37. Show that the wedge product descends to an associative and graded-commutative
product Y : Hk

dRpMq ˆHℓ
dRpMq Ñ Hk`ℓ

dR pMq, defined by

rαs Y rβs :“ rα^ βs.
This is called the cup product on de Rham cohomology.
Remark: There is similarly a cup product on singular cohomology, to which this one is isomorphic
via de Rham’s theorem. But this one is easier to define, and is thus often used in practice as a
surrogate for the singular cup product.

Exercise 13.38. For this exercise, identify the n-torus Tn with the quotient Rn{Zn (recall
from Exercise 3.4 that there is a natural diffeomorphism). For any sufficiently small open setrU Ă Rn, the usual Cartesian coordinates x1, . . . , xn : rU Ñ R can be used to define a smooth chart
pU , xq on Tn where

U :“
!
rps P Tn

ˇ̌̌
p P rU) , xprpsq :“ px1ppq, . . . , xnppqq for p P rU .

(a) Show that the coordinate differentials dx1, . . . , dxn P Ω1pUq arising from the chart pU , xq
described above are independent of the choice of the set rU Ă Rn, i.e. the definitions of
the coordinate differentials obtained from two different choices rU1, rU2 Ă Rn coincide on
the region U1 X U2 Ă Tn where they overlap.

(b) As a consequence of part (a), the 1-forms dx1, . . . , dxn P Ω1pTnq are well-defined on the
entire torus, and they are obviously locally exact and therefore closed, but they might
not actually be exact since none of the coordinates x1, . . . , xn admit smooth definitions
globally on Tn. (This is another example of the phenomenon we saw with dθ P Ω1pR2zt0uq
in Remark 13.13.) Show in fact that for any vector pa1, . . . , anq P Rnzt0u, the 1-form

λ :“ ai dx
i P Ω1pTnq
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is closed but not exact.
Hint: You only need to find one smooth map γ : S1 Ñ Tn such that

ş
S1 γ

˚λ ‰ 0.
(c) One can similarly produce closed k-forms ω P ΩkpTnq for any k ď n by choosing constants

ai1...ik P R and writing

(13.6) ω “ ÿ
i1ă...ăik

ai1...ik dx
i1 ^ . . .^ dxik P ΩkpTnq.

Show that for every nontrivial k-form of this type, one can find a cohomology class
rαs P Hn´k

dR pTnq such that the cup product rωsY rαs P Hn
dRpTnq defined in Exercise 13.37

is nontrivial, and deduce from this that ω is not exact.
Hint: Can you choose α P Ωn´kpTnq so that ω ^ α is a volume form?

Remark: One can show that all cohomology classes in Hk
dRpTnq are representable by k-forms with

constant coefficients as in (13.6), thus dimHk
dRpTnq “

`
n
k

˘
.

Remark 13.39. Here is a formula for the operator P : ΩkpOq Ñ Ωk´1pOq promised in Exer-
cise 13.35 on a star-shaped domain O in Hn or Rn:

pPωqppX1, . . . , Xk´1q :“
ż 1

0

tk´1ωtppp,X1, . . . , Xk´1q dt,
where since O is a subset of Rn, we are using the natural isomorphisms TpO “ Rn at every
point. (Otherwise the expression ωtppp,X1, . . . , Xk´1q would not generally make sense because
X1, . . . , Xk´1 P TpO ‰ TtpO.) In applications, it is occasionally useful to observe that Pω depends
continuously on ω, i.e. one obtains in this way a continuous right-inverse of the operator dk´1 :

Ωk´1pOq Ñ impdk´1q Ă ΩkpOq.

14. Volume-preserving and symplectic maps

14.1. Volume-preserving flows. AssumeM is an oriented n-manifold with a fixed positive
volume form dvol P ΩnpMq. In §12.5, we defined the divergence of a vector field X P XpMq in this
context as the unique function divpXq :M Ñ R such that

dpιXdvolq “ divpXq ¨ dvol.
A partial justification for this definition was furnished by the Gauss divergence theorem,

(14.1)
ż
M

divpXq dvolM “
ż
BM
xX, νy dvolBM ,

a corollary of Stokes’ theorem that equates the total divergence of a vector field on a Riemannian
manifold with boundary to its total flux through the boundary (see §12.5.1). We would now like
to explain a more fundamental interpretation of the divergence: it measures the extent to which
the flow of X changes volume.

Writing VolpAq :“ ş
A
dvol, a diffeomorphism ϕ :M ÑM is called volume preserving if

VolpϕpAqq “ VolpAq for all measurable sets A ĂM.

For a vector field X P XpMq admitting a global flow, we say that its flow is volume preserving if
ϕtX is volume preserving for every t P R. Without assuming there is a global flow, this condition
can still be generalized as follows: for every measurable set A Ă M and every t P R for which
the domain of ϕtX contains A, VolpϕtX pAqq “ VolpAq. Note that if A has compact closure, then
this condition always makes sense at least for t close to 0. For simplicity we will assume in the
following discussion that there is always a global flow, but this condition can be lifted by paying
more careful attention to the domains of the flow maps ϕtX .
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The diffeomorphisms ϕtX : M ÑM defined via the flow of a vector field are always orientation
preserving—this results from the fact that ϕ0

X : M Ñ M is the identity map, so for any p P M ,
any positively oriented basis Y1, . . . , Yn of TpM gives rise to a continuous 1-parameter family of
bases

pTϕtXpY1q, . . . , TϕtXpYnqq
for the tangent spaces Tϕt

X
ppqM , and continuity dictates that they must all be positively oriented.

We therefore have

VolpϕtX pAqq “
ż
ϕt

X
pAq

dvol “
ż
A

pϕtXq˚dvol
for every A ĂM , and the rate of change of this volume is

(14.2)
d

dt
VolpϕtX pAqq “ d

dt

ż
A

pϕtXq˚dvol “
ż
A

BtpϕtXq˚dvol.
The next step in the calculation works in more general contexts: in place of the volume form dvol,
we can consider an arbitrary tensor field S P ΓpT kℓ Mq. Recall that ϕs`tX “ ϕsX ˝ϕtX , thus pϕs`tX q˚ “
pϕtX q˚pϕsXq˚, and

BtpϕtX q˚S “ Bspϕs`tX q˚S ˇ̌
s“0

“ BspϕtX q˚pϕsX q˚S
ˇ̌
s“0

“ pϕtX q˚ p BspϕsXq˚S|s“0q “ pϕtX q˚ pLXSq .
(14.3)

Applying this to (14.2) gives

d

dt
VolpϕtX pAqq “

ż
A

pϕtXq˚ pLXdvolq “
ż
ϕt

XpAq
LXdvol.

It follows that the flow is volume preserving if the Lie derivative of the volume form dvol with
respect to X vanishes, and conversely, the derivative of VolpϕtX pAqq can only vanish for every
measurable set A Ă M if the n-form pϕtX q˚pLXdvolq vanishes identically for every t, which is
equivalent to the condition LXdvol ” 0 since pϕtX q˚ : ΩnpMq Ñ ΩnpMq is a bijection.

Lemma 14.1. For any volume form dvol P ΩnpMq and vector field X P XpMq,
LXdvol “ dpιXdvolq.

This relation will follow from the more general formula of Cartan for Lie derivatives of differen-
tial forms, to be proved in the next section. We can now alternatively characterize the divergence
of X as the unique function such that

(14.4) LXdvol “ divpXq ¨ dvol,
and the discussion above implies:

Theorem 14.2. On a manifold M with volume form dvol, a vector field X P XpMq has a
volume-preserving flow if and only if divpXq ” 0. �

The divergence theorem (14.1) now admits a new geometric interpretation whenever M is a
compact submanifold with boundary in a larger n-manifold N on which the vector field X and
volume form dvol are defined. In this case, the flow ϕtX ofX is well defined onM for all t sufficiently
close to zero, and the left hand side of (14.1) then becomesż

M

divpXq dvolN “
ż
M

LXpdvolN q “ d

dt

ż
M

pϕtX q˚dvolN
ˇ̌̌̌
t“0

“ d

dt

ż
ϕt

X
pMq

dvolN

ˇ̌̌̌
ˇ
t“0

“ d

dt
VolpϕtX pMqq

ˇ̌̌̌
t“0

.
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The divergence theorem thus relates the rate of change of the volume of M under the flow of X
to the average of xX, νy along BM , which measures the extent to which X flows out of M vs. into
M through its boundary.

14.2. Cartan’s formula for the Lie derivative. The following practical tool for computing
Lie derivatives of forms is sometimes called Cartan’s magic formula.

Theorem 14.3. For any X P XpMq and ω P ΩkpMq,
LXω “ dpιXωq ` ιXpdωq.

An immediate application is Lemma 14.1 above: if dvol P ΩnpMq is a volume form, then

LXdvol “ dpιXdvolq ` ιXdpdvolq “ dpιXdvolq
since dpdvolq is an pn` 1q-form on an n-manifold and therefore vanishes.49

The following sequence of exercises sums up to a proof of Cartan’s formula, the idea behind
it being to show that for any given X P XpMq, both of the operators LX and dιX ` ιXd define
derivations on the exterior algebra Ω˚pMq that match when applied to functions or differentials
of functions. This is sufficient for the same reason that a few formal properties centered around
the graded Leibniz rule sufficed in Proposition 9.16 for characterizing the exterior derivaive: both
are clearly local operators, and locally, every differential form is a finite sum of wedge products of
functions and differentials.

Exercise 14.4 (easy). Show that Theorem 14.3 holds for all ω “ f P C8pMq “ Ω0pMq.
Lemma 14.5. Theorem 14.3 holds for all ω “ df P Ω1pMq with f P C8pMq.
Proof. Since d2 “ 0, dιXdf ` ιXdpdfq “ dpιXdfq, where ιXdf is the real-valued function

p ÞÑ dfpXppqq. To evaluate LXpdfq P Ω1pMq on some Y P TpM at a point p PM , choose a smooth
path γ : p´ǫ, ǫq ÑM with γp0q “ p and 9γp0q “ Y . Then using Proposition 9.18,

LXpdfqpY q “ BtpϕtX q˚pdfqpY q
ˇ̌
t“0

“ Btdpf ˝ ϕtXqpY q
ˇ̌
t“0

“ BtBsfpϕtXpγpsqqq
ˇ̌
s“t“0

“ BsBtfpϕtX pγpsqqq
ˇ̌
s“t“0

“ BsdfpXpγpsqq|s“0 “ BsιX pdfqpγpsqq|s“0 “ dpιXdfqpY q.
�

The next exercise follows also quite easily from the definition of the Lie derivative, plus Propo-
sition 9.18 and the fact that the wedge product is bilinear. Notice that in contrast to the exterior
derivative, no annoying sign appears in the Leibniz rule for LX . Formally, the reason is because
LX sends k-forms to k-forms for each k ě 0, and is thus an operator of “degree 0”, i.e. it is even,
while the exterior derivative is odd.

Exercise 14.6. Show that LX : Ω˚pMq Ñ Ω˚pMq is a derivation with respect to the wedge
product, meaning

LXpα ^ βq “ LXα^ β ` α^ LXβ.

We now turn our attention fully to the operator

(14.5) PX :“ dιX ` ιXd : Ω˚pMq Ñ Ω˚pMq,
in which each term is a composition of operators with degrees 1 and ´1, so PX itself also has
degree 0. We’ve seen already that d satisfies a graded Leibniz rule; it turns out that ιX does as
well:

49Here is another cautionary reminder about the oddity of our notation for volume forms: we have not defined
any pn´ 1q-form “vol P Ωn´1pMq” for dvol to be the exterior derivative of, and we have seen for instance that when
M is a closed manifold, dvol is definitely not the exterior derivative of anything. The vanishing of dpdvolq thus has
nothing to do with the relation d ˝ d “ 0; it vanishes for a completely different reason.
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Exercise 14.7. For V an n-dimensional vector space, the goal of this exercise is to show that
for every v P V , the operator ιv : Λ˚V ˚ Ñ Λ˚V ˚ satisfies the graded Leibniz rule

(14.6) ιvpα ^ βq “ pιvαq ^ β ` p´1qkα^ pιvβq
for all α P ΛkV ˚ and β P ΛℓV ˚. The statement is trivial if v “ 0, so assume otherwise, in which
case we may as well assume v is the first element e1 of a basis e1, . . . , en P V , whose dual basis we
can denote by e1˚, . . . , en˚ P V ˚ “ Λ1V ˚.

(a) Prove that (14.6) holds whenever α and β are both products of the form α “ ei1˚ ^ . . .^eik˚
and β “ e

j1˚ ^ . . .^ e
jℓ˚ with i1 ă . . . ă ik and j1 ă . . . ă jℓ.

Hint: Consider separately a short list of cases depending on whether each of i1 and j1
are 1 and whether the sets ti1, . . . , iku and tj1, . . . , jℓu are disjoint.

(b) Deduce via linearity that (14.6) holds always.

Exercise 14.8. Prove that the operator PX in (14.5) is also a derivation on Ω˚pMq, and
deduce that PX “ LX , thus proving Theorem 14.3.

14.3. Symplectic manifolds and Hamiltonian systems. Volume-preserving flows arise
naturally in the context of Hamiltonian systems, a special class of dynamical systems that originate
in classical mechanics. From a mathematical perspective, the most natural language for this
discussion is that of symplectic geometry.

Definition 14.9. AssumeM is a smooth manifold of even dimension 2n for some n P N. A 2-
form ω P Ω2pMq is called symplectic (symplektisch) if every point x PM admits a neighborhood
x P U ĂM with a coordinate chart of the form pU , pp1, q1, . . . , pn, qnqq such that

(14.7) ω “
nÿ
j“1

dpj ^ dqj on U .

A 2-form with this property is also sometimes called a symplectic structure (symplektische
Struktur) onM , and the pair pM,ωq in this situation is called a symplectic manifold (symplek-
tische Mannigfaltigkeit).

Observe that the coordinates pp1, q1, . . . , pn, qnq appearing in (14.7) are special; it would cer-
tainly be impossible to demand that any 2-form satisfy (14.7) for every choice of chart, but the
definition only requires the existence of some chart near every point so that ω takes this form.
In this sense, a symplectic structure is somewhat analogous to an orientation: it is equivalent in
fact to a maximal atlas of compatible charts in which the word “compatible” has been given a
new and much stricter definition, requiring all transition maps to not only be smooth but also
to preserve the relation (14.7). Physicists sometimes refer to coordinates pp1, q1, . . . , pn, qnq of
this type as canonical coordinates and call the corresponding transition maps canonical transfor-
mations. Mathematicians prefer to call them Darboux coordinates, after Darboux’s theorem (see
Remark 14.11 below).

Exercise 14.10. Show that a symplectic form ω P Ω2pMq always has the following properties:
(a) ω is closed: dω “ 0.
(b) For every x P M , the linear map TxM Ñ Tx̊M : X ÞÑ ωpX, ¨q is an isomorphism.

(Bilinear forms with this property are called nondegenerate).
(c) The “top” exterior power of ω,

ωn :“ ω ^ . . .^ ωlooooomooooon
n

P Ω2npMq

is a volume form on M . It follows in particular that M is orientable.
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(d) Is M is closed, then ω represents a nontrivial cohomology class rωs P H2
dRpMq.

Hint: Recall the cup product from Exercise 13.37. What can you say about the n-fold
cup product of rωs with itself?

Remark 14.11. A fundamental result known as Darboux’s theorem says that symplectic forms
can in fact be characterized fully in terms of the first two properties in Exercise 14.10, i.e. every
2-form that is both closed and nondegenerate admits an atlas of charts satisfying (14.7) and is thus
a symplectic form. This reveals for instance that every volume form on a surface50 is a symplectic
form. We will not make use of these facts here, but it is important to be aware of them since most
textbooks prefer to define the term “symplectic form” to mean a closed and nondegenerate 2-form.

Given a smooth function H : M Ñ R on a symplectic manifold pM,ωq, the nondegeneracy of
ω implies that there is a unique vector field XH P XpMq satisfying
(14.8) ωpXH , ¨q “ ´dH P Ω1pMq.
We call XH the Hamiltonian vector field determined by H , and in this context, the function H
itself is often called a Hamiltonian. In Darboux coordinates, it is not hard to derive an explicit
formula for the Hamiltonian vector field: writing XH “ Aj B

Bqj `Bj B
Bpj , we find

dH “ BH
Bqj dq

j ` BH
Bpj dp

j “ ´ωpXH , ¨q “ ´
nÿ
i“1

pdpi ^ dqiq
ˆ
Aj

B
Bqj `Bj

B
Bpj , ¨

˙
“

nÿ
i“1

`´Bi dqi `Ai dpi
˘
,

implying

(14.9) XH “
nÿ
i“1

ˆBH
Bpi

B
Bqi ´

BH
Bqi

B
Bpi

˙
.

In other words, if xptq PM denotes a smooth path passing through the domain of a Darboux chart
and its coordinates in this chart at time t are written as pp1ptq, q1ptq, . . . , pnptq, qnptqq, then x is an
orbit of XH if and only if its coordinates satisfy the following system of 2n first-order ODEs:

(14.10) 9qiptq “ BH
Bpi pxptqq, 9piptq “ ´BHBqi pxptqq i “ 1, . . . , n.

This system is known as Hamilton’s equations, and the dynamical system defined by the flow of
XH is called a Hamiltonian system.

The study of Hamiltonian systems originates with the following example.

Example 14.12. In classical mechanics, the motion in R3 of a single particle with mass m ą 0

under the influence of a force is described by a path qptq “ pq1ptq, q2ptq, q3ptqq P R3 that obeys
Newton’s second law,

Fpqptqq “ m:qptq,
where F : R3 Ñ R3 is a vector field representing the force. In standard examples, F is determined
by a potential V : R3 Ñ R via the relation

F “ ´∇V,

50On a manifold of dimension 2, it is also common to refer to volume forms as area forms.
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hence the individual coordinates satisfy m:qiptq “ ´ BV
Bqi pqptqq. There is a popular trick for turning

second-order systems of ODEs like this one into first-order systems with twice as many degrees of
freedom: we associate to the position variables q1, q2, q3 the corresponding momentum variables

piptq :“ m 9qiptq, p :“ pp1, p2, p3q
and observe that the path pqptq,pptqq P R6 now satisfies the first-order system of equations

9qiptq “ 1

m
piptq, 9piptq “ ´BVBqi pqptqq, i “ 1, 2, 3.

As it happens, this is the Hamiltonian system determined by the function H : R6 Ñ R given by

Hpq,pq :“ |p|2
2m

` V pqq.
Rewriting this as a function of q and 9q :“ 1

m
p, the first term becomes 1

2
m| 9q|2, which physicists

call the kinetic energy of the moving particle. This is summed with the potential energy V pqq to
produce the Hamiltonian, which therefore has an interpretation as the total energy of the particle.

The Hamiltonian formalism lends itself to generalization: to turn the example above into a
system of N ą 1 moving particles, one can package the coordinates of all particles together to
form a path in R3N , define corresponding momenta to produce a path in the so-called phase
space R6N , write the total energy of the system as a function of all its position and momentum
variables, and then write down Hamilton’s equations (14.10). More generally, one can consider
systems with constraints that prevent their positions from moving freely in Euclidean space, but
confine them instead to a submanifold. In this situation there might not exist any global coordinate
system in which Hamilton’s equations (14.10) make sense, but if we have a symplectic form and a
Hamiltonian function, then (14.8) defines the Hamiltonian vector field in a way that is independent
of coordinates. We will see for instance that on any n-dimensional Riemannian manifold, the
geodesic equation can be identified with a Hamiltonian system on a manifold of dimension 2n.

If you’ve wondered why we are discussing symplectic manifolds in the same lecture with volume-
preserving flows, here is the reasons:

Theorem 14.13 (Liouville’s theorem). For any symplectic manifold pM,ωq and Hamiltonian
H P C8pMq, the flow of the Hamiltonian vector field XH is volume preserving with respect to the
volume form ωn P Ω2npMq.

Proof. Let’s do two proofs. The first is a coordinate-based computation: in any Darboux
chart on some region in M , ωn becomes a constant multiple of the standard volume form

ωn “
˜

nÿ
i1“1

dpi1 ^ dqi1

¸
^ . . .^

˜
nÿ

in“1

dpin ^ dqin

¸
“ n dp1 ^ dq1 ^ . . .^ dpn ^ dqn,

and according to Exercise 12.16 and (14.9), the divergence of XH is thus

divpXHq “
nÿ
i“1

ˆ B
Bqi

BH
Bpi ´

B
Bpi

BH
Bqi

˙
“ 0.

The result now follows from Theorem 14.2.
The second proof is more elegant, because it does not require coordinates, and it also proves a

stronger result. Using Cartan’s formula and the defining property of the vector field XH , we find

LXH
ω “ dpιXH

ωq ` ιXH
pdωq “ ´dpdHq “ 0.

It follows via (14.3) that the 2-forms pϕtXH
q˚ω are independent of t, and thus

(14.11) pϕtXH
q˚ω “ ω for all t.
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It follows that for each t, ϕ :“ ϕtXH
also preserves the volume form ωn, since

(14.12) ϕ˚pω ^ . . .^ ωq “ ϕ˚ω ^ . . .^ ϕ˚ω “ ω ^ . . .^ ω.

�

I mentioned that our second proof of Liouville’s theorem actually proves a stronger result. On
a symplectic manifold pM,ωq, a diffeomorphism ψ : M ÑM that satisfies

ψ˚ω “ ω

is called a symplectomorphism (Symplektomorphismus), which can be viewed as an abbreviation
for symplectic diffeomorphism. We see from (14.11) that Hamiltonian flows ϕtXH

have this
property for every t, and by (14.12), all symplectomorphisms are also volume preserving.

While the subject of symplectic geometry has existed since the beginning of the 20th century,
it was unknown for many decades whether the condition of being a symplectomorphism is truly
more restrictive than being volume preserving. The following answer to this question emerged in
1985 and opened up a whole new subfield of geometry, known as symplectic topology :

Theorem (Gromov’s non-squeezing theorem [Gro85]). Fix the global coordinates pp1, q1, . . . , pn, qnq
on R2n with the “standard” symplectic form ω “ řn

i“1 dp
i ^ dqi, and let Bkr Ă Rk denote the open

ball of radius r. Then for two constants r, R ą 0, the 2n-ball B2n
r Ă R2n is symplectomorphic to a

subset of the “cylinder”
Z2n
R :“ B2

R ˆ R2n´2 Ă R2n

if and only if r ď R.

This is a hard theorem; various proofs are known, but all of them require a substantial amount
of analytical machinery which cannot be fit into an introductory course. The significance of the
non-squeezing theorem is that if n ě 2, then no matter how small R ą 0 may be, the cylinder
Z2n
R contains unlimited space in 2n ´ 2 of its 2n dimensions, and it is never difficult to find a

volume-preserving embedding B2n
r ãÑ Z2n

R that compresses the first two dimensions as much as
needed while expanding the others to compensate. The fact that symplectic embeddings cannot
do this when R ă r means that there are meaningful restrictions on symplectic maps beyond the
requirement that they must preserve volume. That subject is still an active area of research today.

Exercise 14.14. In 1915, Emmy Noether established a beautiful correspondence between the
conserved quantities of a mechanical system and its symmetries. A simple version of this theorem
in the Hamiltonian context takes the following form. Assume pM,ωq is a symplectic manifold, and
H : M Ñ R and F : M Ñ R are two functions such that the corresponding Hamiltonian vector
fields XH and XF have global flows. We say that F is conserved under the flow of XH if F is
constant along every orbit of XH .

(a) Show that F is conversed under the flow of XH if and only if H is conserved under the
flow of XF .

(b) In some settings, there is a converse to the result proved in part (a). Suppose M is
simply connected, and Y P XpMq is a vector field with a global flow that is symplectic
and preserves H , i.e.

(14.13) pϕtY q˚ω “ ω and H ˝ ϕtY “ H

for all t. One says in this situation that Y determines a symmetry of the Hamiltonian
system on pM,ωq defined by H . Under these assumptions, show that there exists a
function F : M Ñ R, uniquely defined up to addition of a constant, such that Y “ XF ,
and F is then conserved under the flow of XH .
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Let’s work out a concrete example. Let M “ R4 with coordinates ppx, x, py, yq and the standard
symplectic form

ω “ dpx ^ dx` dpy ^ dy P Ω2pR4q.
We can think of R4 as the “position-momentum space” (also known as phase space) representing
the motion of a single particle of mass m ą 0 in a plane: its position is given by q :“ px, yq P R2,
and p :“ ppx, pyq P R2 are the corresponding momentum variables. Given a “potential” function
V : R2 Ñ R, the total energy of the system is given by the function H : R4 Ñ R,

H “ |p|2
2m

` V pqq.

Suppose now that the potential V is chosen to be rotationally symmetric, e.g. this is the case if
q represents the position of the Earth moving around the sun (with the latter positioned at the
origin). To express this condition succinctly, one can transform to polar coordinates pr, θq on a
suitable subset of R2, related to the px, yq-coordinates as usual by x “ r cos θ and y “ r sin θ. The
condition imposed on V is then BθV ” 0.

(c) Regarding r and θ as real-valued functions on (a suitable subdomain of) R4 that depend
on the coordinates x and y but not on px and py, define two additional functions on the
same domain by

pr :“ x

r
px ` y

r
py, pθ :“ ypx ´ xpy.

Show that ppr, r, pθ, θq is then a Darboux chart for the symplectic form ω.
Hint: It suffices to compute ω in the new coordinates and show that it satisfies the right
formula, but this computation is a bit long. You could make your life easier by observing
that ω “ dλ for λ :“ px dx` py dy, and then computing λ in the new coordinates.

(d) Write down H as a function of ppr, r, pθ, θq and show that the vector field Y :“ Bθ
defined in these coordinates on R4ztr “ 0u satisfies (14.13). Derive a formula for the
corresponding conserved quantity F as promised by part (b). It is called the angular
momentum of the system.

15. Partitions of unity

In Lecture 11, we constructed partitions of unity subordinate to finite open covers of compact
manifolds: more precisely, if tUαuαPI is a finite collection of open sets in a manifold M whose
union contains the compact subset K Ă M , then there exists an associated collection of smooth
functions tϕα :M Ñ r0, 1suαPI such thatÿ

αPI
ϕα ” 1 on K, and supppϕαq Ă Uα is compact for every α P I.

This was used in order to “localize” the problem of defining integrals
ş
A
ω, and we used the same

localization trick again to prove Stokes’ theorem in Lecture 12. In this lecture, we will use a
more general localization trick to prove that Riemannian metrics exist on all smooth manifoldsM .
Unless M happens to be compact, we will not be able to get away with considering only finite
open covers or functions with compact support. We will therefore need a more general notion of
partitions of unity and an extension of the previous construction. This turns out to be the point
where one must finally make explicit use of the assumption that manifolds are metrizable.
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15.1. Local finiteness. A collection of subsets tUα Ă XuαPI in a topological space X is
called locally finite if every point p P X has a neighborhood that intersects at most finitely many
of the sets Uα. Similarly, a collection of functions tfα : X Ñ RuαPI is called locally finite if
the sets tf´1

α pRzt0uq Ă XuαPI form a locally finite collection. This condition has the following
advantage: if tfα : M Ñ RuαPI is a locally finite collection of smooth functions on a manifold M ,
then one can make sense of the sum ÿ

αPI
fαppq P R

for every p PM since, even if I is an uncountably infinite set, at most finitely many terms in this
sum are nonzero. Even better, p admits a neighborhood V Ă M that intersects at most finitely
many of the sets f´1

α pRzt0uq, implying that at most finitely many of the functions fα can have
nonzero values anywhere on V , and

ř
αPI fα therefore makes sense as a smooth function on V . We

therefore obtain a global smooth functionÿ
αPI

fα P C8pMq,

even if the sum contains uncountably many terms that are (somewhere) nontrivial functions onM .

Exercise 15.1. Show that if X is a topological space with open subset U Ă X and a locally
finite collection of continuous functions tfα : X Ñ RuαPI satisfying supppfαq Ă U for every α P U ,
then

ř
αPI fα also has support in U .

Definition 15.2. Given an open cover tUαuαPI of a smooth manifoldM , a partition of unity
subordinate to tUαuαPI is a locally finite collection of smooth functions tϕα : M Ñ r0, 1suαPI which
satisfy the following assumptions:

(1) For each α P I, supppϕαq Ă Uα;
(2)

ř
αPI ϕα ” 1.

Note that in Definition 15.2, the condition
ř
αPI ϕα ” 1 makes sense due to the local finiteness

assumption; this condition was automatic in Lecture 11 because we were considering only a finite
collection of functions, but here we are not assuming the collection is finite, nor that the functions
have compact support. This relaxation of assumptions makes it possible to prove the following
without assuming M is compact:

Theorem 15.3. Every open cover of a smooth manifold admits a subordinate partition of unity.

This theorem will be proved in §15.4.

15.2. Existence of Riemannian metrics and volume forms. Before proving that parti-
tions of unity always exist, we shall demonstrate their usefulness by proving the following:

Theorem 15.4. Every smooth manifold admits a Riemannian metric.

As a preliminary remark relevant to the proof, we observe that on any vector space V , the set
of inner products on V forms a convex subset of the vector space of bilinear maps V ˆ V Ñ R.
Indeed, the symmetric bilinear maps form a linear subspace, and whenever x , y0 and x , y1 are
two inner products on V , the interpolation x , yt :“ tx , y1`p1´ tqx , y0 for t P r0, 1s also satisfies

xv, vyt “ txv, vy1 ` p1´ tqxv, vy0 ą 0

for every nonzero v P V . More generally, any convex combination of finitely many inner products
on V is also an inner product, i.e. for any finite collection of inner products x , yi and numbers
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τi P r0, 1s for i “ 1, . . . , k with
řk
i“1 τi “ 1,

kÿ
i“1

τix , yi
is an inner product.

Lemma 15.5. Suppose tUαuαPI is an open cover of a smooth manifold M with subordinate
partition of unity tϕαuαPI , and for each α P I, gα P ΓpT 0

2 Uαq is a Riemannian metric on the open
subset Uα. Then the formula

g :“ ÿ
αPI

ϕαgα

defines a Riemannian metric on M , where in this sum, the term ϕαgα is interpreted as an element
of ΓpT 0

2Mq that vanishes outside of Uα.

Proof. Since supppϕαq Ă Uα, the tensor field ϕαgα P ΓpT 0
2Uαq can be extended to a smooth

tensor field on M that vanishes outside of Uα, and we will continue to denote the extension by
ϕαgα P ΓpT 0

2Mq. The sum then makes sense and is smooth due to local finiteness, as every
point is contained in a neighborhood on which only finitely many terms of the sum are nontrivial.
Moreover, at each individual point p PM , gp : TpM ˆ TpM Ñ R is a convex combination of inner
products, and is therefore also an inner product. �

Proof of Theorem 15.4. Choose an open cover tUαuαPI of M such that each Uα is the
domain of a chart xα, and define a Riemannian metric gα on Uα that looks like the standard
Euclidean inner product in the chosen coordinates. A global Riemannian metric g P ΓpT 0

2Mq can
then be defined via Lemma 15.5 after choosing a subordinate partition of unity. �

In light of Corollary 11.10 on the Riemannian volume form associated to a Riemannian metric,
Theorem 15.4 implies:

Corollary 15.6. Every smooth oriented manifold admits a volume form. �

Exercise 15.7. Use a partition of unity to prove Corollary 15.6 without mentioning Theo-
rem 15.4 or Riemannian metrics. Use instead the fact that for any oriented n-dimensional vector
space V , the set 

ω P ΛnV ˚ ˇ̌
ωpv1, . . . , vnq ą 0 for some positively-oriented basis v1, . . . , vn P V (

is convex.

Remark 15.8. Without assumingM is oriented, Theorem 15.4 also implies that every smooth
manifold admits a volume element (see §11.4).

15.3. Paracompactness. Any Riemannian manifold pM, gq is also a metric space in a natu-
ral way, at least if it is connected, because one can define the distance between two points p, q PM
by

(15.1) distpp, qq :“ inf
γ

ż b
a

a
gp 9γptq, 9γptqq dt,

where the infimum is over all intervals ra, bs Ă R and smooth paths γ : ra, bs Ñ M with γpaq “ p

and γpbq “ q. For a Riemannian manifold with multiple connected components, each component
has a natural metric defined in this way, and there are standard tricks for defining metrics on
any disjoint union of metric spaces (see e.g. Exercise 2.23). The point is: if you hadn’t already
assumed that smooth manifolds are metrizable but you assumed that Theorem 15.4 is true, then
the theorem would imply metrizability.
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Exercise 15.9. Take a moment to convince yourself that (15.1) really does define a metric,
in particular that it satisfies the triangle inequality.
Hint: One can reparametrize the path γ : ra, bs Ñ M quite freely without changing the integral.
If you take advantage of this freedom, then a path from p to q and a path from q to r can always
be concatenated smoothly.

The existence of the metric (15.1) is a dead giveaway that something about Theorem 15.4
depends on our assumption that all manifolds are metrizable. We haven’t used that assumption
in this course until now. But we will need it for constructing the partition of unity.

Recall that a refinement of an open cover tUαuαPI is another open cover tVβuβPJ such that
for every β P J , Vβ is contained in Uα for some α P I.

Definition 15.10. A topological space X is paracompact if every open cover of X admits
a locally finite refinement.

Compact topological spaces are obviously paracompact since a finite subcover can also be
viewed as a locally finite refinement. I can now tell you the true reason why we need to assume
manifolds are metrizable: all metrizable spaces are paracompact. We will not prove quite such a
general statement here, but we will make use of the metrizability assumption in the following to
prove that manifolds are always paracompact.

Lemma 15.11. Every manifold M is σ-compact, i.e. it is the union of countably many compact
subsets.

Proof. The result is true for every connected locally compact metric space (see e.g. [Spi99a,
Theorem 1.2]), but for our purposes it will be more convenient to drop connectedness and instead
assume separability, which holds in any case on all manifolds. Fix a metric d on M that is
compatible with its topology. The term “locally compact” refers to the following observation: for
every p PM , the closed ball sBrppq :“  

q PM ˇ̌
dpp, qq ď r

(
is compact for every r ą 0 sufficiently small. This holds because whenever r is sufficiently small,sBrppq lies in the domain of a chart that identifies it with a closed and bounded (and therefore
compact) subset of Euclidean space. On the other hand, closed and bounded subsets of arbitrary
metric spaces are not always compact, so we cannot assume sBrppq is compact for every r ą 0, but
there is a positive (if not infinite) upper bound

κppq :“ sup
 
r ą 0

ˇ̌ sBrppq is compact
( P p0,8s.

If κppq “ 8 at any point p, then M is exhausted by the sequence of compact sets sBkppq for
k “ 1, 2, 3, . . . and we are therefore done. Otherwise, observe that by the triangle inequality, every
q P sB 1

3
κppqppq satisfies sB 1

3
κppqpqq Ă sB 2

3
κppqppq,

implying that sB 1

3
κppqpqq is also compact and thus

(15.2) κpqq ě κppq
3

for all q P sB 1

3
κppqppq.

Now for any dense sequence p1, p2, p3, . . . PM , we claim that

M “
8ď
k“1

sB 2

3
κppkqppkq,

where the sets on the right hand side are clearly all compact. Indeed, for any p P M , we can
replace p1, p2, p3, . . . with a subsequence such that pk Ñ p as k Ñ 8, and it follows from (15.2)
that κppkq ě κppq{3 for all k sufficiently large, so that eventually p P sB 2

3
κppkq. �
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Exercise 15.12. Show that if X is a topological space with a locally finite open cover tUαuαPI
and K Ă X is a compact subset, then K intersects only finitely many of the sets Uα. (It follows
from this that if X is σ-compact, then the set I cannot be uncountable, i.e. all locally finite open
covers are at most countable. By Lemma 15.11, this applies in particular to all manifolds.

Theorem 15.13. Every smooth manifold is paracompact.

Proof. Assume tUαuαPI is an open cover ofM , and using Lemma 15.11, writeM “Ť8
j“1Kj

for compact subsets K1,K2,K3, . . .. Choose an open neighborhood V1 Ă M of K1 whose closure
is compact, so the set sV1YK2 is also compact. Next, choose V2 ĂM to be an open neighborhood
of sV1 YK2 whose closure is compact, so sV2 YK3 is compact. Continuing in this way, one obtains
a nested sequence

H “: V0 Ă V1 Ă sV1 Ă V2 Ă sV2 Ă V3 Ă sV3 Ă . . . Ă
8ď
j“1

Vj “M

such that each Vj is open and each sVj is compact. We will now construct a locally finite refinement
of tUαuαPI by using the “annular” regions

Aj :“ sVjzVj´1 ĂM, j “ 1, 2, 3, . . . ,

which are all compact, and their union is also M . For each j P N, pick a finite open covering
tOj

β ĂMuβPIj of Aj such that each of the open sets Oj
β is contained in Uα for some α P I and is

also contained in Vj`1zVj´2. The union of these finite collections for j “ 1, 2, 3, . . . forms an open
cover of M that refines tUαuαPI and is also locally finite. �

Exercise 15.14. Show that without loss of generality, one can assume that all of the open
sets in the locally finite refinement given by Theorem 15.13 are diffeomorphic to open balls in
Euclidean space.
Remark: This fact is frequently used in proofs that smooth manifolds admit partitions of unity,
see for example [Lee13a, §II.3]. It is not strictly necessary, however, and we will not use it. The
proof given below is conceived to be as close as possible in spirit to proofs of similar results on
more general topological spaces, which need not look locally like Euclidean space.

15.4. Existence of partitions of unity. Now that we know that locally finite refinements
can always be found, we need two further ingredients in order to construct partitions of unity. The
first is purely topological.

A topological space X is called normal if every pair of disjoint closed subsets A,B Ă X have
neighborhoods in X that are also disjoint from each other.

Exercise 15.15. Show that all metric spaces are normal.

Lemma 15.16 (the “shrinking lemma”). Given a locally finite open cover tUαuαPI of a normal
topological space X, there exists another open cover tVαuαPI such that sVα Ă Uα for every α P I.

Proof. We shall give a proof under the extra assumption that the set I is at most countable,
which is always true on manifolds due to Exercise 15.12. A proof without this assumption is
possible using Zorn’s lemma, see e.g. [nLa].

Since I is at most countable, we can relable the open cover as tUiuNi“1 where N P NYt8u. The
sets A1 :“ XzŤ8

i“2 U2 and XzU1 are closed and disjoint, so we can choose V1 Ă X to be any open
neighborhood of A1 that is also disjoint from some neighborhood of XzU1, implying sV1 Ă U1. Since
X “ V1YŤN

i“2 Ui, we can next take the latter as another open cover on X , and perform the same
trick on U2, producing an open set V2 Ă sV2 Ă U2 such that X “ V1 Y V2 YŤN

i“3 Ui. Now repeat
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this procedure for i “ 3, 4, . . . , N , producing a sequence of shrunken open sets V1,V2,V3, . . . Ă X

such that for each m P N,

(15.3) X “
mď
i“1

Vi Y
Nď

i“m`1

Ui.

If N ă 8 then we are done. If N “ 8, we now appeal to local finiteness and observe that for
every p P M , there exists a largest m P N for which p P Um, hence (15.3) implies p P Ťm

i“1 Vi and
thus X “ Ť8

i“1 Vi. �

Lemma 15.17 (the smooth Urysohn lemma). Given a smooth manifold M with subsets A Ă
U Ă M such that A is closed and U is open, there exists a smooth function f : M Ñ r0, 1s with
support in U such that f |A ” 1.

Proof, part 1. For this first of two steps in the proof, we add the assumption that A Ă M

is compact. Since the open sets U and MzA form a finite open cover of M , the compact case
of our existence result for partitions of unity (Lemma 11.1) provides a pair of smooth functions
ϕ, ψ : M Ñ r0, 1s that have compact support in U and MzA respectively such that ϕ ` ψ ” 1

on A. Since ψ|A ” 0, the function we were looking for is ϕ. �

Before finishing the proof of Lemma 15.17, it will be convenient to forge ahead and show how
these results imply the existence of partitions of unity.

Proof of Theorem 15.3, with a caveat. Starting from an arbitrary open cover tUαuαPI
of M , we can first replace tUαuαPI by a locally finite refinement tOβuβPJ . The latter has the
property that for every β P J , we can choose some αpβq P I satisfying

Oβ Ă Uαpβq.

Next apply the shrinking lemma to find another open cover tVβuβPJ such that sVβ Ă Oβ for each
β P J . By Lemma 15.17, we can choose for each β P J a smooth function fβ : M Ñ r0, 1s with
support in Oβ such that fβ |sVβ

” 1. Local finiteness implies that the sum
ř
βPJ fβ is a well-defined

smooth function on M , and since every point is contained in at least one of the sets Vβ , this sum
is everywhere positive. Now for each α P I, define ψα :M Ñ R by

ψα :“ ÿ
tβPJ | αpβq“αu

fβ .

Local finiteness implies that these are also smooth functions on M and satisfyÿ
αPI

ψα “
ÿ
βPJ

fβ ą 0,

and moreover, since each fβ in the sum for αpβq “ α has support in Oβ Ă Uα, ψα itself has support
in Uα (see Exercise 15.1). The desired functions ϕα can now be defined by

ϕα :“ ψαř
βPI ψβ

.

�

Since we did not yet finish the proof of Lemma 15.17, let’s pause now to consider what actually
has been proved. Lemma 15.17 was used in the above proof to choose the functions fβ with support
in Oβ that equal 1 on sVβ Ă Oβ . If we add to the hypotheses of Theorem 15.3 that each of the open
sets Uα ĂM has compact closure, then it guarantees that the sets sVβ are also compact, so that we
only need to use the case of Lemma 15.17 that has already been proved. In summary, Theorem 15.3
has now been established under the extra hypothesis that each set sUα Ă M is compact. We can
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use this observation to complete the proof of Lemma 15.17 and thus establish Theorem 15.3 in full
generality.

Proof of Lemma 15.17, part 2. Choose open coverings tUα Ă MuαPI of A and tOβ Ă
MuβPJ of MzA such that all of the sets Uα,Oβ have compact closure and

Uα Ă U for all α P I, Oβ ĂMzA for all β P J.
Then M “ Ť

αPI Uα Y
Ť
βPJ Oβ , and we can apply the case of Theorem 15.3 that has been proved

already to find a locally finite partition of unity subordinate to this cover: it consists of smooth
functions tϕαuαPI and tψβuβPJ such that supppϕαq Ă Uα and supppψβq Ă Oβ for all pα, βq P IˆJ ,
while

ř
αPI ϕα`

ř
βPJ ψβ ” 1. Since every Oβ is disjoint from A, it follows that f :“ ř

αPI ϕα ” 1

on A, and by Exercise 15.1, supppfq Ă U . �

The proof of Theorem 15.3 is now complete.

Remark 15.18. Wemade use of separability at one step in this lecture—namely in Lemma 15.11
on σ-compactness—because doing so was more convenient than the alternative, but it was not
strictly necessary. As mentioned in the proof of Lemma 15.11, the lemma also holds for arbitrary
connected and locally compact metric spaces, so if one works on only one connected component
at a time, one obtains a proof of paracompactness for “manifolds” that are assumed metrizable
but not necessarily separable. Some authors prefer in fact to define a manifold in a slightly more
general way than we have, requiring them to be Hausdorff and paracompact but not necessarily
separable or second countable—this shows you how highly the existence of partitions of unity is
valued by differential geometers. The only difference this makes in reality is that by the more
general definition, manifolds can have uncountably many connected components; in the connected
case there is no difference. In any case, I have never seen an example of a non-separable “manifold”
that I cared about, not even in infinite dimensions.

Remark 15.19. On a topological space X , there is generally no well-defined notion of smooth
functions, but one can still speak of partitions of unity in which the functions ϕα : X Ñ r0, 1s
are only required to be continuous. Such constructions are similarly useful in topology for proving
existence results, e.g. the fact that every finite-dimensional topological manifold admits a proper
topological embedding into RN for N sufficiently large (see [Lee11, Chapter 4]). To prove that
partitions of unity exist on a given space X , one obviously needs to know that X is paracompact,
and the other major ingredients are the shrinking lemma (Lemma 15.16) and the continuous variant
of Urysohn’s lemma (Lemma 15.17), both of which hold whenever X is normal. It turns out that
paracompact Hausdorff spaces are automatically normal, thus they admit continuous partitions of
unity—in fact for Hausdorff spaces in general, the existence of partitions of unity is equivalent to
paracompactness.

In nonlinear functional analysis, one sometimes also works with infinite-dimensional smooth
manifolds that are locally modelled on Banach spaces. These are not locally compact, so our proof
of paracompactness via σ-compactness does not adapt well to the infinite-dimensional setting, but
one can nonetheless appeal to the fact that metric spaces are always paracompact. The simplest
(or at least the shortest) proof of this is due to Mary Ellen Rudin [Rud69]. If one considers
arbitrary metric spaces, then the proof makes slightly mysterious use of the axiom of choice, in
the form of the well-ordering theorem: in particular, it uses the fact that for any open cover
tUαuαPI , the index set I can be endowed with a total order for which every subset has a smallest
element. This is less mysterious however in the case of separable metric spaces, because every
open cover in the separable case admits a finite subcover (exercise!), so one is free without loss of
generality to assume the index set is N. As a consequence, infinite-dimensional Banach manifolds
are also paracompact, so long as we still agree that anything carrying the name “manifold” should
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be metrizable and separable. That is the convention that I adopt when I use these objects in my
research, and it is not the only possible convention that people might consider reasonable, but it
is relatively uncontroversial.

The existence of smooth partitions of unity in the infinite-dimensional setting is nonetheless
a subtle question, because smooth compactly-supported “bump” functions do not always exist on
Banach spaces—the basic problem here is that on a Banach space E with norm } ¨ }, the function
E Ñ R : x ÞÑ }x}p is not generally differentiable at 0 P E for any power p ą 0, even for p “ 2. As
a result, the smooth Urysohn lemma is not true in this context, so smooth partitions of unity do
not exist, and many popular constructions from differential geometry are simply not available on
infinite-dimensional Banach manifolds. The exception is the case of Hilbert manifolds, which are
locally modelled on Hilbert spaces—the inner product on a Hilbert space H has the convenient
property that H Ñ R : x ÞÑ }x}2 :“ xx, xy is a smooth function, thus making smooth bump
functions and smooth partitions of unity possible.

Exercise 15.20. Given a smooth manifold M , use an open cover and subordinate partition
of unity on M to construct a Riemannian metric on the tangent bundle TM . Do not assume that
Theorem 15.3 holds for TM .
Remark: This exercise ties up a loose end from early in the course: in Corollary 3.12, we defined
a smooth structure on the tangent bundle TM of any smooth manifold M , but we never proved
that the topology on TM induced by its maximal smooth atlas is metrizable. The existence of a
Riemannian metric implies this, and if you follow the instructions in the exercise, its construction
does not need to assume that TM is metrizable—it assumes only that M is.

Exercise 15.21. Here is an example of something that satisfies all of the conditions for being
a connected smooth 2-manifold except metrizability. It is a variation due to Calabi and Rosenlicht
[CR53] on a construction known as the Prüfer surface, and can be visualized as a an uncountable
collection of planes that have been glued together along their open upper and lower halves, but
not along the x-axis, so that the result is a single plane in which the x-axis has been replaced by
uncountably many copies of itself. Here is a precise definition: denote the open upper and lower
half-planes by H˘ :“ tpx, yq P R2 | ˘ y ą 0u, and associate to each a P R a copy of the full plane
Xa :“ R2. As a set, the Prüfer surface is

Σ :“ H` YH´ \
˜ž
aPR

Xa

¸N
„

where the equivalence relation identifies each point px, yq P Xa for y ‰ 0 with the point pa`yx, yq P
H` YH´. Notice that H˘ and Xa for each a P R can be regarded naturally as subsets of Σ. Let
us denote points px, yq P Xa Ă Σ by

px, yqa P Σ,

so by definition, px, yqa “ px1, y1qb whenever y “ y1 ‰ 0 and xy ` a “ x1y1 ` b, but px, 0qa and
px1, 0qb are never equal when a ‰ b. Prove:

(a) Σ admits a unique smooth structure for which the natural inclusions H˘ ãÑ Σ and
Xa ãÑ Σ for each a P R are diffeomorphisms onto their images. Assume for the remaining
parts of this exercise that Σ is equipped with the topology uniquely determined by this
smooth structure (cf. Prop. 2.12).

(b) For any two points p, q P Σ, there exist neighborhoods p P U Ă Σ and q P V Ă Σ such
that U X V “ H. (In topological terminology, Σ is Hausdorff.)
Hint: The only case where it is not so obvious is when p and q are both of the form px, 0qa
and px1, 0qb. Try drawing pictures of the intersections of neighborhoods of those points
with H` YH´.
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(c) Σ is connected.
(d) Σ is separable.

Hint: Show that any dense subset of H` YH´ Ă Σ is also dense in Σ.
(e) Here’s where things get weird: the subset

 p0, 0qa P Σ
ˇ̌
a P R

( Ă Σ is discrete, i.e. each of
its points has a neighborhood that contains none of the others. In particular, all subsets
of this set are closed.

(f) Σ is not σ-compact (no pun intended).
Hint: According to part (e), it contains an uncountable discrete subset.

We can now deduce that Σ is not metrizable, as we would otherwise have a contradiction to the
proof of Lemma 15.11. Here is an even stranger indication: recall from Exercise 15.15 that all
metric spaces are normal.

(g) Suppose we have associated to each a P R a “wedge-shaped” region in H` of the form

Wa :“  pr cos θ, r sin θq P H`
ˇ̌
r P p0, rpaqq and θ P pπ{2´ ǫpaq, π{2` ǫpaqq(

for constants rpaq ą 0 and ǫpaq ą 0 that are allowed to vary arbitrarily with a P R. Show
that there exists some a8 P Q and a sequence aj P RzQ that converges to a8 such that
rpajq and ǫpajq are both bounded from below.
Big hint: R “ QYŤ

NPNAN where

AN :“  
a P RzQ ˇ̌

rpaq ě 1{N and ǫpaq ě 1{N(
.

According to the Baire category theorem, a nonempty complete metric space can never
be the countable union of subsets that are nowhere dense, meaning sets whose closures
have empty interior. Deduce from this that at least one of the sets AN contains an open
interval in its closure.

(h) Deduce that the disjoint subsets

Q :“  p0, 0qa P Σ
ˇ̌
a P Q

( Ă Σ and I :“  p0, 0qa P Σ
ˇ̌
a P RzQ( Ă Σ

are both closed but do not admit disjoint neighborhoods, i.e. Σ is not normal.
(i) Show that the open cover tXa Ă ΣuaPR of Σ has no locally finite refinement.

Hint: In any refinement of tXauaPR, points of the form p0, 0qa and p0, 0qb for a ‰ b must
always belong to different sets in the open cover. Show that for the point a8 P R in
part (g), every neighborhood of p0, 0qa8 intersects infinitely many such sets.

The original Prüfer surface is slightly different from the variation by Calabi and Rosenlicht de-
scribed above, and can be defined as

Σ1 :“ H` \
˜ž
aPR

Xa

¸N
„,

where the equivalence relation identifies points px, yq P Xa with pa ` yx, yq P H` only for y ą 0.
We can visualize Σ1 as an uncountable collection of planes that have been glued together along
their upper halves, leaving the lower halves separate.

(j) Show that Σ1 has all the same properties we proved above for Σ, except that Σ1 is not
separable.

16. Vector bundles

We have already seen several examples in this course of sets of the form

E “ ď
pPM

Ep,
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where M is a manifold and Ep is a vector space associated to each point p P M . The obvious
example is the tangent bundle TM , but we have also considered the cotangent bundle T ˚M , which
is the union of the dual spaces to the tangent spaces, and further examples arise in natural ways by
thinking of tensor fields S P ΓpT kℓ Mq as objects that associate to each point p PM an element Sp
of a certain vector space of multilinear maps. For all of these examples, one can regard the vector
spaces Ep as “varying smoothly” with respect to p, but this is an intuitive notion that we have not
yet made precise except in the special case of TM , on which we defined a smooth structure so that
the natural projection π : TM ÑM sending TpM to p is a smooth map.

We will now start defining such notions in greater generality.

16.1. Main Definition. We begin with a few more observations about the motivating ex-
ample of a vector bundle, namely the tangent bundle TM of a smooth n-manifold M . Recall that
each chart pU , xq on M determines a family of vector space isomorphisms

dpx : TpM Ñ Rn, p P U .

This information can be repackaged as a bijective map

Φx : TU Ñ U ˆ Rn

whose restriction to each of the individual vector spaces TpM Ă TU for p P U is X ÞÑ pp, dpxpXqq P
U ˆ Rn, and the smooth chart pTU , T xq for TM can be derived from this by writing

TxpXq “ pxppq, dpxpXqq “ pxˆ 1q ˝ ΦxpXq P Rn ˆ Rn for X P TpM , p P U .

Since x ˆ 1 : U ˆ Rn Ñ Rn ˆ Rn is clearly a smooth map, the way that we defined the smooth
structure on TM makes Φx not just a bijection, but also a diffeomorphism. Now, if pV , yq is another
chart with U X V ‰ H, there is a similar diffeomorphism

Φy : TV Ñ V ˆ Rn,

and both Φx and Φy restrict to diffeomorphisms T pU X Vq Ñ pU X Vq ˆ Rn, giving rise to a map

Φy ˝ Φ´1
x : pU X Vq ˆ Rn Ñ pU X Vq ˆ Rn

pp, vq ÞÑ pp, gppqvq,
where

gppq :“ dpy ˝ pdpxq´1 “ Dpy ˝ x´1qpxppqq P GLpn,Rq Ă Rnˆn.
The smooth compatibility of x and y implies that g : U XV Ñ GLpn,Rq is also a smooth function.
The existence of maps such as Φx and Φy is one way of making precise the notion that the tangent
spaces TpM vary smoothly with p PM . We take this as motivation for the definition below.

Notation. In everything that follows, we choose a field

F “ either R or C,

and assume unless otherwise noted that all vector spaces and linear maps are F-linear. In this way
the real and complex cases can be handled simultaneously.

Definition 16.1. Assume M is a smooth n-manifold, Ep is an m-dimensional vector space
over F associated to each point p PM , and define the set

E :“ ď
pPM

Ep,
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where Ep and Eq are regarded as disjoint sets for p ‰ q.51 For any subset U ĂM , denote

E|U :“ ď
pPU

Ep Ă E.

A local trivialization (lokale Trivialisierung) of E is a pair pUα,Φαq consisting of an open subset
Uα ĂM and a bijection

E|Uα

ΦαÝÑ Uα ˆ Fm

such that for each p P Uα, Φα restricts to Ep as a map of the form v ÞÑ pp, φpvq for some vector
space isomorphism φp : Ep Ñ Fm.

Any two local trivializations pUα,Φαq and pUβ ,Φβq determine transition functions (Über-
gangsfunktionen) gβα, gαβ : UαXUβ Ñ GLpm,Fq such that the map Φβ ˝Φ´1

α : pUαXUβqˆFm Ñ
pUα X Uβq ˆ Fm and its inverse take the form

Φβ ˝ Φ´1
α pp, vq “ pp, gβαppqvq,

Φα ˝ Φ´1
β pp, vq “ pp, gαβppqvq.(16.1)

We say that pUα,Φαq and pUβ ,Φβq are Ck-compatible for k P NYt0,8u (or smoothly compatible
in the case k “ 8) if the transition functions gβα and gαβ are of class Ck.

Exercise 16.2. Show that the two transition functions gαβ, gβα : Uα X Uβ Ñ GLpm,Fq in
Definition 16.1 are related to each other by gβαppq “ rgαβppqs´1 P GLpm,Fq for all p P Uα X Uβ,
and conclude that gαβ is of class Ck if and only if gβα is.

Remark 16.3. The notion of Ck-compatibility for transition functions is based on the premise
that we know what it means to say that a real or complex matrix-valued function on a smooth
manifold is of class Ck. This is fine because Rnˆn and Cnˆn can both be regarded as finite-
dimensional real vector spaces (every complex vector space is also a real vector space), and the
notion of smoothness for functions f : M Ñ V is well defined whenever M is a smooth manifold
and V is a real vector space. The notion of smoothness would be much less clear if we replaced
F with a different field such as Z2 or Q; there is no theory of differential calculus for functions on
open subsets of Rn with values only in Z2 or Q. That is one of a few reasons why we will never
consider such generalizations in this course.

Definition 16.4. Assume M is a manifold. A vector bundle of class Ck with rank
m over M (ein Vektorbündel von der Klasse Ck mit Rang m über M) is a collection of m-
dimensional vector spaces E “Ť

pPM Ep as in Definition 16.1, equipped with a maximal collection
of Ck-compatible local trivializations tpUα,ΦαquαPI such that M “ Ť

αPI Uα. The vector spaces
Ep for p PM are called the fibers (Fasern) of the vector bundle E, M is called the base (Basis)
of E, and the set E itself is called the total space (Totalraum). The surjective map

π : E ÑM

sending each fiber Ep Ă E to the point p P M is sometimes called the bundle projection. We
will denote the rank of E by

rankFpEq :“ m ě 0,

or simply rankpEq whenever the field F is clear from context.

51In set-theoretic terms, this means we are defining E as the disjoint union of all the sets Ep, so we could also
have written E “ špPM Ep. We prefer however to avoid the use of the symbol “

š
” here, because we will soon

define a topology on E, and it will not be the disjoint union topology.
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Exercise 16.5. By identifying Cm with R2m, show that every complex vector bundle E of
class Ck can also be regarded as a real vector vector bundle of class Ck with

rankRpEq “ 2 rankCpEq.
Remark 16.6. A vector bundle of rank m is also sometimes called an m-plane bundle or

an “m-dimensional” vector bundle, and in the case m “ 1, a line bundle (Geradenbündel). The
latter terminology is quite intuitive when F “ R, but one must keep in mind that in the complex
case, the fibers should be visualized as planes rather than lines.

Notation. We will often refer to the vector bundle in Definition 16.4 simply as E, but doing
so ignores quite a lot of important information, such as the base manifold M , fibers Ep, their
vector space structures and the local trivializations. It is common in the literature to abbreviate
all this data in terms of the projection map and thus refer to π : E Ñ M or pE, πq as a vector
bundle, sometimes also omitting the symbol π and writing

E ÑM.

This is an imperfect convention, but we will sometimes also follow it: the projection map has the
advantage that it determines the fibers

Ep “ π´1ppq,
even though it does not determine their vector space structures or the local trivializations.

Observe that if M is a manifold of class Cℓ for some finite ℓ, then vector bundles of class Ck

make sense for every k ď ℓ, but cannot be defined for k ą ℓ. As usual, we will mostly only consider
the case k “ ℓ “ 8, and then refer to E as a smooth vector bundle. We also call E a real
vector bundle if F “ R, and a complex vector bundle if F “ C.

Remark 16.7. The maximal collection of local trivializations tpUα,ΦαquαPI in Definition 16.4
plays a similar role to the maximal atlas on a smooth manifold; maximality serves as a bookkeeping
device to make sure in this setting that whenever tpUα,ΦαquαPI and tpVβ,ΨβquβPJ are two coverings
of E by smoothly compatible local trivializations such that every pUα,Φαq is smoothly compatible
with every pVβ ,Ψβq, both can be understood as defining the same smooth vector bundle. As
with manifolds, one never actually needs to specify a maximal collection of local trivializations,
as a maximal collection is uniquely determined by any collection tpUα,Φαqu for which the sets Uα
coverM . When E is a smooth vector bundle, a local trivialization will be called smooth whenever
it belongs to the associated maximal collection.

Remark 16.8. Vector bundles of class C0, also known as topological vector bundles, can be
defined without assuming the base M is a manifold—the definition makes sense with an arbitrary
topological space in place ofM , and one can show that E then admits a natural topology such that
the bundle projection π : E ÑM is continuous and the local trivializations are homeomorphisms.
(The definition that appears in topology books usually assumes that E is given with a topology
such that π : E Ñ M is continuous and the fibers Ep “ π´1ppq are vector spaces; one then calls
π : E Ñ M a vector bundle if and only if every p P M admits a neighborhood U for which
there exists a homeomorphism Φ : π´1pUq Ñ U ˆ Fm that is a local trivialization.) For many
applications, it is also advisable to assume that M is a paracompact Hausdorff space, so that
partitions of unity can be used for various constructions, e.g. one can endow the fibers Ep with
inner products that depend continuously on p, analogous to a Riemannian metric.

Remark 16.9. The notion of Ck-compatibility between two local trivializations pUα,Φαq and
pUβ ,Φβq could have been defined without mentioning the transition functions gβα, gαβ : UαXUβ Ñ
GLpm,Fq, as it would be equivalent to require that the maps Φβ ˝Φ´1

α and Φα ˝Φ´1
β are of class Ck
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on pUα X Uβq ˆ Fm. In more general contexts, in particular when we talk next semester about
fiber bundles whose fibers are smooth manifolds rather than vector spaces, it will be necessary to
reformulate the notion of smooth compatibility without the transition functions gαβ and gβα, as
these naturally take values in the diffeomorphism group DiffpF q of some manifold F , and defining
“smoothness” for maps with values in DiffpF q is something of a technical minefield. We do not
have this problem with vector bundles, due to the fact that GLpm,Fq is naturally a smooth finite-
dimensional manifold, and (16.1) shows moreover that the transition functions encode all of the
essential information in this setting. It will be especially useful to focus on them when we start
talking about vector bundles with extra geometric structure such as bundle metrics or volume
forms. In reality, this is also true for most fiber bundles that are of interest, because instead of
considering gαβ and gβα with values in DiffpF q, one can often take them to have values in some
finite-dimensional smooth Lie group G that acts smoothly on the manifold F . We will see many
examples of this next semester.

Here is a generalization of the fact that tangent bundles are smooth manifolds.

Proposition 16.10. For any smooth vector bundle π : E Ñ M over a smooth manifold M ,
the total space E naturally has the structure of a smooth manifold of dimension

dimE “
#
dimM ` rankpEq if F “ R,

dimM ` 2 rankpEq if F “ C,

such that the projection map π and the inclusions Ep ãÑ E for p PM and

i :M ãÑ E : p ÞÑ 0 P Ep
are all smooth maps.

Proof. The proof is analogous to that of Corollary 3.12, which was the case E “ TM . The
key point is thatM can be covered by open sets Uα ĂM which are domains of charts xα : Uα Ñ Rn

and also appear in local trivializations Φα : E|Uα
Ñ Uα ˆ Fm. The map

(16.2) φα :“ pxα ˆ 1q ˝Φα : E|Uα
Ñ Rn ˆ Fm

is then an pn ` mq-dimensional chart for E on the domain E|Uα
Ă E if F “ R, or if F “ C,

an pn ` 2mq-dimensional chart after identifying Cm with R2m. The smooth compatibility of the
charts pUα, xαq and local trivializations pUα,Φαq implies (exercise!) that all charts of this form on
E are likewise smoothly compatible. The topology defined on E via these charts is metrizable and
separable for the same reasons as in the case E “ TM ; in particular, one can use a partition of
unity on M to construct a Riemannian metric on the total space E as in Exercise 15.20, proving
that E is metrizable. �

Definition 16.11. A section (Schnitt) of a vector bundle π : E Ñ M is a map s : M Ñ E

such that π ˝ s “ IdM . In other words, s assigns to each point p PM a vector in the corresponding
fiber sppq P Ep. We say s is a section of class Ck if it is a Ck-map M Ñ E with respect to
the smooth structure on E defined in Proposition 16.10. The vector space of smooth sections is
denoted by

ΓpEq :“  
s P C8pM,Eq ˇ̌ π ˝ s “ IdM

(
,

with addition and scalar multiplication in ΓpEq defined pointwise, e.g. s` t P ΓpEq is defined for
s, t P ΓpEq by ps` tqppq “ sppq ` tppq P Ep.

You might find it unsurprising but not completely obvious that s ` t is always a smooth
section whenever s and t are. To make this obvious, we need to reformulate slightly the meaning
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of smoothness for a section s : M Ñ E. We observe first that for any local trivialization Φα :

E|Uα
Ñ Uα ˆ Fm, every section s :M Ñ E uniquely determines a vector-valued function

sα : Uα Ñ Fm

such that
Φαpsppqq “ pp, sαppqq for all p P Uα.

We will call this the local representation of s with respect to the trivialization pUα,Φαq. After
shrinking Uα if necessary to a smaller neighborhood of any given point in Uα, we are free to assume
that it is also the domain of a chart xα : Uα Ñ Rn, in which case (16.2) defines a corresponding
chart φα : E|Uα

Ñ Rn ˆ Fm for E with the convenient property that its domain contains sppq for
every p P Uα. Using the charts xα on M and φα on E, we obtain a local coordiate representation
for the map s :M Ñ E, in the form

φα ˝ s ˝ x´1
α : xpUαq Ñ xpUαq ˆ Fm : q ÞÑ pq, sα ˝ x´1

α pqqq.
By definition, s : M Ñ E is a smooth map if and only if this local coordinate representation is
smooth for every choice of smooth chart pUα, xαq on M and smooth local trivialization pUα,Φαq
of E. The latter is clearly true if and only if sα is a smooth function, so we’ve proved:

Proposition 16.12. A section s : M Ñ E is smooth if and only if its local coordinate rep-
resentations sα : Uα Ñ Fm with respect to arbitrary smooth local trivializations pUα,Φαq are all
smooth. �

Since C8pUα,Fmq is a vector space for every open set Uα, Proposition 16.12 implies that ΓpEq
is also a vector space.

Exercise 16.13. Show that if pUα,Φαq and pUβ ,Φβq are two local trivializations of E and
s :M Ñ E is a section, then the local representations sα : Uα Ñ Fm and sβ : Uβ Ñ Fm are related
to each other on Uα X Uβ in terms of the transition function gβα : Uα X Uβ Ñ GLpm,Fq by

sβppq “ gβαppqsαppq for p P Uα X Uβ .

Remark: Since the transition functions on a smooth vector bundle are all smooth, this exercise
implies that the condition in Proposition 16.12 does not need to be checked for all possible smooth
local trivializations—it suffices to check it for a family of trivializations that cover M .

Definition 16.14. Assume E Ñ M and F Ñ M are two smooth vector bundles over the
same manifoldM . A smooth map Ψ : E Ñ F is called a smooth linear bundle map if for every
p PM , the restriction Ψ|Ep

is a linear map

Ψp : Ep Ñ Fp.

We call Ψ fiberwise injective / surjective if Ψp is injective / surjective for every p PM , and Ψ

is a bundle isomorphism if Ψp is a vector space isomorphism for every p P M . The bundles E
and F are called isomorphic if and only if there exists a bundle isomorphism E Ñ F .

Remark 16.15. Definition 16.14 presumes that E and F are both bundles over the same field F.
If one is a real vector bundle and the other is complex, then one can always regard the complex
bundle as a real bundle with twice the rank (see Exercise 16.5) and thus interpret Ψ : E Ñ F as a
smooth real -linear bundle map.

Exercise 16.16. Suppose E,F Ñ M are smooth vector bundles and Ψ : E Ñ F is a map
whose restriction to Ep for each p is a linear map Ψp : Ep Ñ Fp.
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(a) Show that for every pair of smooth local trivializations Φα : E|Uα
Ñ Uα ˆ Fm and

Ψβ : E|Uβ
Ñ Uβ ˆ Fk, there exists a unique function

Ψβα : Uα X Uβ Ñ Fkˆm

such that

Φβ ˝Ψ ˝ Φ´1
α : pUα X Uβq ˆ Fm Ñ pUα X Uβq ˆ Fk : pp, vq ÞÑ pp,Ψβαppqvq.

(b) Show that Ψ is a smooth linear bundle map if and only if for all choices of the two smooth
local trivializations in part (a), the function Ψβα is smooth.

Definition 16.17. Given a smooth vector bundle E Ñ M , a smooth subbundle (Unter-
bündel) of E is a vector bundle F Ñ M such that for each p P M , Fp is a linear subspace of Ep,
and the inclusion F ãÑ E is a smooth linear bundle map.

16.2. Some basic examples. We now relate the definitions above to various examples that
have already appeared in this course. For several of them, there is still some work to be done in
showing that they naturally admit coverings by families of smoothly compatible local trivializations,
and this work will be postponed until the next lecture.

Example 16.18 (tangent bundle). IfM is an n-manifold, its tangent bundle TM is a smooth
real vector bundle of rank n, where each smooth chart pU , xq determines a local trivialization
Φ : TM |U “ TU Ñ U ˆ Rn by ΦpXq “ pp, dpxpXqq for X P TpM . A smooth section of TM is
nothing other than a smooth vector field on M ,

ΓpTMq “ XpMq.
Example 16.19 (cotangent bundle). The cotangent bundle T ˚M of a smooth n-manifold

M has fibers Tp̊M “ HompTpM,Rq for p P M . We will construct smoothly compatible local
trivializations for T ˚M in the next lecture—it is a special case of the fact that every smooth
vector bundle has a dual bundle which is also a smooth vector bundle in a natural way. The
smooth sections of T ˚M will then be the smooth 1-forms on M ,

ΓpT ˚Mq “ Ω1pMq.
Example 16.20 (tensor and exterior bundles). For each k, ℓ ě 0, there is a natural smooth

real vector bundle T kℓ M Ñ M of rank nk`ℓ whose fiber at a point p is the vector space pTpMqkℓ
of pk ` ℓq-fold multilinear maps Tp̊M ˆ . . . ˆ Tp̊M ˆ TpM ˆ . . . ˆ TpM Ñ R. The smooth local
trivializations on T kℓ M will also arise from more general constructions to be discussed in the next
lecture. Consistently with our previous notation, the space of smooth sections ΓpT kℓ Mq will then
be precisely the space of smooth tensor fields of type pk, ℓq.

For each k ě 0, there is an important subbundle

ΛkT ˚M Ă T 0
kM

of rank
`
n
k

˘
whose fiber over p P M is the vector space of alternating k-forms ΛkTp̊M Ă pTpMq0k.

The sections of ΛkT ˚M will of course be the smooth differential k-forms,

ΓpΛkT ˚Mq “ ΩkpMq.
Note that by definition,

T 0
1M “ T ˚M “ Λ1T ˚M,

and since pTpMq00 is defined simply as R for every p, T 0
0M “ Λ0T ˚M is simply the trivial line

bundle M ˆ R (cf. Example 16.21 below).
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Example 16.21 (trivial bundle). For any manifold M , the trivial m-plane bundle over
M is the product E “M ˆ Fm, with fibers

Ep :“ tpu ˆ Fm,

understood in the obvious way as m-dimensional vector spaces. This is a smooth vector bundle
because pM, Idq is a local trivialization that covers the entirety of M , so the associated maximal
collection of local trivializations consists of all that are smoothly compatible with this one. Smooth
sections s : M Ñ M ˆ Fm are smooth maps of the form p ÞÑ pp, fppqq and are thus equivalent to
smooth functions f :M Ñ Fm.

Definition 16.22. A vector bundle π : E Ñ M of rank m is (globally) trivial52 if it admits
a bundle isomorphism to the trivial m-plane bundle over M .

A local trivialization Φ : E|U Ñ U ˆ Fm of a vector bundle E can be understood as a bundle
isomorphism between the restrictionE|U Ñ U and the trivialm-plane bundle over U . By definition,
every vector bundle is therefore locally trivial, meaning that its restriction to any sufficiently small
open subset must be trivial. The next example shows that globally, this need not be true.

Example 16.23 (a nontrivial real line bundle). Identify S1 with the unit circle in C, and
define ℓ Ă S1 ˆR2 as the union of the sets teiθu ˆ ℓeiθ Ă S1 ˆR2 for all θ P R, where ℓeiθ Ă R2 is
the 1-dimensional subspace

ℓeiθ “ R

ˆ
cospθ{2q
sinpθ{2q

˙
Ă R2.

Exercise 16.24 below shows that ℓ can be regarded as a smooth line bundle over S1 with fibers ℓeiθ
for eiθ P S1. Observe that if we consider the subset

tpeiθ, vq P ℓ | θ P R, |v| ď 1u
consisting only of vectors of length at most 1, we obtain a Möbius strip. Local trivializations of
ℓÑ S1 can be constructed as follows: for any θ0 P R, set p :“ eiθ0 P S1, and define

(16.3) Φ : ℓ|S1ztpu Ñ pS1ztpuq ˆ R :

ˆ
eiθ, c

ˆ
cospθ{2q
sinpθ{2q

˙˙
ÞÑ peiθ, cq,

with θ assumed to vary in the interval pθ0, θ0 ` 2πq.
Exercise 16.24. For the line bundle ℓÑ S1 in Example 16.23, prove:
(a) Any two local trivializations defined as in (16.3) with different choices of θ0 P R are

smoothly compatible.
(b) ℓ is a smooth subbundle of the trivial bundle S1 ˆ R2.
(c) There exists no continuous section of ℓ that is nowhere zero.
(d) ℓ is not globally trivial.

17. Constructions of vector bundles

17.1. Local frames and components. Local trivializations of a vector bundle are generally
not very easy to visualize, which makes them tricky in practice to construct. We now introduce

52If we were being more pedantic, we would say globally trivializable in Definition 16.22 instead of “trivial”,
and reserve the latter for any vector bundle that is literally presented as a product MˆFm with the identity map as
a smooth trivialization, rather than just being isomorphic to one. But the looser use of the word “trivial” to mean
“isomorphic to a trivial bundle” is widespread, so you should get used to it.
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a notion that is equivalent, but arguably easier to work with. Recall that if E Ñ M is a smooth
vector bundle and U ĂM is a subset, we denote the union of all the fibers over points in U by

E|U :“ ď
pPU

Ep,

and call this the restriction of E to U . It should be clear that if U ĂM is an open subset, then
E|U is a smooth vector bundle over U in a natural way. (We will generalize this below to the case
where U Ă M is an arbitrary submanifold.) The space ΓpE|Uq of smooth sections of E|U thus
consists of all smooth maps U Ñ E that send each point p P U to an element of the corresponding
fiber Ep. It often happens with bundles that a section s P ΓpEq with certain desirable properties
cannot be assumed to exist globally, but does exist locally, meaning that for any sufficiently small
open subset U Ă M , a section of E|U with those properties can be found. We sometimes refer to
sections of the restricted bundle E|U as local sections of E over the subset U ĂM .

Definition 17.1. For a vector bundle E Ñ M and open set U Ă M , a frame for E over U
is a tuple of local sections e1, . . . , em : U Ñ E of E over U such that for every p P U , the vectors
e1ppq, . . . , emppq form a basis of Ep. We call e1, . . . , em a smooth frame if the sections are smooth.

Having a basis e1ppq, . . . , emppq for each fiber Ep means that in the region where the frame is
defined, we can talk about components: every v P Ep for p P U is of the form

(17.1) v “ vjej

for unique real or complex numbers v1, . . . , vm P F. Note that the Einstein summation convention
is in effect in (17.1), and we will continue using it in similar expressions wherever possible: since
the possible values of j on the right hand side are 1, . . . ,m, it means in this case that there is an
implied summation

řm
j“1 but the summation symbol has been omitted. Any section s :M Ñ E is

now uniquely expressible over U in terms of component functions s1, . . . , sm : U Ñ F, namely as

sppq “ sjppqejppq.
The proof of the following statement is more-or-less immediate:

Proposition 17.2. Over any open set U Ă M , there is a natural bijective correspondence
between frames e1, . . . , em : U Ñ E and local trivializations Φ : E|U Ñ U ˆ Fm, such that Φ is
defined in terms of e1, . . . , em by

Φpvieippqq “ pp, pv1, . . . , vmqq.
Conversely, Φ determines e1, . . . , em by

eippq “ Φ´1pp, eiq,
where e1, . . . , em denotes the standard basis of Fm. �

Example 17.3. On the tangent bundle TM Ñ M , the local trivialization determined by
a chart pU , xq on M corresponds to the frame over U defined via the coordinate vector fields
B
Bx1 , . . . ,

B
Bxn P ΓpTM |Uq.

Recall from the previous lecture that every local trivialization Φα : E|Uα
Ñ UαˆFm associates

to each section s :M Ñ E a function sα : Uα Ñ Fm such that Φαpsppqq “ pp, sαppqq. If eα1 , . . . , eαm
denotes the local frame corresponding to Φα, then we can also write sppq “ sippqeαi ppq for unique
component functions si : Uα Ñ F, and the correspondence in Proposition 17.2 gives

Φαpsppqq “ Φαpsippqeαi ppqq “ pp, ps1ppq, . . . , smppqqq “ pp, sαppqq.
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This shows that the vector-valued local representation sα : Uα Ñ Fm is made up of the component
functions s1, . . . , sm with respect to the frame:

sαppq “ ps1ppq, . . . , smppqq P Fm.

If E is a smooth vector bundle, we conclude from this and Proposition 16.12 that a section s :M Ñ
E is smooth if and only if for every smooth local trivialization pU ,Φq, the component functions
s1, . . . , sm : U Ñ F with respect to the corresponding local frame are smooth.

Now let’s think about smooth compatibility: suppose pUα,Φαq and pUβ ,Φβq are two local
trivializations related by the transition functions gβα, gαβ : Uα X Uβ Ñ GLpm,Fq, and denote the
corresponding local frames by eα1 , . . . , eαm : Uα Ñ E and eβ1 , . . . , e

β
m : Uβ Ñ E. On UαXUβ , each of

the sections eαi has uniquely-defined components with respect to the other frame eβ1 , . . . , e
β
m, giving

functions h j
i : Uα X Uβ Ñ F such that

eαi “ h
j
i e

β
j on Uα X Uβ .

For p P UαXUβ, let us denote by hppq P Fmˆm the matrix whose ith row and jth column is h j
i ppq.

For any v “ pv1, . . . , vmq P Fm, the correspondence in Proposition 17.2 then gives

Φβ ˝ Φ´1
α pp,vq “ Φβpvieαi ppqq “ Φβpvih j

i ppqeβj ppqq “ Φβpvjh i
j ppqeβi ppqq “ pp,hppqTvq,

implying that the transition function gβα : Uα X Uβ Ñ GLpm,Fq is given by

gβαppq “ hppqT .
In particular, the matrix-valued function gβα is exactly as smooth as the least smooth among
the scalar-valued functions h j

i , which are simply the components of the sections eα1 , . . . , e
α
m with

respect to the other frame. We’ve proved:

Proposition 17.4. Two local frames correspond to smoothly compatible local trivializations if
and only if the component functions for the sections in each frame with respect to the other frame
are all smooth. �

Corollary 17.5. On a smooth vector bundle E ÑM , a local trivialization Φ : E|U Ñ UˆFm

is smooth if and only if the sections forming the corresponding local frame e1, . . . , em : U Ñ E are
smooth.

Proof. If Φ is a smooth local trivialization, then the local representations of the sections
e1, . . . , em with respect to Φ are constant, and thus smooth, implying via Proposition 16.12 that
the sections are smooth. Conversely, smoothness of the sections e1, . . . , em means that their com-
ponents with respect to the frame corresponding to any smooth local trivialization are all smooth,
which implies via Proposition 17.4 that Φ is smoothly compatible with any smooth local trivial-
ization, and is therefore also smooth. �

17.2. Pullbacks and restrictions. Suppose f : M Ñ N is a smooth map and E Ñ N is a
smooth vector bundle. The pullback of E Ñ N via f , also known as the induced bundle, is a
smooth vector bundle

f˚E ÑM

whose fiber over the point p PM is
pf˚Eqp :“ Efppq.

To see that this is naturally a smooth vector bundle, suppose tUαuαPI is an open covering of N
with smoothly compatible local trivializations Φα : E|Uα

Ñ Uα ˆ Fm, and write

Φαpvq “ pp,Φα,pvq for p P Uα, v P Ep,



144 FIRST SEMESTER (DIFFERENTIALGEOMETRIE I)

defining vector space isomorphisms Φα,p : Ep Ñ Fm. The sets tf´1pUαq Ă MuαPI then form an
open covering of M , and for each α P I, we can define a local trivialization f˚Φα of f˚E by

f˚Φα : pf˚Eq|f´1pUαq Ñ f´1pUαq ˆ Fm,

v ÞÑ pp,Φα,fppqvq for p P Uα, v P pf˚Eqp “ Efppq.
The transition function gβα : Uα X Uβ Ñ GLpm,Fq relating Φα and Φβ takes the form gβαppq “
Φβ,pΦ

´1
α,p for p P Uα X Uβ , thus the map pf˚Φβq ˝ pf˚Φαq´1 from pf´1pUαq X f´1pUβqq ˆ Fm to

itself is given by

pf˚Φβq ˝ pf˚Φαq´1pp, vq “ pp,Φβ,fppqΦ´1
α,fppqq “ pp, gβαpfppqqq, p P f´1pUαq X f´1pUβq,

and the resulting transition function f´1pUαq X f´1pUβq Ñ GLpm,Fq is therefore gβα ˝ f . This is
smooth, so f˚E is a smooth bundle.

Remark 17.6. The above argument shows more generally that if E Ñ N is a vector bundle
of class Ck and f :M Ñ N a map of class Cℓ, then f˚E ÑM is a bundle of class Cmintk,ℓu.

Exercise 17.7. In the situation above, show that the canonical map f˚E Ñ E that sends
pf˚Eqp to Efppq as the identity map for each p PM is smooth.

The map f˚E Ñ E is a “fiberwise isomorphism” in the sense that it maps each fiber of f˚E
isomorphically to a fiber of E, but it is not a bundle map in the sense defined in the previous lecture
since f˚E and E are bundles over different manifolds. It is instead an example of the following
more general notion:

Definition 17.8. Assume E ÑM and F Ñ N are two smooth vector bundles and ψ :M Ñ N

is a smooth map. A smooth map Ψ : E Ñ F that sends each fiber Ep linearly to the fiber Fψppq is
called smooth linear bundle map covering ψ.

Our previous notion of smooth linear bundle maps was the special case of Definition 17.8 in
which M “ N and ψ : M Ñ N is the identity map. For a bundle E Ñ N and map f : M Ñ N ,
we can now understand the canonical map f˚E Ñ E as a smooth linear bundle map covering f .

Remark 17.9. Actually, a smooth linear bundle map Φ : E Ñ F covering a map ψ : M Ñ N

is more-or-less equivalent to a smooth linear bundle map from E to ψ˚F ; the former is just the
latter composed with the canonical map ψ˚F Ñ F .

Example 17.10. For a smooth map f : M Ñ N , the fiber of the pullback bundle f˚TN
over a point p P M is the tangent space TfppqN , and a section X P Γpf˚TNq therefore associates
to each p P M a tangent vector Xppq P TfppqN . Sections of this type are called vector fields
along f ; they generalize the usual notion of a vector field on M , which is the special case where
M “ N and f is the identity map. These objects arise naturally in the following context: suppose
tft :M Ñ NutPp´ǫ,ǫq is a smooth 1-parameter family of maps with f :“ f0, where “smooth family”
in this situation means that the map p´ǫ, ǫq ˆM Ñ N : pt, pq ÞÑ ftppq is smooth. Then

Xppq :“ Btftppq|t“0 P TfppqN
defines a vector field along f . Informally, if one thinks of C8pM,Nq as an infinite-dimensional man-
ifold, this means that its tangent space at f P C8pM,Nq is Γpf˚TMq. (With minor modifications,
this statement can be made precise in the language of smooth Banach manifolds.)

Example 17.11. If N Ă M is a smooth submanifold and i : N ãÑ M denotes the inclusion
map, then any smooth vector bundle E ÑM admits a restriction to N ,

E|N “ i˚E Ñ N,

which is also a smooth vector bundle. (Its transition functions are just the restrictions of the
transition functions of E to the submanifold.)
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17.3. Subbundles, quotients, and normal bundles. The following result puts subbun-
dles on a similar footing with submanifolds by constructing the analogue of slice charts for local
trivializations:

Proposition 17.12. Suppose E ÑM is a smooth vector bundle of rank m, F Ă E is a subset,
and denote for a point p PM or subset U ĂM

Fp :“ Ep X F, F |U :“ E|U X F.

The following statements are equivalent:

(1) F is a smooth subbundle of rank k in the sense of Definition 16.17, i.e. it admits the
structure of a smooth vector bundle of rank k such that the inclusion F ãÑ E is a smooth
linear bundle map.

(2) For every p PM , there exists a neighborhood U ĂM of p and a smooth local trivialization
Φ : E|U Ñ U ˆ Fm of E such that

ΦpF |Uq “ U ˆ pFk ˆ t0uq Ă U ˆ Fm.

Proof. Suppose first that F is a smooth subbundle of rank k in the sense of Definition 16.17.
Given p P M , choose a smooth local trivialization F |U Ñ U ˆ Fk of F with p P U and let
e1, . . . , ek P ΓpF |Uq denote the corresponding smooth local frame. Since the inclusion F ãÑ E is a
smooth linear bundle map, the e1, . . . , ek can equally well be regarded as smooth sections of E|U ,
and they are linearly independent at every point. After shrinking U if necessary, we can then use a
local trivialization of E over U to find additional smooth sections ek`1, . . . , em P ΓpE|Uq for which
e1, . . . , em remain linearly independent and therefore form a basis of the fiber of E at every point
in U ; the idea here is that in a local trivialization of E over U , each of the sections e1, . . . , ek is
identified with a smooth function U Ñ Fm that can be assumed nearly constant after shrinking U ,
so that it is easy to find m ´ k constant functions that complete the basis at every point. With
this understood, we now have a smooth local frame e1, . . . , em P ΓpE|Uq such that the sections
e1, . . . , ek span the fiber of F over every point in U . The corresponding local trivialization then
has the desired property.

Conversely, if local trivializations of E with this property always exist, then it is clear that the
sets Fp Ă Ep are linear subspaces and the trivializations of E determine smoothly compatible local
trivializations of F by restriction. It is easy to check that the inclusion F ãÑ E is then a smooth
map. (This step is analogous to the way that slice charts for a smooth submanifold N Ă M are
used to define a smooth structure on N so that the inclusion N ãÑM is smooth.) �

Remark 17.13. It will be useful in the following to allow a mild generalization of our previous
notion of a local trivialization Φα : E|Uα

Ñ Uα ˆ Fm. Specifically, nothing important changes if
we replace the “standard” vector space Fm with any other m-dimensional vector space V and thus
consider bijections of the form

Φα : E|Uα
Ñ Uα ˆ V

that map each fiber Ep isomorphically to tpuˆV . The transition functions relating two trivializa-
tions of this form take values in the group GLpV q of invertible F-linear maps V Ñ V , which is an
open subset of the (real or complex) vector space EndpV q. To reduce this to our previous notion,
one only has to choose an isomorphism Ψ : V Ñ Fm and use it consistently, so that transition
functions gβα : Uα X Uβ Ñ GLpV q become

rgβα : Uα X Uβ Ñ GLpm,Fq : p ÞÑ ΨgβαppqΨ´1;

clearly gβα is smooth if and only if rgβα is smooth.
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Given a smooth vector bundle E Ñ M of rank m and smooth subbundle F Ă E of rank k,
the quotient bundle

E{F ÑM

is a smooth vector bundle of rank m ´ k whose fiber over a point p P M is the quotient vector
space

pE{F qp :“ Ep{Fp.
One defines suitable local trivializations on E{F as follows: according to Proposition 17.12, we
can find an open cover tUαuαPI of M and local trivializations Φα : E|Uα

Ñ Uα ˆ Fm such that
ΦαpF |Uα

q “ Uα ˆ Fk, where Fk is identified with the linear subspace

Fk :“ Fk ˆ t0u Ă Fm.

Writing Φαpvq “ pp,Φα,pvq for p P Uα and v P Ep, it follows that the vector space isomorphism
Φα,p : Ep Ñ Fm identifies the subspaces Fp Ă Ep and Fk Ă Fm, thus it descends to an isomorphism
of the quotient spaces,

Φα,p : Ep{Fp Ñ Fm{Fk : rvs ÞÑ rΦα,pvs.
A local trivialization

pE{F q|Uα
Ñ Uα ˆ pFm{Fkq

in the generalized sense of Remark 17.13 can thus be defined by sending rvs P Ep{Fp for p P Uα to
pp, rΦα,pvsq. Covering E{F with local trivializations defined in this way, the resulting transition
functions are derived from the transition functions gβα : Uα X Uβ Ñ GLpm,Fq of E by observing
that since we chose the Φα to respect the subbundle F Ă E as in Proposition 17.12, the linear
map gβαppq : Fm Ñ Fm preserves the subspace Fk Ă Fm for each p P Uα X Uβ and thus descends
to an isomorphism on the quotient Fm{Fk, determining a smooth function

Uα X Uβ Ñ GLpFm{Fkq.
This is the transition function for the local trivializations we defined above on E{F from Φα
and Φβ.

Exercise 17.14. Show that for a smooth subbundle F Ă E of E ÑM , the natural surjective
map E Ñ E{F that restricts to the fiber over each point p P M as the quotient projection
Ep Ñ Ep{Fp is a smooth linear bundle map.

Example 17.15. SupposeN ĂM is a smooth k-dimensional submanifold in anm-manifoldM .
Any slice chart for N determines a local trivialization of TM that also has the property in Propo-
sition 17.12 for the subset TN Ă TM |N , thus producing a smooth subbundle

TN Ă TM |N .
The quotient

νN :“ pTM |NqLTN Ñ N

is called the normal bundle of the submanifold N ĂM .

One can gain a better intuitive picture of the normal bundle of a submanifold N Ă M by
choosing a Riemannian metric g on M and looking at the orthogonal complements

pTpNqK :“  
X P TpM

ˇ̌
gpX, ¨q|TpN “ 0

(
at points p P N .

Exercise 17.16. Given a smooth submanifold N in a Riemannian manifold pM, gq, prove:
(a) TNK :“Ť

pPN pTpNqK is a smooth subbundle of TM |N .
Hint: Construct smooth local frames X1, . . . , Xn for TM |N such that X1, . . . , Xk are
tangent to N and Xk`1, . . . , Xn lie in pTNqK.
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(b) The composition of the inclusion TNK ãÑ TM |N with the fiberwise quotient projection
TM |N Ñ TM |N{TN from Exercise 17.14 defines a bundle isomorphism TNK Ñ νN .

The “normal vector fields” along hypersurfaces N ĂM we considered in Lectures 11 and 12 can
now be understood as smooth sections of the bundle pTNqK, which according to Exercise 17.16, is
equivalent to the normal bundle of N .

17.4. Algebraic operations. Several natural operations that produce new vector spaces
from old ones can now be generalized to the setting of vector bundles. In the following list, the
smoothness of the bundles we construct can be verified easily by constructing local frames; we will
leave the details as exercises.

17.4.1. Direct sums. The direct sum of two vector spaces V and W is the same thing as their
Cartesian product,

V ‘W :“ V ˆW,

in which V andW can be identified naturally with the subspaces V ˆt0u and t0uˆW respectively.
When extending this notion to vector bundles, it becomes especially useful to distinguish between
the symbols “‘” and “ˆ”: in particular, the direct sum of two smooth vector bundles E,F Ñ M

of ranks m and k respectively is a bundle E ‘ F ÑM of rank m` k with fibers

pE ‘ F qp :“ Ep ‘ Fp “ Ep ˆ Fp.

Notice that at the level of sets, the total space E ‘ F “ Ť
pPM pEp ˆ Fpq is not at all the same

thing as the product E ˆ F . Any local trivializations of E and F over the same region can be
combined in a natural way to produce a local trivialization of E ‘ F over that region, and if one
covers E ‘ F with local trivializations constructed in this way with respect to an open covering
tUαuαPI , one finds that the resulting transition functions gβα : Uα X Uβ Ñ GLpm` k,Fq take the
form of block matrices,

gβαppq “
ˆ
gEβαppq 0

0 gFβαppq
˙
,

where gEβαppq P GLpm,Fq and gFβαppq P GLpk,Fq are the transition functions for E and F respec-
tively. Clearly gβα is smooth if gEβα and gFβα are.

Remark 17.17. One can define a “product” bundle E ˆ F whose total space is the Cartesian
product of E and F , but it is naturally a bundle overM ˆM rather than M . More generally, two
bundles E ÑM and F Ñ N over potentially different manifolds have a product which is a bundle
over M ˆN

17.4.2. The dual bundle. Any smooth vector bundle E ÑM has a dual bundle

E˚ ÑM

whose fiber over a point p P M is the dual space Ep̊ “ HompEp,Fq. Any local frame e1, . . . , em
for E over an open subset U Ă M then determines a dual frame e1˚, . . . , em˚ for E˚ via the usual
notion of a dual basis, i.e. for each p P U ,

ei˚ppq pejppqq “ δij.

It is a straightforward algebraic exercise to verify that whenever two frames for E on overlapping re-
gions are smoothly compatible in the sense of Proposition 17.4, their dual frames are also smoothly
compatible, so in this way one can cover E˚ with smoothly compatible local trivializations, making
it a smooth vector bundle. This establishes in particular that for any smooth n-manifold M , the
cotangent bundle

T ˚M ÑM

is a smooth real vector bundle of rank n.
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17.4.3. The complex conjugate. 53

One can associate to any complex vector space V another complex vector space sV , which is
defined as the same set with the same notion of vector addition but a different notion of scalar
multiplication, defined as follows. Since V and sV are identical sets, the identity map defines a
canonical map between them, which we shall denote by

(17.2) V Ñ sV : v ÞÑ v̄.

In other words, v̄ is our notation for the vector v P V when it is regarded as an element of sV . With
this understood, multiplication of a scalar λ P C by a vector v̄ P sV is defined by

λv̄ :“ sλv,
where for λ “ a` ib with a, b P R, we denote the complex conjugate by sλ :“ a´ ib. Another way
to say this is that multiplication of a real scalar by a vector in sV is defined exactly the same as
in V , so that V and sV are identical as real vector spaces, but multiplication by i is defined in sV
with a sign change, i.e. isv “ ´iv. This makes the bijection in (17.2) an isomorphism of real vector
spaces, but not an isomorphism of complex vector spaces, as it is not even a complex-linear map;
it is instead complex antilinear.

The conjugate of a complex vector bundle E Ñ M of rank m is now defined as another
complex vector bundle sE ÑM

of rank m whose fiber over a point p PM is sEp. Strictly speaking, E and sE are the same set, and
the identity map thus defines a canonical bijection between them which we will again denote by

E Ñ sE : v ÞÑ v̄.

They are different complex vector bundles because one cannot use the same local trivializations
for both—any local trivialization Φα : E|Uα

Ñ Uα ˆ Cm of E defines a complex vector space
isomorphism Φα,p : Ep Ñ Cm for every p P Uα, but this map is not complex-linear when regarded
as a bijection sEp Ñ Cm, it is antilinear. The solution is to compose it with a complex-antilinear
isomorphism Cm Ñ Cm such as the complex conjugation map z ÞÑ z̄, and this produces a local
trivialization sΦα of sE over the same set Uα, namelysE|Uα

Ñ Uα ˆ Cm : v̄ ÞÑ pp,ĞΦα,pvq
for p P Uα and v̄ P sEp. The next exercise shows that the collection of all local trivializations of sE
constructed in this way makes sE ÑM a smooth vector bundle.

Exercise 17.18. Show that if pUα,Φαq and pUβ ,Φβq are two local trivializations of a complex
vector bundle E Ñ M related by a transition function gβα : Uα X Uβ Ñ GLpm,Cq, then the
transition function relating the corresponding local trivializations pUα, sΦαq and pUβ , sΦβq of sE is
given by

Uα X Uβ Ñ GLpm,Cq : p ÞÑ gβαppq,
where the bar on the right hand side means the usual notion of complex conjugation for m-by-m
complex matrices. In particular, this transition function is smooth if and only if gβα is smooth.

A finite-dimensional complex vector space V is always isomorphic to its conjugate space sV
since the two spaces have the same dimension, but on the other hand, there is no canonical
choice of isomorphism (remember that the map v ÞÑ v̄ does not count because it is not complex
linear). Vector bundles provide a means for measuring in some precise way the non-existence of a
canonical choice: we will see that in general, a complex vector bundle E Ñ M and its conjugate
bundle sE ÑM need not be isomorphic.

53This section is inessential and was skipped in the lecture, but is provided here for your information.



17. CONSTRUCTIONS OF VECTOR BUNDLES 149

Remark 17.19. In the setting of a complex manifold M , whose transition maps are holomor-
phic maps between open subsets of Cn so that the notion of holomorphic complex-valued functions
on open subsets of M can be defined, one can also consider so-called holomorphic vector bundles,
which are required to admit coverings by local trivializations such that all transition functions are
holomorphic, and the notion of holomorphic sections can therefore be defined. Exercise 17.18 shows
that if E Ñ M is a holomorphic vector bundle, then its conjugate sE Ñ M is naturally a smooth
complex vector bundle but is not a holomorphic vector bundle in any natural way, as its transi-
tion functions are not holomorphic, they are antiholomorphic (i.e. they are complex conjugates of
holomorphic functions).

17.4.4. Tensor products. We will not discuss in this course the abstract definition of the tensor
product of two vector spaces V and W , but if both spaces are finite dimensional, one obtains an
easy equivalent definition using the canonical identification of V and W with the duals of their
dual spaces. For our purposes, if V and W have dual spaces V ˚ and W˚, then V ˚ bW˚ can be
defined as the vector space

V ˚ bW˚ :“ tbilinear maps V ˆW Ñ Fu ,
with the tensor product λb µ P V ˚ bW˚ of two elements λ˚ P V ˚ and µ˚ PW˚ defined by

pλb µqpv, wq :“ λpvqµpwq for v P V , w PW .

Our definition of V bW is then actually a definition of V ˚˚ bW˚˚, i.e.
V bW :“ tbilinear maps V ˚ ˆW˚ Ñ Fu ,

and v b w P V bW for v P V and w PW will be the bilinear map V ˚ ˆW˚ Ñ F given by

pv b wqpλ, µq :“ vpλqwpµq :“ λpvqµpwq for λ P V ˚, µ PW˚.
Given bases v1, . . . , vm P V and w1, . . . , wk P W , one can easily check via evaluation on the
corresponding dual bases of V ˚ and W˚ that the mk distinct tensor products vibwj form a basis
of V bW .

While it is a bit tedious from this perspective, one can also check that the tensor product is an
associative operation, i.e. for any three finite-dimensional vector spaces V,W,X , there is a natural
isomorphism

pV bW q bX – V b pW bXq
that identifies pv bwq b x with v b pwb xq for every v P V , w PW and x P X . For this reason we
will usually not write the parentheses in such expressions, and arbitrary tensor products of finitely
many finite-dimensional vector spaces V1, . . . , Vk can also be defined without parentheses; in fact,
there is a natural isomorphism of V1b. . .bVk with the space of multilinear maps V1̊ ˆ. . .ˆVk̊ Ñ F.

All of this extends to the context of smooth vector bundles E over a manifold M , after
observing that the canonical isomorphisms Ep Ñ E˚˚

p give rise to canonical bundle isomorphisms
E Ñ E˚˚ :“ pE˚q˚. For two smooth vector bundles E,F ÑM of ranks m and k respectively, the
tensor product E b F ÑM is thus a bundle of rank mk with fibers

pE b F qp :“ Ep b Fp.

Given local frames e1, . . . , em for E and f1, . . . , fk for F over U , a local frame for E b F over U is
given by the sections

ei b fj : U Ñ pE b F q|U , i “ 1, . . . ,m, j “ 1, . . . , k,

where the tensor product of sections is defined pointwise, meaning pei b fjqppq :“ eippq b fjppq P
Ep b Fp. It is again a straightforward exercise to check that for any smoothly compatible choices
of frames for E and F on overlapping regions, the resulting frames for E b F are also smoothly
compatible.
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This discussion extends in an obvious way to arbitrary finite tensor products of vector bundles.
In particular, we can now generalize the bundles T kℓ M mentioned in Example 16.20 to

Ekℓ :“ E b . . .bEloooooomoooooon
k

bE˚ b . . .bE˚loooooooomoooooooon
ℓ

,

with the convention that for k “ ℓ “ 0, the fibers are just pEpq00 :“ R and E0
0 is thus the trivial

real line bundle M ˆ R over M . We also have E1
0 “ E and E0

1 “ E˚.
For each k ě 0, there is an important subbundle

ΛkE Ă E b . . .bEloooooomoooooon
k

,

whose fibers are the spaces ΛkEp of antisymmetric k-fold multilinear maps Ep̊ ˆ . . . ˆ Ep̊ Ñ R,
i.e. in terms of our notation from Lecture 9, we are defining ΛkEp :“ ΛkV ˚ for V :“ Ep̊ after
identifying Ep with its double dual. That ΛkE Ă Ebk is a smooth subbundle follows mainly from
the observation that any local frame e1, . . . , em for E gives rise to a local frame for ΛkE on the
same region, consisting of the k-fold wedge products

ei1 ^ . . .^ eik , i1 ă . . . ă ik.

In particular, this makes ΛkT ˚M into a smooth vector bundle with ΓpΛkT ˚Mq “ ΩkpMq.
17.4.5. Bundles of linear maps. 54

It is often useful to notice that for two vector spaces V,W , the space of linear maps HompV,W q
is naturally isomorphic to the tensor product V ˚ bW . Indeed:

Exercise 17.20. Show that for finite-dimensional vector spaces V and W , the identifying
λb w P V ˚ bW for each λ P V ˚ and w PW with the linear map V ÑW given by

pλb wqpvq :“ λpvqw
uniquely determines an isomorphism V ˚ bW Ñ HompV,W q.

This gives us the quickest way to see that for any two smooth vector bundles E,F ÑM with
rank m and k respectively, there exists a smooth vector bundle

HompE,F q ÑM

with rank km, having fibers HompE,F qp :“ HompEp, Fpq. In fact, HompE,F q is canonically
isomorphic to the tensor product bundle E˚ b F , but without worrying about this, one can also
just take Exercise 17.20 as a hint on how to define local frames for HompE,F q: given frames
e1, . . . , em for E and f1, . . . , fk for F over a region U ĂM , one takes the dual frame e1˚, . . . , em˚ for
E˚ and defines a frame for HompE,F q over U consisting of the products ei˚ b fj, each interpreted
at any point p P U as the linear map Ep Ñ Fp : v ÞÑ ei˚ppqpvqfjppq. It is another straightforward
exercise to show that any two local frames for HompE,F q constructed from smooth frames on E
and F will be smoothly compatible.

We can now state a much more succinct version of one of the definitions in the previous lecture:
given two smooth vector bundles E,F Ñ M , a smooth linear bundle map E Ñ F is a smooth
section of the bundle HompE,F q.

In the case F “ C, it is sometimes also useful to include complex anti-linear maps in the
discussion, where a map A : V Ñ W between two complex vector spaces is called antilinear if it
satisfies

Apv ` wq “ Av `Aw, Apλvq “ sλAv
54This section is provided for your information and will occasionally be referred to later, but it was not covered

in the lecture due to lack of time.
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for all v, w P V and λ P C. The space

HompV,W q :“  
A : V Ñ W

ˇ̌
A complex antilinear

(
is a complex vector space in a natural way, and the following exercise yields a useful alternative
perspective on it in terms of the conjugate vector space (see §17.4.3).

Exercise 17.21. Assume V,W are finite-dimensional complex vector spaces with dual space V ˚,W˚
and conjugates sV ,ĎW . Find natural isomorphisms between the following pairs of complex vector
spaces.

(a) HompsV ,W q and HompV,W q.
(b) psV q˚ and V ˚.
(c) sV ˚ bW˚ and the space of real-bilinear maps V ˆW Ñ C that are complex antilinear in

the first factor and complex linear in the second factor.

It follows from Exercise 17.21 that for smooth complex vector bundles E,F Ñ M , one can
also define a smooth bundle

HompE,F q ÑM

whose fiber at a point p P M is the space of complex-antilinear maps Ep Ñ Fp; this bundle is
canonically isomorphic to sE˚ b F .

18. Vector bundles with extra structure

In this lecture we discuss various types of geometric structure that can be added to the fibers
of a vector bundle, such as orientations and inner products. There is a useful way to incorporate
all possible types of structures under a single umbrella in terms of the so-called structure group of
a bundle, and this discussion requires an initial digression on the topic of Lie groups.

18.1. Some basic Lie groups. Roughly speaking, a Lie group is a group that is also a
smooth manifold. I intend to discuss this subject in earnest in the followup to this course next
semester, but for now, we need to become acquainted with a few of the basic examples and their
properties. The first one is GLpm,Fq, which is naturally a manifold because it is an open subset
of the (real or complex) vector space Fmˆm.

Definition 18.1. A Lie subgroup of GLpm,Fq is a subgroup G Ă GLpm,Fq that is also a
smooth submanifold. Its associated Lie algebra is the tangent space

g :“ T1G Ă T1GLpm,Fq “ Fmˆm.

The discussion of why g “ T1G is called a “Lie algebra” will have to wait for next semester;
for our immediate purposes, it will be enough to notice that g is a linear subspace of Fmˆm.

It will sometimes be useful to observe that the natural maps defined by matrix multiplication

GLpm,Fq ˆGLpm,Fq Ñ GLpm,Fq : pA,Bq ÞÑ AB

and inversion
GLpm,Fq Ñ GLpm,Fq : A ÞÑ A´1

are both smooth. Indeed, the first is simply a quadratic function of the entries of A and B, and by
Cramer’s rule, the second is 1{ detpAq times a polynomial function of the entries, where detpAq is
itself a polynomial function of the entries and is nonzero as long as we restrict to the open subset
GLpm,Fq Ă Fmˆm. Since restrictions of smooth maps to smooth submanifolds are also smooth, it
follows that for every Lie subgroup G Ă GLpm,Fq, the maps

GˆGÑ G : pA,Bq ÞÑ AB, GÑ G : A ÞÑ A´1

are both smooth.
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Example 18.2. The orthogonal group Opmq Ă GLpm,Rq consists of all linear transforma-
tions Rn Ñ Rn that preserve the standard Euclidean inner product xv,wyRm :“ vTw “ řm

j“1 v
jwj .

It is a Lie subgroup according to Exercise 4.22, and its Lie algebra is the space of real antisymmetric
matrices

opmq :“  
A P Rmˆm

ˇ̌
AT “ ´A(

.

Example 18.3. The unitary group Upmq Ă GLpm,Cq consists of all linear transformations
Cn Ñ Cn that preserve the standard Hermitian inner product xv,wyCm :“ v:w “ řm

j“1 v̄
jwj .

It is a Lie subgroup according to Exercise 4.23, and its Lie algebra is the space of complex anti-
Hermitian matrices

upmq :“  
A P Cmˆm

ˇ̌
A: “ ´A(

.

Example 18.4. The group of orientation-preserving linear transformations on Rn is

GL`pm,Rq :“  
A P GLpm,Rq ˇ̌ detpAq ą 0

(
,

which is both a subgroup and an open subset of GLpm,Rq, and therefore a Lie subgroup. Since it
is also an open subset of Rmˆm, its Lie algebra is

gl`pm,Rq “ glpm,Rq :“ Rmˆm.

Example 18.5. Exercise 4.24 shows that for F equal to either R or C, the special linear
group SLpm,Fq :“  

A P GLpm,Fq ˇ̌ detpAq “ 1
(
is a Lie subgroup whose Lie algebra consists of

the traceless matrices,
slpm,Fq :“  

A P Fmˆm
ˇ̌
trpAq “ 0

(
.

The special linear group consists of all linear transformations Fm Ñ Fm that preserve the “stan-
dard” alternating m-form

(18.1) µpv1, . . . ,vmq :“ det
`
v1 ¨ ¨ ¨ vm

˘
.

In the real case, one obtains a useful geometric interpretation by relating SLpm,Rq to the larger
group xSLpm,Rq :“  

A P GLpm,Rq ˇ̌ detpAq P t1,´1u( ,
which is the group of all volume-preserving linear transformations on Rn. Since

SLpm,Rq “ xSLpm,Rq XGL`pm,Rq,
SLpm,Rq therefore consists of all linear transformations that preserve both orientation and volume.

Example 18.6. The special orthogonal group SOpmq :“ OpmqXSLpm,Rq is an open subset
of Opmq, and thus has the same Lie algebra,

sopmq “ opmq,
which is contained in slpm,Rq since real antisymmetric matrices vanish along the diagonal. Since
every A P Opmq has detpAq “ ˘1, one could equally well write

SOpmq “ Opmq XGL`pm,Rq,
and thus interpret SOpmq as the group of all orientation-preserving orthogonal transformations.

Example 18.7. The complex analogue of SOpmq is the special unitary group SUpmq :“
UpmqXSLpm,Cq, but there is a qualitative difference from the real case: according to Exercise 4.25,
SUpmq is also a Lie subgroup, but its dimension is one less than that of Upmq, and its Lie algebra

supmq :“ upmq X slpm,Cq
is the space of matricies that are both anti-Hermitian and traceless, which is not identical to
upmq since anti-Hermitian matrices can have arbitrary imaginary entries on the diagonal. One can
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interpret SUpmq as the group of linear transformations on Cm that preserve both the standard
Hermitian inner product and the alternating m-form µ in (18.1).

Example 18.8. The following generalization of the orthogonal group is important in physics:
given integers k, ℓ ě 0 with k ` ℓ “ m, the indefinite orthogonal group

Opk, ℓq Ă GLpm,Rq
consists of all linear transformations A : Rm Ñ Rm that satisfy xAv,Awyk,ℓ “ xv,wyk,ℓ for all
v,w P Rn, where

xv,wyk,ℓ :“
kÿ
j“1

vjwj ´
mÿ

j“k`1

vjwj .

The case Op1, 3q is known as the Lorentz group and plays a fundamental role in relativity, where
the sign difference in x , y1,3 between the first and the other three coordinates gives a qualitative
distinction between the three dimensions of physical space and a fourth dimension, interpreted as
time. There is also a complex analogue, the indefinite unitary group Upk, ℓq Ă GLpm,Cq.

Exercise 18.9. For integers k, ℓ ě 0 with k`ℓ “ m, define the block matrix η :“
ˆ
1k 0

0 ´1ℓ
˙
P

GLpm,Rq, where for any q ě 0 we write 1q for the q-by-q identity matrix. Prove:
(a) A matrix A P Rmˆm belongs to Opk, ℓq if and only if AηATη “ 1.
(b) Every A P Opk, ℓq satisfies detpAq “ ˘1.
(c) Opk, ℓq is a smooth submanifold and thus a Lie subgroup of GLpm,Rq, with Lie algebra

opk, ℓq :“  
A P Rmˆm

ˇ̌
A˚ “ ´A(

,

where A˚ :“ ηATη.
Hint: For everyA P GLpm,Rq,AηATη belongs to the vector space

 
H P Rnˆn

ˇ̌
H˚ “ H

(
.

Example 18.10. 55 There is a natural way of regarding GLpm,Cq as a Lie subgroup of
GLp2m,Rq. The idea is to identify Cm with R2m via the real-linear isomorphism

Cm Ñ R2m “ Rm ˆ Rm : x` iy ÞÑ px,yq,
so that scalar multiplication by i becomes the linear transformation R2m Ñ R2m defined by the
matrix

(18.2) J0 :“
ˆ

0 ´1m
1m 0

˙
.

A linear transformation A : R2n Ñ R2n then represents a complex-linear transformation on Cn

if and only if it commutes with the matrix J0, giving an identification of Cmˆm with the linear
subspace

(18.3) EndCpR2mq :“  
A P R2mˆ2m

ˇ̌
AJ0 “ J0A

( Ă R2mˆ2m.

In this way, the group GLpm,Cq gets identified with the open subset of EndCpR2mq consisting of
invertible transformations, making it a smooth submanifold and thus a Lie subgroup of GLp2m,Rq,
with Lie algebra glpm,Cq “ EndCpR2mq.

Exercise 18.11. Show that under the identification ofGLpm,Cq with a subgroup ofGLp2m,Rq
explained in Example 18.10, Op2mq XGLpm,Cq “ Upmq Ă GLp2m,Rq.
Hint: Using the identification Cm “ R2m, write down a formula for the Hermitian inner product
of Cm in terms of the Euclidean inner product of R2m and the matrix J0 in (18.2).

55This example was not mentioned in the lecture but is provided here for your information. The same applies
to one or two other things in Lecture 18 regarding the relationship between real and complex bundles.
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18.2. The structure group of a vector bundle. Assume in the following that G Ă
GLpm,Fq is a Lie subgroup.

Definition 18.12. A G-structure on a smooth vector bundle E ÑM of rankm is a maximal
collection of smoothly compatible local trivializations tpUα,ΦαquαPI of E with the property that
M “Ť

αPI Uα and the associated transition functions gβα : Uα XUβ Ñ GLpm,Fq take their values
in G. When a G-structure on E Ñ M has been given, we call G the structure group of the
bundle, and the local trivializations that belong to the G-structure will be called G-compatible
trivializations.

For a given group G and bundle E Ñ M , a G-structure may or may not exist, and it will
typically not be unique. Every vector bundle of rank m has structure group GLpm,Fq by default,
but for a given subgroupG Ă GLpm,Fq, it may or may not be possible to reduce the structure group
to G by deleting a subcollection of its smooth local trivializations, so that those which remain are
related to each other by G-valued transition functions. Note also that if G is a subgroup of some
larger Lie subgroup H Ă GLpm,Rq, then a G-structure on E Ñ M determines an H-structure,
obtained by including all local trivializations that are related by H-valued transition functions to
the G-compatible trivializations. A G-structure should be thought of as a preferred class of local
trivializations that cover M , or equivalently, a preferred class of local frames, which we will also
refer to in the following as G-compatible frames. Our first definition of orientations in §10.2 was
somewhat analogous to this: choosing an orientation on a manifold M means selecting a preferred
class of charts to be called “oriented” charts, and deleting those which are not compatible with
them via orientation-preserving transition maps. A G-structure on a bundle E is also sometimes
called a reduction of the structure group of E to G.

There is almost always a useful alternative way to interpret G-structures without mentioning
transition functions, but the alternative interpretation varies depending on the specific group G.
We will look next at several examples.

18.3. Global trivializations: G “ t1u. The trivial group G :“ t1u Ă GLpm,Fq is a 0-
dimensional Lie subgroup of GLpm,Fq, and a G-structure on a bundle E Ñ M then consists of a
covering of M by a collection of local trivializations tpUα,ΦαquαPI that are all identical wherever
they overlap. If such a collection exists, then all of them are restrictions to the subsets Uα ĂM of
some global trivialization Φ : E ÑM ˆFm, meaning a bundle isomorphism to the trivial m-plane
bundle, so E is globally trivial. Conversely, any global trivialization Φ : E ÑM ˆ Fm determines
a G-structure for G :“ t1u consisting of the restrictions of Φ to all possible open subsets Uα ĂM .

18.4. Orientations: G “ GL`pm,Rq. An orientation of a real vector bundle E Ñ M is
a choice of orientations for the fibers tEpupPM that depend continuously on p, meaning that any
collection of continuous sections s1, . . . , sm : U Ñ E on a neighborhood U Ă M of p that form
a positively-oriented basis of Ep also form positively oriented bases of Eq for all q near p. Note
that an orientation of a general vector bundle E Ñ M need not have anything to do with an
orientation of the base M , which may or may not be orientable—according to Proposition 10.25,
an orientation of M is equivalent to an orientation of the specific bundle TM ÑM .

An orientation of E Ñ M determines a preferred class of local frames for E, namely those
which are positively oriented at every point. Equivalently, the preferred class of local trivializations
consists of those which define orientation-preserving isomorphisms between Rm and the fibers Ep.
The transition functions that relate two such trivializations to each other must therefore take values
in the group of orientation-preserving transformations of Rm, that is, GL`pm,Rq. An orientation
of E Ñ M thus determines a GL`pm,Rq-structure. Conversely, any GL`pm,Rq-structure on
E Ñ M determines an orientation of the fibers via the condition that an ordered basis of a fiber
Ep is positively oriented if and only if some GL`pm,Rq-compatible local trivialization identifies it
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with a positively-oriented basis of Rm. If this holds for one of the preferred trivializations defined
at p, then it holds for all the others as well, because the transition functions that relate them act
by orientation-preserving transformations on Rm.

We’ve proved:

Proposition 18.13. On a real vector bundle E Ñ M , there is a natural bijective correspon-
dence between orientations and GL`pm,Rq-structures. �

Though you might already find it obvious that every trivial real vector bundle is orientable,
we can now give a quick new proof of this fact in the language of structure groups: if E Ñ M is
trivial, then it admits a G-structure for G :“ t1u, which is a subgroup of GL`pm,Rq, so E Ñ M

therefore also admits a GL`pm,Rq-structure, meaning an orientation. In fact, this argument shows
that any global trivialization of a vector bundle determines a G-structure for every Lie subgroup
G Ă GLpm,Fq.

Exercise 18.14. Prove that the line bundle ℓÑ S1 in Example 16.23 is not orientable.

18.5. Bundle metrics: G “ Opmq, Upmq, Opk, ℓq. The following definition generalizes the
notion of a Riemannian metric in two respects: it is defined on an arbitrary vector bundle instead
of a tangent bundle TM Ñ M , and it requires the weaker condition of nondegeneracy in place of
positive-definiteness.

Definition 18.15. A bundle metric on a real vector bundle E ÑM is a smooth function

x , y : E ‘E Ñ R

whose restriction to the fiber Ep ˆEp for each p PM is all of the following:

(i) (bilinear) Ep ˆEp Ñ R : pv, wq ÞÑ xv, wy is a bilinear map
(ii) (symmetric) xv, wy “ xw, vy for all v, w P Ep
(iii) (nondegenerate) The map Ep Ñ Ep̊ : v ÞÑ xv, ¨y is injective.

We will say additionally that x , y is positive if the third condition is strengthened to:

(iii) (positive) xv, vy ą 0 for all nonzero v P Ep.
For a complex vector bundle E ÑM , we modify the above definition as follows: x , y is a smooth
function

x , y : E ‘E Ñ C

whose restriction to Ep ˆEp is:

(i) (sesquilinear) Ep ˆEp Ñ C : pv, wq ÞÑ xv, wy is linear in the second factor and antilinear
in the first

(ii) (Hermitian) xv, wy “ xw, vy for all v, w P Ep
(iii) (nondegenerate) Same as in the real case.

The positivity condition in the complex case is also the same as in the real case.

Remark 18.16. A bundle metric is called indefinite if it is nondegenerate but not positive.
In most of the literature, bundle metrics are assumed to be positive by default, and it is generally
wise to assume this unless the word “indefinite” is included. A large portion of what we have to
say about them will however be valid without assuming positivity, so in these notes, we will use
“bundle metric” as a general term that includes the indefinite case. Bundle metrics are also often
referred to as “Euclidean” bundle metrics in the real case and “Hermitian” bundle metrics in the
complex case.
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Example 18.17. A Riemannian metric on a manifold M is a positive bundle metric on its
tangent bundle TM Ñ M . If g is instead an indefinite bundle metric on TM Ñ M , it is called a
pseudo-Riemannian (or also semi-Riemannian) metric on M , and the pair pM, gq is called a
pseudo-Riemannian manifold.

In the real case, a bundle metric on E Ñ M can also be regarded as a smooth section of the
vector bundle E˚ b E˚ Ñ M , whose fiber at p P M is the space of bilinear maps Ep ˆ Ep Ñ R.
Sesquilinearity modifies this statement in the complex case and replaces E˚ b E˚ with sE˚ b E˚,
whose fiber at p P M is (according to Exercise 17.21) naturally isomorphic to the space of maps
Ep ˆEp Ñ C that are antilinear in the first and linear in the second factor.

A positive bundle metric assigns to each fiber what is conventionally called an inner product,
and as we observed in §15.2, the set of positive-definite inner products on any vector space is convex.
Our previous existence result for Riemannian metrics therefore generalizes in a straightforward way:

Theorem 18.18. Every vector bundle admits a positive bundle metric.

Proof. Trivial bundles obviously admit positive bundle metrics since one can simply choose
the standard Euclidean inner product of Rm or (for the case F “ C) the standard Hermitian inner
product of Cm on every fiber. It follows that on any vector bundle E Ñ M with a collection of
local trivializations tΦα : E|Uα

Ñ Uα ˆ FmuαPI covering M , one can choose bundle metrics on
each E|Uα

, and then piece these together using a partition of unity on M subordinate to the cover
tUαuαPI . �

It is interesting to note that if we’d been allowed to assume in Theorem 18.18 that the bundle
E ÑM has a G-structure for G “ Opmq or (in the case F “ C) G “ Upmq, then the proof would
not have required a partition of unity. Indeed, if one defines x , y over regions Uα Ă M so that
it matches the standard inner product of Fm in some choice of G-compatible local trivialization
over Uα, then this definition is independent of that choice: having transition functions valued in
G P tOpmq,Upmqu means that they preserve the standard inner product on Fm, so any other
G-compatible local trivialization on an overlapping region produces the same inner product on the
fibers. This means that if an Opmq- or Upmq-structure is given, then it determines a unique positive
bundle metric on E ÑM that looks like the standard inner product of Fm in any compatible local
trivialization. There is also a converse to this: if a positive bundle metric x , y is given, then
every smooth local frame on a region Uα ĂM can be modified via the Gram-Schmidt algorithm to
produce one that is orthonormal at every point p P Uα, so that the corresponding local trivialization
identifies x , y with the standard inner product of Fm. Any two trivializations produced in this
way will then be related by a transition function whose values preserve this inner product, meaning
they are in Opmq or Upmq. We’ve proved:

Proposition 18.19. On a vector bundle E Ñ M of rank m, there is a natural bijective cor-
respondence between positive bundle metrics and Opmq-structures if E is real, or Upmq-structures
if E is complex. �

Remark 18.20. In light of Proposition 18.19, an Opmq-structure on a vector bundle is also
sometimes called aEuclidean structure, and a Upmq-structure is called aHermitian structure.

Extending this discussion to the case of an indefinite bundle metric x , y on E Ñ M requires
a suitable generalization of the notion of orthonormal frames. In the following, we confine our
attention to real vector bundles since that is the case that arises most often in applications, but
there are no substantial differences in the complex case. We will say that a local frame e1, . . . , em
for E on some region U Ă M is orthonormal with respect to x , y if for some k P t0, . . . ,mu, it
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satisfies
xej, ejy “ 1 for j “ 1, . . . , k

xej, ejy “ ´1 for j “ k ` 1, . . . ,m

xei, ejy “ 0 for i ‰ j.
(18.4)

The integers k and ℓ :“ m´ k are determined by the bundle metric, and can be characterized as
the dimensions of the largest subspace of any fiber on which x , y is positive-definite or negative-
definite respectively. In general, these numbers need not be the same everywhere on M , though it
should be clear that they are locally constant and thus constant on each connected component. As
a rule, the only interesting examples are those in which k and ℓ are constant everywhere; in this
case, the pair pk, ℓq is called the signature of the bundle metric x , y. The spacetime manifolds
of general relativity are 4-manifolds with pseudo-Riemannian metrics of signature p1, 3q; these are
known as Lorentzian manifolds.

Lemma 18.21. For any real vector bundle E ÑM with an indefinite bundle metric x , y, every
point p PM has a neighborhood U ĂM on which E admits an orthonormal frame.

Since Lemma 18.21 is a local statement and all vector bundles are locally trivial, it suffices to
prove it for the special case of a trivial m-plane bundle

E :“ U ˆ Rm

over some open subset U ĂM of a manifold. The restriction of x , y to the fiber over a point p P U

is in this case a bilinear form on Ep “ Rm that can be written as

xv,wyp “ xv,HppqwyRm for v,w P Rm,

where x , yRm denotes the standard Euclidean inner product on Rm andHppq P Rmˆm is a uniquely
determined matrix that depends smoothly on p P U . Symmetry and nondegeneracy imply moreover
that Hppq is always both symmetric and invertible respectively. It follows then from the spectral
theorem that at every point p P U , Rm splits uniquely

Rm “ Ep̀ ‘Eṕ

into the subspaces Ep̀ , Eṕ Ă Rm spanned by the positive and negative eigenvalues respectively of
Hppq; on these two subspaces, x , yp is positive- or negative-definite respectively. Notice that Ep̀
and Eṕ are orthogonal to each other with respect to both the Euclidean inner product and the
given bundle metric x , y. We will see below that these subspaces vary smoothly with p, but since
that fact is not so obvious, let us first give a proof of Lemma 18.21 that does not require it.

First proof of Lemma 18.21. For a given point p P U , let k :“ dimEp̀ and ℓ :“ dimEṕ ,
choose orthonormal bases of Ep̀ and Eṕ and choose a smooth frame pe1, . . . , pem for E on a neigh-
borhood of p such that at the point p itself, pe1, . . . , pek matches the chosen orthonormal basis of Ep̀
while pek`1, . . . , pem matches the chosen orthonormal basis of Eṕ . Since Ep̀ and Eṕ are orthogonal
with respect to x , y, it follows that pe1, . . . , pem satisfy the orthonormality condition (18.4) at p,
and we will now use a minor variation on the Gram-Schmidt algorithm to produce from this an
orthonormal frame e1, . . . , em that is defined on a neighborhood of p and matches pe1, . . . , pem at p.
The key observation making this possible is that since x , y is positive on Ep̀ and negative on Eṕ ,
it is also positive / negative on the subbundles spanned by pe1, . . . , pek and pek`1, . . . , pem respectively.
Now, define e1, . . . , ek simply by applying the usual Gram-Schmidt procedure to pe1, . . . , pek. Since
xpek`1, pek`1y ă 0, the correct definition of ek`1 is slightly different: we set

ek`1 :“ f1 ¨
˜pek`1 ´

kÿ
j“1

xpek`1, ejyej
¸
,
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with a positive function f1 chosen to ensure that xpek`1, pek`1y ” ´1 on a neighborhood of p, which
is possible because the expression in parentheses matches pek`1 at p, so that its product with itself
is negative. Continuing in this way inductively, the new section ek`i is defined out of e1, . . . , ek`i´1

for each i “ 1, . . . , ℓ by

ek`i :“ fi ¨
˜pek`i ´ kÿ

j“1

xpek`i, ejyej ` i´1ÿ
j“1

xpek`i, ek`jyek`j¸ ,

with the positive function fi again chosen to achieve the normalization xek`i, ek`iy ” ´1. �

I mentioned above that the subspaces Ep̆ Ă Rm vary smoothly with p, which will give rise
to a slightly simpler proof of Lemma 18.21. These subspaces are defined as direct sums of certain
eigenspaces of the matrix Hppq, but we have to be a bit careful here, because in general, individual
eigenspaces cannot be assumed to depend smoothly on the matrix—one can show that they do
whenever the corresponding eigenvalue is simple, but in our situation, eigenvalues with multiplicity
may occur and there is no general way to avoid them. What we are interested in however is not an
individual eigenspace, but direct sums of several eigenspaces corresponding to eigenvalues in fixed
open subsets of R, namely p´8, 0q and p0,8q. In this situation, Cauchy’s integration theory from
complex analysis provides a useful trick:

Lemma 18.22. Suppose A P Cmˆm is a diagonalizable matrix,

σpAq “ σ0 \ σ1 Ă C

is a decomposition of its spectrum σpAq into two disjoint subsets, and write

Cm “ V0 ‘ V1, where Vj :“
à
λPσj

kerpλ1´Aq, j “ 0, 1

for the corresponding splitting of Cm into direct sums of eigenspaces. Then for any smoothly
embedded oriented circle γ Ă C that does not intersect σpAq and has winding number j around
each eigenvalue in σj for j “ 0, 1, the matrix-valued Cauchy integral

P :“ 1

2πi

ż
γ

pz1´Aq´1 dz P Cmˆm

defines the linear projection to V1 along V0.

Proof. The function CzσpAq Ñ Cmˆm : z ÞÑ pz1´Aq´1 is holomorphic since z1´A is an
affine function of z and, for arbitrary invertible matrices B P GLpm,Cq, the entries of B´1 are
rational functions of the entries in B. Cauchy’s theorem thus implies that the integral will not
change if γ is replaced by a disjoint union of small circles around the specific eigenvalues in σ1, and
it suffices therefore to consider the case where σ1 consists of only one eigenvalue λ1 P C and γ is
parametrized by the boundary of the ǫ-disk around λ1 for ǫ ą 0 small. Since A is diagonalizable we
can also assume after a change of basis on Cm that A is diagonal; let us write its diagonal entries
as Λ1, . . . ,Λm P C, keeping in mind that these are all elements of σpAq and some of them may be
repeated. The values of the function pz1´Aq´1 are then also diagonal matricies, whose diagonal
entries are the complex-valued functions 1

z´Λj
for j “ 1 . . . ,m. For any j such that Λj ‰ λ1, we

can assume 1
z´Λj

is a holomorphic function on the disk enclosed by γ, so its integral is 0. On the
other hand, whenever Λj “ λ1, integration makes the corresponding diagonal element into

1

2πi

ż
γ

dz

z ´ λ1
“ 1.
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We conclude that in our chosen basis of eigenvectors forA, P is a diagonal matrix whose entries are
all 1 or 0, with 1 appearing only in the places where the corresponding entry of A is λ1. In other
words, P acts as the identity on the eigenspace of λ1 and as 0 on all the other eigenspaces. �

Corollary 18.23. The subspaces Ep̀ , Eṕ Ă Rm defined as the direct sums of the positive and
negative eigenspaces respectively of Hppq vary smoothly with the point p P U .

Proof. Given p P U , choose an embedded oriented circle γ Ă C that surrounds the positive
eigenvalues ofHppq but stays in the right half-plane, so its winding around every negative eigenvalue
is 0. Then according to Lemma 18.22, the matrix 1

2πi

ş
γ
pz1 ´Hppqq´1 dz defines the orthogonal

projection to Ep̀ along Eṕ , and this remains true if p is moved within a small enough region so
that the eigenvalues of Hppq never touch γ. This matrix-valued integral clearly depends smoothly
on p, and therefore so does the complementary projection to Eṕ . �

Second proof of Lemma 18.21. Corollary 18.23 implies that the subspaces Ep̀ , Eṕ Ă Rm

form the fibers of smooth subbundles E˘ Ă E, giving a splitting

(18.5) U ˆ Rm “ E “ E` ‘E´

such that ˘x , y restricts to a positive bundle metric on E˘, and moreover, the fibers of E` and
E´ are mutually orthogonal with respect to x , y. An orthonormal frame for E is then constructed
by combining orthonormal frames of E` and E´, and this can be done on a sufficiently small
neighborhood of any given point. �

For a bundle metric of signature pk, ℓq, the local trivialization corresponding to an orthonormal
frame identifies x , y on each fiber with the “standard” indefinite inner product

xv,wyk,ℓ “
kÿ
j“1

vjwj ´
mÿ

j“k`1

vjwj ,

thus any two local trivializations constructed in this way are related by a transition function with
values in the group Opk, ℓq from Example 18.8. We summarize:

Proposition 18.24. On a real vector bundle E ÑM of rank m with integers k, ℓ ě 0 satisfying
k ` ℓ “ m, there is a natural bijective correspondence between bundle metrics of signature pk, ℓq
and Opk, ℓq-structures. �

Exercise 18.25. Show that for any real vector bundle E ÑM with a bundle metric x , y of
signature pk, ℓq there exist smooth subbundles E` Ă E and E´ Ă E of ranks k and ℓ respectively
and a bundle of isomorphism E – E` ‘E´.
Caution: This does not follow immediately from the splitting in (18.5), because that splitting was
defined specifically for a trivial bundle; it can always be done locally since all bundles are locally
trivial, but the result will depend on the choice of local trivialization. Obtaining such a splitting
globally will require another choice, but it is a choice that can always be made.

Remark 18.26. When k, ℓ ě 1, the existence of the splitting E “ E` ‘E´ in Exercise 18.25
is a nontrivial condition that is not satisfied for all bundles, thus unlike the positive case, bundle
metrics of arbitrary signature do not always exist. We will later see for instance that S2 does not
admit any pseudo-Riemannian metric of signature p1, 1q.
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18.6. Volume forms: G “ SLpm,Fq. A volume form on a vector bundle E ÑM of rank
m is a section µ P ΓpΛmE˚q that satisfies µppq ‰ 0 for all p PM . In other words, for every p PM ,
µppq is an alternating m-fold multilinear form Ep ˆ . . . ˆ Ep Ñ F that evaluates to something
nonzero on some (and therefore any) basis v1, . . . , vm P Ep. The terminology has a geometric
motivation in the case F “ R, as one can then use µ to define the notion of volume in every fiber
by saying that |µppqpv1, . . . , vmq| is the volume of the parallelepiped in Ep spanned by v1, . . . , vm.
No such geometric interpretation is available in the complex case, but the definition makes sense
algebraically.

Given a volume form µ P ΓpΛmE˚q and a local frame e1, . . . , em for E over an open set Uα ĂM ,
one can always modify e1 by multiplication with a scalar-valued function to arrange

(18.6) µpe1, . . . , emq ” 1 on Uα.

The corresponding local trivialization then identifies µ over Uα with the “standard” volume form
on Fm, given by

µstdpv1, . . . ,vmq :“ det
`
v1 ¨ ¨ ¨ vm

˘ P F

for v1, . . . ,vm P Fm. The group of linear transformations Fm Ñ Fm that preserve µstd is the
special linear group, SLpm,Fq, thus covering M with local frames that satisfy (18.6) determines
an SLpm,Fq-structure on E. Conversely, if an SLpm,Fq-structure is given, then there is a unique
volume form µ P ΓpΛmE˚q that looks like µstd in every SLpm,Fq-compatible local trivialization,
proving:

Proposition 18.27. On any vector bundle E Ñ M of rank m over the field F, there is a
natural bijective correspondence between volume forms and SLpm,Fq-structures. �

Several fundamental facts about volume forms on a manifold can now be generalized and
proved as easy corollaries of basic observations about specific subgroups of GLpm,Rq:

Proposition 18.28. Every real vector bundle admitting a volume form is orientable.

Proof. If E Ñ M has an SLpm,Rq-structure, then this determines a GL`pm,Rq-structure
since SLpm,Rq Ă GL`pm,Rq. �

Proposition 18.29. On any oriented real vector bundle E Ñ M , any bundle metric deter-
mines a unique volume form µ such that µpv1, . . . , vmq “ 1 for every positively-oriented orthonormal
basis of a fiber.

Proof. As an oriented bundle, E has structure group GL`pm,Rq, and introducing a bundle
metric of signature pk, ℓq reduces its structure group further to

SOpk, ℓq :“ Opk, ℓq X SLpm,Rq “ Opk, ℓq XGL`pm,Rq,
where the equality of these two intersections results from the fact that every A P Opk, ℓq has
determinant ˘1. Since SOpk, ℓq Ă SLpm,Rq, we therefore also have an SLpm,Rq-structure and
thus a volume form, which evaluates to 1 on the standard basis whenever it is viewed in an
SOpk, ℓq-compatible trivialization; in particular, this means bases that are positively oriented and
orthonormal. �

Exercise 18.30. Suppose E ÑM is an oriented real vector bundle of rank m with a bundle
metric x , y.

(a) Reprove Proposition 18.29 by an argument analogous to Corollary 11.10 on the Rie-
mannian volume form dvol P ΓpΛnT ˚Mq for an oriented Riemannian manifold pM, gq,
i.e. show that the volume form µ P ΓpΛmE˚q determined by the orientation and bundle
metric on E can be written locally in the form e1˚^ . . .^ em˚ using the dual frame to any
positively-oriented orthonormal local frame e1, . . . , em.
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(b) Generalize the local coordinate formula for the Riemannian volume form in Exercise 11.12
as follows. Assume e1, . . . , em is a positively-oriented but not necessarily orthonormal
local frame over some open set U ĂM , and write gij :“ xei, ejy : U Ñ R for the resulting
component functions of the bundle metric. Show

µ “a˘ detg e1˚ ^ . . .^ em˚ on U ,

where e1˚, . . . , em˚ is the dual frame to e1, . . . , em, g : U Ñ Rmˆm is the matrix-valued
function whose entries are gij , and the sign ˘ is chosen to make the expression under the
square root positive (this will depend on the signature of the bundle metric).

18.7. Complex structures: G “ GLpm,Cq Ă GLp2m,Rq. 56

Along the lines of Example 18.10, identifying Cm with R2m makes any complex vector bundle
E ÑM of rank m into a real vector bundle of rank 2m that is endowed with a G-structure for G –
GLpm,Cq defined as the subgroup of GLp2m,Rq consisting of all invertible linear transformations
R2m Ñ R2m that commute with the matrix

J0 :“
ˆ

0 ´1m
1m 0

˙
.

Recall from §7.1.4 that on any even-dimensional vector space V , a linear map J : V Ñ V satisfying
J2 “ ´1 is called a complex structure, thus J0 is an example of a complex structure on R2m.
Any complex structure J : V Ñ V makes V into a complex vector space by defining complex scalar
multiplication to mean

pa` ibqv :“ av ` bJv, a, b P R, v P V.
If v1, . . . , vm P V is any complex basis of this vector space, then v1, . . . , vm, Jv1, . . . , Jvm is a real
basis in which the matrix representing the transformation J is J0; this proves in particular that
every complex structure on R2m is equivalent to J0 via a change of basis.

More generally, a complex structure on a real vector bundle E ÑM of rank 2m is a smooth
section J of the bundle

EndpEq :“ HompE,Eq
such that Jppq : Ep Ñ Ep is a complex structure on Ep for every p P M . Choosing a complex
structure on E makes every fiber into a complex vector space of dimension m, and on a sufficiently
small neighborhood U Ă M of any point p, one can choose a complex basis v1, . . . , vm of Ep and
find a tuple of smooth sections e1, . . . , em : U Ñ E such that ejppq “ vj for every j “ 1, . . . ,m;
after shrinking the neighborhood U , we can then assume without loss of generality that the vectors
e1, . . . , em remain complex-linearly independent and thus form a basis of every fiber over points
in U . It follows that e1, . . . , em, Je1, . . . , Jem then forms a smooth frame for E over U , and it
defines a local trivialization E|U Ñ U ˆ R2m that identifies J on each fiber over points in U

with the standard complex structure J0 : R2m Ñ R2m. The transition functions relating any two
local trivializations constructed in this way must then take values in the subgroup GLpm,Cq Ă
GLp2m,Rq, so we have constructed a GLpm,Cq-structure on E, and if we replace R2m by Cm,
E ÑM can now be understood as a complex vector bundle of rank m. Conversely, any GLpm,Cq-
structure on a real bundle E ÑM of rank 2m determines a complex structure J P ΓpEndpEqq that
is identified with J0 : R2m Ñ R2m by any GLpm,Cq-compatible local trivialization. This proves:

Proposition 18.31. There is a natural bijective correspondence between complex structures
J P ΓpEndpEqq on a real vector bundle E ÑM of rank 2m and GLpm,Cq-structures on E, where
GLpm,Cq is identified with a subgroup of GLp2m,Rq as in Example 18.10. Moreover, any smooth
real vector bundle E of rank 2m with complex structure J can be regarded naturally as a smooth

56Like Example 18.10, this section was not covered in the lecture but is provided here for your information.
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Figure 8. Parallel transport of a tangent vector around a closed path in S2.

complex vector bundle of rank m whose fibers over points p P M are the vector spaces Ep with
complex scalar multiplication defined by pa` ibqv :“ av ` bJppqv. �

19. Connections on vector bundles

By way of motivation for what we will do in the next few lectures, I’d like to take a second
look at a thought-experiment that was mentioned in Lecture 1. Figure 8 shows a closed path on S2

that is made up of three smooth paths intersecting at right angles: one moving along the equator,
and two that connect the equator to the north pole via longitudes. In this scenario, we pick a
starting point p0 for this path and a tangent vector v0 P Tp0S2, and then ask: if we move v0 in a
“parallel” manner along the path, keeping it tangent to the sphere as we go, will it come back to
the same starting vector when the path returns to p0? The question is imprecisely stated, because
I have not said what “parallel” in this situation should mean, and that is a detail we will need to
discuss. Nonetheless, the scenario in Figure 8 looks as if v0 is being moved along the path in the
most natural way possible, and the answer is clearly no: the vector it comes back to at the end of
the closed loop is different.

This is not something that happens in Euclidean geometry. If our manifold were R2 instead
of S2, then there would be an obvious way to define what moving a tangent vector in a “parallel”
manner along a path should mean: it means that the vector is constant, and it will therefore always
return to itself when the path comes back to its starting point. On S2, on the other hand, there is
no obvious way to define what it should mean for a vector field to be constant, due to the fact that
the tangent spaces TpS2 themselves are not constant as the point p moves. We will see nonetheless
that if we endow the tangent spaces TpS2 with the Euclidean inner product and thus regard S2 as
a Riemannian manifold, then there is a natural way to define what it means for a vector field along
a path to be parallel—that is what we will call the natural generalization of the word “constant” in
this context—but this notion will have some counterintuitive properties, e.g. that no vector field
can ever be parallel on an entire open subset, no matter how small. Such properties are symptoms
of the fact that S2 has nontrivial curvature, while R2 with its Euclidean inner product does not.
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In order to clarify what this means, we will first consider a general vector bundle E ÑM and
ask what it might mean to say that a section s P ΓpEq is “constant” along a path. Such a notion
can be defined, but the definition is not canonical: it depends on an extra piece of geometric data
that must be chosen, and that data is called a connection. Several distinct definitions of the term
“connection” can be found in various textbooks, and all of them are equivalent but look cosmetically
quite different. Our first task is thus to understand why these particular definitions are the ones
we need, and why they are equivalent.

19.1. Parallel transport and horizontal lifts. We assume for the rest of this lecture that

π : E ÑM

is a smooth real or complex (F “ R or C) vector bundle of rank m over an n-manifold M . For
a section s P ΓpEq, we have defined what it means for s to be differentiable, but we have not yet
talked about actually differentiating it. If one wants to define, say, the derivative of s at a point
p P M in the direction X P TpM , one quickly encounters a problem that we have seen before
when talking about vector and tensor fields: choosing a path γ : p´ǫ, ǫq Ñ M with γp0q “ p and
9γp0q “ X , one cannot simply define57

(19.1) dspXq ?
:“ d

dt
spγptqq

ˇ̌̌̌
t“0

“ lim
tÑ0

spγptqq ´ sppq
t

since spγptqq and sppq belong to different vector spaces Eγptq ‰ Ep. Before one can make sense of
such an expression, one needs a way of identifying these vector spaces so that spγptqq ´ sppq can
be defined, e.g. one needs a smooth family of vector space isomorphisms

(19.2) P tγ : Eγp0q
–ÝÑ Eγptq, such that P 0

γ “ 1.

Under suitable conditions to be clarified below, we will refer to families of isomorphisms of this
form as parallel transport (Parallelverschiebung) (or also parallel translation) maps along
the path γ. If such a family is given, then one can use it to turn (19.1) into a sensible definition,
namely

(19.3) ∇Xs :“ ∇tspγptqq|t“0 :“ d

dt
pP tγq´1pspγptqqq

ˇ̌̌̌
t“0

“ lim
tÑ0

pP tγq´1pspγptqqq ´ sppq
t

P Ep.
This is called the covariant derivative (kovariante Ableitung) of s at p in the direction X ,
and also the covariant derivative of s along the path γ at t “ 0.

Once parallel transport and covariant derivatives have been defined, one can also say what it
means for s to be “constant” along the path γ: it means simply that

spγptqq “ P tγpsppqq
for all t, or in terms of the covariant derivative, ∇tspγptqq ” 0. Since “constant” is not really an
appropriate term when the vector spaces Eγptq vary with t, a section with this property is said to
be parallel (or also covariantly constant) along the path γ. This notion clearly depends on the
parallel transport isomorphisms P tγ , i.e. if one chose these isomorphisms differently, then a section
that is parallel for one choice might not be parallel for another.

So, how does one actually go about defining parallel transport isomorphisms as in (19.2)? In
the special case E “ TM , we found one conceivable answer to this question in §6.3: one can assume
that γ is a flow line of a vector field X and obtain a family of isomorphisms from the linearized
flow,

Tpϕ
t
X : TpM

–ÝÑ TγptqM.

57The question mark over the equal sign in (19.1) is meant to convey a sense of confusion—because the definition
does not really make sense.
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This approach gave us the definition of the Lie derivative LXY of a vector field Y P ΓpTMq “
XpMq. The first obvious problem is that this approach only makes sense on tangent bundles,
though one can perhaps imagine generalizing it to the various tensor bundles that are defined
in terms of tangent bundles, leading to the Lie derivatives of tensor fields that were defined in
Lecture 8. But there is a more basic problem here: a vector field X P XpMq does not define
isomorphisms as in (19.2) along arbitrary paths γ, it only defines them along flow lines, and the
derivative LXY that one ends up defining in this way is not just a derivative of Y , it also depends
on the first derivative of X . (This is apparent from the local coordinate formula for rX,Y s in
Exercise 6.2, which matches LXY by Proposition 6.7.) For this reason, LXY ppq cannot accurately
be interpreted as a directional derivative of Y at p in the direction Xppq.

It turns out that on a general vector bundle E Ñ M , there is no canonical way to define
parallel transport along arbitrary paths, so instead of looking for a unique “correct” definition,
it is more useful to consider what properties a reasonable definition of parallel transport should
be required to satisfy. In particular, we would like the covariant derivative to behave in certain
respects the way that derivatives are expected to behave, for instance:

(i) ∇Xs :“ ∇tspγptqq|t“0 should depend on the section s P ΓpEq near p PM and the tangent
vector X “ 9γp0q P TpM , but not otherwise on the path γ;

(ii) The map TpM Ñ Ep : X ÞÑ ∇Xs should be linear.58

We will see below that these two conditions lead more-or-less inevitably to the correct definition
of a connection on a vector bundle.

Recall that sections of E are by definition smooth maps s : M Ñ E that satisfy π ˝ s “ IdM .
Similarly, if γ is a smooth path in M , then a smooth path t ÞÑ sptq P E satisfying

πpsptqq “ γptq
for all t is called a lift of γ to E; equivalently, sptq belongs to the fiber Eγptq for every t and thus
defines a section of the pullback bundle γ˚E, also known as a section of E along γ. A family of
parallel transport maps P tγ : Ep Ñ Eγptq associates to every v P Ep a lift sptq :“ P tγpvq of γ such
that sp0q “ v. In order to fully understand this perspective on parallel transport, it may be helpful
for a while to forget that E is a vector bundle, and think of it merely as a smooth manifold that
happens to be presented as a union of a smooth family of disjoint submanifolds Ep Ă E, its fibers.
(Objects of this kind—in which the fibers are all disjoint but diffeomorphic submanifolds that need
not necessarily be vector spaces—are called fiber bundles, and we will study them more seriously
next semester.) The fibers are, in particular, the level sets of a smooth submersion π : E ÑM , so
differentiating π at v P E and taking its kernel gives the tangent space to the fiber containing v,
which we will call the vertical subspace of TvE:

VvE :“ ker
´
TvE

π˚ÝÑ TπpvqM
¯
“ TvpEπpvqq Ă TvE.

All together, these subspaces define a distinsuished subbundle of TE Ñ E, called the vertical
subbundle

V E “ kerpπ˚q “
ď
vPE

VvE Ă TE.

If we now choose to “unforget” the fact that each fiber Ep is also a vector space, then we notice
that since tangent spaces to a vector space can be identified with the vector space itself, there is
a canonical isomorphism

Vertv : Ep
–ÝÑ VvE for every v P Ep, p PM,

58If F “ C, then since TpM is not naturally a complex vector space, we ignore the complex structure of Ep in
order to talk about linearity of the map TpM Ñ Ep, i.e. “linear” just means “real-linear”.
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sending w P Ep to d
dt
pv ` twqˇ̌

t“0
P VvE. A fancier way to say this is that the isomorphisms Vertv

define a canonical vector bundle isomorphism between V E Ñ E and the pullback π˚E Ñ E of
E ÑM via its own bundle projection π : E ÑM . In the lemma below, the vector space structure
of the fibers Ep will be relevant for this one detail only, and for the most part, it will be more
helpful to forget that the fibers Ep are vector spaces and think of them merely as the regular level
sets of a smooth submersion π : E ÑM .

Lemma 19.1. Suppose there is a smooth family of vector space isomorphisms59 P tγ : Eγp0q Ñ
Eγptq associated to every smooth path γ : p´ǫ, ǫq ÑM such that the covariant derivative defined in
(19.3) satisfies properties (i) and (ii) above. Then for each p P M and v P Ep, there is a unique
linear injection

Horv : TpM Ñ TvE

such that Horvp 9γp0qq “ d
dt
P tγpvq

ˇ̌
t“0

for all paths γ with γp0q “ p. Moreover, π˚ ˝ Horv : TpM Ñ
TpM is the identity map, and the image

HvE :“ imHorv Ă TvE

is complementary to the vertical subspace VvE Ă TvE, so it determines a splitting of TE into a
direct sum of smooth subbundles,

TE “ V E ‘HE, where HE :“ ď
vPE

HvE.

Proof. Fix p P M . For any smooth path γ : p´ǫ, ǫq Ñ M with γp0q “ p and any v P Ep,
we can think of t ÞÑ P tγpvq as a smooth path in the total space of the pullback bundle γ˚E “Ť
tPp´ǫ,ǫqEγptq, i.e. we regard P tγpvq is living in the fiber pγ˚Eqt. We can therefore define a smooth

vector field Y on the total space of γ˚E such that for any v P Ep and any t P p´ǫ, ǫq,
Y pP tγpvqq “ d

dt
P tγpvq,

and the parallel transport maps P tγ can now be written in terms of the flow ϕtY of Y as

P tγ “ ϕtY |Ep
: Ep “ pγ˚Eq0 Ñ pγ˚Eqt “ Eγptq.

The inverse of P tγ is then given by reversing the flow of Y , so for a section s : M Ñ E with sppq “ v,

Vertv
`
∇ 9γp0qs

˘ “ d

dt
ϕ´tY pspγptqqq

ˇ̌̌̌
t“0

P Ep.
Note that t ÞÑ ϕ´tY pspγptqqq is a path through the point ϕ0

Y psppqq “ sppq “ v in the submanifold
Ep Ă E, so we are regarding its derivative as an element of VvE Ă TvE, so that the canonical
isomorphism Vert´1

v : VvE Ñ Ep identifies it with the covariant derivative as defined in (19.3). To
compute it, we write F pt1, t2q “ ϕt1Y pspγpt2qqq and apply the chain rule, giving

Vertv
`
∇ 9γp0qs

˘ “ d

dt
F p´t, tq

ˇ̌̌̌
t“0

“ ´BFBt1 p0, 0q `
BF
Bt2 p0, 0q “ ´Y pvq ` Tsp 9γp0qq P TvE,

and thus

(19.4) Horvp 9γp0qq :“ d

dt
P tγpvq

ˇ̌̌̌
t“0

“ Y pvq “ Tsp 9γp0qq ´Vertv
`
∇ 9γp0qs

˘ P TvE.
59With very minor modifications, Lemma 19.1 is also valid on an arbitrary fiber bundle, assuming only that the

maps P t
γ : Eγp0q Ñ Eγptq are diffeomorphisms. In this case there may not be canonical isomorphisms VvE – Eπpvq

since fibers need not be vector spaces, so the covariant derivative ∇Xs of a section s P ΓpEq in direction X P TpM

naturally takes its value in VsppqE instead of Ep.
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Properties (i) and (ii) above imply that this expression is a linear function of 9γp0q and does not
otherwise depend on the choice of path γ. Writing X :“ 9γp0q, Horv also satisfies

π˚ ˝HorvpXq “ Tπ

ˆ
d

dt
P tγpvq

ˇ̌̌̌
t“0

˙
“ d

dt

`
π ˝ P tγpvq

˘ˇ̌̌̌
t“0

“ d

dt
γptq

ˇ̌̌̌
t“0

“ X,

thus Horv : TpM Ñ TvE is injective and its image HvE :“ imHorv has trivial intersection with
kerπ˚ “ VvE. Finally, we observe that any non-vertical vector ξ P TvEzVvE can be written as
Tsp 9γp0qq for some path γ and section s, and we then have ξ “ Horvp 9γp0qq ` Vertv

`
∇ 9γp0qs

˘ P
HvE ` VvE, thus

HvE ‘ VvE “ TvE.

�

Any subbundle
HE Ă TE

that satisfies TE “ V E‘HE as in Lemma 19.1 is called a horizontal subbundle of TE. Unlike
V E, horizontal subbundles are not unique or canonical, but a choice of horizontal subbundle is
equivalent via the formula HvE “ imHorv to a choice of a smoothly varying family of linear
horizontal lift maps,

Horv : TpM Ñ TvE such that π˚ ˝HorvpXq “ X for all X P TpM.

The lemma tells us that any sensible choice of parallel transport maps for E along smooth paths
in M determines a horizontal subbundle in a natural way. Conversely, any horizontal subbundle
HE Ă TE uniquely determines parallel transport maps by requiring all parallel lifts sptq :“
P tγpvq P E of paths γptq P M to be tangent to HE, i.e. the derivative 9sptq P TsptqE should always
be horizontal, which means it is the horizontal lift of the derivative of γ:

(19.5) 9sptq “ Horsptqp 9γptqq.
This is a first-order ordinary differential equation, so sptq is uniquely determined by the initial
condition sp0q “ v. One can also see this by using horizontal lifts to define a vector field on the
total space of γ˚E as in the proof of Lemma 19.1; the parallel transport maps are then given by
the flow of that vector field.

This is as far as we can go without paying attention to the fact that fibers Ep are vector
spaces, and you may notice that a problem has arisen from this relaxation of assumptions. Indeed,
for an arbitrary choice of horizontal subbundle HE Ă TE, there is no guarantee that the ODE
in (19.5) with any given initial condition sp0q “ v will have solutions beyond an arbitrarily small
interval around t “ 0, and if it does, then the resulting family of maps P tγ : Ep Ñ Eγptq will be
diffeomorphisms, but they need not be linear. The following useful characterization of linearity
will provide an easy remedy for this.

Lemma 19.2. Let V and W be normed vector spaces over F. Then any map F : V ÑW that
is differentiable60 at 0 and satisfies F pλvq “ λF pvq for all scalars λ P F and all v P V is linear.

Proof. The key is to show that under this assumption, F is actually equal to its derivative
at zero, DF p0q : V ÑW . Clearly F p0q “ 0, so we can write

F pvq “ DF p0qv ` }v} ¨Rpvq
60If F “ C, then differentiability of F : V Ñ W can be taken to mean the same thing as in the real case, i.e. we

simply regard V and W as real vector spaces, so the derivative DF p0q : V Ñ W is a real-linear map. It is not
necessary to assume that DF p0q is complex linear, which would be a holomorphicity condition on F .
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for some function R : V ÑW such that limvÑ0 Rpvq “ 0. Then taking λ ą 0,

F pvq “ lim
λÑ0`

1

λ
F pλvq “ lim

λÑ0`
DF p0qλv ` λ}v} ¨Rpλvq

λ
“ DF p0qv ` lim

λÑ0`
}v} ¨Rpλvq “ dF p0qv.

Since DF p0q : V ÑW is real linear, this proves that F also respects vector addition. �

On our vector bundle E ÑM , each scalar λ P F defines a smooth map

mλ : E Ñ E : v ÞÑ λv,

which is a diffeomorphism for λ ‰ 0, and its tangent map pmλq˚ : TE Ñ TE then defines vector
space isomorphisms pmλq˚ : TvE Ñ TλvE for every v P E.

Lemma 19.3. For a given horizontal subbundle HE Ă TE, the following conditions are equiv-
alent:

(i) The parallel transport maps P tγ : Ep Ñ Eγptq defined via (19.5) exist for every t in the
domain of an arbitrary smooth path γ, and are linear.

(ii) For all v P E and λ P F, HλvE “ pmλq˚ pHvEq.
Proof. For any p PM , v P Ep, λ P F and a smooth path γ inM through γp0q “ p, assume first

that P tγ exists and is linear for every t. Writing sptq :“ P tγpvq, we have 9sp0q P HvE by definition.
The corresponding lift with initial condition λv P Ep is then P tγpλvq “ λsptq “ mλ psptqq, implying

d

dt
mλ psptqq

ˇ̌̌̌
t“0

“ pmλq˚ 9sp0q P HλvE,

hence pmλq˚ maps HvE to HλvE. Conversely, if this condition on HE holds, then for λ ‰ 0,
the same calculation implies that sptq is a horizontal lift of γptq if and only if λsptq is. Here it is
convenient to assume λ ‰ 0 so that the map TvE

pmλq˚ÝÑ TλvE is an isomorphism, but since the
fibers of HE vary continuously, one can also take λ Ñ 0 and conclude that at points along the
zero-section

Z :“ ď
pPM

t0u Ă E,

the horizontal subspaces are uniquely determined, namely HvE “ TvZ whenever v P Z. It follows
that solutions to (19.5) with initial condition sp0q “ 0 exist for all t and are identically zero.
This implies in turn that for any t, solutions also exist with initial condition in some sufficiently
small neighborhood of 0, but the ability to find further solutions via multiplication with arbitrary
scalars now produces solutions for all t with arbitrary initial conditions. Moreover, the resulting
diffeomorphisms P tγ : Ep Ñ Eγptq are smooth and respect scalar multiplication, so by Lemma 19.2,
they are linear. �

19.2. Two equivalent definitions. The point of the previous section was to motivate the
following definition.

Definition 19.4 (Connections, version 1). A connection (Zusammenhang) on the vector
bundle π : E ÑM is a choice of subbundle

HE Ă TE

that is complementary to the vertical subbundle V E Ă TE and satisfies pmλq˚ pHEq “ HE for
every scalar λ P F.
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It should not be obvious to you at this stage whether connections always exist—they do, but
this is something we will have to prove„ and the proof unsurprisingly requires a partition of unity.
If a connection is chosen, then it determines the notions of parallel transport, horizontal lifts and
covariant derivatives as we defined them in the previous section.

There are at least two other popular ways to reformulate Definition 19.4. One of them uses
the fact that a connection determines a splitting TE “ V E ‘HE, and splittings of vector spaces
(or bundles) can be characterized in terms of linear projection maps. Indeed, letpK : TE Ñ V E

be the unique smooth linear bundle map that restricts to the identity on V E and vanishes on HE,
so HE “ ker pK. Since each vertical subspace VvE is canonically isomorphic to the fiber Eπppq, we
can compose pK with the resulting canonical map V E Ñ E to produce a map K : TE Ñ E as in
the following definition.

Definition 19.5 (Connections, version 2). A connection (Zusammenhang) on the vector
bundle π : E ÑM is a smooth map K : TE Ñ E such that

(1) For each v P E, K defines a real-linear map TvE Ñ Eπpvq.61
(2) KpVertvpwqq “ w for all v, w P Ep, p PM .
(3) For all scalars λ P F, K ˝ pmλq˚ “ mλ ˝K.

To get from Definition 19.5 back to Definition 19.4, one defines a hoirzontal subbundle HE Ă
TE from K : TE Ñ E by

HE :“ kerpKq Ă TE,

meaning HvE is the kernel of the linear map TvE
KÝÑ Eπpvq.

Exercise 19.6. Show that under the correspondence described above between horizontal sub-
bundles HE Ă TE and maps K : TE Ñ E, the condition pm˚q pHEq “ HE is equivalent to
K ˝ pmλq˚ “ mλ ˝K for all λ P F.

The projectionK : TE Ñ E provides a simpler formula for the covariant derivative of a section
s P ΓpEq in the direction of a tangent vector X P TpM at a point p P M . Recall from (19.4) the
relation

TspXq “ HorsppqpXq `Vertsppq p∇Xsq .
Since K annihilates horizontal vectors, applying it to both sides of this relation gives

(19.6) ∇Xs “ K ˝ TspXq ,
so the covariant derivative is actually just the “vertical part” of the tangent map of s : M Ñ E

in the direction of X , obtained by removing from TspXq its horizontal part and then identifying
the resulting vertical vector with an element of Ep. Note that although the vertical subbundle
is independent of any choices, the notion of a “vertical part” of a vector in TE does depend on
the choice of the complementary subbundle HE Ă TE along which to project it. The covariant
derivative thus depends on the choice of connection, except in certain special situations such as
the following.

Exercise 19.7. Assume E Ñ M is a vector bundle and s P ΓpEq. The zero set (Nullstelle)
of s, sometimes denoted by s´1p0q Ă M , is the set of all points p P M such that sppq is the zero
vector in its respective fiber.

61We emphasize that if F “ C, then E must be treated as a real vector space for the purposes of this condition,
as the tangent spaces TvE are not complex in any natural way. This is because M is only a real manifold, not
complex.
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(a) Show that for any p P s´1p0q the linear map

Dsppq : TpM Ñ Ep : X ÞÑ ∇Xs

is independent of the choice of connection (needed for defining ∇Xs). We call this the
linearization (Linearisierung) of s at p.

(b) We say that s P ΓpEq is transverse to the zero-section (transversal zum Nullschnitt)
if the linearization Dsppq : TpM Ñ Ep is surjective for every p P s´1p0q. Show that
whenever this holds, s´1p0q is a smooth submanifold of M , with dimension dimpMq ´
rankpEq in the case F “ R, or dimpMq ´ 2 rankpEq in the case F “ C.
Hint: Any local trivialization Φα : E|Uα

Ñ Uα ˆ Fm determines a connection on E|Uα

such that covariantly differentiating s over Uα becomes equivalent to differentiating its
local repesentative sα : Uα Ñ F.

20. More on connections

As in the previous lecture, we fix a smooth vector bundle π : E ÑM of rank m over the field
F P tR,Cu, where the base M is a smooth n-manifold.

20.1. The Leibniz rule (a third definition). In our discussion so far, choosing a connection
on π : E Ñ M means choosing a horizontal subbundle HE Ă TE that satisfies the conditions of
Definition 19.4, or equivalently, a map K : TE Ñ E satisfying the conditions of Definition 19.5.
(We will sometimes refer to K as the vertical projection defining the connection.) We have two
ways of writing down the covariant derivative operator determined by this connection: for a section
s P ΓpEq, point p PM and tangent vector X P TpM , we can choose a smooth path γ : p´ǫ, ǫq ÑM

with γp0q “ p and 9γp0q “ X , and write

(20.1) ∇Xs “ d

dt
pP tγq´1 pspγptqqq

ˇ̌̌̌
t“0

P Ep.
Alternatively, we saw in (19.6) that ∇Xs can be written in terms of K : TE Ñ E and the tangent
map Ts : TM Ñ TE of s :M Ñ E as

∇Xs “ KpTspXqq.
While this formula looks simpler, (20.1) is often more useful for proving basic properties of the
covariant derivative, for instance the Leibniz rule in Exercise 20.3 below.

Example 20.1. On the trivial bundle E “ M ˆ Fm, there is a natural trivial connection,
defined by viewing the two factors in the obvious splitting Tpp,vqE “ TpM ‘TvFm “ TpM ‘Fm as
horizontal and vertical subspaces respectively. The vertical projection K : TE Ñ E is then given
by KpX,wq “ w P Fm “ Ev for pX,wq P TpM ‘ Fm “ Tpp,vqE, and the parallel transport maps
P tγ : Eγp0q “ Fm Ñ Fm “ Eγptq are all the identity map on Fm. Under the obvious identification
of sections s P ΓpEq with functions f : M Ñ Fm, the covariant derivative ∇Xs is then simply the
differential dfpXq.

Since ∇Xs depends linearly on X , the covariant derivative of s P ΓpEq in all possible directions
can be packaged as a section

∇s P ΓpHompTM,Eqq
defined by ∇sppqpXq :“ ∇Xs. There is a clear analogy here with differentials: a real-valued
function f :M Ñ R is the same thing as a section of the trivial real line bundleMˆRÑM , and its
differential assigns to every point p PM the linear map dpf : TpM Ñ R. The covariant derivative
of s P ΓpEq similarly assigns to each point p P M a linear map ∇sppq : TpM Ñ Ep : X ÞÑ ∇Xs,
defining what is sometimes called a “bundle-valued” 1-form ∇s P Ω1pM,Eq :“ ΓpHompTM,Eqq.
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Note that if E is a complex vector bundle, then HompTM,Eq means the bundle of real -linear maps
from TM to E, since TM is not naturally a complex bundle. On the other hand, HompTM,Eq
does have a natural complex structure if E is complex, in which case ΓpHompTM,Eqq is also a
complex vector space and one can therefore speak (as in Exercise 20.2 below) of complex-linear
maps ΓpEq Ñ ΓpHompTM,Eqq.

The next two exercises are both easy applications of (20.1), and depend crucially on the fact
that parallel transport maps P tγ : Eγp0q Ñ Eγptq are linear.

Exercise 20.2. Show that the map ∇ : ΓpEq Ñ ΓpHompTM,Eqq is linear.
Exercise 20.3. Show that for any s P ΓpEq and f P C8pM,Fq, the covariant derivative of

fs P ΓpEq in a direction X P TpM at p PM satisfies

∇Xpfsq “ dfpXqsppq ` fppq∇Xs.

This Leibniz rule is often abbreviated in the form

(20.2) ∇pfsq “ df ¨ s` f ∇s.

Exercises 20.2 and 20.3 have a converse of sorts, which leads to yet another equivalent version
of the definition of a connection.

Definition 20.4 (Connections, version 3). A connection (Zusammenhang) on the vector
bundle π : E ÑM is a linear operator

∇ : ΓpEq Ñ ΓpHompTM,Eqq
that satisfies the Leibniz rule (20.2) for all f P C8pM,Fq and s P ΓpEq.

To see that this is equivalent to our previous two definitions, we need to show that every linear
operator ∇ : ΓpEq Ñ ΓpHompTM,Eqq satisfying the Leibniz rule (20.2) is in fact the covariant
derivative operator determined by a unique connection in the sense of Definitions 19.4 and 19.5.
The uniqueness is an easy consequence of (19.4), since for any p P M , X P TpM and v P Ep, one
can choose any section s P ΓpEq with sppq “ v and write

(20.3) HorvpXq “ TspXq ´Vertvp∇spXqq,
thus using the operator∇ to determine the horizontal lift maps Horv, and in this way the horizontal
subbundle HE Ă TE. Existence will follow similarly if we can show that the right hand side of
this expression does not depend on the choice of section s with sppq “ v. The following result will
help, and is important for other reasons as well.

Proposition 20.5. For any two connections ∇, p∇ on π : E Ñ M in the sense of Defini-
tion 20.4, there exists a smooth linear bundle map A : E Ñ HompTM,Eq such that p∇s “ ∇s`As
for all s P ΓpEq.

Proof. We can use a minor adaptation of the notion of C8-linearity from §8.1. For any
two vector bundles E and F , a smooth linear bundle map A : E Ñ F defines a linear map
ΓpEq Ñ ΓpF q : s ÞÑ As that is also C8-linear in the sense that fs is sent to f ¨ As for any
f P C8pM,Fq. Conversely, any C8-linear map pA : ΓpEq Ñ ΓpF q arises in this way from a smooth
linear bundle map A : E Ñ F , meaning in particular that for any s P ΓpEq, the value at any given
point p PM of the section pAs P ΓpF q is determined by sppq P Ep and is otherwise independent of
the section s. The proof of this statement is almost identical to that of Proposition 8.2.

With this understood, we observe that while the term df ¨ s in the Leibniz rule prevents either
of ∇ or p∇ from being a C8-linear map ΓpEq Ñ ΓpHompTM,Eqq, this term is identical for both
connections and thus cancels when we consider A :“ p∇´∇ : ΓpEq Ñ ΓpHompTM,Eqq. It follows
that the latter is C8-linear, and thus arises from a bundle map E Ñ HompTM,Eq. �
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Remark 20.6. By Definition 20.4, the set of all connections on π : E ÑM can be regarded as
a subset of the infinite-dimensional vector space HompΓpEq,ΓpHompTM,Eqqq, but it is not a linear
subspace, e.g. it does not contain the zero element of this space. Proposition 20.5 shows however
that it is an affine space over the vector space ΓpHompE,HompTM,Eqqq, which sits naturally
inside HompΓpEq,ΓpHompTM,Eqqq as the space of all C8-linear maps ΓpEq Ñ ΓpHompTM,Eqq.
This shows in particular that the set of connections is convex.

Returning to (20.3), the right hand side clearly depends on s P ΓpEq only in a neighborhood
of p, thus we are free to restrict our attention to a small neighborhood U Ă M of p on which E
is a trivial bundle. Choosing a trivialization Φ : E|U Ñ U ˆ Fm yields a corresponding choice of
parallel transport isomorphisms, for which sections are parallel if and only if their representations
in the local trivialization are constant—this defines a connection in the sense of our previous two
definitions, and it matches the “trivial” connection of Example 20.1 if we use Φ to identify E|U
with the trivial bundle UˆFm. Let us denote the horizontal lift and covariant derivative operators
for this connection by yHorv and p∇ respectively. According to Proposition 20.5, p∇ “ ∇ ` A for a
bundle map A : E Ñ HompTM,Eq, and (20.3) therefore becomes

HorvpXq “ TspXq ´Vertvp∇spXqq “ TspXq ´Vertv

´p∇spXq ´AvpXq
¯

“ TspXq ´Vertv

´p∇spXq¯`Vertv pAvpXqq “ yHorvpXq `Vertv pAvpXqq .
Now it is clear that the right hand side does not depend on the choice of section s satisfying sppq “ v,
thus proving that any operator ∇ as in Definition 20.4 uniquely determines a horizontal subbundle
HE Ă TE whose covariant derivative operator is ∇. That the parallel transport maps arising
from HE are linear can then be deduced from the assumption that ∇ : ΓpEq Ñ ΓpHompTM,Eqq
is linear: indeed, for any path γ with 9γp0q “ X ‰ 0 P TpM , sections s P ΓpEq that are parallel
along γ are characterized by the condition

∇ 9γptqs “ 0 for all t,

and the set of solutions to this equation is a vector space. It follows via Lemma 19.3 that HE
satisfies the conditions of Definition 19.4, and all three of our definitions of a connection are
therefore equivalent.62

20.2. Local coordinates and Christoffel symbols. There are two standard ways to present
a connection in local coordinates, and both rely mainly on the same two facts: (1) every trivializa-
tion determines a corresponding trivial connection as in Example 20.1, and (2) by Proposition 20.5,
every other connection differs from that one by a bundle map. This bundle map always appears in
coordinates as a so-called “zeroth-order” term, meaning that unlike the covariant derivative itself,
it is not a differential operator.

Fix a local trivialization
Φα : E|Uα

Ñ Uα ˆ Fm

over some open subset Uα ĂM , and let D denote the covariant derivative operator for the resulting
trivial connection on E|Uα

, i.e. the one for which sections are parallel if and only if Φα identifies
them with constant functions. Given any other connection ∇ on E, ∇´D then defines a smooth
linear bundle map A : E|Uα

Ñ HompTM,Eq|Uα
, which we shall write in the form

pAvqX “ ΓαpX, vq P Ep for p P Uα, X P TpM, v P Ep,
62The argument for why Definition 20.4 implies Definition 19.4 unfortunately got skipped in the lecture, due

mainly to absent-mindedness.
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thus defining a smooth bilinear bundle map

Γα : pTM ‘Eq|
Uα
Ñ E|Uα

.

For any section s P ΓpEq, ∇s can now be expressed over Uα in the form

(20.4) ∇Xs “ DXs` ΓαpX, sppqq for p P Uα, X P TpM.

Note that Γα is real linear in the first factor and F-linear in the second. It must be emphasized
that Γα is not globally defined, and it depends on the choice of trivialization.

One sees Γα expressed more often in local coordinates as a set of locally defined functions
with three indices. Assume Uα admits a coordinate chart px1, . . . , xnq; this then determines a
frame pB1, . . . , Bnq for the tangent bundle TM |Uα

. There is similarly a frame pe1, . . . , emq for E|Uα

corresponding to the trivialization Φα. Then there are smooth functions

Γaib : Uα Ñ F, i P t1, . . . , nu, a, b P t1, . . . ,mu
uniquely determined by the condition

ΓαpBi, ebq “ Γaibea.

For any X “ X iBi P TpM and v “ vbeb P Ep at a point p P Uα, we then have

ΓαpX, vq “ ΓαpX iBi, vbebq “ X ivbΓαpBi, ebq “ ΓaibX
ivbea,

so the ath component of ΓαpX, vq P Ep with respect to the frame e1, . . . , em is

pΓαpX, vqqa “ ΓaibX
ivb.

The functions Γaib are called the Christoffel symbols determined by the connection.
Recall that any section s P ΓpEq can be expressed over Uα in terms of its component functions

s1, . . . , sm : Uα Ñ F as s “ saea. Let us write

∇i :“ ∇Bi “ ∇ B
Bxi

for the covariant derivative operator in the ith coordinate direction. One now obtains another
formula for the Christoffel symbols from (20.4), using the observation that the frame sections
e1, . . . , em all satisfy Dea ” 0 by the definition of the trivial connection. Indeed, this together with
(20.4) implies ∇ieb “ ΓαpBi, ebq “ Γaibea, and thus

(20.5) Γaib “ p∇iebqa.
For a general section s “ saea over Uα, we then apply the Leibniz rule to compute

∇is “ ∇ipsbebq “ pBisbqeb ` sb∇ieb “ `Bisa ` Γaibs
b
˘
ea,

where we’ve relabelled the summed index in the first term and used (20.5) in the second term,
giving rise to the formula

(20.6) p∇isqa “ Bisa ` Γaibs
b.

This is of practical use for coordinate computations of covariant derivatives.
You can see from (20.6) that the Christoffel symbols Γaib fully determine the covariant derivative

operator, and therefore the connection, at least over the region Uα. This observation gives rise to
yet another variant of the definition of a connection, one that is not very elegant, but is favored
by physicists: a connection is an association to every open set Uα Ă M with a chart x1, . . . , xn

and local trivialization pUα,Φαq of a set of smooth functions Γaib : Uα Ñ F, which are then fed into
(20.6) to define the covariant derivative. Of course, the functions Γaib cannot be chosen arbitrarily
for all possible local trivializations and charts: once they have been chosen for one particular chart
and trivialization over a set Uα, the connection over Uα is fully determined, and any choice on
a different region Uβ (with different coordinates and trivialization) that overlaps Uα had better
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give the same result on Uα X Uβ. One must therefore derive a suitable transformation formula for
Christoffel symbols under changes of coordinates and local trivializations, and make sure that that
formula is always satisfied. The unfortunate fact is that the correct transformation formula does
not follow from anything we’ve already done, because Christoffel symbols do not define a tensor,
i.e. since Γα always depends on the choice of trivialization Φα and is defined only on Uα, there
is generally no globally defined tensor field or section of any vector bundle whose locally-defined
components are the functions Γaib. This does not make the situation impossible, it only means there
is still some work to be done if you want to use Christoffel symbols as a complete characterization
of a connection. We leave the details as an exercise:

Exercise 20.7. Given a bundle π : E Ñ M and a sufficiently small open set U Ă M , let us
use a coordinate chart px1, . . . , xnq and a frame pe1, . . . , emq to identify E|U with the trivial bundle
V ˆ Fm, where V is an open subset of Rn. Suppose Γaib are the corresponding Christoffel symbols
for some connection ∇ on E. Then another choice of coordinates and frame over the same region
can be expressed via smooth functions

V Ñ Rn : px1, . . . , xnq ÞÑ px̃1, . . . , x̃nq
V Ñ Rm : px1, . . . , xnq ÞÑ ẽ1 “ pẽ11, . . . , ẽm1 q

...

V Ñ Rm : px1, . . . , xnq ÞÑ ẽm “ pẽ1m, . . . , ẽmmq
Let rΓaib denote the Christoffel symbols of ∇ with respect to the coordinates px̃1, . . . , x̃nq and frame
pẽ1, . . . , ẽmq. Derive the transformation formula

rΓaib “ Bxj
Bx̃i ẽ

c
bΓ
a
jc ` Bxj

Bx̃i
B
Bxj ẽ

a
b .

As a special case when E “ TM , show that this becomes

rΓijk “ Bxp
Bx̃j

Bxq
Bx̃k Γ

i
pq ` Bxp

Bx̃j
B
Bxp

ˆ Bxi
Bx̃k

˙
.

Remark: I have to be honest—I don’t actually recommend doing this exercise. But a physicist
would consider it essential.

20.3. Connection 1-forms and G-structures. As an alternative to the Christoffel symbols,
one can express covariant derivatives in local trivializations via matrix-valued 1-forms. Suppose
again that Φα : E|Uα

Ñ Uα ˆ Fm is a trivialization over some open subset Uα ĂM , and write

Φαpvq “ pp, vαq for p P Uα, v P Ep,
thus defining vα P Fm. This is just a pointwise version of our usual “local representation” of sections
s P ΓpEq over Uα as functions sα : Uα Ñ Fm, defined such that

Φα ˝ sppq “ pp, sαppqq for p P Uα.

In terms of local repesentatives, the trivial connection D determined by the trivialization Φα
becomes (cf. Example 20.1) the standard differential, meaning

pDXsqα “ dsαpXq for p P Uα, X P TpM.

Any other connection ∇ is related to this one by a bundle map E Ñ HompTM,Eq over Uα. We
defined the Christoffel symbols by reinterpreting this as a bilinear bundle map TM ‘ E Ñ E,
but we could also choose to interpret it instead as a bundle map TM Ñ EndpEq over Uα. Using
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the trivialization to identify fibers of E with Fm, the fibers of EndpEq then become the space of
matrices Fmˆm, and we deduce the existence of a unique m-by-m matrix-valued 1-form

Aα P Ω1pUα,Fmˆmq
such that the covariant derivative ∇ is given in the local trivialization over Uα by the formula

(20.7) p∇Xsqαppq “ dsαpXq `AαpXqsαppq, for p P Uα, X P TpM,

often abbreviated as
p∇sqα “ dsα `Aαsα.

A word on notation: for any manifold M and any finite-dimensional (real or complex) vector
space V , we will from now on denote by

Ω1pM,V q “ tsmooth “V -valued” 1-forms on Mu
the vector space of smooth maps ω : TM Ñ V whose restrictions ωp : TpM Ñ V to the tangent
space over each point p P M are real-linear maps. In the case V “ Fmˆm seen above, elements
of Ω1pUα,Fmˆmq can also be imagined as m-by-m matrices whose individual entries are smooth
F-valued 1-forms on Uα.

The existence and uniqueness of the connection 1-form Aα P Ω1pUα,Fmˆmq satisfying (20.7)
was deduced above from Proposition 20.5, but if you prefer, you could also derive a precise formula
for Aα from the Christoffel symbols:

Exercise 20.8. Given a coordinate chart px1, . . . , xnq on Uα, show that at each point in Uα
and for each i “ 1, . . . , n, the entries AαpBiqab of the matrix AαpBiq P Fmˆm are the Christoffel
symbols Γaib.

Equation 20.7 leads to yet another somewhat untidy definition of connections that is nonethe-
less popular in the physics world: a connection is a choice of m-by-m matrix-valued 1-forms Aα
over open subsets Uα, one for each local trivialization Φα : E|Uα

Ñ Uα ˆ Fm, such that a certain
transformation property with respect to change of trivializations on overlap regions is satisfied (see
the exercise below).

Exercise 20.9. If g “ gβα : Uα X Uβ Ñ GLpm,Fq is the transition map relating two trivial-
izations Φα and Φβ , show that the connection 1-forms Aα and Aβ are related on Uα X Uβ by

AαpXq “ gppq´1AβpXqgppq ` gppq´1 dgpXq, for p P Uα X Uβ , X P TpM.

This transformation formula is often abbreviated by

(20.8) Aα “ g´1Aβg ` g´1 dg on Uα X Uβ .

Physicists refer to (20.8) as a gauge transformation (Eichtransformation), alluding to the
important role that connection 1-forms play in quantum field theory: in that context they are
called gauge fields, and they serve to model elementary particles such as photons and other “gauge
bosons” that mediate the fundamental forces of nature. The choice of the letter A to denote a con-
nection form is in fact motivated by physics, where the vector potential of classical electromagnetic
field theory (conventionally denoted by A) can be interpreted as a connection form for a trivial
Hermitian line bundle.

There is another reason to use connection 1-forms rather than Christoffel symbols when the
vector bundle has extra structure. In this case it’s appropriate to restrict attention to a particular
class of connections, and it turns out that this restriction can be expressed elegantly via the
connection forms.
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Definition 20.10. Let π : E Ñ M be a vector bundle with a G-structure, for some Lie
subgroup G Ă GLpm,Fq. Then a connection ∇ on E is called G-compatible if all parallel
transport isomorphisms respect the G-structure: this means that for any path γptq P Uα in the
domain of a G-compatible local trivialization Φα : E|Uα

Ñ Uα ˆ Fm, the maps P tγ : Eγp0q Ñ Eγptq
satisfy

Φα ˝ P tγ ˝ Φ´1
α pγp0q, vq “ pγptq, gptqvq for all t and v P Eγp0q,

where gptq P G is a smooth path in G through gp0q “ 1.

The definition seems less abstract when we apply it to particular structures: e.g. for G “ Opmq
or Upmq, the structure in question is a bundle metric, and the condition above means that parallel
transport maps preserve the inner products on the fibers, i.e. they are isometries. In this situation
we call ∇ a metric connection.

Example 20.11. Recall from §18.7 that GLpm,Cq can be regarded as a subgroup of GLp2m,Rq
so that GLpm,Cq-structures on a real vector bundle E ÑM of rank 2m are equivalent to complex
structures on E, which make all fibers into complex m-dimensional vector spaces. A connection
on the real bundle E is then GLpm,Cq-compatible if and only if the parallel transport maps are
complex linear for this complex structure, and ∇ is then called a complex connection. Note: if
we had regarded E as a complex vector bundle in the first place, then choosing a connection ∇

on that bundle would have automatically meant that parallel transport is complex linear, so you
may be wondering why it is useful to single out a special class of “complex connections” on a real
vector bundle. One answer to this question is as follows: as we will soon see, every Riemannian
manifold pM, gq has a canonical connection on its tangent bundle TM ÑM , called the Levi-Cività
connection, which is used for defining the standard Riemannian notions of parallel vector fields
and curvature. In certain situations, especially if M is also a symplectic manifold, it is also useful
to endow M with an almost complex structure (cf. §7.1.4), meaning a bundle map J : TM Ñ TM

that satisfies J2 ” ´1 everywhere, thus making TM Ñ M into a complex vector bundle. While
complex connections on TM always exist, there is no guarantee in general that the Levi-Cività
connection is one—this turns out to be true if and only if g and J satisfy a very rigid compatibility
condition, guaranteeing that J is integrable (cf. Exercise 8.5), henceM in this situation is a complex
manifold with a special type of Riemannian metric, called a Kähler metric.

We will prove in the next lecture that G-compatible connections always exist. The real strength
of connection 1-forms is that they give an easy characterization of the G-compatibility condition.
Recall from §18.1 that the Lie algebra of a Lie subgroup G Ă GLpm,Fq is the tangent space
g :“ T1G Ă T1GLpm,Fq “ Fmˆm.

Theorem 20.12. If E ÑM is a vector bundle with a G-structure and ∇ is a connection on E,
then ∇ is G-compatible if and only if for every G-compatible trivialization Φα, the corresponding
connection 1-form takes values in the Lie algebra g Ă Fmˆm of G, i.e.

Aα P Ω1pUα, gq.
Before proving the theorem, it will be helpful to deal with a minor technical point. We have

occasionally mentioned the notion of a section along a path, meaning the following: given a
path γptq PM , we associate to each t in its domain a vector

sptq P Eγptq,
so strictly speaking, s is a section of the pullback bundle γ˚E. While s is not quite the same thing
as a section of E, there is a straightforward way to define the covariant derivative of s with respect
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to the parameter t: at t “ 0 it is

∇ts|t“0 :“ d

dt
pP tγq´1 psptqq

ˇ̌̌̌
t“0

P Eγp0q,
and one can similarly define ∇tspt0q P Eγpt0q for arbitrary t0 in the domain of γ by reprarametrizing
the path to t ÞÑ γpt0 ` tq, so that it passes through γpt0q at time t “ 0. The section s is then
parallel along γ if and only if ∇ts ” 0. A slightly subtle distinction between this and the usual
covariant derivative of a section of E is that s depends directly on t, not just on γptq P M , so
∇ts can be nonzero even if the path γptq is stationary. For example, if γ is a constant path at a
point p P M , then parallel transport P tγ defines the identity map TpM Ñ TpM for every t, and
∇ts P TpM is then just the ordinary derivative of the path sptq in the vector space TpM . On
the other hand, if 9γp0q ‰ 0, then γ is an embedding near t “ 0 and thus traces out a smooth
1-dimensional submanifold of M ; restricting γ to a suitably small neighborhood of 0, it is then
easy to see that any section s along γ can be “extended” to a global section ps P ΓpEq such thatpspγptqq “ sptq and ∇ 9γptqps “ ∇tsptq for all t.

(Indeed, first write down the extension ps on a neighborhood of γp0q in a slice chart for the image
of γ, then extend it arbitrarily to the rest of M .) In this situation, various useful things we’ve
proven about ∇ps will apply to ∇ts as well: one is the formula ∇Xps “ KpTpspXqq, which becomes

(20.9) ∇tsptq “ Kp 9sptqq,
where we are regarding sptq “ pspγptqq as a smooth path in the total space E, whose derivative is
thus 9sptq “ Tpsp 9γptqq. Another is the coordinate formula (20.7) for ∇Xps in terms of a connection
1-form: assuming γptq lies in the domain Uα of a trivialization Φα : E|Uα

Ñ Uα ˆ Fm and writing
Φαpsptqq “ pγptq, sαptqq, we obtain
(20.10) p∇tsqαptq “ 9sαptq `Aαp 9γptqqsαptq P Fm.

An easy continuity argument now shows that (20.9) and (20.10) are not only valid under the
condition 9γ ‰ 0: they are valid for all smooth paths γ, since a path with 9γpt0q “ 0 at some point
t0 admits arbitrarily small perturbations to one with 9γpt0q ‰ 0, and the section s can be perturbed
along with it.

Proof of Theorem 20.12. Suppose Φα : E|Uα
Ñ Uα ˆ Fm is a local trivialization and γ is

a path in Uα with p :“ γp0q and X :“ 9γp0q. Since parallel transport maps are linear, there exists a
unique function gptq P GLpm,Fq with gp0q “ 1 such that for any parallel section sptq P Eγptq along
γ, the local representative sαptq P Fm defined by Φαpsptqq “ pγptq, sαptqq satisfies

sαptq “ gptqsαp0q.
By (20.10), ∇ts ” 0 implies that gptq is the unique solution with gp0q “ 1 to the linear ODE

9gptq “ ´Aαp 9γptqqgptq.
It suffices then to show that g takes values in the subgroup G (implying ∇ is G-compatible over Uα)
if and only if Aα takes values in its Lie algebra g. Assuming the former, we can plug t “ 0 into the
above equation to conclude AαpXq “ ´ 9gp0q P g, which completes the proof that Aα P Ω1pUα, gq
since p P Uα and X P TpM were chosen arbitrarily. The converse follows from Exercise 20.14
below. �

Exercise 20.13. A smooth time-dependent vector field on a manifold M is a family of
vector fields tXt P XpMqutPI parametrized by an interval I Ă R such that the map IˆM Ñ TM :

pt, pq ÞÑ Xtppq is smooth. A path γptq P M is called an orbit or flow line of the time-dependent
vector field tXtutPI if it satisfies 9γptq “ Xtpγptqq for every t. One can develop the theory of flows
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for time-dependent vector fields analogously to the time-independent case, defining in particular
a smooth map ϕtX on suitable open subsets of M such that γptq :“ ϕtX ppq is the unique orbit of
tXtutPI satisfying γp0q “ p. If you prefer not to redo work that has already been done, you can
instead do this:

(a) Given a time-dependent vector field tXtutPI onM , define a time-independent vector field
Y P XpI ˆMq by

Y pt, pq :“ p1, Xtppqq P Rˆ TpM “ TtI ˆ TpM “ Tpt,pqpI ˆ Y q.
Use the flow of Y to deduce everything you might possibly want to know about the flow
of tXtu, e.g. that ϕtX exists and is unique and is a diffeomorphism M Ñ M for every
t P R if M is compact.
Caution: Do not try to prove the relations ϕs`tX “ ϕsX ˝ ϕtX or ϕ´tX “ pϕtXq´1, which are
valid in general only for time-independent vector fields.

With these basics understood, the following observation will be helpful for Exercise 20.14 below:
(b) Suppose N Ă M is a smooth submanifold and tXtutPI is a time-dependent vector field

on M such that Xtppq P TpN for every p P N and t P I. Show that every flow line of
tXtu is either contained in N or disjoint from it.

Exercise 20.14. For any Lie subgroup G Ă GLpm,Fq and a smooth path of matrices Aptq P
g “ T1G, show that the unique solution Φptq P Fmˆm to the initial value problem#

9Φptq “ AptqΦptq,
Φp0q “ 1

satisfies Φptq P G for all t.
Hint: Show that for any A P g, XpBq :“ AB P Fmˆm “ TBGLpm,Fq defines a smooth vector
field on GLpm,Fq that satisfies XpBq P TBG for all B P G.

Remark 20.15. The notion of a G-structure on a vector bundle makes sense for any subgroup
G Ă GLpm,Fq, i.e. the definition itself does not require the additional condition that G Ă GLpm,Fq
is a smooth submanifold. However, by applying Exercise 20.14, Theorem 20.12 makes crucial use
of this assumption, along with the fact (used in Exercise 20.14) that the matrix multiplication map
FmˆmˆFmˆm Ñ Fmˆm : pA,Bq ÞÑ AB is smooth. In other words, while G-structures on bundles
can be defined for arbitrary subgroups G Ă GLpm,Fq, making connections compatible with these
structures requires the group G to be smooth.

21. Constructions of connections

21.1. A general existence result. Let’s get this out of the way first:

Theorem 21.1. Every vector bundle E Ñ M with a G-structure for some Lie subgroup G Ă
GLpm,Fq admits a G-compatible connection.

Proof. Choose an open covering tUαuαPI of M with a subordinate partition of unity tϕα :

M Ñ r0, 1suαPI such that there are also local G-compatible trivializations Φα : E|Uα
Ñ Uα ˆ Fm

for each α P I. Each of these determines a trivial connection Dα on E|Uα
, which is G-compatible

since its parallel transport maps look like the identity Fm Ñ Fm in the trivialization Φα. We can
then define a global connection ∇ on E by

∇Xs :“
ÿ
αPI

ϕαppqDα
Xs, for p PM , X P TpM,

where it is understood that at each point p, the sum contains only the finitely many terms for
which p P supppϕαq Ă Uα, and Dα is thus well defined near p. That the resulting operator
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∇ : ΓpEq Ñ ΓpHompTM,Eqq is a G-compatible connection follows now by writing it down in local
trivializations. Indeed, each p PM has a neighborhood U ĂM that is contained in all of the sets
Uα for which p P supppϕαq, and choosing any G-compatible trivialization of E|U identifies each
of the relevant operators Dα with an operator of the form dαXf :“ dfpXq ` BαpXqf on functions
f P C8pU ,Fmq, where Bα P Ω1pU , gq since Dα is G-compatible. In this same trivialization, ∇ then
becomes

dXf “
ÿ
α

rϕα dfpXq ` ϕαBαpXqf s “ dfpXq `BpXqf, where B :“ÿ
α

ϕαBα P ΩpU , gq,

and is thus G-compatible by Theorem 20.12. �

It is important to understand that Theorem 21.1 says nothing about uniqueness, and indeed,
connections are in general neither unique nor canonical: in the case G “ GLpm,Fq for instance, one
can produce an infinite-dimensional family of connections by choosing any specific connection∇ and
defining other connections by ∇`A for arbitrary bundle maps A : E Ñ HompTM,Eq. (Something
similar is true for G-compatible connections with arbitrary Lie subgroups G Ă GLpm,Fq if one
considers only bundle maps E Ñ HompTM,Eq that preserve the relevant structure—the space
of such bundle maps is typically still infinite dimensional.) The major exception is the tangent
bundle TM Ñ M of a Riemannian or pseudo-Riemannian manifold: this bundle has structure
group Opk, ℓq determined by the signature pk, ℓq of its bundle metric, and while there is an infinite-
dimensional family of Opk, ℓq-compatible connections on TM , we will see in the next lecture that
a canonical one can be singled out, due to the fact that TM Ñ M is not just any vector bundle
but specifically a tangent bundle.

21.2. Pullbacks. The next two sections will be concerned with the following question: given
a finite collection of vector bundles E1, . . . , Em with connections and a natural operation that
produces a new bundle E out of E1, . . . , Em, how do the connections on E1, . . . , Em determine
one on E? It will usually be obvious how the connection on E should be defined—only a little bit
of effort is then required to check that the result really is a connection.

We start with pullbacks: suppose E Ñ M is a smooth vector bundle, N is a manifold and
f : N ÑM is a smooth map. A section

s P Γpf˚Eq
of the pullback bundle f˚E Ñ N associates to each p P N a vector sppq P Efppq, and is therefore
sometimes called a section of E along f . If a connection ∇ on E Ñ M with parallel transport
maps P tγ : Eγp0q Ñ Eγptq is given, then there is an obvious way to define parallel transport maps
P tγ : pf˚Eqγp0q Ñ pf˚Eqγptq for f˚E Ñ N along a path γ in N , namely

(21.1) P tγ :“ P tf˝γ : pf˚Eqγp0q “ Efpγp0qq Ñ Efpγptqq “ pf˚Eqγptq.
To see that this really defines a connection on f˚E Ñ N , let us translate (21.1) into a definition
of a horizontal subbundle. Confusion can sometimes arise from the fact that fibers of f˚E are
also fibers of E, so it will be helpful to distinguish them by adopting the following slightly verbose
notation: elements of E can be written as pairs

pp, vq P E, for p PM , v P Ep,
while elements of f˚E are written similarly as

pp, vq P f˚E, for p P N , v P Efppq “ pf˚Eqp.
The canonical smooth linear bundle map f˚E Ñ E covering f : N ÑM then takes the form

Ψ : f˚E Ñ E : pp, vq ÞÑ pfppq, vq.
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Equation (21.1) can now be interpreted as saying that a section sptq P pf˚Eqγptq of f˚E along a
path γ in N is parallel if and only if the section Ψ ˝ sptq P Efpγptqq of E along f ˝ γ is parallel.
Differentiating this relation with respect to t gives a corresponding relation between horizontal
subbundles: 9sptq P Tsptqpf˚Eq should be horizontal if and only if BtpΨ˝sqptq “ TΨp 9sptqq P TΨpsptqqE
is horizontal, so that Hpf˚Eq Ă T pf˚Eq must be defined by

Hpp,vqpf˚Eq :“ pTΨq´1
`
Hpfppq,vqE

˘ Ă Tpp,vqpf˚Eq.
To see that this really does define a complement to the vertical subbundle Vpp,vqpf˚Eq, notice that
since Ψ defines isomorphisms between fibers of f˚E and fibers of E, its derivative TΨ defines
isomorphisms between the corresponding vertical subspaces. The condition T pf˚Eq “ V pf˚Eq ‘
Hpf˚Eq then follows from TE “ V E ‘HE via a simple linear-algebraic exercise:

Exercise 21.2. Suppose X,X 1 are vector spaces, V Ă X and V 1, H 1 Ă X 1 are linear subspaces
such that X 1 “ V 1‘H 1, and A : X Ñ X 1 is a linear map that restricts to V Ă X as an isomorphism
onto V 1. Show that the subspace H :“ A´1pH 1q Ă X is then complementary to V , i.e. X “ V ‘H .

Having shown that there is a well-defined horizontal subbundle Hpf˚Eq Ă T pf˚Eq corre-
sponding to the parallel transport maps in (21.1), it follows from Lemma 19.3 that Hpf˚Eq is
a connection on f˚E Ñ N in the sense of Definition 19.4, as the parallel transport maps are
manifestly linear. It is also clear from this definition that if the connection on E is compatible
with some structure group G on E, then the pullback connection is compatible with the induced
G-structure on f˚E.

Example 21.3. For a smooth path γ : I ÑM defined on an open interval I Ă R, a section s
of E Ñ M along γ is the same thing as a section of the pullback bundle γ˚E Ñ I. Let Bt denote
the standard basis vector on TtI “ R for each t P I. Now if ∇ is a connection on E Ñ M and
we equip γ˚E Ñ I with the resulting pullback connection, writing the covariant derivative of s in
terms of parallel transport gives

∇Bts|t“0 “ d

dt
pP tγq´1 psptqq

ˇ̌̌̌
t“0

.

This is of course exactly the same thing as what we have previously denoted by ∇tsp0q; in other
words, the covariant derivative with respect to t of a section of E along a path γptq P M is the
same thing as the covariant derivative (using the pullback connection) of the corresponding section
of γ˚E in the direction of the canonical unit vector field on the interval. This should not be
surprising—if it had not been true, we would have concluded that we have the wrong definition of
the pullback connection and then searched for a different one.

Example 21.4. The following generalization of Example 21.3 is sometimes useful for compu-
tations: consider an open subset V Ă Rd and a smooth map f : V ÑM . A section s P Γpf˚Eq of
E Ñ M along f then assigns to each tuple pt1, . . . , tdq P V a vector spt1, . . . , tdq P Efpt1,...,tdq, and
we can define a covariant derivative with respect to each of the variables t1, . . . , td,

∇ispt1, . . . , tdq P Efpt1,...,tdq, i “ 1, . . . , d,

which literally means the covariant derivative (via the pullback connection) of s P Γpf˚Eq with
respect to the standard basis vector Bi P Tpt1,...,tdqV “ Rd. This makes ∇is another section of f˚E,
so it can be differentiated again, defining iterated covariant derivatives ∇i∇js, ∇i∇j∇ks and so
forth. For example, the partial derivatives of f : V ÑM as defined in §4.1 are vector fields along f ,

Bif P Γpf˚TMq, i “ 1, . . . , d,

so if a connection on TM Ñ M has been chosen, we can now use the pullback connection on
f˚TM Ñ V to define higher (covariant) derivatives of f in the form ∇jBif , ∇k∇jBif and so forth.
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Let us derive a local coordinate formula for ∇tsptq when sptq P Eγptq is a section along a path γ
inM . Assume the image of γ lies in an open subset Uα ĂM for which there is a local trivialization
Φα : E|Uα

Ñ Uα ˆ Fm, and let e1, . . . , em denote the corresponding frame for E over Uα. Assume
also that Uα ĂM admits coordinates x1, . . . , xn, so that the Christoffel symbols Γaib characterizing
∇ on E|Uα

are defined. Writing sptq “ saptqeapγptqq P Eγptq and 9γptq “ 9γiptq Bi P TγptqM , we claim

p∇tsqaptq “ 9saptq ` Γaibpγptqq 9γiptqsbptq.
or more succinctly,

(21.2) p∇tsqa “ 9sa ` pΓaib ˝ γq 9γisb.
It suffices to prove that this holds at t “ 0, since the parametrization of γ can always be shifted, and
in fact, we are also free to assume 9γp0q ‰ 0, for the following reason. Unless dimM “ 0 (in which
case the statement is trivial and there is nothing to prove), any path γ in M can be perturbed if
necessary to ensure 9γp0q ‰ 0, and the section s can be perturbed with it to a section along the
perturbation of γ. If the relation (21.2) is satisfied after this perturbation, then it must have been
satisfied beforehand as well, simply because both sides are continuous with respect to C1-small
perturbations of γ and s. With this understood, the condition 9γp0q ‰ 0 allows us to assume after
restricting to a suitably small neighborhood of 0 that γ is an embedding, so its image is a smooth
1-dimensional submanifold of M . One can then use a slice chart on M for this submanifold in
order to construct a section η P ΓpEq such that sptq “ ηpγptqq for all t, and it then follows from the
definition of the covariant derivative via parallel transport that ∇tsp0q “ ∇ 9γp0qη. Writing 9γ “ 9γiBi
and ∇ 9γη “ 9γi∇iη, (20.6) now implies

p∇tsp0qqa “ 9γip0q “Biηapγp0qq ` Γaibpγp0qqηbpγp0qq
‰ “ Btpηa ˝ γqp0q ` Γaibpγp0qqpηb ˝ γqp0q,

which justifies (21.2).
Recall from Exercise 20.8 that the connection 1-form Aα P Ω1pUα,Fmˆmq can be derived from

the Christoffel symbols by AαpBiqab “ Γaib, so for X “ X iBi, AαpXqab “ ΓaibX
i. The expression

Γaibpγptqq 9γptq in (21.2) can therefore be reinterpreted as Aαp 9γptqqab, and the formula thus reproduces
(20.10), i.e.

p∇tsqα “ 9sα `Aαp 9γqsα.
In the general situation where N is an arbitrary manifold with a smooth map f : N ÑM and

s P Γpf˚Eq, we can compute the covariant derivative ∇Xs in any direction X P TN by choosing
a path γ in N with 9γp0q “ X and computing ∇tps ˝ γqp0q, i.e. ∇Xs is the covariant derivative
at t “ 0 of s ˝ γptq P pf˚Eqγptq “ Ef˝γptq, which is a section of E along the path f ˝ γ. Writing
sppq “ sappqeapfppqq for p P f´1pUαq, (21.2) thus implies

(21.3) p∇Xsqa “ dsapXq ` Γaibpfppqqpf˚Xqisbppq, for p P f´1pUαq, X P TpM.

To rewrite this in terms of a connection 1-form, observe that the frame e1, . . . , em corresponding
to our trivialization Φα on Uα determines a local frame for f˚E over the open set f´1pUαq Ă N ,
consisting of the sections e1 ˝ f, . . . , em ˝ f , and the local trivialization of f˚E corresponding to
this is the one that we called

f˚Φα : pf˚Eq|f´1pUαq Ñ f´1pUαq ˆ Fm

in §17.2. For s P Γpf˚Eq, let sα : f´1pUαq Ñ Fm denote the local representation of s in this
trivialization; then (21.3) becomes

p∇Xsqα “ dsαpXq `Aαpf˚Xqsαppq, for p P f´1pUαq, X P TpM.
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In other words, the connection 1-form for the pullback connection on f˚E with respect to the
trivialization f˚Φα is exactly what one would hope for: it is the pullback of Aα,

f˚Aα P Ω1pf´1pUαq,Fmˆmq.
Exercise 21.5. Any section s P ΓpEq gives rise to a section along f : N Ñ M in the form

s ˝ f P Γpf˚Eq. Prove
∇X ps ˝ fq “ ∇f˚Xs for all X P TN.

21.3. Algebraic operations. We shall now run through the essential items on the list of
algebraic constructions of vector bundles in §17.4, and outline how to construct connections on
each of them. Assume throughout that E,F Ñ M are fixed vector bundles on which connections
(both labelled ∇) have already been chosen.

21.3.1. Direct sums. The natural way to define parallel transport for E‘F out of the parallel
transport on E and F along a path γ is

P tγpv, wq :“ pP tγpvq, P tγpwqq P Eγptq ˆ Fγptq, for pv, wq P Eγp0q ˆ Fγp0q.
The notion of covariant differentiation on ΓpE‘F q that arises from this definition is quite straight-
forward: under the obvious identification of ΓpE ‘ F q with ΓpEq ˆ ΓpF q, we have

∇Xpη, ξq “ p∇Xη,∇Xξq.
It is trivial to check that ∇ : ΓpE ‘ F q Ñ ΓpHompTM,E ‘ F qq by this definition satisfies the
required Leibniz rule and thus defines a connection on E ‘ F .

21.3.2. The dual bundle. The isomorphisms P tγ : Eγp0q Ñ Eγptq determine isomorphisms P tγ :

E˚
γp0q Ñ E˚

γptq by dualization, i.e. for λ P E˚
γp0q and v P Eγptq, we define

P tγpλqv :“ λ
`pP tγq´1v

˘
.

Equivalently, this means that if λptq P E˚
γptq and vptq P Eγptq are parallel sections along γ, then the

natural pairing between them is constant, so

(21.4) P tγpλq
`
P tγpvq

˘ “ λpvq for all t.

It follows for instance that if e1, . . . , em is a frame for E near γp0q consisting of sections that are
parallel along γ, then the sections in the dual frame e1˚, . . . , em˚ are also parallel along γ. From
(21.4), one deduces that the covariant derivative satisfies a Leibniz rule for the pairing of E˚ and E:
for any sections λptq P E˚

γptq and vptq P Eγptq along γ, we have
d

dt
rλptq pvptqqs

ˇ̌̌̌
t“0

“ d

dt
pP tγq´1pλptqq `pP tγq´1pvptqq˘ˇ̌̌̌

t“0

“ ∇tλp0q pvp0qq ` λp0q p∇tvp0qq ,
which implies a statement about directional derivatives of the function λpvq P C8pM,Fq for λ P
ΓpE˚q and v P ΓpEq with respect to a vector field X P XpMq, namely

(21.5) LX rλpvqs “ p∇Xλq pvq ` λ p∇Xvq .
This relation uniquely characterizes the operator ∇ : ΓpE˚q Ñ ΓpHompTM,E˚qq, and can thus be
used to give an easy proof that it really does define a connection:

Exercise 21.6. Deduce from (21.5) that the operator∇ : ΓpE˚q Ñ ΓpHompTM,E˚qq satisfies
the Leibniz rule required by Definition 20.4 and thus determines a connection on E˚ ÑM .

Exercise 21.7. In terms of the Christoffel symbols Γaib “ p∇iebqa defined with respect to a
coordinate chart px1, . . . , xnq and frame e1, . . . , em for E over an open set U Ă M , show that the
induced connection on E˚ acts on the dual frame e1˚, . . . , em˚ by

p∇ie
b˚qa “ ´Γbia,



182 FIRST SEMESTER (DIFFERENTIALGEOMETRIE I)

and deduce the general coordinate formula

p∇iλqa “ Biλa ´ Γbiaλb

for λ P ΓpE˚q.
A few extra comments about the special case E “ TM are in order. Here a chart px1, . . . , xnq :

U Ñ Rn also defines a natural frame over U , consisting of the coordinate vector fields B1, . . . , Bn,
and the resulting Christoffel symbols consist of n3 real-valued functions

Γijk : U Ñ R, i, j, k P t1, . . . , nu
given by

Γijk “ p∇jBkqi “ dxi p∇jBkq .
In local coordinates, the covariant derivative of a vector field X “ X iBi is thus given (cf. Equa-
tion (20.6)) by

(21.6) p∇jXqi “ BjX i ` ΓijkX
k.

For the induced connection on the dual bundle T ˚M , we observe that the covariant derivative ∇λ
of a 1-form λ P ΓpT ˚Mq “ Ω1pMq is a section of HompTM, T ˚Mq and can thus be identified in a
natural way with a type p0, 2q tensor field ∇λ P ΓpT 0

2Mq, i.e. we define
p∇λqpX,Y q :“ p∇XλqpY q.

The components of∇λ in local coordinates thus take the form p∇λqij “ p∇λqpBi, Bjq :“ p∇iλqpBjq “:
p∇iλqj , and Exercise 21.7 gives

(21.7) p∇λqij “ Biλj ´ Γkijλk.

The tensor ∇λ P ΓpT 0
2Mq is our newest and best answer to the question first posed in Lec-

ture 8 concerning how one should go about defining the “derivative” of a tensor field, in this case
specifically a 1-form. One of the answers we came up with in Lecture 8 was the exterior derivative
dλ P Ω2pMq, which is also a type p0, 2q tensor, but it carries less information: if you compare the
local coordinate formulas we have for ∇λ and dλ, you’ll notice that the individual partial deriva-
tives Biλj cannot all be derived from dλ, but from ∇λ they can. In that sense, ∇λ is a better
way of defining the derivative of λ, but it has the comparative disadvantage that it depends on a
choice, since connections can always be chosen but are not unique.

21.3.3. Tensor bundles. If A : V Ñ V 1 and B : W Ñ W 1 are linear maps, there is a unique
linear map

AbB : V bW Ñ V 1 bW 1

defined via the condition pAbBqpv bwq “ Av bBw for all v P V and w PW . This determines a
natural definition for parallel transport maps P tγ : Eγp0q b Fγp0q Ñ Eγptq b Fγptq, via the condition

P tγpη b ξq :“ P tγpηq b P tγpξq for all η P Eγp0q, ξ P Fγp0q.
In particular, the pointwise tensor product of any parallel sections of E and F along γ then becomes
a parallel section of EbF . As in §21.3.2, this gives rise to a Leibniz rule for the covariant derivative:

∇t pηptq b ξptqq|t“0 “
d

dt
pP tγq´1pηptqq b pP tγq´1pξptqq

ˇ̌̌̌
t“0

“ ∇tηp0q b ξp0q ` ηp0q b∇tξp0q,
implying that for any η P ΓpEq, ξ P ΓpF q and X P XpMq,
(21.8) ∇Xpη b ξq “ ∇Xη b ξ ` η b∇Xξ.

Once again, this uniquely characterizes the covariant derivative and can be used to prove that
what we have defined really is a connection on E b F :
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Exercise 21.8. Deduce from (21.8) that the operator ∇ : ΓpE b F q Ñ ΓpHompTM,E b F qq
defined above is a connection on E b F .

By finite iterations, one can extract from the constructions in this section and §21.3.2 a defini-
tion of a connection on any of the tensor bundles Ekℓ – Ebk bpE˚qbℓ that is uniquely determined
by any choice of connection on E. Moreover, it is uniquely characterized by the property that all
Leibniz rules one can reasonably think of to write down are satisfied. For example, the induced
connection on E1

2 is related to the chosen connection on E and the induced connection on E˚ by

LX pSpλ, η, ξqq “ p∇XSqpλ, η, ξq ` Sp∇Xλ, η, ξq ` Spλ,∇Xη, ξq ` Spλ, η,∇Xξq
for all S P ΓpE1

2 q, λ P ΓpE˚q and η, ξ P ΓpEq, and this relation uniquely determines ∇S.
In the case E “ TM , the covariant derivative of a type pk, ℓq tensor field S P ΓpT kℓ Mq can be

understood as a type pk, ℓ` 1q tensor field ∇S P ΓpT kℓ`1Mq by defining

p∇Sqpλ1, . . . , λk, X0, . . . , Xℓq :“ p∇X0
Sqpλ1, . . . , λk, X1, . . . , Xℓq.

In local coordinates, the components of ∇S thus take the form

p∇Sqi1...ikj0...jℓ “ p∇j0Sqi1...ikj1...jℓ “ p∇Bj0Sq
`
dxi1 , . . . , dxik , Bj1 , . . . , Bjℓ

˘
.

Exercise 21.9. For a connection on TM with Christoffel symbols Γijk in some choice of local
coordinates, show that the induced connection on T kℓ M is given in the same coordinates by

p∇Sqi1...ikj0...jℓ “ Bj0Si1...ikj1...jℓ ` Γi1j0aS
ai2...ik

j1...jℓ
` . . .` Γikj0aS

i1...ik´1a
j1...jℓ

´ Γaj0j1S
i1...ik

aj2...jℓ
´ . . .´ Γaj0jℓS

i1...ik
j1...jℓ´1a

for S P ΓpT kℓ Sq. Notice that this formula generalizes both (21.6) and (21.7).

21.3.4. Bundles of linear maps. Since HompE,F q is canonically isomorphic to E˚ b F , the
constructions in §21.3.2 and §21.3.3 determine a natural connection on HompE,F q.

Exercise 21.10. Show that the connection on HompE,F q is uniquely determined from the
connections on E and F via the Leibniz rule

∇XpAηq “ p∇XAqpηq `Ap∇Xηq for all A P ΓpHompE,F qq, η P ΓpEq and X P XpMq.
Hint: It suffices to consider bundle maps A : E Ñ F of the form Aη “ λpηqξ for fixed sections
λ P ΓpE˚q and ξ P ΓpF q. (Why?)

21.4. Tangent bundles, torsion and symmetry. For the rest of this lecture we specialize
to the rank n real vector bundle

TM ÑM

over a smooth n-manifoldM . A connection on TM ÑM is also often referred to as a connection
on the manifold M : it defines in particular the notion of parallel vector fields. Using the
constructions in §21.2 and §21.3, it also determines connections on all of the tensor bundles T kℓ M Ñ
M and the pullback f˚TM Ñ N for any smooth map f : N ÑM . We will always assume when a
connection ∇ on TM has been specified that the bundles T kℓ M and f˚TM are endowed with the
connections determined by ∇ in this way.

For covariant derivatives of vector fields, a natural question arises that would not make sense
on an arbitrary vector bundle. Suppose V Ă Rd is an open set and f : V Ñ M is a smooth
map as discussed in Example 21.4, so that we can define partial derivatives Bjf P Γpf˚TMq and
then covariantly differentiate to define second derivatives ∇iBjf P Γpf˚TMq. Do mixed partial
derivatives in this sense commute, i.e. we do we have

∇iBjf “ ∇jBif for all i, j?
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The question can easily be answered via a local coordinate computation: choose a chart pU , xq
on M with coordinates x “ px1, . . . , xnq and, on the subset in V where f has image in U , write
fk :“ xk ˝ f for each k “ 1, . . . , n so that Bif “ Bifk Bk. Applying (21.3) then gives

p∇iBjf ´∇jBifqk “ BiBjfk ´ BjBifk ` ΓkabpBifaqpBjf bq ´ ΓkabpBjfaqpBif bq
“ pΓkab ´ ΓkbaqpBifaqpBjf bq.

The only way to make sure this vanishes for arbitrary maps f : V ÑM is if the Christoffel symbols
satisfy the relation

Γkab “ Γkba for all k, a, b P t1, . . . , nu.
There is no reason why an arbitrary connection on TM Ñ M should satisfy this; in fact, on the
domain of a single chart one can always define a connection whose Christoffel symbols are any
desired set of n3 functions, which need not be related to each other in any way. But differential
geometers have a favorite trick for situations like this: when we see a quantity that doesn’t always
vanish even though we wish it would, we make it into a tensor.

Exercise 21.11. Given a connection ∇ on the manifold M , prove that the bilinear map
T : XpMq ˆ XpMq Ñ XpMq given by

T pX,Y q :“ ∇XY ´∇YX ´ rX,Y s
defines a type p1, 2q tensor field on M , whose components in any local coordinate system are given
by

T ijk “ Γijk ´ Γikj .

The tensor T P ΓpT 1
2Mq in Exercise 21.11 is called the torsion of the connection ∇, and ∇

is called symmetric if its torsion tensor vanishes. Note that since the Christoffel symbols Γijk
are not the components of any globally-defined tensor field, it is at first glance far from obvious
that Γijk ´ Γikj should be. One can check using the transformation formula in Exercise 20.7 that
the functions Γijk ´ Γikj do indeed transform as a tensor, but this is tedious; we should be very
grateful in Exercise 21.11 that we can instead use C8-linearity to write down a coordinate-invariant
definition of the torsion tensor.

As soon as one knows that connections on TM Ñ M exist and have a well-defined torsion
tensor, it is not hard to see that symmetric connections also exist:

Exercise 21.12. Given any connection ∇ on M with torsion tensor T P ΓpT 1
2Mq, show thatp∇XY :“ ∇XY ´ 1

2
T pX,Y q defines a symmetric connection on M .

A second proof that symmetric connections always exist will emerge in the next lecture when
we discuss connections on Riemannian manifolds. Let us conclude for now by stating the most
useful property of symmetric connections, which follows immediately from the calculations above:

Proposition 21.13. A connection ∇ on a manifold M is symmetric if and only if for every
open set V Ă Rd and smooth map f : V Ñ M , the relation ∇iBjf ” ∇jBif holds for all i, j P
t1, . . . , du. �

Remark 21.14. Symmetry of a connection does not imply that one can also exchange the
order of the operators ∇i and ∇j in higher covariant derivatives. That is not true in general, and
we will come back to this subject when we discuss curvature.
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22. Pseudo-Riemannian manifolds and geodesics

22.1. Geodesics and the exponential map. We will be assuming in most of this lecture
that M is a Riemannian or pseudo-Riemannian manifold, but the general definition of a geodesic
does not actually require so much structure; it only requires a connection ∇ on M , by which we
mean a connection on the tangent bundle TM Ñ M . The defining property of a straight line
γ : pa, bq Ñ Rn in Euclidean space is that its velocity 9γptq P Rn is constant. The obvious analogue
of this condition for a path γ : pa, bq Ñ M is that its velocity 9γ P Γpγ˚TMq should be parallel
along γ, leading to the geodesic equation

∇t 9γ ” 0.

Paths γ : pa, bq Ñ M that satisfy this condition are called geodesics (Geodäten or geodätische
Linien) in M . It should be emphasized that the notion of a geodesic depends on the choice of
connection, though we will see shortly that if a pseudo-Riemannian metric g is given, then the
connection can be chosen canonically, so that the notion of a geodesic depends only on g.

When γ : pa, bq ÑM passes through the domain U ĂM of a chart px1, . . . , xnq, its coordinates
define a path pγ1ptq, . . . , γnptqq in Rn, and using (21.2), the geodesic equation then becomes a
system of n second-order nonlinear differential equations for the functions γiptq P R, namely

:γiptq ` Γijkpγptqq 9γjptq 9γkptq “ 0 for all t,

or in succinct form,

(22.1) :γi ` Γijk 9γj 9γk ” 0.

As a second-order system on an open set in Rn, (22.1) has a unique solution near any point t “ t0
with any given initial position γpt0q and velocity 9γpt0q. It follows that for every p P M and
X P TpM , there exists a unique geodesic

pa, bq ÑM : t ÞÑ γXptq, such that ∇t 9γX ” 0, γXp0q “ p and 9γXp0q “ X.

Here ´8 ď a ă 0 ă b ď 8, and pa, bq is assumed to be the largest possible interval on which the
solution γX exists. The point γXptq P M is defined for all pairs pt,Xq belonging to some open
subset of R ˆ TM , and it depends smoothly on both t and X ; this follows from the standard
theorem about smooth dependence on initial conditions for ODEs.

Exercise 22.1. Show that for any geodesic γ : pa, bq Ñ M and any constant c P R, the path
defined by pγptq :“ γpctq on the appropriate interval is also a geodesic.

An interesting consequence of Exercise 22.1 is that the point γXptq doesn’t just depend
smoothly on t and X , it depends in fact only on their product tX P TM . Indeed, consider a
pair of colinear vectors X1, X2 P TpM with X2 “ cX1 for some c P R. If γ1 and γ2 are the unique
geodesics through p with 9γ1p0q “ X1 and 9γ2p0q “ X2, then Exercise 22.1 implies γ2ptq “ γ1pctq
for all t, hence γ1pt1q “ γ2pt2q whenever t1 “ ct2, which means t2X2 “ ct2X1 “ t1X1. To put this
observation in its most useful form, we define the open set

O :“ tX P TM | 1 is in the domain of γXu
and the smooth function

exp : O ÑM : X ÞÑ γXp1q.
Note that the domain of exp contains the zero-section of TM since geodesics with 9γp0q “ 0 can be
defined for all time (they are constant). The discussion above proves:

Proposition 22.2. For each p P M and X P TpM , IX :“  
t P R

ˇ̌
tX P O

(
is an open

interval containing 0, and γ : IX Ñ M : t ÞÑ expptXq is the maximal geodesic through γp0q “ p

with 9γp0q “ X. �
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We call exp : TM Ą O ÑM the exponential map. For a point p PM , its restriction to an
individual tangent space Op :“ O X TpM is sometimes denoted by

expp : Op ÑM,

and it satisfies exppp0q “ p since the unique geodesic γ with 9γp0q “ 0 P TpM is constant. Moreover,
Proposition 22.2 implies that the derivative of expp at 0 P TpM is the identity map,

T0pexppq : T0pTpMq “ TpM Ñ TpM : X ÞÑ d

dt
expptXq

ˇ̌̌̌
t“0

“ X,

so that by the inverse function theorem, expp maps a sufficiently small neighborhood of 0 in TpM
diffeomorphically onto a neighborhood of p in M .

The terminology “exponential map” can be motivated in part by the following example: if S1

is regarded as the unit circle in C “ R2, then there is a natural connection on S1 for which the
geodesics passing through 1 at time t “ 0 are precisely the paths of the form γptq “ eiθt “: expptiθq
for θ P R, which satisfy 9γp0q “ iθ P iR “ T1S

1.

22.2. The Levi-Cività connection. For the rest of this lecture, assume pM, gq is a pseudo-
Riemannian manifold, which means the tangent bundle TM Ñ M is equipped with a (possibly
indefinite) bundle metric and thus has structure group Opk, ℓq for some integers k, ℓ ě 0 with
k`ℓ “ n “ dimM . If pk, ℓq “ pn, 0q, then g is positive and pM, gq is called a Riemannian manifold
(without the “pseudo-”). We will sometimes need to assume this, but most of what we do in the
present lecture will be equally valid for indefinite metrics. We will often use inner product notation
as a synonym for g,

x , y :“ gp¨, ¨q,
reserving the notation g P ΓpT 0

2Mq mainly for situations where its role as a tensor field needs to
be emphasized. The bundle metric gives TM Ñ M structure group Opk, ℓq, so we can speak of
Opk, ℓq-compatible connections, also known as metric connections.

Exercise 22.3. Show that the following conditions for a connection ∇ on a vector bundle
E ÑM with bundle metric g “ x , y P ΓpE0

2q are equivalent:
(i) ∇ is a metric connection;
(ii) For all X P XpMq and η, ξ P ΓpEq, LXxη, ξy “ x∇Xη, ξy ` xη,∇Xξy;
(iii) The induced connection on E0

2 satisfies ∇g ” 0.

A connection on a real vector bundle with bundle metric g is said to be compatible with g

if it is a metric connection, or equivalently, if it satisfies any of the conditions in Exercise 22.3.
The next result is sometimes called the fundamental theorem of (pseudo-)Riemannian geom-

etry, because almost every other result in the subject depends on it. It is independent of our
previous proof that connections on vector bundles always exist, so if you combine it with the the-
orem that every manifold admits a Riemannian metric, it implies a second proof of the fact that
every manifold admits a symmetric connection.

Theorem 22.4. For any pseudo-Riemannian manifold pM, gq, there exists a unique connection
on TM ÑM that is symmetric and compatible with g.

Proof. We first show uniqueness: assuming ∇ is such a connection, Exercise 22.3 implies
that for any vector fields X , Y and Z, we have the three relations

LXxY, Zy “ x∇XY, Zy ` xY,∇XZy,
LY xZ,Xy “ x∇Y Z,Xy ` xZ,∇YXy,
LZxX,Y y “ x∇ZX,Y y ` xX,∇ZY y.
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Adding the first two, subtracting the third and using the assumption T pX,Y q “ ∇XY ´∇YX ´
rX,Y s ” 0, we find

LXxY, Zy ` LY xZ,Xy ´ LZxX,Y y
“ x∇XY `∇YX,Zy ` xY,∇XZ ´∇ZXy ` xX,∇Y Z ´∇ZY y
“ x2∇XY, Zy ´ xrX,Y s, Zy ` xrX,Zs, Y y ` xrY, Zs, Xy,

thus

(22.2) x∇XY, Zy “ 1

2

´
LXxY, Zy ` LY xZ,Xy ´ LZxX,Y y

` xrX,Y s, Zy ´ xrX,Zs, Y y ´ xrY, Zs, Xy .̄
A straightforward (though slightly tedious) calculation shows that the right hand side of this
expression is C8-linear with respect to X and Z. It therefore associates to every Y P XpMq a
tensor field SY P ΓpT 0

2Mq such that (22.2) can be rewritten in succinct form as

x∇XY, ¨y “ SY pX, ¨q.
This uniquely determines ∇XY , since by the nondegeneracy of g, the map TpM Ñ Tp̊M : Z ÞÑ
gppZ, ¨q is an isomorphism for every p PM , implying that XpMq Ñ Ω1pMq : Z ÞÑ xZ, ¨y is also an
isomorphism. If one now defines ∇XY in terms of SY pX, ¨q via this relation for every Y P XpMq
and X P TM , one can check that it satisfies the required Leibniz rule and is thus a connection
on M , in addition to being symmetric and compatible with g. �

The connection in Theorem 22.4 is called the Levi-Cività connection on pM, gq. Whenever
we discuss pseudo-Riemannian manifolds from now on, we will always use the Levi-Cività connec-
tion for computations on its tangent bundle, along with the various induced connections that it
determines on associated bundles such as T ˚M and T kℓ M . The first hint that this might be the
“right” thing to do comes from the fact that the Levi-Cività connection does not depend on any
choices other than the metric; this is the first time we have seen a connection that is not some kind
of arbitrary choice. The real justification for using this in preference to any other connection will
come from the multitude of geometrically-motivated theorems that we can use it to prove, e.g. the
fact (to be proved in the next lecture) that for the Levi-Cività connection on a Riemannian man-
ifold, geodesics are not only the natural generalization of the notion of a “straight line” but also
define shortest paths between nearby points.

22.3. Musical isomorphisms and coordinates. We would like to write down an explicit
local coordinate formula for the Levi-Cività connection. The following algebraic remarks serve as
preparation for this.

On a real vector bundle E Ñ M , any bundle metric x , y determines a natural smooth linear
bundle map

5 : E Ñ E˚ : v ÞÑ v5 :“ xv, ¨y.
The nondegeneracy of x , y implies that 5 is injective on every fiber, and it is therefore a bundle
isomorphism; note that this is true for any nondegenerate bilinear form, so in particular x , y may
be an indefinite bundle metric, it need not be positive. The inverse of 5 is denoted by

7 : E˚ Ñ E : v ÞÑ v7,

and notation motivates terminology: we call 5 and 7 the musical isomorphisms determined by
x , y.
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As an isomorphism, 5 can be used to transfer all data from E to E˚, e.g. it gives a natural
definition of a bundle metric on E˚, namely

(22.3) xλ, µy :“ xλ7, µ7y for λ, µ P E˚ ‘E˚.

Exercise 22.5. Assume ∇ is a metric connection on E. Show:
(a) For the induced connections on HompE,E˚q and HompE˚, Eq, ∇p5q ” 0 and ∇p7q ” 0.
(b) The induced connection on E˚ is compatible with the bundle metric (22.3).

Choose a frame e1, . . . , em for E over some open set U Ă M , let e1˚, . . . , em˚ denote the dual
frame, and denote the resulting components of the bundle metrics on E and E˚ by

gij :“ xei, ejy, gij :“ xei˚, ej˚y.
For v “ viei, w “ wiei P Ep and λ “ λie

i˚, µ “ µie
i˚ P Ep̊ at a point p P U , one then has

(22.4) xv, wy “ gijv
iwj , xλ, µy “ gijλiµj .

The convention for the musical isomorphisms is that for v P Ep or λ P Ep̊ , one writes the compo-
nents of v5 and λ7 with the same symbol but with the index raised or lowered, thus

η “ ηiei ô η5 “ ηie
i˚, and λ “ λie

i˚ ô λ7 “ λiei.

Philosophically, this means in some sense that we are considering vectors in E and dual vectors in
E˚ to be two distinct presentations of the same fundamental object. Since xv, wy “ v5pwq “ w5pvq
and xλ, µy “ xλ7, µ7y “ λpµ7q “ µpλ7q, the bundle metrics on E and E˚ can now be written in the
appealing form

xv, wy “ viwi “ viw
i, xλ, µy “ λiµ

i “ λiµi.

Comparing this with (22.4), you may notice that it implies explicit coordinate formulas for the
maps 5 and 7, namely

vi “ gijv
j , and λi “ gijλj .

Since 7 “ 5´1, it follows that the m-by-m matrices with entries gij and gij are inverse to each
other, i.e.

(22.5) gijg
jk “ δki .

One can always deduce the components gij from this fact once the gij are known.

Remark 22.6. It was important throughout this discussion that E is a real vector bundle,
not complex. Several details would need to modified if E were a complex bundle, starting with
the observation that 5 and 7 as we defined them are no longer bundle isomorphisms, as they are
complex antilinear, not complex linear.

Specializing to the case where E “ TM for a pseudo-Riemannian manifold pM, gq, we can
define the musical isomorphisms 5 : TM Ñ T ˚M and 7 : T ˚M Ñ TM as above, use them to define
a bundle metric x , y on T ˚M , then fix a chart pU , xq and write

gij “ xBi, Bjy, gij “ xdxi, dxjy on U .

Setting X :“ Bi, Y :“ Bj and Z :“ Bk, ∇XY can be expressed in terms of the Christoffel symbols
using (20.5), and we thus have

x∇XY, Zy “ x∇iBj, Bky “ xΓaijBa, Bky “ gakΓ
a
ij .

If ∇ is the Levi-Cività connection, then (22.2) equates this with 1
2
pBigjk ` Bjgki ´ Bkgijq, in which

the Lie bracket terms from (22.2) do not appear since coordinate vector fields always commute
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with each other. Applying (22.5) now gives a formula for explicitly computing the Levi-Cività
connection: its Christoffel symbols are

(22.6) Γℓij “ 1

2
gkℓ pBigjk ` Bjgik ´ Bkgijq .

Example 22.7. Consider Rn with what we will henceforth call the standard Euclidean
metric, meaning the Riemannian metric defined via the Euclidean inner product. The Levi-
Cività connection is in this case exactly what you would expect: since the components gij “ δij
of the metric are all constant, the Christoffel symbols computed via (22.6) all vanish identically,
and ∇ is therefore the trivial connection on the trivial bundle TRn “ Rn ˆ Rn. Note that this is
true for any choice of pseudo-Riemannian metric on Rn whose components are constant, including
indefinite metrics such as the Minkowski metric of special relativity. The geodesic equation for
paths γ : pa, bq Ñ Rn is thus :γ “ 0, and its solutions are straight lines with constant speed.

Exercise 22.8. The Poincaré half-plane pH, hq is the 2-manifold

H “ tpx, yq P R2 | y ą 0u Ă R2

with Riemannian metric

hpx,yqpX,Y q “ 1

y2
xX,Y yE for X,Y P Tpx,yqH “ R2,

where x , yE denotes the Euclidean inner product on R2. As we will later see, this is an example
of a surface with constant negative curvature.

(a) Using the obvious global coordinates, derive the Christoffel symbols for the Levi-Cività
connection on pH, hq and show that for this connection, the geodesic equation can be
written as

:x´ 2

y
9x 9y “ 0, :y ` 1

y
p 9x2 ´ 9y2q “ 0

for a smooth path γptq “ pxptq, yptqq.
(b) Show that for any constants x0 P R and r ą 0, the geodesic equation in part (a) has

solutions of the form

γptq “ px0, yptqq, or γptq “ px0 ` r cos θptq, r sin θptqq
for appropriately chosen functions yptq ą 0 and θptq P p0, πq.

(c) Show that any two points in pH, hq are connected by a unique geodesic segment γ :

ra, bs ÑM , and compute the length of this segment, meaning the integral

ℓbapγq :“
ż b
a

| 9γptq| dt :“
ż b
a

ax 9γptq, 9γptqy dt.
22.4. Arc length and the energy functional. We shall now begin exploring the rela-

tionship between the geodesics of the Levi-Cività connection and the problem of finding paths of
minimal length between fixed points. This uses some basic concepts from the calculus of variations,
which deals with optimization problems on infinite dimensional spaces. Fix two points p, q P M
and real numbers a ă b. We denote by

C8pra, bs,M ; p, qq
the set of all smooth paths γ : ra, bs Ñ M such that γpaq “ p and γpbq “ q. Given a Riemannian
metric g “ x , y, we denote

|X | :“axX,Xy
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and define the length functional on C8pra, bs,M ; p, qq by

ℓbapγq “
ż b
a

| 9γptq| dt.
A related functional is the energy functional,

Ebapγq “
ż b
a

x 9γptq, 9γptqy dt,
which also makes sense for an arbitrary pseudo-Riemannian metric, i.e. there is no need to assume
g is positive. The geometric meaning of ℓba is clear: ℓ

b
apγq is the length of the path traced out by γ,

as measured with respect to the Riemannian metric g. As such, it depends only on the image of γ,
and is thus invariant under reparametrizations, i.e. for any diffeomorphism ϕ : ra, bs Ñ ra1, b1s and
smooth path γ P C8pra1, b1s,M ; p, qq, we have

ℓbapγ ˝ ϕq “ ℓb
1
a1pγq.

It is less obvious what geometric meaning the energy functional may have, especially in the indefi-
nite case, but we will find it convenient as a computational tool in order to understand the length
functional better.

We wish to view C8pra, bs,M ; p, qq informally as an infinite-dimensional manifold, and Eba
and ℓba as “smooth functions” on this manifold which can be differentiated. There will be no need
to define this in formal terms, because for the type of optimization problem we have in mind,
it always suffices to consider the values of each functional along paths in C8pra, bs,M ; p, qq. In
general, for a given functional

F : C8pra, bs,M ; p, qq Ñ R,

the first goal of the calculus of variations is to find necessary conditions on a smooth path γ P
C8pra, bs,M ; p, qq so that F pγq may attain a minimal or maximal value among all paths γǫ P
C8pra, bs,M ; p, qq close to γ. This condition will typically take the form of a differential equation
that γ must satisfy. To make this precise, we say that a smooth 1-parameter family of paths
from p to q is a collection γs P C8pra, bs,M ; p, qq for s P p´ǫ, ǫq such that the map ps, tq ÞÑ γsptq
is smooth. Informally, we think of this as a smooth path in C8pra, bs,M ; p, qq through γ0, and its
“velocity vector” at s “ 0 is then given by the partial derivatives Bsγsptq|s“0 P Tγ0ptqM for all t,
which define a vector field along γ0,

η :“ Bsγs|s“0 P Γpγ0̊ TMq,
such that ηpaq “ 0 and ηpbq “ 0. We therefore think of the vector space

tη P Γpγ˚TMq | ηpaq “ 0 and ηpbq “ 0u
as the “tangent space” to C8pra, bs,M ; p, qq at γ. It is now clear how one should define a “direc-
tional derivative” of F in a direction defined by a section of γ˚TM . This motivates the following
definition, which generalizes the notion of a critical point of a real-valued function in finite dimen-
sions.

Definition 22.9. The path γ P C8pra, bs,M ; p, qq is called stationary for the functional
F : C8pra, bs,M ; p, qq Ñ R if for every smooth 1-parameter family γs P C8pra, bs,M ; p, qq with
γ0 “ γ,

(22.7)
d

ds
F pγsq

ˇ̌̌̌
s“0

“ 0.
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Note that for an arbitrary functional, it is not a priori clear that the derivatives in (22.7) will
always exist. This is however true in many cases of interest, and in such a situation, it’s easy to
see that (22.7) is a necessary condition for F to attain an extremal value at γ.

Proposition 22.10. The energy functional Eba is stationary at γ if and only if γ satisfies the
geodesic equation for the Levi-Cività connection.

Proof. Pick any smooth 1-parameter family γs P C8pra, bs,M ; p, qq with γ0 “ γ and denote
η “ Bsγs|s“0 P Γpγ˚TMq. In the following calculation, we regard Bsγsptq and 9γsptq :“ Btγsptq as
defining vector fields along the map ps, tq ÞÑ γsptq PM , which can then be covariantly differentiated
using the pullback connection. Differentiating under the integral sign and using the properties of
the Levi-Cività connection, we have

d

ds
Ebapγsq

ˇ̌̌̌
s“0

“
ż b
a

B
Bs

@Btγsptq, BtγsptqDˇ̌̌̌
s“0

dt

“
ż b
a

´@
∇sBtγsptq|s“0 , 9γptq

D` @
9γptq, ∇sBtγsptq|s“0

D¯
dt

“ 2

ż b
a

@
9γptq,∇t Bsγsptq|s“0

D
dt “ 2

ż b
a

@
9γptq,∇tηptqD dt,

where in the last line we’ve used the symmetry of the connection to replace ∇sBt with ∇tBs. We
now perform a geometric version of integration by parts, using the fact that ηptq vanishes at the
end points. It follows indeed from the fundamental theorem of calculus that

0 “ x 9γpbq, ηpbqy ´ x 9γpaq, ηpaqy “
ż b
a

d

dt

@
9γptq, ηptqD dt

“
ż b
a

@
∇t 9γptq, ηptqD dt` ż b

a

@
9γptq,∇tηptqD dt,

thus
d

ds
Ebapγsq

ˇ̌̌̌
s“0

“ ´2
ż b
a

@
∇t 9γptq, ηptqD dt.

Since choosing arbitrary 1-parameter families γs leads to arbitrary sections η P Γpγ˚TMq with
ηpaq “ 0 and ηpbq “ 0, this expression will vanish for all such choices if and only if ∇t 9γ ” 0. �

To see what this tells us about the length functional, suppose now that the metric x , y is
positive, so that |X | “ axX,Xy can be defined and interpreted as the length of any tangent
vector X P TM . The speed of a path γ : pa, bq Ñ M at time t is then the length of its velocity
vector 9γptq, and another easy observation about geodesics follows from the fact that ∇ is a metric
connection: we have

Bt| 9γptq|2 “ Btx 9γptq, 9γptqy “ 2x∇t 9γptq, 9γptqy,
so if the geodesic equation is satisfied, the speed | 9γptq| is constant. We claim: every immersed
path γ P C8pra, bs,M ; p, qq has a unique reparametrization β “ γ ˝ ϕ P C8pra, bs,M ; p, qq that
has constant speed. Indeed, to derive β, we can first figure out which constant v :“ | 9βptq| needs
to be: since ℓbapγq “ ℓbapβq “

şb
a
v dt “ vpb ´ aq, we must have v “ ℓbapγq{pb ´ aq. If we then

assume β “ γ ˝ ϕ : ra, b1s Ñ ra, bs for some b1 ą a and a strictly increasing diffeomorphism
ϕ : ra, bs Ñ ra, b1s, the condition | 9βptq| “ v is satisfied if and only if ϕ satisfies the differential
equation 9ϕptq “ v

L| 9γpϕptqq|. The right hand side of this equation is positive and bounded away
from 0, so after imposing the initial condition ϕpaq “ a, there will be a unique solution ϕ on some
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interval ra, b1s with b1 ą a uniquely determined by the condition ϕpb1q “ b. Appealing again to
reparametrization invariance, we then find

ℓbapγq “ ℓb
1
a pβq “

ż b1
a

v dt “ pb1 ´ aqv “ b1 ´ a

b´ a
ℓpγq,

and thus conclude b1 “ b, proving the claim.
The reparametrization-invariance of ℓba implies that whenever a path γ P C8pra, bs,M ; p, qq is

stationary for ℓba, all its reparametrizations are as well. Now if γs P C8pra, bs,M ; p, qq is a smooth
1-parameter family of immersed paths for which γ :“ γ0 happens to have constant speed v :“ | 9γ|,
we find

d

ds
ℓbapγsq

ˇ̌̌̌
s“0

“
ż b
a

B
Bs

ax 9γsptq, 9γsptqy
ˇ̌̌̌
s“0

dt “
ż b
a

1

2
ax 9γ0ptq, 9γ0ptqy

B
Bs x 9γsptq, 9γsptqy

ˇ̌̌̌
s“0

dt

“ 1

2v

d

ds
Ebapγsq

ˇ̌̌̌
s“0

.

It follows that if γ is stationary for ℓba, then it has a reparametrization with constant speed that is
stationary for Eba, and is therefore a geodesic. Conversely, every geodesic is stationary for ℓba, and
also has constant speed. This proves:

Corollary 22.11. In a Riemannian manifold pM, gq, an immersed path γ P C8pra, bs,M ; p, qq
is a geodesic if and only if it is stationary for the length functional ℓba and has constant speed. �

We conclude that any path γ P C8pra, bs,M ; p, qq which minimizes the length ℓbapγq among
all nearby paths from p to q can be parametrized by a geodesic. We will discuss a “local” converse
to this in the next lecture.

Remark 22.12. One can extend our discussion of the length functional to the indefinite case
with the following modifications. The argument above that x 9γ, 9γy is constant for any geodesic γ is
valid for metrics of arbitrary signature, so it makes sense to distinguish between cases where this
constant is positive, negative or zero. In general relativity, where the metric has signature p1, 3q,63
one calls a geodesic time-like if x 9γ, 9γy ą 0, space-like if it is negative and light-like if it vanishes.
Space-like geodesics represent paths in spacetime that would be perceived by a three-dimensional
observer to move faster than the speed of light, while time-like geodesics move slower, and light-
like geodesics move (unsurprisingly) at precisely the speed of light. According to the known laws
of physics, all freely moving objects with positive mass traverse time-like geodesics in spacetime,
and massless objects traverse light-like geodesics. Nothing can traverse a space-like geodesic; its
“speed” | 9γ| :“ax 9γ, 9γy as measured by the Lorentzian metric g “ x , y would be imaginary.

With this understood, the length functional makes sense for time-like paths, and Corol-
lary 22.11 remains true on a Lorentzian manifold if one restricts attention to time-like geodesics.

23. More on geodesics

23.1. Normal coordinates. Assume M is a smooth manifold without boundary, with a
connection ∇. In the previous lecture, we defined the exponential map

exp : TM Ą O ÑM,

which is defined on an open subset O Ă TM containing the zero-section and can be characterized
by the property that for each X P TM , γptq :“ expptXq is the unique geodesic (∇t 9γ ” 0) satisfying

63Many authors also prefer to take p3, 1q as the signature of a spacetime manifold, in which case the definitions
of the terms “space-like” and “time-like” should be modified by a sign.
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9γp0q “ X , defined for t in the largest possible interval. We also observed that for each p PM , the
restriction

expp :“ exp |Op
: Op ÑM for Op :“ O X TpM

satisfies exppp0q “ p and has derivative equal to the identity map TpM Ñ TpM at 0 P Op, implying
that it maps a neighborhood of 0 P TpM diffeomorphically onto a neighborhood of p P M . This
means that expp can be used to define local coordinates near p, i.e. if we choose any basisX1, . . . , Xn

of TpM , then
ϕpt1, . . . , tnq :“ exppptiXiq

defines a diffeomorphism from some neighborhood of 0 P Rn to some neighborhood U Ă M of p,
and its inverse x “ px1, . . . , xnq : U Ñ xpUq Ă Rn is therefore a chart sending p to 0.

Charts defined via the exponential map as described above are often referred to as normal
coordinates about p. They have the following special property. By construction, any path through
p that looks in normal coordinates like a straight line with constant velocity through the origin is
a geodesic, and any path of this form is also a flow line (through p) of some vector field Y P XpMq
that has constant components near p in normal coordinates. The geodesic equation thus implies
that all vector fields with this property satisfy

∇Y ppqY “ 0.

This applies in particular to the coordinate vector fields B1, . . . , Bn, as well as their linear combi-
nations with constant coefficients, such as Bi ` Bj. We therefore have

0 “ ∇Bi`Bj pBi ` Bjq “ ∇iBi `∇jBj `∇iBj `∇jBi “ ∇iBj `∇jBi at p,

implying that the Christoffel symbols satisfy

Γkij ` Γkji “ 0 at p.

If the connetion is symmetric, this implies that the Christoffel symbols vanish at p, and we’ve
proved:

Proposition 23.1. For any symmetric connection ∇ on M , the Christoffel symbols vanish in
any normal coordinate system about p. �

To take this a step further, suppose pM, gq is a pseudo-Riemannian manifold with signature
pk, ℓq and ∇ is the Levi-Cività connection. In this setting we can require the basis X1, . . . , Xn P
TpM in the construction above to be orthonormal, meaning

xXi, Xjy “ ηij :“
$’&’%
1 if i “ j ď k,

´1 if i “ j ą k,

0 if i ‰ j,

and normal coordinates about p under this extra condition are called Riemann normal co-
ordinates. The vectors X1, . . . , Xn match the coordinate vector fields B1, . . . , Bn at p, so the
components gij “ xBi, Bjy of the metric now match ηij at p, meaning that x , y matches the “stan-
dard” inner product of signature pk, ℓq on Rn at that one point. The vanishing of the Christoffel
symbols at that point implies moreover that

Bkgijppq “ BkxBi, Bjy|p “ x∇kBi, Bjy|p ` xBi,∇kBjy|p “ 0

for all i, j, k, since the covariant derivatives of the coordinate vector fields all vanish at p. This
proves:
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Proposition 23.2. In any Riemann normal coordinate system about a point p in a pseudo-
Riemannian manifold pM, gq, the components gij of the metric satisfy

gijppq “ ηij , and Bkgijppq “ 0

for all i, j, k P t1, . . . , nu. �

Riemann normal coordinates are sometimes useful for calculations, but their existence also has
theoretical importance, for the following reason. The simplest example of a pseudo-Riemannian
manifold with signature pk, ℓq is Rn with a metric whose components are given by the constants ηij
in the obvious global coordinates. In fact, the classification of quadratic forms implies (cf. §18.5)
that any pseudo-Riemannian metric on Rn with constant components can be turned into this one
by a global linear change of coordinates. When the signature is pn, 0q, this is what we call the
Euclidean metric; the case of signature p1, n ´ 1q or pn ´ 1, 1q is called the Minkowski metric,
and is important in special relativity. Anticipating the relevance of curvature to this discussion,
we shall refer to this metric for arbitrary signatures as the flat metric on Rn. The significance of
Riemann normal coordinates according to Proposition 23.2 is that they make an arbitrary metric
g look more like the flat one, at least at a single point—its value and first derivative at that point
match the flat case. We will see when we discuss curvature that, in general, one cannot do better
than this: arbitrary pseudo-Riemannian manifolds cannot be made to look like flat space on open
neighborhoods of a point just by choosing the right coordinates. Attempting to do this will run into
problems as soon as one tries to make the second derivatives of gij vanish, and this impossibility
is one of the things that curvature measures.

Remark 23.3. Another nice trick one can play with the exponential map is to obtain standard-
ized models for arbitrary smooth submanifolds. The result, known as the tubular neighborhood
theorem, says that if N Ă M is a submanifold and M and N both have empty boundary, then
there is a diffeomorphism Φ from some neighborhood U ĂM of N to a neighborhood O Ă νN of
the zero-section in the total space of its normal bundle (see Example 17.15), and Φ identifies N
itself with the zero-section. This result is useful because vector bundles of a given rank over a given
manifold are typically not so hard to classify up to bundle isomorphism, thus one obtains manage-
able lists of models that can describe neighborhoods of all possible embeddings of N into M . For
example, one can show that all orientable vector bundles over S1 are trivial, so one concludes that
all embeddings of S1 into an orientable n-manifold have neighborhoods that look like S1 ˆ Dn´1;
this fact is crucial in knot theory. We refer to [Hir94, Chapter 4] for a general discussion of the
tubular neighborhood theorem, including a version for manifolds with nonempty boundary. The
case of a compact submanifold without boundary is easier, and is Exercise 23.4 below.

Exercise 23.4. Suppose N is a compact smooth submanifold of M , where BN and BM are
empty. Choose a Riemannian metric g “ x , y on M and recall from Exercise 17.16 that the
subbundle TNK Ă TM |N is isomorphic to the normal bundle of N . Prove:

(a) For any ǫ ą 0 sufficiently small, the set

DǫpTNqK :“  
X P TNK ˇ̌ |X | ă ǫ

(
is contained in the domain O of the exponential map exp : TM Ą O ÑM .
Hint: For every p PM , the zero vector in TpM has a neighborhood in TM that belongs
to the domain of exp. Use the fact that N is compact.

(b) The derivative of the smooth map

Ψ :“ exp |DǫpTNqK : DǫpTNqK ÑM
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is invertible at every zero vector in TNK. It follows via the inverse function theorem that
for each p P N , Ψ restricts to a diffeomorphism from some neighborhood of 0 P TpM in
DǫpTNqK to a neighborhood of p in M .

(c) After possibly shrinking ǫ ą 0 further, the map Ψ in part (b) is a diffeomorphism onto
an open neighborhood of N in M .

23.2. The shortest path between nearby points. 64

Assume pM, gq is a Riemannian manifold and ∇ is the Levi-Cività connection. As you know,
if pM, gq is Euclidean space, then the shortest path between any two distinct points p, q P M is a
straight line, also known as a geodesic. Is this true in all Riemannian manifolds? We saw in the
previous lecture for instance that any path with constant speed that is a local minimum of the
length functional on paths from p to q must be a geodesic. Various subtleties can arise, however,
because it is not always true that there is a unique geodesic from p to q, nor must every geodesic
from p to q be shorter than all other paths; the easiest example to imagine here is the unit sphere
S2 Ă R3, which we’ll discuss in more detail in the next lecture. More can be said however if we
assume that p and q are sufficiently close to each other:

Theorem 23.5. For every point p in a Riemannian manifold pM, gq, there is a neighborhood
U Ă M of p such that for each q P U , there exists an embedded geodesic segment γ : r0, 1s Ñ M

from γp0q “ p to γp1q “ q that is strictly shorter than all paths from p to q other than the
reparametrizations of γ.

The existence of the neighborhood U Ă M in this theorem is the easy part: we have already
seen that expp maps some neighborhood O Ă TpM of 0 diffeomorphically to a neighborhood
U ĂM of p. Every q P U can then be written as q “ expppXq for a unique X P O, and we may as
well assume O Ă TpM is a star-shaped neighborhood, meaning that tX P O for every X P O and
t P r0, 1s, so that the geodesic segment γ : r0, 1s ÑM : t ÞÑ expptXq from p to q is also contained
in U . Note that this might not necessarily be the only geodesic segment connecting p to q, though
it is certainly the only one that is fully contained in U . The goal is to show that this particular
geodesic segment and its reparametrizations are strictly shorter than all other paths from p to q.

The key turns out to be an observation that sounds eminently plausible in our geometric
intuition, but is a bit tricky to prove: every geodesic emerging from p is orthogonal to the spheres
of constant radius around p. By “spheres of constant radius”, we mean more precisely the following:
for each r P R, consider the set

(23.1) Σr :“  
expppXq PM

ˇ̌
X P O and xX,Xy “ r

( Ă U .

The definition also makes sense when the metric is indefinite, so we have allowed r to be any real
number, not just r ą 0. The condition xX,Xy “ r cuts out a smooth hypersurface in TpM for any
r ‰ 0, and this is also true at r “ 0 with the exception of a singular point at the origin, thus Σr
is a smooth hypersurface in M for every r ‰ 0, and so is Σ0 except at the isolated singular point
p P Σ0, which we will exclude.65

Proposition 23.6 (Gauss lemma). Assume pM, gq is a pseudo-Riemannian manifold without
boundary, 0 P O Ă TpM denotes the star-shaped neighborhood described above with U “ expppOq,
and Σr Ă U is the hypersurface defined in (23.1). Then for every r P R, any geodesic segment of

64All details concerning indefinite metrics in this section should be considered inessential to the course and are
included only out of interest—they were not covered in the lecture.

65If the metric is positive, then Σ0 consists only of the point p and is thus excluded from this discussion. But
Σ0 is more interesting in the indefinite case: imagine for instance the standard indefinite inner product of signature
p1, 1q on R2, so that xX,Xy “ 0 is equivalent to the equation x2 ´ y2 “ 0. This cuts out a smooth submanifold
with an isolated singularity at the origin.
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the form γptq “ exppptXq for X P Ozt0u with γp1q P Σr hits Σr orthogonally, i.e. x 9γp1q, Y y “ 0

for all Y P Tγp1qΣr.
Proof. Suppose expppXq “ q P Σr, meaning xX,Xy “ r, and pick any Y P TqΣr. The latter

can be realized as Y “ Btfp1, 0q for a smooth map of the form

f : r0, 1` ǫq ˆ p´ǫ, ǫq ÑM : ps, tq ÞÑ expppsXptqq P U

with ǫ ą 0 chosen sufficiently small and Xptq P TpM a smooth path with Xp0q “ X and
xXptq, Xptqy “ r for all t. The lemma will thus follow from the claim that for any map of this
form,

xBsf, Btfy ” 0.

When s “ 0 this is immediate, because fp0, tq “ p for all t and thus Btfp0, tq “ 0. Using the
properties of the Levi-Cività connection and the fact that s ÞÑ fps, tq “ expppsXptqq is a geodesic
for each fixed t, we also have

(23.2) BsxBsf, Btfy “ x∇sBsf, Btfy ` xBsf,∇sBtfy “ xBsf,∇tBsfy.
Next observe that for each t, the “speed squared”66 xBsf, Bsfy of the geodesic s ÞÑ fps, tq is a con-
stant independent of s, because ∇sBsf ” 0 implies BsxBsf, Bsfy ” 0 and thus xBsfps, tq, Bsfps, tqy “
xBsfp0, tq, Bsfp0, tqy “ xXptq, Xptqy “ r. This proves

0 “ BtxBsf, Bsfy “ 2x∇tBsf, Bsfy,
so that (23.2) now vanishes, thus establishing that xBsfps, tq, Btfps, tqy “ xBsfp0, tq, Btfp0, tqy “ 0

for all ps, tq. �

Remark 23.7. The r “ 0 case of the Gauss lemma is vacuous when the metric is positive,
and what it says in the indefinite case is slightly counterintuitive: observe that if X P TpM is a
nonzero vector with xX,Xy “ 0, then also xtX, tXy “ 0 for every t and the geodesic t ÞÑ expptXq
is therefore contained in Σ0, in addition to being (according to the statement of the proposition)
orthogonal to it. This is not a contradiction, because while Σ0ztpu is a well-defined submanifold
of M , it is not what we would call a pseudo-Riemannian submanifold of pM, gq, i.e. the restriction
of x , y to Σ0 is degenerate and thus fails to be a pseudo-Riemannian metric. As a consequence, for
q P Σ0ztpu, the “orthogonal complement” pTqΣ0qK :“  

Y P TqM
ˇ̌ xY,Xy “ 0 for all X P TqΣ0

(
has the correct dimension but is not actually complementary to TqΣ0, but is instead contained
in it. The content of Proposition 23.6 is then that for each q P Σ0, pTqΣ0qK is the 1-dimensional
subspace of TqΣ0 spanned by the tangent vector of a geodesic connecting p to q.

Proof of Theorem 23.5. Fix O Ă TpM and U Ă M as in Proposition 23.6, assuming
additionally that the metric x , y is positive and O has the form of a ball,

O “  
X P TpM

ˇ̌ xX,Xy ă R2
(

for some R ą 0. Given q “ expppXq P Uztpu with X P Ozt0u, the geodesic segment γ0 : r0, 1s Ñ
U : t ÞÑ exppptXq has length ℓ10pγ0q “ |X | “: ?r. For any other smooth path γ : r0, 1s Ñ U from
γp0q “ p and γp1q “ q, let us assume after a small perturbation that γptq ‰ p for all t ‰ 0, in
which case we can write

γptq “ expppρptqXptqq for all t P p0, 1s,
with uniquely-determined smooth paths ρptq ą 0 andXptq P Σr satisfying limtÑ0 ρptq “ 0, ρp1q “ 1

and Xp1q “ X . Write fps, tq “ expppsXptqq as in the proof of Prop. 23.6, so the proposition
implies xBsf, Btfy ” 0, and since s ÞÑ fps, tq is a geodesic with constant speed starting at Xptq

66The speed | 9γptq| of a geodesic γ only makes sense when the metric is positive, but “speed squared” | 9γptq|2 :“
x 9γptq, 9γptqy can also be defined in the indefinite case, with the understanding that it might be negative.
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for each t, |Bsfps, tq| “ |Xptq| “ ?
r for every t. Now since γptq “ fpρptq, tq, we have 9γptq “

Bsfpρptq, tq 9ρptq ` Btfpρptq, tq, and using the Pythagorean theorem,

| 9γptq|2 “ |Bsfpρptq, tq 9ρptq|2 ` |Btfpρptq, tq|2 ě r| 9ρptq|2,
with strict inequality unless the pathXptq is constant. The latter would mean γptq “ expppρptqXq “
γ0pρptqq, so that γ traces out the same image as γ0, with a strictly longer length unless ρ : p0, 1s Ñ
p0, 1s is a diffeomorphism, which means γ is a reparametrization of γ0. Now if Xptq is not constant,
we have

| 9γptq| ą ?
r| 9ρptq| ě ?

r 9ρptq for all t P p0, 1s
and thus

ℓ10pγq “
ż 1

0

| 9γptq| dt ą ?
r

ż 1

0

9ρptq dt “ ?
r “ ℓ10pγ0q.

This proves that all paths from p to q contained in U are strictly longer than the reparametrizations
of γ0. Any path that is not contained in U is obviously also longer, because it must cover a distance
of at least R ą ?

r after starting at p before it can exit U . �

Remark 23.8. It is not straightforward to formulate variants of Theorem 23.5 with indefinite
metrics, but on a pseudo-Riemannian manifold with Lorentz signature p1, n´ 1q one can say the
following. Recall from Remark 22.12 that the length functional is well-defined on time-like paths
γ since their velocities satisfy x 9γ, 9γy ą 0. It is not really appropriate to call it “length” in this
situation, though; physicists prefer to call it the proper time, because in a Lorentzian 4-manifold
representing spacetime, the proper time of a time-like path is the actual amount of time elapsed
on a clock that is carried along that path through spacetime. Let us therefore denote

τbapγq :“
ż b
a

ax 9γptq, 9γptqy dt,
and consider the proper time of a time-like path from p to a point q “ expppXq that is “nearby”
in the sense that X P TpM is close to 0. The set of points q that can be reached in this way from
p is called the light cone of p; it is an open subset bounded by light-like paths, i.e. paths that
represent objects moving at the speed of light. An interesting detail arises here that is completely
unlike anything in the Riemannian case: if you look at the standard Lorentzian inner product in
an orthonormal basis so that it takes the form

xX,Y y “ X1Y 1 ´
nÿ
j“2

XjY j ,

you may notice that the set of time-like vectors (satisfying xX,Xy ą 0) has two connected compo-
nents, and as a result, the light cone of p is guaranteed to have two components if the neighborhoods
O Ă TpM and U Ă M are chosen sufficiently small. This is a symptom of the fact that in the
physical world, there is a distinction between time-like paths moving forward or backward in time.
We can therefore label the two components of the light cone Cp̀ and Cṕ , call them the positive
and negative light cone respectively, and say q P Cp̀ if and only if q is in the future of p.

One can now ask the following: how does the proper time of the geodesic segment γ0ptq “
exppptXq compare with that of all other future-directed time-like paths from p to q?

The following detail is important to understand first: according to Proposition 23.6, time-like
paths will pass orthogonally through hypersurfaces Σr Ă U with r ą 0, and the restriction of the
Lorentzian metric x , y to these hypersurfaces is negative, i.e. it is ´hr for a Riemannian metric hr
on Σr. One can deduce this from the fact that each geodesic γptq “ expptXq hits Σr orthogonally:
given that x 9γptq, 9γptqy ą 0, the only way for x , y to have signature p1, n ´ 1q at the intersection
point is if it is negative-definite on TΣr.
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Now, imitating the proof of Theorem 23.5, the assumption that q “ expppXq P Cp̀ implies
xX,Xy “ rτ10 pγ0qs2 “: r, hence q P Σr, and we can consider arbitrary paths from p to q of the form
γptq “ expppρptqXptqq “ fpρptq, tq, where fps, tq “ expppsXptqq, Xptq P Σr, Xp1q “ X , ρp1q “ 1

and limtÑ0 ρptq “ 0. We still have xBsf, Btfy ” 0, but the big difference from Theorem 23.5 is
now that xBtf, Btfy ď 0, with strict inequality unless BtX “ 0, so our previous application of the
Pythagorean theorem becomes

x 9γptq, 9γptqy “ r| 9ρptq|2 ´ |Btfpρptq, tq|2 ď r| 9ρptq|2,
again with equality only if Xptq is constant. Requiring γ to be time-like then imposes the condition
r| 9ρptq|2 ą |Btfpρptq, tq| ě 0, so in contrast to the Riemannian case, we can only consider paths for
which 9ρptq ě 0. The end result is that either γ is a reparametrization of γ0 or

τ10 pγq “
ż 1

0

ax 9γptq, 9γptqy dt ă ?
r

ż 1

0

9ρptq dt “ ?
r “ τ10 pγ0q,

thus the geodesic from p to q maximizes the proper time among time-like paths from p to q.
One can use this calculation to explain the famous “twins paradox” in relativity—it is not a

paradox, but merely a result of the fact that the proper time is not the same for all time-like paths
between two points in spacetime. The scenario is that Albert and Henry are born at the same time,
but Albert stays for his whole life on Earth, while Henry becomes an astronaut and travels several
light-years across the universe and back, travelling at nearly the speed of light in both directions.
On return, Henry has barely aged at all, but Albert is twenty years older. The reason is that by
staying on Earth, Albert followed a geodesic in spacetime, but Henry did not: his path was at best
a piecewise smooth geodesic, because he had to accelerate abruptly in order to reverse course and
return to Earth. As a result, Albert’s path experienced more proper time than Henry’s.

Remark. This lecture took place online and was interrupted multiple times by internet out-
ages, as a result of which, there was no time to cover the two sections below. The contents of §23.3
will be covered briefly in the next online lecture, and §23.4 will be the main topic in one of this
week’s problem sessions.

23.3. Geodesic completeness. For an arbitrary pseudo-Riemannian manifold pM, gq, the
domain of the exponential map is an open subset O Ă TM , and we say that pM, gq is geodesically
complete if O “ TM . An equivalent condition is that for every p PM and X P TpM , the unique
maximal geodesic γ : pa, bq ÑM with γp0q “ p and 9γp0q “ X is defined for all time, i.e. the interval
pa, bq is R. It is easy to find examples for which this is not true, e.g. take Rn with a flat metric but
remove a point to define M :“ Rnztpu; then there exist geodesics in M that are not defined for
all time because they collide at some time with the missing point p. In general, this would seem
to be a danger whenever M is noncompact, because any given geodesic could potentially “escape
to infinity” in finite time. We will see below that there is still a danger in general even when M
is compact. On the other hand, Rn with a flat metric is an obvious example of a noncompact
geodesically complete manifold: its geodesics are precisely the straight paths γptq “ v` tw, which
are defined for all t P R.

In order to say something general about completeness, it is useful to reformulate the problem in
terms of the flow of a vector field. It will not be a vector field onM , because the geodesic equation
is second order, so solutions are determined by more than just their initial position; the initial
velocity is also required. This suggests defining a vector field instead on the tangent bundle TM ,
such as

(23.3) ξpXq :“ HorXpXq P TXpTMq,
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where for p PM and X P TpM , HorX : TpM Ñ TXpTMq denotes the horizontal lift map for some
connection ∇ on TM . Suppose Y ptq P TM is a flow line of ξ P XpTMq, and using the bundle
projection π : TM Ñ M , let γptq :“ π ˝ Y ptq P M , so γ is a path in M and Y is a vector field
along γ. The condition BtY ptq “ ξpY ptqq “ HorY ptqpY ptqq then implies

9γptq “ π˚ pBtY ptqq “ π˚ HorY ptqpY ptqq “ Y ptq
and, using the vertical projection K : T pTMq Ñ TM to write the covariant derivative via (20.9),

∇tY ptq “ KpBtY ptqq “ 0.

In other words, Y is the velocity of γ and it is parallel along γ, hence γ is a geodesic. Conversely,
if γ is any geodesic in M , then the path Y ptq :“ 9γptq in TM satisfies ∇tY ptq “ 0, implying that
BtY ptq is horizontal, which it means it can only be the horizontal lift of 9γptq and thus satisfies
BtY ptq “ ξpY ptqq. This proves:

Proposition 23.9. Suppose ∇ is any connection on the tangent bundle π : TM Ñ M , and
ξ P XpTMq is the vector field defined by (23.3) in terms of this connection. Then the exponential
map has the same domain as the time 1 flow ϕ1

ξ of ξ, and exp “ π ˝ ϕ1
ξ . �

The flow of the vector field ξ on TM is called the geodesic flow for M with connection ∇.
It becomes an especially useful tool if we specialize to the Levi-Cività connection of a Riemannian
metric:

Theorem 23.10. Every compact Riemannian manifold without boundary is geodesically com-
plete.

Proof. Assuming pM, gq is a compact Riemannian manifold, we define the vector field ξ P
XpTMq as in (23.3) using the Levi-Cività connection and notice that it has the following useful
property: for each r ą 0, ξ is tangent to the smooth hypersurface

SrTM :“  
X P TM ˇ̌ xX,Xy “ r2

(
.

This follows from the fact that geodesics have constant speed, thus all flow lines of ξ are confined
to hypersurfaces of this form.

Now observe that since M is compact, SrTM is also compact for every r ą 0: indeed, the
intersection of SrTM with each fiber TpM is a compact pn ´ 1q-sphere in TpM , thus for any
sufficiently small compact neighborhood K Ă M of p, one can use a local trivialization of TM |K
to show that SrTM X π´1pKq is homeomorphic to the compact set K ˆ Sn´1. Then if Xk P
SrTM is any sequence and we write pk :“ πpXkq P M , the compactness of M implies after
restricting to a subsequence that pk converges to some point p PM , so that Xk for large k lies in
a neighborhood homeomorphic to a compact set of the form K ˆ Sn´1 and therefore also has a
convergent subsequence.

For any given X P TM , one can now define r :“ |X | and regard ξ as a vector field on the
compact manifold SrTM instead of TM ; since every vector field on a compact manifold has a
global flow, the theorem follows. �

Theorem 23.10 depends rather crucially on the assumption that∇ is the Levi-Cività connection
for a positive metric g. A negative metric would also be fine, but the trouble with signatures pk, ℓq
with k, ℓ ą 0 is that while the geodesic flow ξ P XpTMq is tangent to hypersurfaces of the form 

X P TM ˇ̌ xX,Xy “ c
(

for constants c P R, these hypersurfaces are not compact, even if M is. The problem is clearly
visible if you look at the intersection of this hypersurface with a single fiber TpM : choosing
an orthonormal basis on TpM so that xX,Y y “ řk

j“1X
jY j ´řn

j“k`1X
jY j , the set of vectors
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X P TpM with xX,Xy “ c is not a sphere, it is a hyperboloid, which is definitely not compact. As
such, there is no reason to expect the geodesic flow on TM to be globally defined, and in general,
it is not. There are simple examples of indefinite pseudo-Riemannian manifolds that are compact
but not geodesically complete.67

On the flip side, there are plenty of interesting Riemannian manifolds that are geodesically
complete despite being noncompact; we will discuss some important examples in the next lecture.
We do not have space here to prove the main result on this subject, but we plan to do so next
semester, so consider the following statement a preview:

Theorem (Hopf-Rinow theorem). A connected Riemannian manifold pM, gq is geodesically
complete if and only if it is a complete metric space with respect to the metric defined as the
infimum of lengths of paths between points. Moreover, if it is complete, then for every pair of
points p, q PM , there exists a (not necessarily unique) geodesic segment from p to q that minimizes
the length among all paths from p to q.

23.4. Geodesics as a Hamiltonian system. The notion of the geodesic flow on TM can
be placed into a wider context that connects it with symplectic geometry (cf. Lecture 14). To see
this, we start with the observation that for any smooth manifold M , the cotangent bundle T ˚M
admits a canonical symplectic form. One defines it as follows: first let π : T ˚M Ñ M denote the
bundle projection for the cotangent bundle, whose derivative gives a map Tπ : T pT ˚Mq Ñ TM

sending TαpT ˚Mq linearly to TqM for each q P M and α P Tq̊ M . We can thus define a 1-form
λ P Ω1pT ˚Mq by
(23.4) λαpξq :“ αpTπpξqq.
This is called the tautological 1-form on T ˚M , and we will see below that

ω :“ dλ P Ω2pT ˚Mq
is a symplectic form. Recall from Lecture 14: this would mean that every point in T ˚M has a
neighborhood on which there exists a chart of the form pp1, q1, . . . , pn, qnq such that ω “ řn

j“1 dp
j^

dqj . We claim in fact that any chart pU , px1, . . . , xnqq on M naturally gives rise to a chart with
this property on the open set T ˚M |U “ π´1pUq Ă T ˚M . Indeed, we define n of the required 2n

coordinates on T ˚M |U by
qi :“ xi ˝ π, i “ 1, . . . , n.

For the remaining n coordinates, observe that the coordinates x1, . . . , xn give us a natural basis for
each of the cotangent spaces over U , namely the coordinate differentials, so let us define p1, . . . , pn

on T ˚M |U by
pp1, . . . , pnq `ai dxi˘ :“ pa1, . . . , anq P Rn.

Now observe: if a path sptq P T ˚M |U has constant coordinates q1, . . . , qn, it means that sptq
is moving within a single fiber, thus the velocity vectors 9sptq belong to the vertical subbundle
V pT ˚Mq Ă T pT ˚Mq, and in particular, this applies to the coordinate vector fields

B
Bp1 , . . . ,

B
Bpn P V pT

˚Mq.
On the other hand, for any path sptq P T ˚M |U whose coordinates are all constant except for one
particular qi, it follows that π ˝ sptq P U has constant coordinates except for xi, and thus

π˚
B
Bqi “

B
Bxi for i “ 1, . . . , n.

67See for instance the Clifton-Pohl torus: https://en.wikipedia.org/wiki/Clifton-Pohl_torus.

https://en.wikipedia.org/wiki/Clifton-Pohl_torus
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One sees now from the definition of λ P Ω1pT ˚Mq that it annihilates all vertical vectors, thus if we
denote by α P T ˚M |U the point with some particular value of the coordinates q1, . . . , qn, p1, . . . , pn,
then λα

´
B
Bpi

¯
“ 0, and

λα

ˆ B
Bqi

˙
“ α

ˆ
π˚

B
Bqi

˙
“ α

ˆ B
Bxi

˙
“ pi.

The formula for λ in our chosen coordinates is therefore

λ “
nÿ
i“1

pi dqi,

and it follows that ω “řn
i“1 dp

i ^ dqi, so ω is symplectic.

Remark 23.11. Symplectic geometers sometimes abbreviate the tautological 1-form λ and
symplectic form ω “ dλ on T ˚M by “p dq” and “dp^ dq” respectively, where the symbols p and q
are each meant as shorthand for n separate coordinates. It is a somewhat remarkable fact that p dq
turns out to be the same 1-form no matter how one chooses the local coordinates q1, . . . , qn; what
makes this possible is the fact that while the coordinates q1, . . . , qn are arbitrarily chosen on some
open subset of M , the remaining n coordinates p1, . . . , pn are not at all arbitrary, in fact they are
completely determined by q1, . . . , qn. One cannot assume in general that any of these coordinates
are globally defined, but p dq does make sense globally, because one can also express it as in (23.4)
without choosing any coordinates.

The symplectic structure of T ˚M provides a natural framework for viewing second-order dy-
namical systems on M as Hamiltonian systems on T ˚M , and the geodesic flow is the simplest
interesting example of this. In order to see it clearly, it will help to adopt the following notation:
let us denote elements of T ˚M as pairs

pq, pq P T ˚M, where q PM and p P Tq̊ M,

thus explicitly keeping track of horizontal motion via the symbol q and vertical motion via p. The
easiest way to understand the tangent spaces Tpq,pqpT ˚Mq then comes from choosing a connection
∇ on π : T ˚M ÑM , as it gives rise to a horizontal/vertical splitting

Tpq,pqpT ˚Mq “ Hpq,pqpT ˚Mq ‘ Vpq,pqpT ˚Mq
such that Vpq,pqpT ˚Mq is canonically isomorphic to the fiber Tq̊ M and π˚ gives a natural isomor-
phism of Hpq,pqpT ˚Mq with the tangent space TqM . The connection thus determines a natural
isomorphism

Tpq,pqpT ˚Mq – TqM ‘ Tq̊ M,

and with this in mind, we shall write elements of Tpq,pqpT ˚Mq as pairs of the form pY, ηq with
Y P TqM and η P Tq̊ M . For a path γptq “ pqptq, pptqq P T ˚M , the derivative 9γptq P TγptqpT ˚Mq
is now written as a pair pY, ηq where Y “ 9qptq P TqptqM , and η P T ˚

qptqM is literally the projection
of 9γptq P TγptqpT ˚Mq along the horizontal subspace to the vertical subspace, which means the
covariant derivative, hence

Btpqptq, pptqq “ p 9qptq,∇tpptqq P TqptqM ‘ T ˚qptqM – Tpqptq,pptqqpT ˚Mq.
Once one gets used to these natural isomorphisms, computations in T ˚M become fairly straight-
forward.

Now suppose g “ x , y is a pseudo-Riemannian metric on M , and the connection ∇ on
T ˚M Ñ M is the connection induced on T ˚M by the Levi-Cività connection of TM Ñ M .
Using the musical isomorphisms to define a corresponding bundle metric on T ˚M , Exercise 22.5
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implies that our connection on T ˚M Ñ M is compatible with this bundle metric. The simplest
Hamiltonian function that might be interesting to consider on T ˚M is

(23.5) H : T ˚M Ñ R : pq, pq ÞÑ 1

2
xp, py.

There is some physical motivation to look at this particular function: in the special case ofM “ Rn

with the standard Euclidean metric, H has an interpretation as the classical kinetic energy of a
moving particle with mass 1. If we assume this is also the total energy, meaning there is no
potential energy and thus no forces acting on the particle, then the motion of the particle is along
straight lines in Rn, and these are the geodesics in Euclidean space. It is not unreasonable to hope
that the same correspondence might hold on a general pseudo-Riemannian manifold, and indeed:

Proposition 23.12. The Hamiltonian vector field for the function H in (23.5) is given by
XHpq, pq “ pp7, 0q P TqM ‘ Tq̊ M – Tpq,pqpT ˚Mq.

Before proving the proposition, let us see what the flow of XH looks like. For a path γptq “
pqptq, pptqq P T ˚M , 9γptq “ XHpγptqq now means

9qptq “ pptq7 and ∇tpptq “ 0.

By Exercise 22.5, ∇t 9q “ ∇tpp7q “ p∇tpq7 “ 0, so this implies that the path qptq is a geodesic and
pptq is simply the image of its velocity under the musical isomorphism 5 : TqptqM Ñ T ˚

qptqM . This
proves a “Hamiltonian version” of the main result about the geodesic flow:

Proposition 23.13. Given a pseudo-Riemannian manifold pM, gq with Levi-Cività connection
∇ and the function H : T ˚M Ñ R defined in (23.5) via the metric, the exponential map on TM

is related to the flow of the Hamiltonian vector field XH on T ˚M by exppY q “ π ˝ϕ1
XH
pY5q, where

π is the bundle projection T ˚M ÑM . �

Turning toward the proof of Proposition 23.12, it will be useful to have a coordinate-independent
formula for ω that is more direct than calling it the exterior derivative of λ.

Lemma 23.14. Using the isomorphism Tpq,pqpT ˚Mq – TqM ‘ Tq̊ M , the canonical symplectic
form ω on T ˚M is given by

ωpq,pqppY, ηq, pY 1, η1qq “ ηpY 1q ´ η1pY q.
Proof. Using bilinearity and antisymmetry, it suffices to prove three more specific formulae:
(i) ωpq,pqpp0, ηq, p0, η1qq “ 0 for all η, η1 P Tq̊ M ;
(ii) ωpq,pqppY, 0q, pY 1, 0qq “ 0 for all Y, Y 1 P TqM ;
(iii) ωpq,pqppY, 0q, p0, ηqq “ ´ηpY q for all Y P TqM and η P Tq̊ M .

For all three, we will use the relation

(23.6) dλpBsf, Btfq “ Bs rλpBtfqs ´ Bt rλpBsfqs ,
which is valid for any smooth map R2

openĄ V ÑM : ps, tq ÞÑ fps, tq. Indeed, this is actually just a
computation of f˚dλpBs, Btq “ dpf˚λqpBs, Btq, and since the coordinate vector fields Bs and Bt on
V Ă R2 commute, the relation follows from our original definition of the exterior derivative in §8.2.

With this understood, let us first prove (i). Given η, η1 P Tq̊ M , define

fps, tq “ pq, p` sη ` tη1q P T ˚M,

so fp0, 0q “ pq, pq, Bsfp0, 0q “ p0, ηq and Btfp0, 0q “ p0, η1q. Since Bsf and Btf are both vertical
vectors for every ps, tq, λ annihilates them both and both terms in (23.6) therefore vanish, thus
proving dλpBsf, Btfq “ 0.
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Next is (ii): choose f in the form

fps, tq “ pγps, tq, σps, tqq P T ˚M
such that γp0, 0q “ q, Bsγp0, 0q “ Y and Btγp0, 0q “ Y 1, and σ is a section of T ˚M along γ that
satisfies σp0, 0q “ p and has vanishing covariant derivative at ps, tq “ p0, 0q. (To see that the latter
is possible, one can e.g. first define σps, 0q by parallel transporting p along the path s ÞÑ γps, 0q,
then define σps, tq by parallel transporting σps, 0q along the path t ÞÑ γps, tq for each fixed s.) We
now have Bsfp0, 0q “ pY, 0q and Btfp0, 0q “ pY 1, 0q, and by (23.6),

dλpBsf, Btfq “ Bs rσpBtγqs ´ Bt rσpBsγqs “ p∇sσqpBtγq ´ p∇tσqpBsγq ` σp∇sBtγ ´∇tBsγq.
The last term in this expression vanishes identically because the Levi-Cività connection is sym-
metric, and the first two terms vanish specifically at s “ t “ 0 because ∇σ “ 0 at that point, so
(i) is proven.

For (iii), we choose f in the form

fps, tq “ pγpsq, σpsq ` tξpsqq P T ˚M
such that γp0q “ q, γ1p0q “ Y , and σ and ξ are parallel sections of T ˚M along γ with σp0q “ p

and ξp0q “ η, thus Bsfp0, 0q “ pY, 0q and Btfp0, 0q “ p0, ηq. Since Btfps, tq “ p0, ξpsqq is always
vertical, λpBtfq ” 0, and (23.6) thus gives

dλpBsfps, tq, Btfps, tqq “ ´Bt rλpBsfps, tqqs “ ´Bt “pσpsq ` tξpsqqpγ1psqq‰ “ ´ξpsq `γ1psq˘ ,
which is ´ηpY q at s “ 0. �

Proof of Proposition 23.12. The function Hpq, pq “ 1
2
xp, py is constant in horizontal di-

rections since parallel transport preserves the bundle metric, and in vertical directions, its differ-
ential is simply the differential at pq, pq P T ˚M of the quadratic function Tq̊ M Ñ R : p ÞÑ 1

2
xp, py,

giving
dHpq, pqpY, ηq “ xp, ηy.

Plugging XHpq, pq “ pp7, 0q into the formula of Lemma 23.14 for ω gives

ωpXHpq, pq, pY, ηqq “ ´ηpp7q “ ´xη7, p7y “ ´xp, ηy,
thus we’ve proven that XH satisfies the defining equation ωpXH , ¨q “ ´dH of a Hamiltonian vector
field. �

Proposition 23.12 opens the door toward using methods from symplectic geometry in the study
of geodesics, and this is a fairly large topic in modern research. As a very simple illustration, we
will now give a second proof of the result that compact Riemannian manifolds are geodesically
complete. Recall that a map ϕ : X Ñ Y between topological spaces is called proper if the
preimage of every compact set is compact.

Exercise 23.15. Show that Hpq, pq “ 1
2
xp, py is a proper function on T ˚M if and only if the

bundle metric x , y is (positive or negative) definite.
The exercise combines with the following result to give another proof of Theorem 23.10.

Theorem 23.16. On any symplectic manifold pW,ωq with a smooth proper function H :W Ñ
R, the flow of the Hamiltonian vector field XH exists globally.

Proof. One of the fundamental properties of Hamiltonian systems is that energy is conserved:
“energy” in this case means the value of the Hamiltonian, and this value does not change along
flow lines of XH since

dHpXHq “ ´ωpXH , XHq ” 0.
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It follows that every flow line of XH stays within a level set H´1pcq ĂW for some c P R, and that
set is compact if H is proper, thus the flow line can be continued for all time. �

24. Euclidean and non-Euclidean geometries

In this lecture we will look at three specific examples of Riemannian manifolds whose properties
lend considerable intuition to the rest of the subject. Our main goal for now will be to understand
the behavior of the geodesics on these three examples, and certain qualitative differences will
become apparent when we do this. We will later see that these differences are symptomatic of the
distinction between positive, negative and zero curvature.

A bit of preparation is necessary before we discuss the actual examples, mainly because as a
second-order nonlinear differential equation, the geodesic equation is generally not so easy to solve.
We will first develop some tools that—at least in fortunate situations—make it easier.

24.1. Notation: how to write down a pseudo-Riemannianmetric. In local coordinates
x1, . . . , xn, a pseudo-Riemannian metric g “ x , y on a manifold M is a type p0, 2q tensor field,
and thus takes the form

g “ gij dx
i b dxj ,

where the components satisfy the relation gij “ gji since x , y is symmetric. One often sees this
written in the form

g “ ÿ
iďj

gij dx
i dxj ,

in which the summation avoids unnecessary repetition of matching components by using the ab-
breviation

(24.1) dxi dxj :“ 1

2

`
dxi b dxj ` dxj b dxi

˘
.

So for example, the Euclidean metric on R2 can now be written in Cartesian coordinates px, yq as
gE “ dx2 ` dy2,

while the metric on the Poincaré half-plane in Exercise 22.8 becomes

h “ 1

y2

`
dx2 ` dy2

˘
.

On Rn in the standard coordinates px1, . . . , xnq, the Euclidean metric is now

gE “ pdx1q2 ` . . .` pdxnq2,
and changing some signs gives us the standard flat pseudo-Riemannian metric of signature pk, ℓq,
written as

pdx1q2 ` . . .` pdxkq2 ´ pdxk`1q2 ´ . . .´ pdxnq2.
Exercise 24.1. On R2 with coordinates px, yq, show that the pseudo-Riemannian metric

dx dy has signature p1, 1q, and find a new global coordinate system ps, tq in which it takes the form
ds2 ´ dt2.

Remark 24.2. Algebraically, (24.1) can be regarded as a symmetric product, which is
analogous to the wedge product but without all the minus signs. On an arbitrary vector space
V , one can define a commutative product with values in V b V by symmetrizing the usual tensor
product, thus writing vw :“ 1

2
pv b w ` w b vq. The values of this product belong to the subspace

consisting of symmetric bilinear maps V ˚ ˆ V ˚ Ñ F, or equivalently, the kernel of the projection
Alt : V b V Ñ Λ2V . If you don’t care so much about algebra, don’t worry about this.
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24.2. Isometries and conformal transformations. A diffeomorphism ϕ : M Ñ N from
one pseudo-Riemannian manifold pM, gq to another pN, hq is called an isometry if

ϕ˚h “ g.

We say in this situation that pM, gq and pN, hq are isometric, and indicate that ϕ is an isometry
by writing

ϕ : pM, gq Ñ pN, hq.
In more concrete terms, the condition means

hϕppqpϕ˚X,ϕ˚Y q “ gppX,Y q for all p PM and X,Y P TpM,

so in other words, the derivative ϕ˚ : TpM Ñ TϕppqN of ϕ at every point p P M preserves the
scalar products on these tangent spaces. In the Riemannian case (i.e. when the scalar products
are positive), this has a simple geometric interpretation: one defines the lengths |X |, |Y | ě 0 and
angle θ P r0, πs between two vectors X,Y P TpM in this case by

(24.2) |X | :“axX,Xy, |Y | :“axY, Y y, θ “ arccos

ˆ xX,Y y
|X | ¨ |Y |

˙
,

and preserving inner products thus means preserving lengths of tangent vectors and angles between
them. It follows that a diffeomorphism is an isometry if and only if it preserves lengths of paths
and angles between intersecting paths.

Isometry is the natural notion of equivalence in the category of pseudo-Riemannian manifolds,
thus it preserves all meaingful notions that are defined in terms of pseudo-Riemannian metrics. For
example, it preserves geodesics, i.e. if ϕ : pM, gq Ñ pN, hq is an isometry, then a path γ : pa, bq ÑM

is a geodesic if and only if ϕ ˝ γ : pa, bq Ñ N is a geodesic. One easy way to see this is via the
energy functional from §22.4: it is straightforward to check that Epϕ ˝ γq “ Epγq for all paths
γ in M , and that γ is therefore stationary for the energy functional on C8pra, bs,M ; p, qq if and
only if ϕ ˝ γ is stationary for the energy functional on C8pra, bs, N ; ϕppq, ϕpqqq.

The set of all isometries pM, gq Ñ pM, gq forms a group, denoted by

IsompM, gq Ă DiffpMq.
This group has the useful property that it maps geodesics to geodesics. On the other hand, one
should not expect this group to be nontrivial in general, as preserving distances and angles turns out
to be a very stringent condition on a diffeomorphism. One can show that IsompM, gq is always a Lie
group (see e.g. [Kob95]), so in particular, it is a smooth finite-dimensional manifold. The following
result imposes an absolute upper bound on its dimension: if dimM “ n, then dim IsompM, gq can
never be larger than

(24.3) n` dimOpk, ℓq “ n` 1

2
pn´ 1qn “ 1

2
npn` 1q.

This is, namely, the dimension ofM plus the dimension of the space of all linear maps TpM Ñ TqM

for two points p, q PM that preserve the scalar product.

Theorem 24.3. Suppose pM, gq is a connected pseudo-Riemannian manifold, p, q PM are two
points and X1, . . . , Xn P TpM and Y1, . . . , Yn P TqM are orthonormal bases. Then there exists at
most one isometry ϕ P IsompM, gq such that

ϕppq “ q and ϕ˚Xi “ Yi for all i “ 1, . . . , n.

Proof. By looking at isometries of the form ψ´1 ˝ ϕ, it is equivalent to show that the only
isometry f : pM, gq Ñ pM, gq satisfying fppq “ p and Tpf “ 1 : TpM Ñ TpM is the identity map.
Since each geodesic through p is determined by its velocity at p, and f maps geodesics to geodesics,
the condition Tpf “ 1 implies that f is the identity map on the open neighborhood U Ă M of p
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consisting of all points that can be reached via geodesics from p. Now suppose q P M . Since M
is connected, we can find a continuous path γ : r0, 1s Ñ M from γp0q “ p to γp1q “ q, and the
interval r0, 1s can then be partitioned into a finite union of subintervals with end points

0 “: t0 ă t1 ă . . . ă tN´1 ă tN :“ 1

such that for each j “ 1, . . . , N , γptjq can be reached via a geodesic starting at γptj´1q. It follows
that f is also the identity on a neighborhood of γpt1q and therefore Tγpt1qf “ 1. Repeating the
same argument N times then extends this conclusion to a neighborhood of γptN q “ q, and since
the point q was arbitrary, f is therefore the identity map everywhere. �

Remark 24.4. Theorem 24.3 guarantees uniqueness, but not existence, thus (24.3) shows the
dimension of IsompM, gq if there exist as many isometries as the theorem allows, but in general
dim IsompM, gq may be smaller. Once we have proved the basic theorems about curvature, it will
begin to seem obvious that IsompM, gq should be trivial for “most” pseudo-Riemannian manifolds,
as the existence of nontrivial isometries will imply conditions on the curvature that are not usually
satisfied.

You may recall from linear algebra that for two inner product spaces V and W , every linear
map A : V Ñ W that preserves lengths of vectors automatically preserves the inner product,
and therefore also angles: this follows from the bilinearity of the inner product after expanding the
relation xApv`wq, Apv`wqy “ xv`w, v`wy. As a consequence, every smooth distance-preserving
map between Riemannian manifolds is necessarily an isometry, and thus also an angle-preserving
map. The converse however is false:

Lemma 24.5. For two (positive) finite-dimensional inner product spaces V andW , a linear map
A : V Ñ W preserves angles if and only if there is a constant c ą 0 such that xAv,Awy “ cxv, wy
for all v, w P V .

Proof. It is clear from (24.2) that the condition xAv,Awy “ cxv, wy implies angles are pre-
served. Conversely, if A : V Ñ W preserves angles, then it maps any orthonormal basis of V to
a set of the form λ1e1, . . . , λnen where the λ1, . . . , λn are positive numbers and e1, . . . , en is an
orthonormal basis of W . After fixing appropriate bases, we can therefore assume without loss of
generality that V “W “ Rn, both endowed with the standard Euclidean inner product, and A is
represented by a diagonal matrix with positive entries λ1, . . . , λn. Writing e1, . . . , en P Rn for the
standard basis, the orthogonal vectors ei ` ej and ei ´ ej for any i ‰ j must then be mapped by
A to two orthogonal vectors, implying

0 “ xApei ` ejq, Apei ´ ejqy “ xλiei ` λjej , λiei ´ λjejy “ λ2i ´ λ2j ,

and thus λ1 “ . . . “ λn “: λ. This proves xAv,Awy “ λxv, wy for all v, w. �

With this lemma in mind, a diffeomorphism ϕ :M Ñ N is called a conformal transforma-
tion pM, gq Ñ pN, hq if it satisfies

ϕ˚h “ fg for some smooth function f :M Ñ p0,8q,
where we should emphasize that the function f need not be specified in advance. This condition
means that for every p PM and X,Y P TpM ,

hϕppqpϕ˚X,ϕ˚Y q “ fppq ¨ gppX,Y q,
hence in the Riemannian case, one can say that the linear map ϕ˚ : TpM Ñ TfppqN preserves
angles (but not necessarily lengths), and the conformal transformations are therefore regarded as
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precisely those diffeomorphisms that preserve all angles between intersecting curves. The set of
conformal transformations pM, gq Ñ pM, gq also forms a group, denoted by

ConfpM, gq Ă DiffpMq,
and it contains IsompM, gq since every isometry is also a conformal transformation. The converse is
false in general: for instance, for the Euclidean metric gE “ dx2`dy2 and the Poincaré metric h “
1
y2
pdx2`dy2q on the upper half-plane H “ tpx, yq P R2 | y ą 0u, the identity map pH, gEq Ñ pH, hq

is conformal, but is not an isometry. This example also shows that conformal transformations do
not preserve geodesics in general. (For the geodesics on pH, hq, see Exercise 22.8.)

Conformal transformations arise naturally in complex analysis, due to the following exercise.

Exercise 24.6. Identify C with R2 via x ` iy Ø px, yq and endow it with the standard Eu-
clidean metric. Show that a diffeomorphism f : U Ñ V between two open subsets U ,V Ă C is
a conformal transformation if and only if it is either holomorphic or antiholomorphic (meaning
the map f̄ : U Ñ C is holomorphic). In particular, the group of orientation-preserving confor-
mal transformations from an open region in C to itself is the same as its group of holomorphic
automorphisms.

24.3. Pseudo-Riemannian submanifolds. Many interesting examples of Riemannian man-
ifolds occur as hypersurfaces in flat space, so the question arises: if Σ is a submanifold of a pseudo-
Riemannian manifold pM, gq whose geodesic flow we already understand, can we compute from it
the geodesics on Σ? In fortunate cases this is possible, but there are a few subtleties to be aware
of. First is the metric on Σ: we would obviously like to define it as the restriction of g “ x , y to
TΣ Ă TM , or equivalently, the pullback j˚g P ΓpT 0

2Σq via the inclusion map j : Σ ãÑ M . This
is fine if g is positive, because the restriction will then also satisfy xX,Xy ą 0 for all nontrivial
X P TΣ, but in the indefinite case, the nondegeneracy of g does not immediately imply the same
for its restriction j˚g. There is a simple exercise in linear algebra to be done before we continue.

Suppose V is a finite-dimensional real vector space and x , y is a nondegenerate symmetric
bilinear form on V ; recall that “nondegenerate” in this situation means the map V Ñ V ˚ : v ÞÑ xv, ¨y
is an isomorphism. By analogy with the case of a positive-definite inner product, we can associate
to any linear subspace W Ă V its orthogonal “complement”

WK :“  
v P V ˇ̌ xv, wy “ 0 for all w PW(

.

We put the word “complement” in parentheses here because if x , y is not positive-definite, there
is no guarantee in general that W and WK will actually be complementary, i.e. they might have
nontrivial intersection.

Lemma 24.7. For any finite-dimensional real vector space V with a nondegenerate symmetric
bilinear form x , y and a subspace W Ă V :

(1) dimW ` dimWK “ dim V ,
(2) pWKqK “W ,
(3) The restriction of x , y to W is nondegenerate if and only if W XWK “ t0u, which is

true if and only if V “W ‘WK.

Proof. Degeneracy of x , y|W means there exists a nontrivial vector v PW such that xv, ¨y|W “
0, which is the same thing as saying v P W XWK. To show that dimW ` dimWK “ dim V , it
suffices to view WK Ă V as the kernel of the linear map

V ÑW˚ : v ÞÑ xv, ¨y|W ,
and observe that this map is surjective since every linear functional λ : W Ñ R can be extended to
a linear functional on V and then presented as λ “ xv, ¨y for a unique v P V , due to the nondegeracy
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of x , y on V . SinceW Ă pWKqK by definition, this also impliesW “ pWKqK, since both subspaces
have the same dimension. �

Definition 24.8. In a pseudo-Riemannian manifold pM, gq, a submanifold Σ Ă M with in-
clusion map j : Σ ãÑ M is called a pseudo-Riemannian submanifold if j˚g is nondegenerate,
so that it defines a pseudo-Riemannian metric on Σ. We call Σ a Riemannian submanifold if
j˚g is positive.

Lemma 24.7 implies:

Corollary 24.9. A submanifold Σ in pM, gq is a pseudo-Riemannian submanifold if and only
if for every p P Σ, TpM “ TpΣ‘ pTpΣqK. �

The condition in Corollary 24.9 is satisfied for every submanifold Σ Ă M if pM, gq is a Rie-
mannian manifold, but this is not true in the indefinite case. For example, light-like paths (see Re-
mark 22.12) in a Lorentzian manifold pM, gq trace out smooth 1-dimensional submanifolds Σ ĂM ,
but pΣ, j˚gq is not a pseudo-Riemannian submanifold, as j˚g in this case vanishes.

Remark 24.10. Lemma 24.7 remains true without significant changes if x , y is assumed
antisymmetric instead of symmetric, and this observation is important in symplectic geometry.
In particular, an analogue of Corollary 24.9 holds for symplectic submanifolds of a symplectic
manifold.

By Corollary 24.9, every pseudo-Riemannian submanifold Σ Ă pM, gq comes with a well-defined
orthogonal projection

πΣ : TM |Σ Ñ TΣ,

which projects each tangent space TpM for p P Σ to TpΣ Ă TpM along the complementary subspace
pTpΣqK Ă TpM .

Proposition 24.11. If ∇ is the Levi-Cività connection on pM, gq and Σ Ă M is a pseudo-
Riemannian submanifold with inclusion j : Σ ãÑ M , the Levi-Cività connection on pΣ, j˚gq is
uniquely determined by the relationp∇XY “ πΣ p∇XY q , for p P Σ, X P TpΣ and Y P XpMq with Y pΣq Ă TΣ.

Proof. Any vector field on Σ near p can be extended to a vector field on M using a slice
chart, thus the stated relation uniquely determines a connection on Σ if we can prove that the
operator πΣ ˝∇X satisfies the required Leibniz rule. And it does: for f P C8pΣq, Y P XpΣq and
X P TpΣ, we extend f and Y arbitrarily to a smooth function and vector field respectively on M ,
and use the Leibniz rule for ∇ to compute

πΣ p∇XpfY qq “ πΣ ppLXfqY ` f∇XY q “ pLXfqπΣpY q ` fπΣp∇XY q “ pLXfqY ` fπΣp∇XY q,
where we have written πΣpY q “ Y since Y pΣq Ă TΣ. This proves that πΣ ˝∇ defines a connection
on Σ, and to see that it is also compatible with the restricted metric j˚g, we take two vector
fields Y, Z P XpΣq, extend them smoothly to vector fields on M , and then use the fact that ∇ is
compatible with g, plus the fact that Y ppq and Zppq are both orthogonal to pTpΣqK:

LX xY, Zy “ x∇XY, Zy ` xY,∇XZy “ xπΣp∇XY q, Zy ` xY, πΣp∇XZqy.
Finally, we observe that for vector fields Y, Z P XpMq with values in TΣ along Σ, the Lie bracket
rY, Zs P XpMq necessarily also has this property, so the torsion of πΣ ˝∇ at p P Σ ispT pY ppq, Zppqq :“ πΣp∇Y ppqZq ´ πΣp∇ZppqY q ´ rY, Zsppq “ πΣ

`
∇Y ppqZ ´∇ZppqY ´ rY, Zsppq˘

“ πΣ pT pY ppq, Zppqqq “ 0,

since∇ is symmetric. The result now follows from the uniqueness of the Levi-Cività connection. �
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Corollary 24.12. Assume Σ Ă pM, gq is a pseudo-Riemannian submanifold with inclusion
j : Σ ãÑ M , and ∇ denotes the Levi-Cività connection on pM, gq. Then a path γ : pa, bq Ñ Σ is a
geodesic on pΣ, j˚gq if and only if ∇t 9γptq is orthogonal to TγptqΣ for all t.

Proof. According to Proposition 24.11, the geodesic equation on pΣ, j˚gq is πΣp∇t 9γq ” 0. �

24.4. Three examples of Riemannian manifolds.
24.4.1. Euclidean space. We have already mentioned that the Christoffel symbols onM :“ Rn

with the Euclidean metric
g “ gE :“ pdx1q2 ` . . .` pdxnq2

vanish identically, thus the geodesic equation becomes :γ “ 0 and the geodesics are straight lines.
You may think there is not much more to say about this example, but that didn’t stop Euclid from
writing a treatise about pR2, gEq that was regarded as the basis of Western mathematics for 2000
years. Here is a modern reformulation of the first two of Euclid’s five postulates, on which all of
his propositions about plane geometry are based:

(E1) For every pair of distinct points p, q P M , there exists a unique geodesic segment γ :

r0, 1s ÑM with γp0q “ p and γp1q “ q.
(E2) Every geodesic in pM, gq exists for all time, i.e. pM, gq is geodesically complete.
Before continuing, let us mention another property of pRn, gEq that Euclid uses constantly

without mentioning it, but that is actually a quite nontrivial property for a Riemannian manifold
to have. The isometry group IsompRn, gEq is as large as possible, i.e. every isometry that is
permitted by Theorem 24.3 actually exists. Indeed, the isometry group of pRn, gEq contains all the
translations x ÞÑ x ` v by vectors v P Rn, as well as the orthogonal transformations A P Opnq,
and one can combine these to produce a transformation that takes any given point p to another
given point q while effecting an arbitrary rotation or reflection on their tangent spaces. In Euclid’s
argumentation, this fact is used for congruence proofs, e.g. two triangles in R2 are seen to be “the
same” because one can be overlaid upon another, which means in modern terms that there is an
isometry R2 Ñ R2 mapping one to the other. One can use this to justify the notion that “all right
angles are the same,” which is essentially the content of Euclid’s fourth postulate (E4): if α1, α2

are two geodesics that intersect at a right angle at α1ps1q “ α2ps2q “: p and β1, β2 is another pair
of geodesics with a right-angle intersection at β1pt1q “ β2pt2q “: q, then there exists an isometry
sending p ÞÑ q, α1pRq ÞÑ β1pRq and α2pRq ÞÑ β2pRq. This property is the reason why angles in
the plane can be measured and meaningfully compared, even if they appear at different points.
Euclid’s third postulate (E3) is not so much a property of pR2, gEq as a “recipe” for constructing
circles, which in our n-dimensional context would mean spheres: for every pair of distinct points
p, q, there is a unique “pn´ 1q-sphere” centered at p containing q, which we would define as 

expppXq
ˇ̌
X P TpM such that |X | “ |X0| where expppX0q “ q

(
.

Note that the vector X0 P TpM in this definition is unique due to the uniqueness of the geodesic
segment in (E1), and expppXq is always well defined due to (E2). The point of (E3) is that it
gives rise to constructive arguments, e.g. Euclid’s proposition on bisecting triangles provides not
just the existence of bisections but an actual recipe to construct them with a ruler and compass.

The most famous of Euclid’s postulates is the fifth, which is better known in a reformulation
that was stated by John Playfair in 1795 and shown to be equivalent to Euclid’s fifth postulate
whenever the first four also hold:

(E5) For any geodesic γ : R Ñ M and a point p P M not on the image of γ, there exists at
most one (up to parametrization) geodesic through p that does not intersect γ.

This is the parallel postulate, and historically, it has caused a lot of trouble. We’ll come back
to that shortly.
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24.4.2. Spheres. The natural Riemannian metric on the unit sphere Sn Ă Rn`1 is the one
that it inherits by restriction from the Euclidean metric on Rn`1. For the latter, the Levi-Cività
connection ∇ is the trivial one, thus according to Corollary 24.12, a path γ : pa, bq Ñ Sn is a
geodesic in Sn if and only if

:γptq P pTγptqSnqK “ Rγptq for all t.

It is easy to find paths that have this property, e.g. for any p P Sn and v P TpSn “ pK with |v| “ 1,
the path

γptq “ pcos tqp` psin tqv P Sn Ă Rn`1

is an example since :γptq “ ´γptq P Rγptq for all t. Geodesics of this form exist for all t P R, and
they can be chosen so that γp0q “ p is an arbitrary point in Sn and 9γp0q “ v is an arbitrary unit
vector in Tγp0qSn. It follows that all geodesics on Sn are either paths of this form or (depending
on their speed) reparametrizations of them: their images are the intersections of Sn with arbitrary
2-dimensional subspaces (spanned by the vectors p,v P Rn`1), and are known as great circles.

Just like Euclidean space, the sphere Sn has the largest possible isometry group: any matrix
in Opn ` 1q defines a transformation Rn`1 Ñ Rn`1 that preserves Sn. If e1 P Rn`1 denotes the
first standard basis vector, then for any other v P Sn, one can find A P Opn` 1q with Ae1 “ v by
defining the columns ofA to be any orthonormal basis v1, . . . ,vn`1 with v1 “ v. This construction
allows considerable freedom in the choice of v2, . . . ,vn`1, and this freedom is sufficient to realize
any desired orthogonal transformation on the subspace TvSn “ vK.

Let’s see how Euclid’s axioms are doing. All the geodesics mentioned above are defined for
all t P R, so (E2) is fine. There is a problem with (E1), though: while it is certainly possible to
connect any two distinct points p, q P Sn by a geodesic segment, this segment is never unique:
every geodesic on Sn is periodic, so you can always find another segment from p to q just by
traversing the circle more times. In some cases you can find a lot more: for instance, antipodal
points on S2 are connected by an infinite family of geodesics, e.g. the longitudes that connect the
north and south poles on the Earth. Another consequence of this ambiguity is that a geodesic
from p to q is definitely not always the shortest path on Sn from p to q, nor must it be a local
minimum of the length functional: if you imagine for instance a path that traverses most of a great
circle in order to move from p to a nearby point q, it is easy to find non-geodesic paths nearby that
are shorter. We proved in §22.4 that geodesics are stationary (i.e. critical points) for the length
functional, but indeed, not every critical point must be a local minimum.

On S2, the parallel postulate is true for a stupid reason: no two geodesics are parallel, i.e. they
always must intersect! In summary, classical geometry on S2 is an interesting subject, but it has
very little to do with Euclid’s postulates.

24.4.3. Hyperbolic space. The third example gives a reason to care about indefinite metrics
even if you have no interest in physics and really just want to understand Riemannian manifolds.
The idea is to do the same thing as in the previous subsection, but with the Euclidean metric on
Rn`1 replaced by a metric with Lorentz signature: we will call it the Minkowski metric, and
write it in coordinates X “ pτ, x1, . . . , xnq “ pτ,xq P Rn`1 as

gM :“ ´dτ2 ` pdx1q2 ` . . .` pdxnq2.
The sphere was obtained as a regular level set for the Euclidean metric, but using the Minkowski
metric instead gives a hyperboloid: 

X P Rn`1
ˇ̌ xX,Xy “ ´1( “  pτ,xq P Rˆ Rn

ˇ̌
τ2 ´ |x|2 “ 1

(
.

This hypersurface has two connected components, distinguished by the conditions τ ě 1 and
τ ď ´1, so we pick one of them to define a connected n-manifold called hyperbolic n-space

Hn :“  
X “ pτ,xq P Rn`1

ˇ̌
τ2 ´ |x|2 “ 1 and τ ą 0

(
.
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We claim that this is in fact a Riemannian submanifold of pRn`1, gM q, i.e. the restriction of the
Minkowski metric to Hn is positive-definite. To see this, note that as (a component of) a regular
level set of the function fpXq :“ xX,Xy, the tangent space to Hn at any point p P Hn is the kernel
of Dfppq : Rn`1 Ñ R, where the latter is DfppqY “ 2xp, Y y, hence

TpH
n “ pK Ă Rn`1.

One needs to be careful not to use too much Euclidean intuition in reading equations like this:
the symbol K in this case is defined relative to the Minkowski metric, which is indefinite, so it
is not even automatic that p R pK. On the other hand, the Minkowski inner product is negative
(and therefore nondegenerate) on the 1-dimensional subspace spanned by p, so it follows from
Lemma 24.7 that Rp ‘ pK “ Rn`1. Since Rp “ pTpHnqK, Corollary 24.12 then implies that
Hn Ă pRn`1, gM q is a pseudo-Riemannian submanifold. Its signature can be deduced from the
fact that gM has signature pn, 1q and is negative on pTHnqK: this is only possible if gM restricts
positively to THn. We therefore have a natural Riemannian metric on Hn.

Remark 24.13. You may have wondered why we defined Hn as a component of the level
set with xX,Xy “ ´1 instead of xX,Xy “ 1, as the latter might have seemed more obviously
analogous to the sphere. The reason is that we specifically wanted a Riemannian submanifold: the
hyperboloid xX,Xy “ 1 is also a pseudo-Riemannian submanifold, one that even has the advantage
of being connected, but it has signature pn´ 1, 1q.

What are the geodesics? Here it is useful to note that the Levi-Cività connection ∇ on
Minkowski space is the same one as on Euclidean space: it is the trivial connection, as is true for
every pseudo-Riemannian metric with constant coefficients. One can then write down the geodesics
on Hn in almost exactly the same way as on Sn, the trick is just to replace cos and sin by their
hyperbolic counterparts. Given any p P Hn and v P TpHn “ pK Ă Rn`1 with |v| “ axv,vy “ 1,
the path

γptq :“ pcosh tqp` psinh tqv P Rn`1

satisfies

xγptq, γptqy “ xpcosh tqp` psinh tqv, pcosh tqp` psinh tqvy “ pcosh2 tqxp, py ` psinh2 tqxv,vy
“ ´ cosh2 t` sinh2 t “ ´1,

so it lies in Hn, and its image is the intersection of Hn with the 2-dimensional subspace of Rn`1

spanned by p and v. Moreover,
:γptq “ γptq P pTγptqHnqK,

so Corollary 24.12 implies that γ is a geodesic. Since γp0q “ p P Hn and 9γp0q “ v P TpHn can each
be chosen arbitrarily (subject to the condition |v| “ 1), every geodesic in Hn is a reparametrization
of one of these.

And the isometries? The group of linear transformations on Rn`1 preserving the Minkowski
metric is the Lorentz group Opn, 1q, and its transformations preserve the submanifold Hn Ă Rn`1.
Analogously to the action of Opn` 1q on Sn, one can show that there is a Lorentz transformation
sending any point in Hn to any other one, while realizing any desired rotation or reflection on the
tangent spaces. The isometry group of Hn is therefore as large as possible: in particular, for any
two geodesics on Hn with the same speed, there exists an isometry identifying one with the other.

The hyperbolic plane H2 made a splash when it was first discovered in the 19th century.
The reason has to do with Euclid’s postulates: H2 satisfies the first four, so a large portion of
Euclid’s propositions on congruence, bisection of triangles etc. works just as well in hyperbolic as
in Euclidean geometry. But not the fifth postulate:
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Exercise 24.14. Find a pair of intersecting geodesics onH2 and a third geodesic that intersects
neither of them.

The parallel postulate was always perceived to be a less obviously “fundamental” statement
than Euclid’s first four postulates, and the belief remained popular for 2000 years after Euclid
that it should be possible to deduce it logically from the other four, if only one could find the
right argument. Several illustrious figures even claimed at various times to have achieved this,
though their proofs invariably turned out to rely on unjustified intuitive assumptions that do not
follow from the first four postulates. (For more on this history, see [Lee13b].) The example of
the hyperbolic plane revealed finally that this effort was fruitless: the fifth postulate cannot be
deduced from the other four, because there exists a geometry that satisfies those four but not the
fifth.

Exercise 24.15. Let Bn Ă Rn denote the open ball of radius 1. There is a natural diffeomor-
phism ϕ : Bn Ñ Hn defined via stereographic projection, which means the following: for x P Bn,
define ϕpxq P Hn as the unique intersection of Hn with the line in Rn`1 “ R ˆ Rn that passes
through the points p´1, 0q and p0,xq. The pullback ϕ˚gM thus defines a Riemannian metric on Bn

making it isometric toHn. Prove ϕ˚gM is related to the Euclidean metric gE “ pdx1q2`. . .`pdxnq2
by

ϕ˚gM “ 4

p1´ |x|2q2 gE .
This is called the Poincaré disk model of hyperbolic space.

The Poincaré disk model in Exercise 24.15 reveals that hyperbolic space is conformally flat,
i.e. the metric ϕ˚gM on Bn defines the same notion of angles as the Euclidean metric. This
observation becomes especially useful in the case n “ 2, where we can use the bijection R2 Q
px, yq Ø x` iy “: z P C to identify B2 with

D :“  
z P C

ˇ̌ |z| ă 1
(

and write ϕ˚gM “ 4
p1´|z|2q2

`
dx2 ` dy2

˘
.

Exercise 24.16. The classical Cayley transform is the holomorphic map fpzq :“ z´i
z`i , which

defines a conformal transformation from the open upper half-plane H :“  
x` iy P C

ˇ̌
y ą 0

(
to D.

Prove
f˚ϕ˚gM “ 1

y2

`
dx2 ` dy2

˘
,

hence the Poincaré half-plane from Exercise 22.8 is another model of the hyperbolic plane.

By a standard theorem in complex analysis, the group of holomorphic automorphisms of the
disk D Ă C consists of all maps of the form

z ÞÑ eiθ
z ´ a

1´ āz
, for any θ P R, a P D.

Or if you prefer the Poincaré half-plane model, the holomorphic automorphisms of H are the
fractional linear transformations

z ÞÑ az ` b

cz ` d
, for any a, b, c, d P R with ad´ bc “ 1.

These are two alternate perspectives on the same thing, and in either case, we have a 3-dimensional
group of conformal transformations, containing exactly one that maps any given point to any other
given point while also realizing any desired rotation. But since both of these are isometric to the
hyperbolic plane, we can say the same thing about the orientation-preserving isometries: all of
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the latter are of course conformal transformations, and they are therefore all of the conformal
transformations. This proves a rather surprising fact about the hyperbolic plane:68

Theorem 24.17. On H2, every conformal transformation is an isometry. �

This result plays a fundamental role in the theory of Riemann surfaces, due to the fact that
choosing a complex structure on a surface is equivalent to choosing an orientation and a conformal
structure, i.e. a conformal equivalence class of metrics. It implies that outside of a finite set of
exceptions, the category of Riemann surfaces is essentially equivalent to the category of oriented
surfaces with hyperbolic metrics, so that results from 2-dimensional Riemannian geometry have
nontrivial consequences for complex 1-manifolds.

One of the standard theorems derivable from Euclid’s five postulates is that the sum of the
angles in every triangle is π. This is one of the things you lose if you remove the fifth postulate:

Exercise 24.18. Using whichever model you prefer, show that for any ǫ ą 0, H2 contains a
compact region bounded by three geodesics, each intersecting each of the others exactly once, such
that the sum of the angles at the three intersections is less than ǫ.

25. Integrability and the Frobenius theorem

In this lecture we begin talking about curvature: we will consider first the setting of a general
vector bundle with an arbitrary connection, and once this is understood, specialize to the tangent
bundle of a pseudo-Riemannian manifold with the Levi-Cività connection. We assume as usual
that

π : E ÑM

is a smooth vector bundle, and the symbol ∇ will always mean a connection on this bundle.

25.1. Flat sections and connections. One can motivate the topic of curvature by asking
three questions whose answers in the setting of ordinary differentiation (i.e. for the trivial connec-
tion on a trivial bundle) are either obvious or are well-known results from first-year analysis. The
answers turn out to be much less obvious for an arbitrary connection ∇ on E.

Questions 25.1. Choose any point p PM in the base of the vector bundle π : E ÑM .
(1) Given v P Ep, is v the value at p of any parallel section s : U Ñ E defined on a

neighborhood U ĂM of p , i.e. a section satisfying ∇s ” 0?
(2) Does p have a neighborhood U Ă M on which for every smooth path γ : r0, 1s Ñ U with

γp0q “ γp1q “ p, the parallel transport map P 1
γ : Ep Ñ Ep is the identity?

(3) Given a coordinate chart px1, . . . , xnq on a neighborhood of p, do the partial covariant
derivative operators ∇i :“ ∇ B

Bxi
and ∇j :“ ∇ B

Bxj
for i ‰ j commute at p?

The answer to all three questions is clearly yes if ∇ is the trivial connection with respect to
some local trivialization of E near p. This is always the case if dimM “ 1, in particular, since
p then has a neighborhood parametrized by a path, so parallel transport along that path can be
used to define a trivialization in which the parallel sections are represented by constant functions,
hence ∇ is the trivial connection. But for dimM ě 2, we will see that the answer to all three
questions is no in general.

If you think of parallel sections as the generalization to vector bundles of the notion of a con-
stant function, then it seems surprising at first that there might not exist one on any neighborhood
of a point. Of course, parallel sections along a path do always exist; we get them from parallel
transport. But if dimM ě 2 so that no neighborhood of p can be parametrized by a single path,

68There was no time to mention Theorem 24.17 in the lecture, so it is included here only for information.
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then the effort to find a parallel section runs into trouble precisely because the answer to ques-
tion 25.1(2) might be no: if a parallel section s : U Ñ E on some neighborhood U ÑM of p exists
with any given value sppq “ v, then paths γ : r0, 1s Ñ U will satisfy P tγpvq “ spγptqq for every t,
and parallel transport along a loop in U therefore always brings us back to v. But we’ve already
seen an example where the latter is impossible: parallel transport using the Levi-Cività connection
on TS2 Ñ S2 along certain closed “triangular” paths in S2 does not produce the identity map;
see Figure 8 in Lecture 19. (You’ve learned in the mean time that the edges of the triangle in
that picture are geodesic segments, and you could then deduce from the compatibility of the Levi-
Cività connection with the metric that the vector field drawn along these edges really is parallel.)
It follows that no parallel vector field exists on any neighborhood of that triangle.

Remark 25.2. We intentionally phrased all three of the questions in 25.1 so that they are
local in nature, i.e. they depend on the connection only in an arbitrarily small neighborhood
of p. This is the one problem with Figure 8, since the triangle in that picture cannot be called
a “small” neighborhood of anything. The reason to focus only on neighborhoods of a point is
that for arbitrary paths γ : r0, 1s Ñ M with γp0q “ γp1q in a manifold M , it might happen for
topological reasons that P 1

γ is not the identity map even if local parallel sections always exist
(see e.g. Exercise 25.6 below). One can show however (see Exercise 25.7) that if local parallel
sections always exist, then P 1

γ depends only on the homotopy class of γ. From this fact we can
still conclude via Figure 8 that local parallel vector fields cannot always exist on S2, because S2

is simply connected, so the loop in the picture is homotopic to a constant loop (which would of
course give the identity as a parallel transport map).

We now give some formal definitions. We will continue to use the word parallel to describe any
section s : U Ñ E on an open subset U Ñ E such that ∇s ” 0. The terms flat, horizontal and
covariantly constant are sometimes used as synonyms for “parallel” when applied to sections.

Definition 25.3. A connection ∇ on the bundle E ÑM is called flat if for every p PM and
v P Ep, there exists a neighborhood U ĂM of p and a flat section s P ΓpE|Uq with sppq “ v.

Proposition 25.4. A connection ∇ on E ÑM is flat if and only if every point p PM has a
neighborhood U ĂM with a local trivialization Φ : E|U Ñ U ˆ Fm in which ∇ looks like the trivial
connection (see Example 20.1).

Proof. In one direction this is obvious, since the trivial connection clearly admits flat sections
(they look constant in the trivialization). Conversely, if ∇ is flat, then for any p PM , we can choose
a basis v1, . . . , vm of Ep and flat sections e1, . . . , em P ΓpE|Uq on some neighborhood U Ă M of p
such that eippq “ vi for i “ 1, . . . ,m; after possibly shrinking the neighborhood U , we can assume
that these also span the fiber Eq for every q P U , thus they form a frame for E over U . Writing an
arbitrary section s P ΓpEq on U in terms of its components as s “ siei with respect to the frame
e1, . . . , em, the Leibniz rule then gives

∇Xs “ dsipXqeipqq ` sipqq∇Xei “ dsipXqeipqq for every q P U , X P TqM,

showing that the covariant derivative is represented in this frame by the differentials of the com-
ponents. This means that e1, . . . , em corresponds to a local trivialization in which ∇ is the trivial
connection. �

It follows from Proposition 25.4 that for any flat connection, the answers to questions 25.1(2)
and (3) are both affirmative.

Exercise 25.5. Prove that if dimM “ 1, then every connection on E ÑM is flat.
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Exercise 25.6. Recall the nontrivial real line bundle ℓÑ S1 in Example 16.23. Exercise 25.5
implies that any connection ∇ on ℓ Ñ S1 is flat since dimS1 “ 1. Show however that for a path
γ : r0, 1s Ñ S1 that winds once around the circle and ends at its starting point γp1q “ γp0q “: p,
P 1
γ : ℓp Ñ ℓp can never be the identity map.

Hint: This has to do with the fact that ℓÑ S1 is a non-orientable bundle.
Remark: The nontriviality of P 1

γ in this example is detecting a topological property of ℓÑ S1 that
has nothing to do with the connection. This is why we confine the loop in Question 25.1(2) to an
arbitrarily small neighborhood of a point instead of allowing arbitrary loops.

Exercise 25.7. Suppose ∇ is a flat connection on E ÑM .
(a) Show that for any smooth map f : N Ñ M , the pullback of ∇ to a connection on

f˚E Ñ N is also flat.
(b) Show that if tγs : r0, 1s Ñ MusPr0,1s is a smooth family of paths with fixed end points

γsp0q “ p and γsp1q “ q for all s P r0, 1s, then the maps P 1
γ0
, P 1

γ1
: Ep Ñ Eq are identical.

Hint: Write hps, tq :“ γsptq and use the fact that the pullback connection on h˚E Ñ
r0, 1s ˆ r0, 1s is also flat. Can you construct a global flat section of h˚E, and if so, how
does it behave on the subsets r0, 1s ˆ t0u and r0, 1s ˆ t1u?69

Exercise 25.8. Prove:

(a) If ∇ a connection on E Ñ M and pUα,Φαq and pUβ ,Φβq are two overlapping local
trivializations in which ∇ looks like the trivial connection, then the transition functions
relating these two trivializations are locally constant.
Hint: Think in terms of local frames that are built out of flat sections. If v “ viei where
∇v ” 0 and ∇ei ” 0 for every i, what can you conclude from the Leibniz rule?

(b) Show that for any finite subgroup G Ă GLpm,Fq, every G-structure on E ÑM naturally
determines a flat connection, and conversely, if M is compact, then every flat connection
on E ÑM arises in this way from a G-structure for some finite subgroup G Ă GLpm,Fq.

Exercise 25.8 makes the existence of a flat connection seem like a rather restrictive condition:
one would not expect the structure group of a vector bundle to be reducible in every case to a
finite subgroup. Our main goal in this lecture is to formulate precise conditions for identifying
whether a connection is flat. Along the way, we will be able to solve a related problem which is of
independent interest and has nothing intrinsically to do with bundles: it leads to the theorem of
Frobenius on integrable distributions.

25.2. Integrable frames. The word integrability has a variety of meanings in different con-
texts. Generally it refers to questions in which one is given some data of a linear nature, and would
like to find some nonlinear data which produce the given linear data as a form of “derivative”. The
problem of finding antiderivatives of a smooth function f on R is the simplest example: it can
always be solved (at least in principle) by writing down an antiderivative as a definite integral
of f , and is thus not very interesting for the present discussion. A more interesting example is the
generalization of this question to higher dimensions, which we examined in Lecture 13:

Question 25.9. Given a k-form ω on an n-manifold M , under what conditions is ω locally
the exterior derivative of a pk ´ 1q-form?

69For the purposes of Exercise 25.7, you are safe in pretending that r0, 1s ˆ r0, 1s is a smooth manifold, rather
than something exotic like a “manifold with boundary and corners”. If this worries you, assume that the family
of paths γs : r0, 1s Ñ M is defined for s P R instead of just s P r0, 1s; this does not change the situation in any
significant way.
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Including the word “locally” in this question removes topological issues from the discussion:
we’ve seen for instance that certain 1-forms λ on S1 cannot be differentials of functions becauseş
S1 λ ‰ 0, but that is a symptom of the fact that the topological invariant H1

dRpS1q is nontrivial,
and does not stop every 1-form λ P Ω1pS1q from being presentable on a neighborhood U Ă S1 of
any given point as df for some function f : U Ñ R. The answer to the question comes of course
from the Poincaré lemma, which states that the “integrability condition”

dω “ 0

is not only necessary but also sufficient for ω to admit local primitives.
Here is another integrability question whose answer will have some important applications.

Question 25.10. Suppose M is an n-manifold and X1, . . . , Xn is a frame for TM over some
open subset U Ă M . Under what conditions does there exist for every point p P U a chart
pU 1, px1, . . . , xnqq with p P U 1 Ă U such that Xi “ B

Bxi on U 1 for every i “ 1, . . . , n?

In other words, every chart naturally gives rise to a local frame for TM , but we want to know
when this process can be reversed: when can a frame for TM be “upgraded” locally to a chart?

Let’s start with some good news: the answer in the case n “ 1 is always. Indeed, the assumption
in this case is that M is a 1-manifold and X1 is a nowhere-zero vector field on some open subset
U ĂM , so a suitable chart pU 1, xq on some neighborhood U 1 Ă U of any given point p P U can be
defined in terms of any local solution γ : p´ǫ, ǫq ÑM to the initial value problem

9γptq “ Xpγptqq, γp0q “ p,

namely U 1 :“ γpp´ǫ, ǫqq Ă M and x :“ γ´1 : U 1 Ñ R. This example provides further justification
for the term “integrability”: solving an ordinary differential equation is sometimes referred to as
integrating the equation, and since every ODE admits unique local solutions, every nowhere-zero
vector field X1 on a 1-manifold is integrable in this sense. More generally, it is reasonable to call a
local frame X1, . . . , Xn for TM integrable if it arises from a chart as described in Question 25.10.

It is easy to see on the other hand that for n ě 2, not every local frame for TM is integrable,
and the Lie bracket gives an obvious obstruction. Indeed, the coordinate vector fields induced by
a single chart always commute with each other (see Example 6.6), so X1, . . . , Xn clearly cannot
be coordinate vector fields, even in arbitrarily small neighborhoods of any given point p, unless
rXi, Xjs ” 0 for every i, j “ 1, . . . , n. One can easily find local frames that do not satisfy this
condition, e.g. on R2 with coordinates px, yq, pBx, fBx ` gByq defines a frame for TR2 whenever
f, g : R2 Ñ R are smooth functions with g never vanishing, but using Exercise 6.2, one finds

rBx, fBx ` gBys “ pBxfqBx ` pBxgqBy,
which does not vanish unless fpx, yq and gpx, yq are both independent of x.

The really good news is that the condition on vanishing Lie brackets is not just necessary, but
also sufficient:

Theorem 25.11. Suppose X1, . . . , Xn P XpMq are vector fields that all commute with each
other. Then for any p P M at which X1ppq, . . . , Xnppq form a basis of TpM , there exists a chart
pU , xq on M with p P U such that Xi “ B

Bxi on U for every i “ 1, . . . , n.

Proof. For sufficiently small ǫ ą 0, we can use the flows of the vector fields X1, . . . , Xn to
define a smooth map

ψ : p´ǫ, ǫqn ÑM : pt1, . . . , tnq ÞÑ ϕt
1

X1
˝ . . . ˝ ϕtnXn

ppq.
By Theorem 6.9, the condition rXi, Xjs ” 0 implies that the flows ϕsXi

and ϕtXj
commute with

each other, thus for each j P t1, . . . , nu, one can reorder the composition of flows in the above
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definition so that ϕt
j

Xj
comes first, in which case the definition of the flow gives

Bjψpt1, . . . , tnq “ Xjpψpt1, . . . , tnqq.
Since ψp0, . . . , 0q “ p, and the vectors B1ψp0, . . . , 0q, . . . , Bnψp0, . . . , 0q form a basis of TpM ,
Lemma 4.2 implies that after possibly shrinking ǫ ą 0, ψ is the inverse of a chart on some neigh-
borhood of p. That chart is the one we were looking for. �

25.3. Integrability of distributions. We now return to the question of how to identify
when a connection ∇ on the bundle E Ñ M is flat. From a geometric perspective, a section
s : U Ñ E over some open subset U ĂM can be characterized purely in terms of its image

Σ :“ spUq Ă E,

which is a submanifold of the total space E having exactly one intersection point with each of the
fibers Ep Ă E for p P U . The condition ∇s ” 0 then holds if and only if this submanifold is always
tangent to the horizontal subbundle HE Ă TE determined by the connection, that is,

TvΣ “ HvE for all v P Σ.

With this picture in mind, we can now reframe the flatness question in a somewhat wider context.

Definition 25.12. A smooth k-dimensional distribution on a manifold M is a smooth sub-
bundle ξ Ă TM of rank k. It is also sometimes called a k-plane field. Given such a distribution,
an integral submanifold for ξ is a smooth k-dimensional submanifold Σ ĂM such that

TpΣ “ ξp for all p P Σ.

The distribution ξ is called integrable if for every point p P M , ξ has an integral submanifold
containing p.

Since we will not consider non-smooth distributions in this course, we will usually omit the
word “smooth” and just refer to them as “distributions”. Note that integral submanifolds do not
need to be large in any sense, i.e. noncompact submanifolds diffeomorphic to a k-ball are fine, so
the integral submanifold through p P M may be contained in an arbitrarily small neighborhood
of p, and in this sense integrability of a distribution is a purely local condition.

Thinking in terms of distributions and integral submanifolds makes possible a slight reformu-
lation of our goal:

Proposition 25.13. A connection on a vector bundle E ÑM is flat if and only if its horizontal
subbundle HE Ă TE is an integrable distribution on the total space E. �

Example 25.14. For any vector bundle π : E ÑM , the vertical subbundle V E Ă TE is also
a distribution on the total space E, and it is always integrable. Indeed, the integral submanifolds
of V E are the fibers of π : E ÑM , and there is indeed one through every point.

The integrability problem for distributions bears several similarities to the frames considered in
the previous section. One is that the 1-dimensional case is trivial: every 1-dimensional distribution
(in a manifold of arbitrary dimension) is integrable. To see this on a neighborhood of any given
point p PM , one need only choose a vector field X P XpMq that is nonzero at p and takes values in
ξ near p, as the flow lines of that vector field then trace out integral submanifolds of ξ, one of which
passes through p. For a k-dimensional distribution ξ Ă TM with k ě 2, however, it is harder to
see why integral submanifolds should exist, and in general they don’t. Figure 9 for instance shows
a 2-dimensional distribution on R3 consisting of 2-planes that “twist” in a way that would seem to
prevent any surface from being tangent to them at every point. As with the frames in §25.2, there
is in fact a necessary condition that can be stated easily, and it involves the Lie bracket:
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Figure 9. A non-integrable 2-dimensional distribution on R3.

Lemma 25.15. If ξ Ă TM is an integrable distribution, then for every pair of vector fields
X,Y P XpMq that take their values in ξ, the bracket rX,Y s P XpMq also takes its values in ξ.

Proof. Choose any point p PM and suppose Σ ĂM is an integral submanifold containing p.
Since TqΣ “ ξq for all q P Σ, vector fields X,Y P XpMq with values in ξ then define vector fields
on Σ by restriction, and rX |Σ, Y |Σs is then (obviously) also a vector field on Σ, which necessarily
matches the restriction of rX,Y s P XpMq to Σ. (You can check this by applying the operators
LX and LY to arbitrary smooth functions on M and their restrictions to Σ.) It follows that
rX,Y sppq P TpΣ “ ξp, and since p was chosen arbitrarily, rX,Y spqq is therefore in ξq for every
q PM . �

The best integrability theorems are those for which the obviously necessary condition is also
sufficient, and that turns out to be the case here as well. The result is known as the Frobenius
integrability theorem.

Theorem 25.16 (Frobenius). A distribution ξ Ă TM on M is integrable if and only if for
every pair of vector fields X,Y P XpMq taking values in ξ, rX,Y s P XpMq also takes values in ξ.

The easy direction of this theorem is Lemma 25.15 above. To prove the converse, it will be
more convenient at first to consider the special case where our manifold is the total space of a
vector bundle π : E ÑM and the distribution is a horizontal subbundle HE Ă TE, meaning any
subbundle of TE that is complementary to the vertical subbundle,

TE “ V E ‘HE.

We will not assume any more than this, so in particular, HE does not need to satisfy the other
condition in our first definition of a connection (Definition 19.4), which was meant to guarantee
that the resulting parallel transport maps are linear. As in Lemma 19.1, HE determines horizontal
lift isomorphisms

Horv : TπpvqM
–ÝÑ HvE Ă TvE for each v P E,
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and every vector field X P XpMq therefore has a horizontal lift Xh P ΓpHEq Ă XpEq, defined by

Xhpvq :“ HorvpXppqq for p PM , v P Ep.
We will denote by

H : TE Ñ HE

the bundle map that projects each TvE linearly to HvE along VvE.

Exercise 25.17. Show that for any X P XpMq and f P C8pMq, LXhpf ˝ πq “ pLXfq ˝ π.
Lemma 25.18. If η, ξ P ΓpHEq Ă XpEq satisfy Lηpf ˝ πq ” Lξpf ˝ πq for every function

f P C8pMq, then η ” ξ.

Proof. If ηpvq ‰ ξpvq for some v P Ep at p PM , then π˚ηpvq ‰ π˚ξpvq since π˚ : TE Ñ TM

maps HvE isomorphically to TpM ; we shall assume without loss of generality that π˚ξpvq ‰ 0.
Then there exists a smooth function f : M Ñ R satisfying dfpπ˚ξpvqq ‰ 0 and dfpπ˚ηpvqq “ 0,
which means Lηpf ˝ πqpvq “ 0 ‰ Lξpf ˝ πqpvq. �

Lemma 25.19. For any X,Y P XpMq, rX,Y sh “ H ˝ rXh, Y hs.
Proof. Observe first that for any ξ P XpEq and f P C8pMq,

Lξpf ˝ πq “ LH˝ξpf ˝ πq,
i.e. ξ can be replaced with its horizontal part or vice versa since the difference between them is
vertical, and dpf ˝ πq|V E ” 0. Then for X,Y P XpMq, using Exercise 25.17,

LH˝rXh,Y hspf ˝ πq “ LrXh,Y hspf ˝ πq “ LXhLY hpf ˝ πq ´ LY hLXhpf ˝ πq
“ LXh ppLY fq ˝ πq ´ LY h ppLXfq ˝ πq “ pLXLY fq ˝ π ´ pLY LXfq ˝ π
“ pLrX,Y sfq ˝ π.

Likewise, again applying Exercise 25.17,

LrX,Y shpf ˝ πq “ pLrX,Y sfq ˝ π “ LH˝rXh,Y hspf ˝ πq,
so the result follows from Lemma 25.18 �

We now come to the main step in the proof of the Frobenius theorem.

Lemma 25.20. Suppose that for every pair of vector fields X,Y P XpMq, the vector field
rXh, Y hs P XpEq takes values in HE. Then HE Ă TE is an integrable distribution on E.

Proof. Since the question is purely local, we lose no generality if we replace M with a small
neighborhood of some point p P M on which a chart px1, . . . , xnq can be defined. Denote the
resulting coordinate vector fields by Xj :“ Bj P XpMq for j “ 1, . . . , n. By assumption rXh

i , X
h
j s

is horizontal for every i and j, thus by Lemma 25.19,

rXh
i , X

h
j s “ H ˝ rXh

i , X
h
j s “ rXi, Xjsh “ 0.

It follows that for any v P Ep, we can construct an integral submanifold through v via the com-
muting flows of Xh

i : it is parametrized by the map

(25.1) ψpt1, . . . , tnq “ ϕt
1

Xh
1

˝ . . . ˝ ϕtnXh
n
pvq

for real numbers t1, . . . , tn sufficiently close to 0. �

Exercise 25.21. Verify that the map (25.1) parametrizes an embedded integral submanifold
of HE.
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The last step is to observe that while the distribution we’ve been considering in this discussion
looks like a special case, there is no actual loss of generality.

Proof of Theorem 25.16. We assume ξ Ă TM is a k-dimensional distribution such that
rX,Y s P Γpξq whenever X,Y P Γpξq. Since the integrability question is purely local, we can choose
a chart near some point p P M so as to assume without loss of generality that M is an open
subset U Ă Rn, and after a linear change of coordinates, we can also arrange that ξp Ă Rn is
complementary to the subspace t0u ˆ Rn´k Ă Rn. After possibly shrinking the neighborhood
U , it follows that ξq is also complementary to this same subspace for every q P U . We can now
view U as an open subset in the total space of the trivial vector bundle Rn “ Rk ˆ Rn´k Ñ Rk :

pq, vq ÞÑ q, in which fibers take the form tqu ˆ Rn´k, and ξ is therefore a horizontal subbundle.
The stated condition on Lie brackets then establishes the hypothesis of Lemma 25.20, implying ξ
is integrable. �

Exercise 25.22. While integral submanifolds of a distribution ξ Ă M through a given point
p PM are not guaranteed to exist, show that they are unique in the following sense: if Σ1,Σ2 ĂM

are two integral submanifolds containing p, then there exist neighborhoods U1 Ă Σ1 and U2 Ă Σ2

of p in each such that U1 “ U2.
Hint: It may help to think only about the special case ξ “ HE Ă TE for a vector bundle
π : E Ñ M , since every case locally looks like this one. Remember that a horizontal subbundle
always uniquely determines parallel transport along paths.

25.4. A tensorial characterization of flatness. In preparation for the general definition
of curvature in the next lecture, we can now associate to every connection ∇ on a bundle π :

E ÑM a tensor field whose vanishing is equivalent to the integrability condition in the Frobenius
theorem. We continue to denote by H : TE Ñ HE the projection along V E, and define also the
complementary projection

V : TE Ñ V E,

which projects TvE linearly along HvE to VvE for each v P E. We use these to define a bilinear
map pΩK : XpEq ˆ XpEq Ñ ΓpV Eq bypΩKpη, ξq :“ ´V prHpηq, Hpξqsq .
The Frobenius theorem is equivalent to the statement that this map vanishes if and only if HE Ă
TE is an integrable distribution: indeed, every vector field on E with values in HE can be written
as Hpηq for some η P XpEq, and an arbitrary η P XpEq takes values in HE if and only if V pηq ” 0.
The real reason why pΩK is useful is that in addition to characterizing the flatness of a connection,
it defines a tensor:

Lemma 25.23. The bilinear map pη, ξq ÞÑ pΩKpη, ξq is C8-linear in both η and ξ.

Proof. Since pΩK is clearly antisymmetric, it suffices to show that it is C8-linear with respect
to η. We use the formula rfX, Y s “ f rX,Y s´ pLY fqX from Exercise 6.4: for any η, ξ P XpEq and
f P C8pEq, pΩKpfη, ξq “ ´V prfHpηq, Hpξqsq “ ´V `

f rHpηq, Hpξqs ´ LHpξqf ¨Hpηq
˘

“ ´fV prHpηq, Hpξqsq “ f pΩKpη, ξq,
where the term V

`
LHpξqf ¨Hpηq

˘ “ LHpξqf ¨ V pHpηqq disappears because Hpηq takes horizontal
values and is therefore annihilated by V . �
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The lemma implies that pΩK can be interpreted as defining a bilinear bundle mappΩK : TE ‘ TE Ñ V E,

and since it is antisymmetric, we also think of it as a bundle-valued differential 2-form on E, and
write pΩK P Ω2pE, V Eq.
This is one version of an object called the curvature 2-form determined by the connection ∇

on E; you can now regard the subscript K as either a reference to the projection K : TE Ñ E that
determines the connection (Definition 19.5), or simply as an abbreviation for the word Krümmung.
In the next lecture we will discuss a somewhat more user-friendly variant of pΩK that packages the
same information. Let us first record the following consequence of the Frobenius theorem:

Corollary 25.24. A connection on a vector bundle π : E Ñ M is flat if and only if the
bundle-valued 2-form pΩK P Ω2pE, V Eq vanishes. �

25.5. Addendum: integrability in general. Integrability theorems are ubiquitous in dif-
ferential geometry, and one should learn to recognize them. They can take different forms depend-
ing on the context in which they arise, but most fit the following paradigm: we have a manifold
M whose tangent bundle TM carries some extra geometric structure defining a preferred class of
local frames, which are guaranteed to exist on neighborhoods of any point. A preferred class of
frames determines a preferred class of charts, namely px1, . . . , xnq such that the frame formed by
the coordinate vector fields B1, . . . , Bn belongs to the preferred class. But as we saw in §25.2, not
every frame comes from a chart, so it is typically harder to find a preferred chart than a preferred
frame, and they don’t always exist: typically some nontrivial integrability condition is required
before the local existence of preferred charts can be guaranteed.

Theorem 25.11 fits this paradigm in a trivial way: in this case the extra geometric structure is
the frame itself, and the question is whether that particular frame can arise locally from a chart.

The Frobenius theorem can also be recast in this language. Here the extra geometric structure
is a distribution ξ Ă TM , i.e. a subbundle of the tangent bundle, and the preferred class of frames
comes from Proposition 17.12: every point p PM has a neighborhood U ĂM on which there is a
frame X1, . . . , Xn for TM such that ξ is the span of X1, . . . , Xk at every point U . A frame arising
naturally from a chart x “ px1, . . . , xnq : U Ñ Rn will have this property if and only if ξ is spanned
at every point by the first k coordinate vector fields B1, . . . , Bk, in which case integral submanifolds
obviously exist through every point: they take the form x´1pRk ˆ tquq for constants q P Rn´k.
The existence of charts of this form is in fact equivalent to integrability:

Proposition 25.25. A k-dimensional distribution ξ Ă TM is integrable if and only if every
point p PM admits a neighborhood U ĂM with a chart x : U Ñ Rn such that the sets x´1pRkˆtquq
are integral submanifolds of ξ for each q P Rn´k.

Exercise 25.26. Prove Proposition 25.25.
Hint: This may seem easier if you think of ξ as a horizontal subbundle in TE for some vector
bundle E.

Proposition 25.25 shows that for an integral distribution, the integral submanifolds are not just
locally unique (cf. Exercise 25.22), but they also fit together into a locally-defined smooth family of
smooth submanifolds. This gives rise to a decomposition ofM called a foliation (Blätterung), and
every connected subset Σ ĂM formed as a union of overlapping connected integral submanifolds
is called a leaf (Blatt) of the foliation. By construction, every point in M belongs to a unique
leaf of the foliation, and unless ξ “ TM , there are always uncountably many distinct leaves. It is
pleasant to picture them as a smooth family of disjoint submanifolds whose union is M , though
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this description is not always completely accurate: the following example shows that leaves are not
always submanifolds, at least not globally.

Exercise 25.27. Given a constant pa, bq P R2zt0u, consider a distribution ξ on T2 “ R2{Z2

such that ξ at every point is the subspace spanned by the constant vector field X “ aBx ` bBy,
where Bx, By are the usual coordinate vector fields of R2 (which are also well-defined on T2 since
its tangent spaces are all canonically isomorphic to R2). This distribution is always integrable
since it is 1-dimensional. Draw pictures of some representative leaves of the resulting foliation in
the cases where pa, bq is p1, 0q, p0, 1q, p1, 1q and p2, 1q. In these cases all leaves are 1-dimensional
submanifolds of T2. Show however that if one of a or b is rational and the other is irrational, then
every leaf of the foliation is dense in T2, and therefore cannot be a submanifold.

For your information, here are some additional examples of integrability results, most of which
we will not cover in this course, though the first is an important exception.

Example 25.28. If pM, gq is a pseudo-Riemannian manifold with signature pk, ℓq, the or-
thonormal frames define a preferred class of local frames for TM , equivalent to Opk, ℓq-compatible
local trivializations. Such a frame arises from a chart px1, . . . , xnq if and only if the metric g has
constant components gij ” ηij in this chart (cf. the discussion following Proposition 23.2). We will
show in the next lecture that charts of this form exist if and only if the Levi-Cività connection on
pM, gq is flat, i.e. its curvature vanishes. You can already see that this is a necessary condition,
since having constant components gij in some chart implies that the connection is trivial in the
corresponding local trivialization.

Example 25.29. We did not include symplectic structures among the list of “G-structures”
in Lecture 18, but we could have done. The standard symplectic structure of R2m is the 2-form
ωstd :“ řm

j“1 dp
j ^ dqj written in global coordinates pp1, q1, . . . , pm, qmq. A linear transformation

A : R2m Ñ R2m is called symplectic if it preserves this structure, meaning ωstdpAX,AY q “
ωstdpX,Y q for allX,Y P R2m, and the set of all such transformations forms the symplectic linear
group Spp2mq Ă GLp2m,Rq. The 2-form ωstd is nondegenerate, meaning ωstdpX, ¨q ‰ 0 P pR2mq˚
for every X ‰ 0 P R2m. Conversely, it is a simple exercise in symplectic linear algebra to show that
for any real 2m-dimensional vector space V with a nondegenerate alternating 2-form ω P Λ2V ˚,
there exists a basis pP1, Q1, . . . , Pm, Qmq such that

ωpPj , Qjq “ 1 for all j,

ωpPi, Qjq “ 0 for all i ‰ j,

ωpPi, Pjq “ ωpQi, Qjq “ 0 for all i, j,
(25.2)

so this basis produces an isomorphism V – R2m that identifies ω with ωstd. A procedure for finding
the basis is as follows: first choose any linearly-independent P1, Q1 such that ωpP1, Q1q “ 1, which
is possible because ω is nondegenerate and alternating. The restriction of ω to the subspace V1 Ă V

spanned by P1 and Q1 is then nondegenerate, so by a straightforward analogue of Lemma 24.7, its
symplectic orthogonal complement

V ωK1 :“  
v P V ˇ̌

ωpv, ¨q|V1
“ 0

(
satisfies R2m “ V1 ‘ V ωK1 , and ω|V ωK

1

is also nondegenerate. Now repeat the same argument on
V ωK1 , which is 2 dimensions smaller than V , and keep repeating until there are no dimensions left.
In summary, every nondegenerate alternating 2-form is equivalent to the standard symplectic form
via a choice of basis.

On a real vector bundle E Ñ M of even rank 2m, an Spp2mq-structure now determines on
each fiber Ep an alternating 2-form ωp P Λ2Ep̊ that looks like ωstd in any Spp2mq-compatible
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local trivialization, and the map p ÞÑ ωp is then a smooth section ω of the vector bundle Λ2E˚ Ñ
M . The frames corresponding to Spp2mq-compatible trivializations consist of tuples of sections
pP1, Q1, . . . , Pm, Qmq that satisfy the relations in (25.2); we call them symplectic frames. Con-
versely, for any choice of section ω P ΓpΛ2E˚q that is nondegenerate on every fiber, one can use
the procedure outlined above to construct frames that satisfy (25.2) over sufficiently small neigh-
borhoods of any point in M . A covering of M by neighborhoods with such frames gives rise to an
Spp2mq-structure on E ÑM , and we then call E ÑM a symplectic vector bundle.

If pM,ωq is a 2n-dimensional symplectic manifold, then ω makes TM ÑM into a symplectic
vector bundle, for which any local coordinates pp1, q1, . . . , pn, qnq in which ω “ řn

j“1 dp
j^dqj give

rise to a symplectic frame B
Bp1 ,

B
Bq1 , . . . ,

B
Bpn ,

B
Bqn . But not every Spp2nq-structure on the bundle

TM ÑM arises in this way from a symplectic form on M . According to the previous paragraph,
an Spp2nq-structure on TM Ñ M is equivalent to a choice of smooth 2-form ω P Ω2pMq that is
nondegenerate on every fiber. In this situation, local symplectic frames can always be found, but
can they always also be realized as coordinate vector fields for a chart pp1, q1, . . . , pn, qnq in which
ω “ ř

j“1 dp
j ^ dqj? There is an obvious necessary condition for this: ω cannot take that form

in any local coordinates if it is not closed, and indeed, if dimM ą 2, there is no reason in general
why a globally nondegenerate 2-form must also be closed. We can therefore view “dω “ 0” as an
integrability condition for a symplectic tangent bundle to be upgraded to a symplectic manifold.
According to Darboux’s theorem, this condition is also sufficient, i.e. every closed nondegenerate 2-
form matches the standard symplectic form in some local coordinates. For more on both symplectic
vector bundles and Darboux’s theorem, see [MS17].

Example 25.30. A volume form µ P ΩnpMq on an n-manifold M is the same thing as an
SLpn,Rq-structure on the bundle TM Ñ M , and the preferred class of frames consists of tuples
of vector fields X1, . . . , Xn defined on open subsets U Ă M such that µpX1, . . . , Xnq ” 1. The
preferred class of charts px1, . . . , xnq can then be characterized by the condition that µ in any such
chart looks like the standard volume form dx1 ^ . . .^ dxn. It is very easy to turn any local frame
into one that satisfies µpX1, . . . , Xnq ” 1, but less obvious in general whether every volume form
can be made to look standard near every point by choosing the right coordinates. However, it is
true: the necessary and sufficient integrability condition for this is dµ “ 0, just as with symplectic
forms, but with the important difference that it is always satisfied since µ is a top-dimensional
form. One can prove this integrability result by a slight variation on one of the standard proofs of
Darboux’s theorem, using the “Moser deformation” trick.

Example 25.31. A deep integrability theorem for almost complex structures J P ΓpEndpTMqq
on a 2n-manifold M was mentioned in Exercise 8.5. An almost complex structure is equivalent
to a GLpn,Cq-structure on TM , where GLpn,Cq is identified with a subgroup of GLp2n,Rq as in
Example 18.10, and local frames in the preferred class take the form pX1, Y1, . . . , Xn, Ynq where
Yj “ JXj and Xj “ ´JYj for each j “ 1, . . . , n. A covering of M by charts that produce frames
of this kind is equivalent to a covering by complex charts whose transition maps are holomorphic,
thus making M into an n-dimensional complex manifold. An almost complex structure J is called
integrable if M admits a covering by charts with this property, and according to the Newlander-
Nirenberg theorem, the necessary and sufficient condition for J to be integrable is the vanishing
of its associated Nijenhuis tensor N P ΓpT 1

2Mq.

26. Curvature on a vector bundle

Like connections, curvature is one of those concepts that can be given several equivalent but
cosmetically quite different definitions, each of which has distinct advantages in different situations.
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In this lecture we give two definitions70 of the curvature of a connection on a vector bundle π :

E Ñ M , and prove that they are equivalent. It will be immediate from one of these definitions
that a connection is flat if and only if its curvature vanishes, while the other definition answers the
question of when covariant partial derivatives in different directions do or do not commute.

26.1. Prelude: bundle-valued forms. We have already had a few occasions to mention
bundle-valued differential forms, but have not given any formal definition of this notion so far. The
time for that is now: for any vector bundle π : E ÑM and each integer k ě 0, we define

ΩkpM,Eq
as the vector space of all smooth maps

ω : TM ‘ . . .‘ TMlooooooooomooooooooon
k

Ñ E

such that for every p P M , the restriction of ω to the fiber over p is an antisymmetric k-fold
multilinear map ωp : TpM ˆ . . . ˆ TpM Ñ Ep. As with real-valued forms, the antisymmetry
condition is vacuous in the cases k “ 0, 1, and the convention is to define Ω0pM,Eq :“ ΓpEq.
Another way to formulate the definition would be that ΩkpM,Eq is the space of smooth sections
of the vector bundle pΛkT ˚Mq b E, whose fibers can be identified canonically with the spaces of
antisymmetric multilinear maps described above. Note that if E ÑM is a complex vector bundle,
then it is regarded as a real bundle for the purposes of these definitions, since the fibers of TM
cannot be assumed to be equipped with any complex structure.

26.2. The curvature 2-form. In §25.4 we associated to any connection∇ on a vector bundle
π : E ÑM a bundle-valued 2-form pΩK P Ω2pE, V Eq satisfyingpΩKpη, ξq :“ ´V prHpηq, Hpξqsq
for all η, ξ P XpEq, where V : TE Ñ V E denotes the fiberwise-linear projection along HE

and H : TE Ñ HE is the complementary projection. We saw that this formula for pΩK is
C8-linear in both variables, and that by the Frobenius theorem, it vanishes if and only if the
distribution HE Ñ TE is integrable, which means the connection ∇ is flat. All of this is true for
any horizontal subbundle HE Ă TE, i.e. we have not yet actually used the additional requirement
in Definition 19.4 that HE should be compatible with scalar multiplication,71 i.e. the relation

pmλq˚ pHEq “ HE

for every λ P F, with mλ : E Ñ E denoting the smooth map v ÞÑ λv. This condition makes it
possible to replace pΩK P Ω2pE, V Eq with an object that is simpler, but equivalent. Recall from
Definition 19.5 that the connection can also be characterized via a map K : TE Ñ E that sends
TvE linearly to Eπpvq and vanishes on the horizontal subspaces: K is actually just the composition
of the fiberwise-linear projection TE Ñ V E with the canonical isomorphisms

Vert´1
v : VvE Ñ Ep for v P Ep, p PM.

The condition pmλq˚pHEq “ HE is then equivalent to the condition

(26.1) K ˝ Tmλ “ mλ ˝K
70plus two more that will be implicit in the exercises at the end
71Without assuming the condition pmλq˚pHEq “ HE holds, one can still regard the horizontal subbundle

HE Ă TE as a connection on π : E Ñ M , but only after forgetting the fact that the fibers of this bundle are vector
spaces and regarding them instead as smooth submanifolds, so that π : E Ñ M is now an example of a fiber bundle.
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for all λ P F. Writng EndpEq :“ HompE,Eq, we claim that the expression

ΩKpX,Y qv :“ Vert´1
v

´pΩKpHorvpXq,HorvpY qq¯ P Ep for X,Y P TpM , v P Ep, p PM
defines a bundle-valued 2-form

ΩK P Ω2pM,EndpEqq.
We can already see that this expression is bilinear and antisymmetric in X and Y ; the main thing
to check is that for each fixed X,Y P TpM , the map Ep Ñ Ep : v ÞÑ ΩKpX,Y qv is linear. It is
clearly smooth, so by Lemma 19.2, it will be sufficient to show that it is also compatible with scalar
multiplication. To see this, let us associate to each vector field X P XpMq on M the “horizontal”
vector field on E given by Xhpvq :“ HorvpXppqq for v P Ep and p PM as in §25.3. Since K is the
composition of V with Vert´1

v , we can rewrite ΩK in terms of the definition of pΩK as

(26.2) ΩKpX,Y qv “ ´K `rXh, Y hspvq˘
for any X,Y P XpMq. Now observe that since pmλq˚pHEq “ HE, the horizontal vector field Xh

(and similarly Y h) satisfies the relation

Xhpλvq “ TmλpXhpvqq.
If λ ‰ 0, so that mλ : E Ñ E is a diffeomorphism, this relation can be stated more succinctly as
the condition that Xh is its own pushforward under this diffeomorphism:

pmλq˚Xh “ Xh P XpEq.
By Exercise 6.5, it follows that

pmλq˚rXh, Y hs “ rpmλq˚Xh, pmλq˚Y hs “ rXh, Y hs P XpEq,
thus rXh, Y hs P XpEq also satisfies the relation

rXh, Y hspλvq “ TmλprXh, Y hspvqq.
Continuing under the assumption λ ‰ 0, we can now use (26.1) to conclude

ΩKpX,Y qλv “ ´K `rXh, Y hspλvq˘ “ ´K `
TmλprXh, Y hspvqq˘ “ ´mλ ˝K `rXh, Y hspvq˘

“ λΩKpX,Y qv.
If this holds for all nonzero λ P F, then by continuity it also holds for λ “ 0, and the claim is thus
proven: v ÞÑ ΩKpX,Y qv is linear, so ΩK is a 2-form with values in the vector bundle EndpEq ÑM .

Exercise 26.1. Show that ΩK P Ω2pM,EndpEqq vanishes if and only if pΩK P Ω2pE, V Eq
vanishes.

Definition 26.2. We call ΩK P Ω2pM,EndpEqq the curvature 2-form of the connection ∇

on π : E ÑM , and say that ∇ has vanishing curvature if ΩK ” 0.

Exercise 26.1 now combines with Corollary 25.24 to prove:

Corollary 26.3. A connection on a vector bundle is flat if and only if its curvature vanishes.
�
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26.3. The Riemann tensor. The definition of curvature given in the previous section does
not easily lend itself to computations. In order to remedy this, let’s go back to the third question
in 25.1: do covariant partial derivatives in different coordinate directions commute? We’ve seen
that the answer is yes for a flat connection, and one of the main results of the present lecture will
be a converse to this: if they always commute, then the connection must be flat.

Let’s first reframe the question in coordinate-invariant language. We could ask for instance
whether the differential operators ∇X ,∇Y : ΓpEq Ñ ΓpEq must commute for an arbitrary choice
of two vector fields X,Y P XpMq, but this is not even true in the simplest special case: for the
trivial connection on the trivial real line bundle over M , ΓpEq is identified with C8pMq and ∇X

and ∇Y become the operators LX and LY respectively, whose failure to commute is measured by
the definition of the Lie bracket, which amounts to the formula

LXLY ´ LY LX “ LrX,Y s on C8pMq.
One might extrapolate from this case and guess that the relation ∇X∇Y ´∇Y∇X “ ∇rX,Y s should
hold for general connections. This turns out to be false in general, but the failure of this identity
is measured by a tensor:

Definition 26.4. Given a connection∇ on a vector bundle E ÑM , theRiemann curvature
tensor is the unique multilinear bundle map

R : TM ‘ TM ‘E Ñ E : pX,Y, vq ÞÑ RpX,Y qv
such that for all X,Y P XpMq and v P ΓpEq,

RpX,Y qv “ ∇X∇Y v ´∇Y∇Xv ´∇rX,Y sv.
The exercise below shows that this is well defined, and in particular, if E “ TM , R is a tensor
field of type p1, 3q on M .

Exercise 26.5. Show that RpX,Y qv is C8-linear with respect to each of its three arguments.

Exercise 26.6. Choosing a chart x “ px1, . . . , xnq : U Ñ Rn and a frame pe1, . . . , emq for E
over some open subset U Ă M , define the components Rajkb : U Ñ F of the Riemann tensor R
such that

RpBj , Bkqeb “ Rajkbea,

hence pRpX,Y qvqa “ RajkbX
jY kvb for any X,Y P TpM and v P Ep at p P U . Show that these

components are given in terms of the Christoffel symbols of the connection by

Rajkb “ BjΓakb ´ BkΓajb ` ΓajcΓ
c
kb ´ ΓakcΓ

c
jb.

Remark 26.7. Exercise 26.6 together with (22.6) shows that for the Levi-Cività connection
on a pseudo-Riemannian manifold, the Riemann tensor is determined by the second derivatives of
the components of the metric in any local coordinates.

Exercise 26.8. Suppose V Ă R2 is an open subset with coordinates labelled ps, tq, f : V ÑM

is a smooth map and v P Γpf˚Eq is a section of E along f . Prove the formula

∇s∇tv ´∇t∇sv “ RpBsf, Btfqv on V.

Hint: On any neighborhood in V on which f is an embedding, you can derive this from the definition
of the Riemann tensor after extending f to a diffeomorphism onto an open set in M and choosing
a corresponding extension of v to a section of E ÑM . If dimM ě 2, deduce the general case from
this via continuity (cf. the proof of (21.2)), using the fact that any smooth map R2 Ą V

fÑM can
be perturbed to become an embedding on some neighborhood of any given point. If dimM ď 1

then there is nothing to prove, because R vanishes (why?) and the connection ∇ is automatically
flat, implying that its pullback to f˚E Ñ V is also flat (see Exercise 25.7).
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It may be surprising at first sight that RpX,Y qv doesn’t depend on any derivatives of v:
indeed, it seems to tell us less about v than about the connection itself. The main theorem in
this lecture says that the Riemann tensor gives a complete characterization of the curvature of the
connection—in particular, its vanishing gives yet another necessary and sufficient condition for the
connection to be flat.

Theorem 26.9. For any vector bundle E ÑM with connection ∇, the Riemann tensor R and
curvature 2-form ΩK are related by

RpX,Y qv “ ΩKpX,Y qv.
Corollary 26.10. The connection ∇ on E Ñ M is flat if and only if for every chart

px1, . . . , xnq, the covariant partial derivative operators ∇i and ∇j commute for all i, j P t1, . . . , nu.
We will prove Theorem 26.9 in the next section.
If dimM “ n and rankpEq “ m, then the Riemann tensor is described locally by n2m2

component functions Rajkb for j, k P t1, . . . , nu and a, b P t1, . . . ,mu. This sounds like quite a
lot of information, but it is often useful to notice that these components are not all independent
of each other. One nontrivial relation is obvious already from the definition: since RpX,Y qv is
antisymmetric in X and Y , we have

Rajkb “ ´Rakjb.
One can say more if∇ is compatible with a bundle metric, as is true in particular for the Levi-Cività
connection on a tangent bundle:

Exercise 26.11. Show that if ∇ is compatible with a bundle metric x , y on E, then the
Riemann tensor satisfies

xRpX,Y qv, wy ` xv,RpX,Y qwy “ 0

for all pX,Y, v, wq P TM ‘ TM ‘E ‘E.
Hint: Given X,Y P XpMq and v, w P ΓpEq, apply the operator LXLY ´ LY LX ´ LrX,Y s to the
function xv, wy.

Exercise 26.11 says that for each X,Y P TpM , the linear map RpX,Y q : Ep Ñ Ep is antisym-
metric with respect to the bundle metric on E. Let’s see what this means in the case where E is the
tangent bundle of an oriented Riemannian 2-manifold pΣ, gq. The space of antisymmetric linear
maps TpΣÑ TpΣ in this case is 1-dimensional, and it has a canonical basis defined as follows. Let

J P ΓpT 1
1Σq “ ΓpEndpTΣqq

denote the unique bundle map TΣÑ TΣ such that for each p P Σ, Jp : TpΣÑ TpΣ is a 90-degree
counterclockwise rotation; here “counterclockwise” means that pX, JpXq is a positively-oriented

basis for each X ‰ 0 P TpΣ. Equivalently, Jp is represented by the matrix
ˆ
0 ´1
1 0

˙
in any

positively-oriented orthonormal basis of TpΣ. Since Jp is nontrivial and antisymmetric, every
antisymmetric linear map TpΣ Ñ TpΣ is a scalar multiple of it. Similarly, dimΛ2Tp̊ Σ “ 1, thus
every alternating 2-form on TpΣ is a scalar multiple of the Riemannian volume form (or “area
form”) dvol at that point. These two observations, together with Exercise 26.11, imply that for
the Levi-Cività connection on the tangent bundle of pΣ, gq, there is a unique real-valued function

K : ΣÑ R

such that the Riemann tensor is given by the formula

(26.3) RpX,Y qZ “ ´Kppq dvolpX,Y q JZ for p P Σ, X,Y, Z P TpΣ.
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This shows that despite the Riemann tensor being described on any coordinate neighborhood by
a total of 24 “ 16 component functions, they are all determined by a single function K : Σ Ñ R.
This function is called the Gaussian curvature of pΣ, gq, and we will have much more to say
about it in the next two lectures.

Remark 26.12. While it was convenient in the discussion above to assume Σ was oriented,
the function K : Σ Ñ R in (26.3) is still well defined without this assumption. The reason is
that reversing the chosen orientation of Σ causes sign changes in both dvol and J , and these two
sign changes cancel each other so that (26.3) remains valid without any change in K. If Σ is
not orientable, one can then define K in a small neighborhood of any point p P Σ by making
an arbitrary choice of orientation on this neighborhood; since the result does not depend on this
choice, K : ΣÑ R is then well defined globally.

26.4. Covariant exterior derivatives. We will prove Theorem 26.9 by relating the bracket
to an exterior derivative using a generalization of the formula

dαpX,Y q “ LX pαpY qq ´ LY pαpXqq ´ αprX,Y sq
for 1-forms α P Ω1pMq. This is possible because the definitions of ΩK , K and R can all be
expressed in terms of bundle-valued forms.

The covariant derivative gives a linear map

∇ : ΓpEq “ Ω0pM,Eq Ñ Ω1pM,Eq “ ΓpHompTM,Eqq,
and by analogy with the differential d : Ω0pMq Ñ Ω1pMq, it’s natural to extend this to a covariant
exterior derivative

d∇ : ΩkpM,Eq Ñ Ωk`1pM,Eq,
defined as follows. Every ω P ΩkpM,Eq can be expressed in local coordinates x “ px1, . . . , xnq :
U Ñ Rn as

ω “ ÿ
1ďiiă...ăikďn

ωi1...ik dx
i1 ^ . . .^ dxik

for some component sections ωi1...ik P ΓpE|Uq. Then d∇ω is defined locally as

d∇ω “
ÿ

1ďiiă...ăikďn
∇ωi1...ik ^ dxi1 ^ . . .^ dxik

“ ÿ
1ďiiă...ăikďn

∇jωi1...ik dx
j ^ dxi1 ^ . . .^ dxik ,

where in the last expression, the Einstein summation convention applies to the index j but not
to i1, . . . , ik. One can show by the same argument as for real-valued differential forms that this
definition of d∇ is independent of the choice of coordinates; see Exercise 26.13 below. Note that
wedge products α ^ β or β ^ α P Ωk`ℓpM,Eq can naturally be defined for α P ΩkpMq and
β P ΩℓpM,Eq, but it makes no sense if both forms are bundle-valued.

Exercise 26.13. Show that d∇ : ΩkpM,Eq Ñ Ωk`1pM,Eq can be defined as the unique linear
operator which matches ∇ on Ω0pM,Eq and satisfies the graded Leibnitz rule

d∇pα^ βq “ d∇α^ β ` p´1qkα^ dβ

for all α P ΩkpM,Eq and β P ΩℓpMq.
Exercise 26.14. Show that for λ P Ω1pM,Eq written in local coordinates over U Ă M as

λ “ λi dx
i with λ1, . . . , λn P ΓpE|Uq, the component sections for d∇λ over U are given by

pd∇λqij “ ∇iλj ´∇jλi.
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Use this to prove the coordinate-free formula

(26.4) d∇λpX,Y q “ ∇X pλpY qq ´∇Y pλpXqq ´ λprX,Y sq.
Hint: For the last step, the main task is to show that the right hand side of (26.4) gives a well-
defined bundle-valued 2-form; the rest follows easily from the coordinate formula.

Proof of Theorem 26.9. We will show that both RpX,Y qv and ΩKpX,Y qv can be ex-
pressed in terms of a covariant exterior derivative of the map K : TE Ñ E. In this context, we
regardK as a bundle-valued 1-formK P Ω1pE, π˚Eq since it maps TvE linearly to Eπpvq “ pπ˚Eqv.
We use the connection ∇ on π : E Ñ M to induce a natural connection on the pullback bundle
π˚E Ñ E.

We claim first that for any p PM , v P Ep and X,Y P TpM ,

d∇KpHorvpXq,HorvpY qq “ ΩKpX,Y qv.
Indeed, extend X and Y to vector fields on M and use the corresponding horizontal lifts Xh, Y h P
XpEq as extensions of HorvpXq and HorvpY q P TvE respectively. Then using (26.4), (26.2) and
the fact that K vanishes on horizontal vectors,

d∇KpXhpvq, Y hpvqq “ ∇Xhpvq
`
KpY hq˘´∇Y hpvq

`
KpXhq˘´KprXh, Y hspvqq “ ΩKpX,Y qv.

We now show that RpX,Y qv can also be expressed in this way. Choose a smooth map fps, tq P
M for ps, tq P R2 near p0, 0q such that Bsfp0, 0q “ X and Btfp0, 0q “ Y , and extend v P Ep
to a section vps, tq P Efps,tq along f such that vp0, 0q “ v and ∇svp0, 0q “ ∇tvp0, 0q “ 0. The
latter can always be done e.g. by letting vp0, 0q determine the values vps, tq for all ps, tq P R2 near
p0, 0q via parallel transport along radial paths starting at the origin. (Note that this guarantees
∇v “ 0 at p0, 0q and also that ∇v vanishes in radial directions elsewhere, but each of ∇sv and ∇tv

might still be nonzero for ps, tq ‰ p0, 0q; we cannot force both of these to vanish at every point
unless we already know the connection is flat.) Expressing covariant derivatives via the map K

(e.g. ∇sv “ KpBsvq) and applying (26.4) once more along with Exercise 26.8, we then find

RpX,Y qv “ ∇s∇tvp0, 0q ´∇t∇svp0, 0q “ ∇s pKpBtvps, tqqq ´∇t pKpBsvps, tqqq|ps,tq“p0,0q
“ d∇KpBsv, Btvq

ˇ̌
ps,tq“p0,0q “ d∇KpHorvpXq,HorvpY qq,

where in the last step we used the assumption that vps, tq has vanishing covariant derivatives at
p0, 0q, hence Bsvp0, 0q and Btvp0, 0q are horizontal. �

The exercises below exhibit two further ways that curvature can be expressed in terms of
exterior derivatives.

Exercise 26.15. For a connection ∇ on the bundle π : E ÑM , prove:
(a) For any v P ΓpEq “ Ω0pM,Eq and X,Y P TpM at a point p P M , d2

∇
v :“ d∇pd∇vq P

Ω2pM,Eq satisfies
pd2∇vqpX,Y q “ RpX,Y qv.

(b) The connection ∇ is flat if and only if the covariant exterior derivative operators d∇ :

ΩkpM,Eq Ñ Ωk`1pM,Eq for all k ě 0 satisfy d∇ ˝ d∇ “ 0.

Exercise 26.16. Suppose π : E ÑM has structure group G Ă GLpm,Fq with Lie algebra g Ă
Fmˆm and ∇ is a G-compatible connection. Recall that ∇ then associates to every G-compatible
local trivialization Φα : E|Uα

Ñ Uα ˆ Fm a connection 1-form Aα P Ω1pUα, gq, defined so that

p∇Xvqα “ LXvα `AαpXqvα
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for anyX P XpUαq, where vα : Uα Ñ Fm expresses v|Uα
P ΓpE|Uα

q with respect to the trivialization.
The corresponding local curvature 2-form Fα P Ω2pUα,Fmˆmq is defined as the local represen-
tation of ΩK P Ω2pM,EndpEqq with respect to this trivialization, meaning that for X,Y P XpUαq
and v P ΓpE|Uα

q,
pΩKpX,Y qvqα “ FαpX,Y qvα.

(a) Prove the formula

FαpX,Y q “ dAαpX,Y q ` rAαpXq, AαpY qs,
where the bracket on the right hand side denotes the matrix commutator rA,Bs :“
AB´BA for A,B P Fmˆm.
Hint: Use the Riemann tensor as a stand-in for ΩK .

(b) If Φβ : E|Uβ
Ñ Uβ ˆ Fm is a second trivialization related to Φα by the transition map

g “ gβα : Uα X Uβ Ñ G, show that

FβpX,Y q “ gFαpX,Y qg´1.

(c) Show that if G is abelian, then Fα “ dAα and it is independent of the choice of trivi-
alization, thus defining a global 2-form F P Ω2pM, gq. (It is sometimes also called the
curvature 2-form of ∇.)

Remark: By a basic result in the theory of Lie groups, the commutator rA,Bs belongs to g

whenever A,B P g; this is the reason why g is called the “Lie algebra” of G. It thus follows from
part (a) that Fα P Ω2pUα, gq. In the case G “ Opk, ℓq, this is a locally trivialized analogue of
Exercise 26.11, which showed that ΩK takes values in the bundle of antisymmetric linear maps
E Ñ E.

27. Curvature in pseudo-Riemannian manifolds

For the remainder of the semester, we discuss properties and applications of the curvature
of the Levi-Cività connection on the tangent bundle of a Riemannian (or occasionally pseudo-
Riemannian) manifold.

27.1. The covariant Riemann tensor. When the bundle under consideration is the tangent
bundle of a manifoldM , the Riemann tensor defines a multilinear map TM‘3 Ñ TM : pX,Y, Zq ÞÑ
RpX,Y qZ that can be regarded as a type p1, 3q tensor field,

R P ΓpT 1
3Mq, RpX,Y qZ “ ∇X∇Y Z ´∇Y∇XZ ´∇rX,Y sZ.

Assuming ∇ is the Levi-Cività connection for a metric g, we have observed two nontrivial relations
so far that R must satisfy: one is the antisymmetry

RpX,Y qZ “ ´RpY,XqZ
that is obvious from its definition, and the other (from Exercise 26.11) is

xV,RpX,Y qZy ` xRpX,Y qV, Zy “ 0.

We saw in §26.3 that when pM, gq is a 2-dimensional Riemannian manifold, these two relations
imply that R is determined by a real-valued function—we’ll have more to say about that below.
(A version of this is also true for indefinite metrics in dimension two; see Exercise 27.1 below.)
For certain purposes, it is sometimes useful to repackage the Riemann tensor as a fully covariant
tensor Riem P ΓpT 0

4Mq defined by

RiempV,X, Y, Zq :“ xV,RpX,Y qZy.
This tensor contains all the same information, and R can be recovered from it; it is essentially the
result of applying a musical isomorphism 5 : T 1

3M Ñ T 0
4M that associates to any S P ΓpT 1

3Mq the
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tensor S5 P ΓpT 0
4Mq defined by S5pV,X, Y, Zq :“ SpV5, X, Y, Zq. The two antisymmetry relations

mentioned above are now equivalent to
(27.1)

RiempV,X, Y, Zq “ ´RiempV, Y,X,Zq and RiempV,X, Y, Zq “ ´RiempZ,X, Y, V q.
In local coordinates, writing RijkℓBi “ RpBj, BkqBℓ for the components of R, the components of
Riem are traditionally written with the same symbol but a lowered index, hence

Rijkℓ :“ RiempBi, Bj, Bk, Bℓq “ xBi, RpBj, BkqBℓy “ xBi, RmjkℓBmy “ gimR
m
jkℓ.

The Riemann tensor satisfies additional symmetry relations beyond (27.1) that we will talk about
next semester, but we will not yet need them at present.

Exercise 27.1. Assuming pM, gq is a 2-dimensional pseudo-Riemannian manifold, use the
antisymmetry relations (27.1) to show that in any local coordinate system on an open set U ĂM ,
the Riemann tensor is determined on U by the single component function R1122 : U Ñ R.

Exercise 27.2. The Ricci curvature is a tensor Ric P ΓpT 0
2Mq derived from the Riemann

tensor that plays a vital role in more advanced topics in Riemannian geometry, and also in general
relativity. If pM, gq is a Riemannian manifold, it can be defined at any point p P M by choosing
an orthonormal basis e1, . . . , en P TpM and writing

(27.2) RicpY, Zq :“
nÿ
j“1

xej, Rpej , Y qZy “
nÿ
j“1

Riempej , ej , Y, Zq P R, for Y, Z P TpM.

You can convince yourself as follows that this is well defined:
(a) Use the Einstein summation convention to give a one-line proof that trpABq “ trpBAq

for all pairs of square matrices A and B.
(b) Show that for linear maps A : V Ñ V on a finite-dimensional vector space V , trpAq can

be defined as the trace of any matrix representing A in a basis, and it is independent of
the choice of basis.

(c) Show that RicpY, Zq according to (27.2) is the trace of the linear map TpM Ñ TpM :

X ÞÑ RpX,Y qZ.
Remark: This use of the trace demonstrates a general algebraic operation that can trans-
form any tensor of type pk ` 1, ℓ ` 1q into a tensor of type pk, ℓq; it is known as a
contraction. Notice that this also gives a definition of Ric that does not refer to the
metric, and thus makes sense for an arbitrary connection on TM , including the Levi-
Cività connection of an indefinite metric. (The formula (27.2) is not quite right in the
indefinite case—can you see why not?)

(d) Show that in local coordinates, the components Rkℓ of Ric are given by Rkℓ “ Riikℓ.
A further simplification of the curvature tensor on a Riemannian manifold pM, gq can be obtained
by contracting the Ricci tensor, giving rise to the scalar curvature

(27.3) Scalppq :“
nÿ
j“1

Ricpej , ejq “
nÿ

j,k“1

Riempej , ej, ek, ekq P R,

where e1, . . . , en P TpM again denotes an orthonormal basis. This defines a function Scal :M Ñ R.
(e) Show that (27.3) is independent of the choice of orthonormal basis e1, . . . , en P TpM by

reinterpreting it as the trace of the map Ric7 : TpM Ñ TpM defined via the relation
xY,Ric7pZqy “ RicpY, Zq for Y, Z P TpM .

(f) Taking the trace in part (e) as a general definition of Scal :M Ñ R for pseudo-Riemannian
manifolds pM, gq, rewrite (27.3) so that it is also valid when g is indefinite. (Note that
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unlike Ric, Scal does depend explicitly on g and not just on the connection, as the
definition of Ric7 depends on g.)

(g) Prove that if dimM “ 2, then the entire Riemann tensor is determined at each point
p PM by the number Scalppq.
Hint: Use Exercise 27.1 in coordinates chosen so that the coordinate vector fields are
orthonormal at p.

(h) Show that in local coordinates, Scal “ gkℓRiikℓ.

27.2. Locally flat metrics. A pseudo-Riemannian manifold pM, gq of dimension n is called
locally flat if every point p PM admits a neighborhood U ĂM with a chart px1, . . . , xnq : U Ñ Rn

in which the components gij “ xBi, Bjy of the metric are constant functions. Recall that for metrics
of signature pk, ℓq, a metric with constant components is equivalent via a linear transformation to
the standard flat metric η of the same signature, which has components

ηij :“
$’&’%
1 if i “ j ď k,

´1 if i “ j ą k,

0 if i ‰ j.

Thus pM, gq is locally flat if and only if it is locally isometric to the flat space pRn, ηq, meaning
every point has a neighborhood isometric to an open subset of pRn, ηq.

We saw in §23.1 that it is always possible to find coordinates making gij match ηij up to
first order at a given point. Achieving gij ” ηij on an open neighborhood however is much more
ambitious, and not usually possible. It requires an integrability condition, namely the vanishing
of the curvature:

Theorem 27.3. A pseudo-Riemannian manifold pM, gq is locally flat if and only if its Riemann
curvature tensor vanishes.

Proof. If p P M admits a neighborhood with a chart in which the components gij are con-
stant, then the Christoffel symbols for the Levi-Cività connection vanish on this neighborhood, and
by Exercise 26.6, so do the components Rijkℓ of the Riemann tensor. Conversely, if R ” 0, then
the Levi-Cività connection is flat, implying that any orthonormal basis X1, . . . , Xn of TpM can be
extended to a neighborhood U Ă M of p as a family of parallel vector fields that form a frame
for TM over U . Since the connection is compatible with the metric, this frame is also orthonormal
at every point, meaning gpXi, Xjq ” ηij . By the symmetry of the connection, we also have

rXi, Xjs “ ∇Xi
Xj ´∇Xj

Xi ” 0

since the vector fields X1, . . . , Xn are all parallel. Theorem 25.11 now produces a chart near p
in which X1, . . . , Xn are the coordinate vector fields, and the components of g in this chart are
precisely the constants ηij . �

Exercise 27.4. Prove that every Riemannian 1-manifold is locally flat. Give a direct proof,
without mentioning the Riemann tensor. (You may have noticed that the latter vanishes for
algebraic reasons whenever dimM “ 1.)

27.3. Gaussian curvature. The lowest dimension in which curvature is an interesting con-
cept is 2. It was mentioned in §26.3 that for the Levi-Cività connection on a Riemannian 2-manifold
pΣ, gq, the Riemann curvature tensor is fully determined by a globally-defined real-valued func-
tion K : Σ Ñ R. We would now like to clarify what geometric information this function carries,
especially for surfaces embedded in R3.



27. CURVATURE IN PSEUDO-RIEMANNIAN MANIFOLDS 233

We would also like to include the hyperbolic plane in this discussion, so in the following, we
assume R3 with coordinates px, y, zq is endowed with either the Euclidean or the Minkowski metric

g “ ˘dx2 ` dy2 ` dz2,

and Σ Ă R3 is a 2-dimensional Riemannian submanifold without boundary. For simplicity we also
assume for now that Σ is orientable, though we will see that this assumption can be lifted. We
will use the symbol

S2˘ :“  
X P R3

ˇ̌ xX,Xy “ ˘1( Ă R3

to denote either the unit sphere S2` :“ S2 or the two-sheeted hyperboloid S2´ :“ tx2´y2´z2 “ 1u,
depending on whether x , y is the Euclidean or the Minkowski metric. An orientation of Σ now
determines a unit normal vector field,

ν P ΓpTΣKq Ă ΓpTR3|Σq, xν, νy “ ˘1,
which is unique if we require that for every p P Σ and every positively-oriented basis pX,Y q of TpΣ,
pνppq, X, Y q is a positively-oriented basis of TpR3 “ R3. Note that the sign of xν, νy is determined
by the signature of pR3, gq: since we have assumed x , y is positive on TΣ, it must be positive on
TΣK if g is the Euclidean metric and negative for the Minkowski metric. This means that if we use
the canonical isomorphisms TpR3 “ R3 to view ν as a map from Σ into R3, then it takes values in
the submanifold S2˘, giving a smooth map between surfaces

ν : ΣÑ S2˘.

This is called the Gauss map of Σ. Its derivative at any point p P Σ has the following interesting
property: TνppqS2˘ Ă R3 is the orthogonal complement of νppq, which is by definition the same
subspace as TpΣ, so the tangent map Tpν defines a linear map of TpΣ to itself,

Tpν : TpΣÑ TpΣ.

Lemma 27.5. The map Tpν : TpΣÑ TpΣ is self-adjoint with respect to the inner product x , y.
Exercise 27.6. Prove the lemma by showing that in some neighborhood U Ă R3 of any

point p P Σ, ν can always be viewed as the restriction to Σ of the gradient of a function f : U Ñ R for
which ΣXU “ f´1p0q. (Another proof of Lemma 27.5 will follow from more general considerations
in the next section—see Remark 28.4.)

Applying the spectral theorem for self-adjoint operators, we conclude from Lemma 27.5 that
TpΣ has an orthonormal basis X1, X2 consisting of eigenvectors of Tpν. The corresponding
eigenspaces are called the principal directions of Σ at p, and their eigenvalues κ1, κ2 P R with

TpνpXiq “ κiXi for i “ 1, 2

are called the principal curvatures at p.
The principal curvatures at p can be interpreted in terms of the curvature of paths on Σ passing

through p. In particular, fix a unit vector X P TpΣ and choose a smooth path γ : p´ǫ, ǫq Ñ Σ

with unit speed passing through γp0q “ p such that 9γp0q “ X . We can make some immediate
observations about γ: first, since x 9γptq, 9γptqy “ 1 is constant in t, differentiating it at t “ 0 implies

:γp0q P XK Ă R3.

Second, x 9γptq, νpγptqqy “ 0 for all t since 9γ is tangent to Σ, and differentiating this at t “ 0 then
yields the relation

(27.4) ´ x:γp0q, νppqy “ xX,TpνpXqy “: κnpXq,
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implying that the component of :γp0q pointing orthogonally to Σ depends only on the unit vector
X and not on the choice of path γ. The number κnpXq P R is called the normal curvature of Σ
at p in the direction X .

Remark 27.7. One popular interpretation of the normal curvature κnpXq is expressed in
terms of plane curves. Suppose P Ă R3 is a plane and C Ă P is a 1-dimensional submanifold with
a choice of normal vector field n P ΓpTP |Cq along C. At any point q P C, choose a smooth curve
γ : p´ǫ, ǫq Ñ P through γp0q “ q with unit speed | 9γ| ” 1 that parametrizes a neighborhood of
q in C. Differentiating the relation x 9γptq, 9γptqy “ 1 then reveals that :γptq is always orthogonal to
9γptq, hence

:γptq “ κpγptqqnpγptqq
for a uniquely-determined function κ : C Ñ R. This function is independent of the choice of path
γ parametrizing C; in particular, reversing the direction of γ does not change its second derivative
as it passes through the same point. In this context, κ : C Ñ R is called the curvature of the
curve C Ă P .

For the surface Σ with unit vector X P TpΣ, define P Ă R3 as the unique plane that contains
p such that TpP is spanned by X and νppq. The intersection P XΣ is then a smooth 1-dimensional
submanifold near p, and the path γ in (27.4) can be chosen to be a parametrization of this sub-
manifold, in which case νppq spans the orthogonal complement of 9γp0q “ X in TpP . The normal
curvature κnpXq is therefore the curvature of the curve P X Σ in the plane P at p.

Remark 27.8. Yet another interpretation of κnpXq comes from comparing geodesics in Σ with
geodesics in the ambient space R3, also known as straight lines. If we choose γ in (27.4) to be the
unique geodesic in Σ with initial velocity X , then Corollary 24.12 tells us :γp0q is a scalar multiple
of νppq, and thus vanishes if and only if κnpXq “ 0. From this perspective, κnpXq measures the
extent to which the geodesic in Σ with 9γp0q “ X deviates from being a geodesic in R3.

Fixing the orthonormal eigenvectors X1, X2 P TpΣ of Tpν, every other unit vector takes the
form X “ aX1 ` bX2 with a2 ` b2 “ 1, thus by (27.4)

κN pXq “ xX,TpνpXqy “ xaX1 ` bX2, aκ1X1 ` bκ2X2y “ a2κ1 ` b2κ2.

The range of values this number can take is precisely the interval in R bounded by the numbers
κ1 and κ2, so this proves:

Proposition 27.9. The principal curvatures of Σ Ă R3 at p P Σ are the maximum and
minimum values of the normal curvatures κnpXq for all unit vectors X P TpΣ. �

Normal and principal curvatures are measurements of what is called the extrinsic curvature
of Σ: they depend not just on the Riemannian metric of Σ but also on the way that Σ is embedded
in R3. By contrast, the next object we will define is intrinsic, meaning it depends only on the
metric and is thus an invariant of Riemannian 2-manifolds pΣ, gq up to isometry. This will not be
obvious from the definition—proving that it is intrinsic will require a substantial effort.

Definition 27.10. For a Riemannian hypersurface Σ in R3 with the Euclidean or Minkowski
metric g “ ˘dx2 ` dy2 ` dz2, the Gaussian curvature of Σ at p P Σ is defined (up to a sign) as
the product of its principal curvatures, that is,

(27.5) KGppq :“ ˘κ1κ2 P R,

where the symbol ˘ means ` if g is the Euclidean metric and ´ for the Minkowski metric.
Equivalently, KGppq is determined from the Gauss map ν : ΣÑ S2˘ as

KGppq “ ˘ det
´
TpΣ

TpνÝÑ TpΣ
¯
.
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Remark 27.11. For an arbitrary n-dimensional vector space V over the field F, one can define
the determinant of a linear map A : V Ñ V as detpAq P F where A P Fnˆn is the matrix
representing A in any choice of basis. The result is independent of the choice of basis since for any
B P GLpn,Fq, detpBAB´1q “ detpAq.

Remark 27.12. The normal and principal curvatures all depend on the choice of normal vector
field ν, but the Gaussian curvature does not, because reversing ν causes a sign change in both κ1
and κ2, leaving KGppq invariant. For this reason, the Gaussian curvature can be defined even if Σ
is not orientable.

For surfaces in Euclidean space, the formula KGppq “ detpTpνq implies that the Gaussian
curvature is positive in any region where the Gauss map is orientation preserving, and negative
wherever it is orientation reversing. It vanishes at any point where Tpν collapses TpΣ to a subspace
of lower dimension.

Example 27.13. For the unit sphere S2 Ă R3 in Euclidean space, the Gauss map is simply
the identity, so KG ” 1.

Example 27.14. Consider the cylinder Z “ tpx, y, zq P R3 | x2 ` y2 “ 1u in Euclidean space.
The Gauss map on Z is independent of z, thus Tpν only has rank 1 at every p P Z, implying
Kppq “ 0. By Theorem 27.3 and Theorem 27.17 below, this result is equivalent to the observation
that Z is locally flat: unlike a sphere, a small piece of a cylinder can easily be unfolded into a piece
of a flat plane without changing lengths or angles on the surface. The same is true of the cone

C “ tpx, y, zq P R3 | x2 ` y2 “ z2, z ą 0u.
It is easy to check that Z and C do have nontrivial normal and principal curvatures, showing that
the latter are indeed extrinsic, i.e. they depend on the specific embeddings of these surfaces in R3

and are not isometry invariants.

Example 27.15. The hyperboloid H “ tpx, y, zq P R3 | x2 ` y2 ´ z2 “ 1u in Euclidean space
has everywhere negative curvature. (For a precise computation, see Exercise 27.20 below.) This is
true of any surface that exhibits a “saddle” shape, for which the Gauss map is orientation reversing.

Example 27.16. The hyperbolic plane H2 was defined in §24.4.3 as the upper sheet of the
hyperboloid S2´ in R3 with the Minkowski metric. This would have positive curvature if it lived in
Euclidean space, but in Minkowski space the extra sign in Definition 27.10 becomes relevant, so the
curvature is negative. The situation is in fact very much analogous to the sphere in Example 27.13,
because the Gauss map in this case is just the identity map on the upper sheet of S2´, giving
detpTpνq “ 1 at every point. We conclude KG ” ´1.

The next big result says that KG : Σ Ñ R is determined by the Riemann curvature tensor,
and therefore by the Riemannian metric on Σ. In fact, KG turns out to be the same function that
appeared in (26.3):

Theorem 27.17. Suppose Σ is an oriented Riemannian hypersurface embedded in Euclidean
or Minkowski R3, dvol P Ω2pΣq denotes its Riemannian area form, KG : Σ Ñ R is its Gaussian
curvature, RpX,Y qZ is its Riemann curvature tensor and J : TΣ Ñ TΣ is the unique fiberwise
linear map such that for any vector X P TpΣ with |X | “ 1, pX, JXq is a positively-oriented
orthonormal basis. Then

RpX,Y qZ “ ´KG dvolpX,Y qJZ.
We will prove this theorem in the next lecture. For arbitrary Riemannian 2-manifolds Σ, not

embedded in R3, Theorem 27.17 can be taken as a definition of the Gaussian curvatureKG : ΣÑ R.
Note that once again the result doesn’t actually depend on an orientation (cf. Remark 27.12):
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locally, if the orientation of Σ is flipped, this changes the sign of both J and dvol, leaving the
function KG unchanged.

For surfaces in Euclidean R3, Theorem 27.17 implies the following famous result of Gauss,
which has come to be known by the Latin term for “remarkable theorem”:

Theorema Egregium. For a surface Σ embedded in Euclidean R3, the Gaussian curvature
KG : Σ Ñ R defined in (27.5) is an invariant of the induced Riemannian metric on Σ. To be
precise, if Σ1,Σ2 Ă R3 are two surfaces embedded in R3 with induced metrics g1, g2 and Gaussian
curvatures K1

G,K
2
G respectively, and ϕ : pΣ1, g1q Ñ pΣ2, g2q is an isometry, then

K1
G ” K2

G ˝ ϕ.
Example 27.14 shows that nothing similar to the Theorema Egregium is true for the normal

or principal curvatures of a surface. Here are a couple of sample applications:
‚ There are no isometries between any open subsets of the sphere S2 Ă R3 (positive cur-
vature) and the hyperboloid of Example 27.15 or the hyperbolic plane in Example 27.16
(negative curvature).

‚ A Riemannian 2-manifold Σ embedded in Euclidean or Minkowski R3 is locally flat if and
only if at least one of its principal curvatures vanishes at every point.

Exercise 27.18. Given a constant r ą 0, compute KG for:
(a) The sphere tx2 ` y2 ` z2 “ r2u of radius r in Euclidean R3;
(b) The rescaled hyperbolic plane tx2 ´ y2 ´ z2 “ r2, x ą 0u in Minkowski R3.

We can deduce from Theorem 27.17 a formula forKG in terms of the Riemann tensor. We begin
by observing that the metric x , y, area form dvol P Ω2pΣq and fiberwise-linear map J P ΓpEndpTΣqq
satisfy the relation

(27.6) dvolpX,Y q “ xJX, Y y.
To see this, notice first that pX,Y q ÞÑ xJX, Y y is an alternating 2-form, since J is an orthogonal
transformation with J2 “ ´1, so

xJY,Xy “ xJpJY q, JXy “ x´Y, JXy “ ´xJX, Y y.
The 2-form xJ ¨, ¨y is therefore a scalar multiple of dvol at every point, so it suffices to check that
they match when evaluated on some particular basis at each point. This is true for instance for
any basis of the form pX, JXq with |X | “ 1, as this basis is positively oriented and orthonormal,
so dvolpX, JXq “ 1 “ xJX, JXy, proving (27.6). Theorem 27.17 now implies

xRpX,Y qY,Xy “ ´xKG dvolpX,Y qJY,Xy “ ´KG dvolpX,Y qxJY,Xy “ KG ¨ |dvolpX,Y q|2,
so we can write

(27.7) KGppq “ xRpX,Y qY,Xy
|dvolpX,Y q|2 “ RiempX,X, Y, Y q

|dvolpX,Y q|2 for any basis X,Y P TpΣ.

We can rewrite this as follows in terms of an oriented coordinate chart px1, x2q defined near p.
If the components of the metric are denoted by gij and we define the symmetric matrix-valued
function

g “
ˆ
g11 g12
g21 g22

˙
,

we recall from Exercise 11.12 that dvol takes the form

dvol “a
detg dx1 ^ dx2.
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Then applying (27.7) to the coordinate vectors X “ B1 and Y “ B2, we obtain the formula

(27.8) KG “ R1122

detg
.

If you did not already understand why the Theorema Egregium follows from Theorem 27.17, we
can now prove it as follows:

Proof of the Theorema Egregium. If ϕ : pΣ1, g1q Ñ pΣ2, g2q is an isometry and p P Σ1,
then any chart pU , xq on a neighborhood U Ă Σ2 of q :“ ϕppq gives rise to a chart pϕ´1pUq, x ˝ ϕq
on a neighborhood ϕ´1pUq Ă Σ1 of p such that the components of the two metrics in these
charts are related by pg1qij “ pg2qij ˝ ϕ. It follows that the components of their Riemann tensors
and their Riemannian volume forms satisfy a similar relation, so by (27.8), so do their Gaussian
curvatures. �

Exercise 27.19. A Riemannian manifold pM, gq is called homogeneous if for every pair of
points p, q P M , there exists an isometry ϕ P IsompM, gq such that ϕppq “ q. Show that every
homogeneous Riemannian 2-manifold has constant Gaussian curvature.
Remark: This partly explains why I claimed in §24.2 that one should not generally expect nontrivial
isometries to exist. Constant curvature is a very delicate condition that is easy to destroy via small
perturbations of the metric.

Exercise 27.20. Prove that for the hyperboloid H Ă R3 in Example 27.15,

KGpx, y, zq “ ´ 1

px2 ` y2 ` z2q2 .
Hint: This can be a horrible computation, but it doesn’t have to be. For instance, there are
some obvious isometries that make it sufficient to consider a point of the form pr, 0, zq P H with
r2 ´ z2 “ 1, which is the intersection of the smooth curves αptq “ pcosh t, 0, sinh tq and βptq “
pr cos t, r sin t, zq in H . Since H is a level set of fpx, y, zq “ x2 ` y2 ´ z2, there is a unit normal
vector field of the form ν “ g ¨ ∇f for some function g : H Ñ p0,8q. Try to convince yourself
without any calculations that the curves α and β are tangent to the principal directions. Then
consider the following: if you know γptq P H satisfies d

dt
νpγptqq “ λ 9γptq for some λ P R, what

happens if you take the inner product of both sides with 9γptq? Write ν “ g ¨ ∇f and use this
observation to compute the two principal curvatures at pr, 0, zq. You will need to write down the
function g for this, but you should not need to differentiate it.
Final remark: It’s also possible there’s an easier way to do this that I haven’t thought of.

Exercise 27.21. Show that for any Riemannian 2-manifold pΣ, gq, the scalar curvature defined
in Exercise 27.2 is related to the Gaussian curvature by Scal “ 2KG.
Hint: Given a point p P Σ, use coordinates for which B1 and B2 are orthonormal at p.

Exercise 27.22. Show that the Poincaré half-plane pH, hq from Exercise 22.8 has constant
Gaussian curvature KG ” ´1.
Remark: You knew this already from Example 27.16 if you had already convinced yourself that
pH, hq is isometric to the hyperbolic plane (see Exercise 24.16). But you can also compute this
directly from (27.8) if you first work out the Christoffel symbols of the connection on pH, hq and
then compute the Riemann tensor via Exercise 26.6.

Remark 27.23. The hyperbolic plane is a funny animal. It is the most famous and most
important example of a surface with constant negative curvature—in fact it is known to be the
only one up to isometry and scaling that is both simply connected and geodesically complete—
but you may have noticed that we’ve never mentioned any model of it that one can look at it
and say, “yes, that looks like a surface with negative curvature!”. The closest thing we have is
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the hyperboloid model in Minkowski space, which actually looks like a positively curved surface,
but acquires an extra minus sign in Definition 27.10, which is difficult to justify intuitively. (The
justification for it is that if the minus sign were not there, Theorem 27.17 would not be true.)
What I’m getting at is this: it would be nice if we could view H2 as an embedded hypersurface
in Euclidean R3 whose “saddle” shape would make the negativity of its curvature obvious. There
exist local models of this kind, e.g. the pseudosphere (also called the tractricoid)72 is a surface in
Euclidean R3 that is isometric to an open subset of H2, but not the whole thing. The reason I
have not explained any global model of H2 in Euclidean 3-space is that according to a famous
theorem of Hilbert, it is impossible: there exists no embedding (nor even an immersion!) of any
geodesically complete surface with constant negative curvature into Euclidean R3. I’d conjecture
that if this theorem were not true, it would have been recognized somewhat earlier in history that
Euclid’s first four postulates do not imply the fifth.

28. Properties of Gaussian curvature

I owe you a proof of Theorem 27.17, specifically the formula

RpX,Y qZ “ ´KG dvolpX,Y qJZ,
which relates the Gaussian curvature KG : Σ Ñ R to the Riemann tensor R P ΓpT 1

3Σq for a
Riemannian hypersurface Σ in Euclidean or Minkowski 3-space pR3,˘dx2 ` dy2 ` dz2q. We’ll
take care of this in §28.1 by developing a general formula to compare the Riemann tensor of any
pseudo-Riemannian manifold with that of a pseudo-Riemannian submanifold embedded in it. After
that, we will restrict again to dimension 2 and examine some further properties of the Gaussian
curvature, in preparation for proving the Gauss-Bonnet formula.

28.1. The second fundamental form. Assume pM, gq is a pseudo-Riemannian manifold
with dimM ą n ě 2 that contains

Σ ĂM

as an n-dimensional pseudo-Riemannian submanifold with inclusion map j : Σ ãÑ M , so the
induced metric j˚g on Σ is also nondegenerate. In this situation, Corollary 24.9 produces a direct
sum decomposition

TM |Σ “ TΣ‘ TΣK,
so that every X P TpM for p P Σ is uniquely expressible as

X “ XJ `XK, XJ P TpΣ and XK P pTpΣqK Ă TpM.

In this notation, the Levi-Cività connections ∇ and p∇ of pM, gq and pΣ, j˚gq are related according
to Proposition 24.11 by p∇XY “ p∇XY qJ.
A vector field Xptq P TγptqΣ on Σ along a path γptq P Σ is thus parallel if and only if ∇tX P TΣK,
and since this allows ∇tX to be nonzero, X may fail to be parallel when regarded as a vector field
on M along γ. This failure can be measured by a tensor:

Lemma 28.1. There exists a symmetric bilinear bundle map II : TΣ ‘ TΣ Ñ TΣK such that
for any pair of vector fields X,Y P XpΣq,

IIpX,Y q “ p∇YXqK.
In particular, the connections ∇ on M and p∇ on Σ are then related to each other by

∇YX “ p∇YX ` IIpX,Y q.
72See https://en.wikipedia.org/wiki/Pseudosphere

https://en.wikipedia.org/wiki/Pseudosphere
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Proof. We can define II : XpΣq ˆ XpΣq Ñ ΓpTΣKq by IIpX,Y q :“ p∇YXqK. The symmetry
of II then follows easily from the symmetry of the Levi-Cività connection: extending X and Y

arbitrarily to vector fields on M , we have

IIpY,Xq ´ IIpX,Y q “ p∇XY ´∇YXqK “ rX,Y sK “ 0,

since X and Y taking values in TΣ along Σ implies that the same is true for rX,Y s. Now since
IIpX,Y q is manifestly C8-linear in Y , the symmetry implies that it is also C8-linear in X , and
therefore gives a well-defined bundle map TΣ‘ TΣÑ TΣK. �

Definition 28.2. The symmetric bundle map II : TΣ‘ TΣÑ TΣK in Lemma 28.1 is called
the second fundamental form73 of the submanifold Σ ĂM .

We can now associate to any normal section ν P ΓpTΣKq the symmetric tensor field IIν P
ΓpT 0

2Σq defined by
IIνpX,Y q :“ xν, IIpX,Y qy.

This is especially useful in the case where Σ ĂM is a hypersurface with orientable normal bundle,
as Σ then admits a unit normal vector field ν P ΓpTΣKq that is unique up to a sign. The words
“second fundamental form” are also sometimes used to refer to the symmetric tensor IIν P ΓpT 0

2Σq
in this special case.

Remark 28.3. By now you may be wondering: what is the first fundamental form? This
term was traditionally used for another symmetric p0, 2q-tensor on Σ, namely the restricted metric
x , y|TΣ “ j˚g. But the term has fallen somewhat out of fashion.

Since IIν is a symmetric bilinear form on the tangent spaces of Σ for each normal section
ν P ΓpTΣKq, it corresponds via the relation

IIνpX,Y q “ xX,WνpY qy
to a unique bundle map Wν : TΣ Ñ TΣ that is self-adjoint with respect to the bundle metric
on TΣ. We call Wν the Weingarten map associated to the normal section ν. One obtains
a more revealing formula for it by differentiating the relation xX, νy ” 0, which holds for any
X P XpΣq and ν P ΓpTΣKq: we find

0 “ LY xX, νy “ x∇YX, νy ` xX,∇Y νy “ xp∇YX ` IIpX,Y q, νy ` xX, p∇Y νqJ ` p∇Y νqKy
“ IIνpX,Y q ` xX, p∇Y νqJy “ xX,WνpY q ` p∇Y νqJy,

having discarded terms that vanish due to orthogonality. The result is an interpretation of the
Weingarten map as the tangential part of the covariant derivative of ν:

(28.1) WνpXq “ ´p∇XνqJ.
Remark 28.4. If Σ Ă M is a hypersurface with an orientable normal bundle, then there are

two canonical choices of ν P ΓpTΣKq determined by the normalization condition xν, νy ” ˘1, where
the sign depends on the signatures of pM, gq and pΣ, j˚gq. Differentiating xν, νy now reveals that
x∇Xν, νy ” 0 for all X P XpΣq, and ∇Xν is therefore tangent to Σ, thus (28.1) simplifies to

WνpXq “ ´∇Xν.

This particular form of the Weingarten map is sometimes called the shape operator. In the
important special case where M is R3 with the Euclidean or Minkowski metric, ∇ is the trivial
connection, so ´Wν : TΣÑ TΣ is now the derivative of the Gauss map introduced in §27.3. The

73Do not be misled by this use of the word “form”; II is not a differential form in any sense, as it is symmetric
rather than antisymmetric.
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self-adjointness of Wν thus gives a second proof of Lemma 27.5, and the Gaussian curvature of
pΣ, j˚gq in this situation is ˘ detpWνq.

Like the Gauss map and the principal curvatures in §27.3, the Weingarten map and second
fundamental form belong to the extrinsic rather than intrinsic geometry of pΣ, j˚gq, meaning they
depend on the way that Σ is embedded as a pseudo-Riemannian submanifold of pM, gq, rather
than intrinsically on the metric j˚g. They are not deeply meaningful objects, but they turn out to
be useful tools for deriving the Riemann tensor of pΣ, j˚gq from that of pM, gq. In the following,
we denote by

R P ΓpT 1
3Mq, pR P ΓpT 1

3Σq
the Riemann curvature tensors of pM, gq and pΣ, j˚gq respectively, along with their covariant
versions

Riem P ΓpT 0
4Mq, zRiem P ΓpT 0

4Σq
as defined in §27.1.

Proposition 28.5 (Gauss equation). The tensors Riem and zRiem are related byzRiempV,X, Y, Zq “ RiempV,X, Y, Zq ` xIIpV,Xq, IIpY, Zqy ´ xIIpV, Y q, IIpX,Zqy.
Proof. We observe first that for any tuple of vector fields V,X, Y, Z P XpΣq, differentiating

the relation xV, IIpY, Zqy ” 0 with respect to X gives

(28.2) xV,∇X pIIpY, Zqqy “ ´x∇XV, IIpY, Zqy “ ´xIIpX,V q, IIpY, Zqy,
where ∇XV can be replaced by its normal part IIpX,V q in the last expression because the inner
product of its tangential part with IIpY, Zq necesarily vanishes. The same trick allows us in the
following calculation to replace p∇ with ∇ in several places since we are taking the inner product
with V ; applying also (28.2) and the relation ∇XY “ p∇XY ` IIpX,Y q, we findzRiempV,X, Y, Zq “ xV, pRpX,Y qZy “ xV, p∇X

p∇Y Z ´ p∇Y
p∇XZ ´ p∇rX,Y sZy

“ @
V,∇X p∇Y Z ´ IIpY, Zqq ´∇Y p∇XZ ´ IIpX,Zqq ´∇rX,Y sZ

D
“ xV,RpX,Y qZy ` xIIpV,Xq, IIpY, Zqy ´ xIIpV, Y q, IIpX,Zqy.

�

Now let’s specialize this to a situation closer to that of Theorem 27.17. We assume pM, gq
is a locally flat pseudo-Riemannian 3-manifold, and Σ Ă M is a Riemannian hypersurface. In
this case TΣK is a line bundle over Σ on which the bundle metric x , y is nondegenerate, and it
may be either positive or negative, depending on whether pM, gq has Riemannian signature p3, 0q
or Lorentz signature p2, 1q, which are the only two possibilites since we are assuming pΣ, gq is
Riemannian. As usual it will also be convenient to assume that both Σ and its normal bundle TΣK
are orientable, though these assumptions will both be seen to be inessential in the end. Fixing an
orientation of Σ determines the fiberwise-linear map

J : TΣÑ TΣ

that rotates each tangent space counterclockwise by 90 degrees. The orientability of TΣK allows
us in turn to choose a (unique up to a sign) unit normal vector field

ν P ΓpTΣKq, xν, νy ” ˘1,
where the sign is positive if pM, gq is Riemannian and negative otherwise; in the following we will
make consistent use of the symbol “˘” for this sign, and write “¯” whenever it gets reversed. For
example, the symmetric tensors IIpX,Y q and IIνpX,Y q are now related to each other by

IIpX,Y q “ ˘ IIνpX,Y qν,
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and in light of Remark 28.4, ∇ν|TΣ matches the shape operator ´Wν : TΣ Ñ TΣ and is thus
related to the second fundamental form by

(28.3) IIpX,Y q “ ˘ IIνpX,Y qν “ ˘xX,WνpY qyν “ ¯xX,∇Y νyν.
Fix a point p P Σ and write ∇νppq : TpΣ Ñ TpΣ for the restriction of ∇ν to the tangent space
at p. The symmetry of IIν implies that ∇νppq is self-adjoint with respect to the inner product x , y
on TpΣ, thus it has an orthonormal basis of eigenvectors X1, X2 P TpΣ, and we are free to order
them so that

X2 “ JX1 and X1 “ ´JX2,

in which case they are also a positively-oriented basis and thus satisfy

(28.4) dvolpX1, X2q “ 1

for the Riemannian volume form dvol P Ω2pΣq. In the case whereM is the Euclidean or MinkowskiR3,
the corresponding eigenvalues

κ1, κ2 P R

are the principal curvatures of Σ at p. We can now use this data to turn Proposition 28.5 into a
more explicit formula for the Riemann tensor of pΣ, j˚gq at p: we assumed pM, gq is flat, so R ” 0,
and thus for V,X, Y, Z P TpΣ, using (28.3) to replace various terms in the Gauss equation gives

xV, pRpX1, X2qZy “ xIIpV,X1q, IIpX2, Zqy ´ xIIpV,X2q, IIpX1, Zqy
“ @xV,∇νppqX1y νppq, xZ,∇νppqX2y νppqD´ @xV,∇νppqX2y νppq, xZ,∇νppqX1y νppqD
“ ˘κ1κ2`xV,X1y ¨ xZ,X2y ´ xV,X2y ¨ xZ,X1y˘
“ ˘κ1κ2@V, xZ,X2yX1 ´ xZ,X1yX2

D
,

which implies pRpX1, X2qZ “ ˘κ1κ2 pxZ,X2yX1 ´ xZ,X1yX2q .
Finally, we observe that since J maps TpΣ Ñ TpΣ orthogonally and the vectors X2 “ JX1 and
X1 “ ´JX2 form an orthonormal basis,

xZ,X2yX1 ´ xZ,X1yX2 “ xJZ, JX2yX1 ´ xJZ, JX1yX2 “ ´xX1, JZyX1 ´ xX2, JZyX2 “ ´JZ,
and combining this with (28.4) we thus obtain

pRpX1, X2qZ “ ¯κ1κ2JZ “ ´˘ κ1κ2 dvolpX1, X2qJZ.
We already know there exists a unique function K : Σ Ñ R such that the relation pRpX1, X2qZ “
´Kppq dvolpX1, X2qJZ is satisfied, so the conclusion of this calculation is that Kppq “ ˘κ1κ2,
i.e. it is the Gaussian curvature KG. This completes the proof of Theorem 27.17.

Remark 28.6. While Σ ĂM was allowed to be a pseudo-Riemannian submanifold of arbitrary
signature in most of this section, the positivity of j˚g became essential as soon as we started talking
about the orthonormal eigenvectors of the shape operator ∇νppq : TpΣ Ñ TpΣ. This is indeed a
self-adjoint operator with respect to the bundle metric x , y in every case, but the spectral theorem
does not hold in general with indefinite inner products.
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28.2. Local curvature 2-forms. We haven’t mentioned it in a couple of lectures, but in
addition to the Riemann tensor R P ΓpT 1

3Σq, the curvature of a Riemannian 2-manifold pΣ, gq can
also be characterized via a differential 2-form, the curvature 2-form ΩK P Ω2pΣ,EndpTΣqq. You
might wonder: what happens if we integrate it? This question doesn’t make much sense at first
glance, as ΩK is a bundle-valued 2-form, so it’s not clear what

ş
Σ
ΩK should mean. In order to

clarify this, I’d like to expand on an exercise that was stated at the end of §26.4.
Assume π : E Ñ M is a vector bundle with structure group G Ă GLpm,Fq, denote the Lie

algebra of G by g Ă Fmˆm, and suppose ∇ is a G-compatible connection. We recall that for
every G-compatible local trivialization Φα : E|Uα

Ñ Uα ˆ Fm, ∇ can be described over Uα via a
connection 1-form Aα P Ω1pUα, gq, defined so that

(28.5) p∇Xvqα “ LXvα `AαpXqvα
for any X P XpUαq. Here vα : Uα Ñ Fm expresses v|Uα

P ΓpE|Uα
q with respect to the trivialization,

meaning Φαpvppqq “ pp, vαppqq for p P Uα. The corresponding local curvature 2-form Fα P
Ω2pUα,Fmˆmq is defined as the local representation of ΩK P Ω2pM,EndpEqq with respect to this
trivialization, meaning that for X,Y P XpUαq and v P ΓpE|Uα

q,
pΩKpX,Y qvqα “ FαpX,Y qvα.

Let’s compute Fα P Ω2pUα,Fmˆmq in terms of Aα P Ω1pUα, gq. By Theorem 26.9, we can use
the Riemann tensor as a substitute for ΩK , so plugging in the definition of RpX,Y qv with a section
v P ΓpEq and using (28.5), we find

pΩKpX,Y qvqα “
`
∇X∇Y v ´∇Y∇Xv ´∇rX,Y sv

˘
α

“ pLX `AαpXqq pLY `AαpY qq vα ´ pLY `AαpY qq pLX `AαpXqq vα
´ `

LrX,Y s `AαprX,Y sq˘ vα
“ `

LXLY ´ LY LX ´ LrX,Y s
˘
vα

`AαpXqLY vα `AαpY qLXvα ´AαpY qLXvα ´AαpXqLY vα
` `

LX pAαpY qq ´ LY pAαpXqq ´AαprX,Y sq
˘
vα

` pAαpXqAαpY q ´AαpY qAαpXqq vα
“ pdAαpX,Y q ` rAαpXq, AαpY qsq vα,

where in the last line, we’ve introduced the matrix commutator

rA,Bs :“ AB´BA for A,B P Fmˆm.

The formula for Fα is thus

(28.6) FαpX,Y q “ dAαpX,Y q ` rAαpXq, AβpY qs P Fmˆm.

A basic result in the theory of Lie groups implies that rAαpXq, AβpY qs always lies in the Lie algebra
g Ă Fmˆm, hence Fα P Ω2pUα, gq, but this will be obvious in the case we’re interested in below, so
there is no need right now for a digression on Lie groups.

The local curvature 2-form depends on a choice of trivialization, so we need to pay attention
to the way that it transforms when trivializations are changed. Suppose Φβ : E|Uβ

Ñ Uβ ˆ Fm is
a second trivialization, related to Φα by the transition map g “ gβα : Uα X Uβ Ñ G. Then the
local representations of a section v P ΓpEq are related on the overlap Uα X Uβ by vβ “ gvα, thus
FβpX,Y qpgvαq “ FβpX,Y qvβ “ pΩKpX,Y qvqβ “ g pΩKpX,Y qvqα “ gFαpX,Y qvα, implying the
relation

(28.7) FβpX,Y q “ gFαpX,Y qg´1 on Uα X Uβ .
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The formulas (28.6) and (28.7) have an especially interesting consequence whenever the structure
group G happens to be abelian.

Exercise 28.7. Show that if the Lie subgroup G Ă GLpm,Fq is abelian, then all matrices in
G also commute with all matrices in the Lie algebra g, and rA,Bs “ 0 for all pairs A,B P g.

In the abelian case, it now follows from (28.6) that Fα is the exterior derivative of Aα, and
is thus a g-valued 2-form; as mentioned above, it is true in general that Fα takes values in g, but
this is especially obvious in the abelian case. With that in mind, the values of Fα can now be seen
to commute with transition functions, so (28.7) implies that Fα “ Fβ on the domain where they
overlap, meaning there exists a globally-defined g-valued 2-form

F P Ω2pM, gq
that matches Fα P Ω2pUα, gq for every G-compatible trivialization pUα,Φαq. This 2-form is exact
on Uα, and therefore closed, though it might not be globally exact since the connection 1-forms
Aα are generally not globally defined.

Let’s apply these observations in the special case where E is the tangent bundle of an oriented
Riemannian 2-manifold pΣ, gq and ∇ is its Levi-Cività connection. The orientation and bundle
metric give TΣ the structure group SOp2q, the group of 2-by-2 rotation matrices, which is indeed
abelian. For computational purposes, it will be more convenient to replace SOp2q with the unitary
group Up1q, to which it is isomorphic via the transformation

(28.8) SOp2q Ñ Up1q :
ˆ
cos θ ´ sin θ

sin θ cos θ

˙
ÞÑ eiθ.

The Lie algebra up1q of Up1q is the space of purely imaginary 1-by-1 matrices, so

ΩkpΣ, up1qq “ ΩkpΣ, iRq
consists of imaginary-valued forms. Identifying SOp2q with Up1q in this way is equivalent to
identifying R2 with C via the bijection px, yq Ø x` iy, and real local trivializations Φα : TΣ|Uα

Ñ
Uα ˆ R2 are thus identified with complex trivializations TΣ|Uα

Ñ Uα ˆ C, related to each other
by transition functions with values in Up1q Ă C. In this way, TΣ can now be viewed as a complex
line bundle, and according to (28.8), scalar multiplication by i on the fibers of TΣ is represented

in any SOp2q-compatible real trivialization by the rotation matrix
ˆ
0 ´1
1 0

˙
, so in other words, it

is a 90-degree counterclockwise rotation on every fiber. This is precisely the bundle map that we
have previously referred to as

J : TΣÑ TΣ.

The formula relating KG and the Riemann tensor can now be seen in a slightly new light: for any
Up1q-compatible local trivialization Φα : TΣ|Uα

Ñ Uα ˆ C, we have

F pX,Y qZα “ pRpX,Y qZqα “ ´pKG dvolpX,Y qJZqα “ ´KG dvolpX,Y qiZα,
implying:

Proposition 28.8. Under the identification SOp2q – Up1q defined in (28.8), the imaginary-
valued 2-form F P Ω2pΣ, up1qq is related to the Gaussian curvature KG : ΣÑ R and the Riemann-
ian volume form dvol on pΣ, gq by

iF “ KG dvol P Ω2pΣq.
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This formula strongly suggests that it might be interesting to compute integrals
ş
P
KG dvol

over regions P Ă Σ, especially if P is contained in the domain Uα of a local trivialization, on which
iF “ i dAα, so that Stokes’ theorem impliesż

P

KG dvol “ i

ż
P

dAα “ i

ż
BP
Aα.

We will apply this in the next lecture to integrate KG over disk-like regions with piecewise-smooth
polygonal boundaries, e.g. triangles bounded by geodesic segments. The imaginary-valued integralş
BP Aα turns out in this case to give a new perspective on one of Euclid’s best-known propositions:
the sum of angles in a triangle is π. As we will see, the only reason this is true on the Euclidean
plane is that for that particular Riemannian 2-manifold, KG ” 0. You can see from Figure 8 that
it is not true on the positively-curved unit sphere S2, and Exercise 24.18 shows that it is also not
true on the negatively-curved hyperbolic plane.

29. The Gauss-Bonnet formula

In the previous lecture we observed that on any oriented Riemannian 2-manifold pΣ, gq, the
2-form KG dvol P Ω2pΣq is locally (up to multiplication by i) the exterior derivative of a connection
1-form, so that

ş
P
KG dvol over sufficiently simple regions P Ă Σ should be computable via Stokes’

theorem. We shall now follow this idea to its logical conclusion.

29.1. Polygons and their angles. We assume throughout this section that pΣ, gq is an
oriented Riemannian 2-manifold, possibly with boundary, ∇ is its Levi-Cività connection, and its
Riemannian volume form is denoted by

dvolΣ P Ω2pΣq.
Our goal is to compute

ş
P
KG dvolΣ for compact regions P Ă Σ that have the topology of disks

bounded by piecewise smooth polygons. In general, a piecewise smooth curve in a smooth
manifold M is a continuous map γ : ra, bs ÑM for which there are finitely many points a “ t0 ă
t1 ă . . . ă tN´1 ă tN “ b such that the restrictions

γ|rtj´1,tjs : rtj´1, tjs ÑM

are smooth immersions for each j “ 1, . . . , N . The velocity 9γptq of such a curve is thus a smooth
function of t except possibly at the finitely many points tj for j “ 1, . . . , N ´ 1, where the two
one-sided limits

lim
tÑt˘j

9γptq P TγptjqM
are both defined and nonzero but need not be equal, i.e. there may be jump discontinuities. The
curve is called a piecewise smooth simple closed curve if γpbq “ γpaq and there is no other
self-intersection γptq “ γpt1q for t ‰ t1. We do not require 9γpaq “ 9γpbq, so if we view γ as a
piecewise-smooth map S1 Ñ M by identifying S1 with the quotient ra, bs{ „ in which a „ b, the
velocity of γ : S1 ÑM may also have a jump discontinuity at the point ras “ rbs.

Definition 29.1. A smooth polygon in R2 is the closure P Ă R2 of a region bounded by
the image of a single piecewise-smooth simple closed curve γ : ra, bs Ñ R2. If we write a “ t0 ă
. . . ă tN “ b so that t1, . . . , tN´1 are the finitely-many points where γ is allowed to be nonsmooth,
then the smooth curves γprtj´1, tjsq will be called edges, and their boundary points are called
vertices. The union of all the edges will be denoted by BP .

Remark 29.2. The point γpaq “ γpbq is always considered a vertex of the polygon in Defi-
nition 29.1, so there is always at least one edge and one vertex. There is also ambituity in the
notion of edges and vertices since the definition requires the set tt1, . . . , tN´1u to contain all points
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where γ is not smooth, but not the converse, so there is always some freedom to add more vertices
arbitrarily, even if γ is completely smooth. This is just a matter of bookkeeping, as it will never
at any stage be important to require that 9γ is discontinuous at some point.

Observe that if the region P in this definition has a smooth boundary, then BP – S1 inherits
from the orientation of R2 a natural orientation as the boundary of P . This notion of orientation
generalizes naturally to the piecewise-smooth case so that each edge of BP inherits a natural
orientation, and is thus a compact oriented 1-manifold with boundary.

There are theorems in topology that give fairly strong restrictions on what a compact region
bounded by a continuous simple closed curve can look like. In order to avoid too much of a
digression into topology, let us single out the particular property of the curve γ : ra, bs Ñ R2 that
we will need to know. Assuming a ă t1 ă . . . ă tN´1 ă b denote the points where γ is allowed to
be nonsmooth, we can define a piecewise-continuous function

φ : ra, bsztt1, . . . , tN´1u Ñ R

that is smooth on each of the subintervals ptj´1, tjq and gives the angle between 9γptq P R2 and the
first standard basis vector. There is some freedom in this definition, as any multiple of 2π can be
added to φ on each of the subintervals ptj´1, tjq, but we can reduce this freedom by restricting the
jumps at t “ t1, . . . , tN´1 to a suitable interval, namely

(29.1) ∆φj :“ lim
tÑt`j

φptq ´ lim
tÑt´j

φptq P r´π, πs, j “ 1, . . . , N ´ 1.

Here the convention is that ∆φj ą 0 if the curve makes a sudden counterclockwise turn at tj and
∆φj ă 0 if it turns clockwise; these notions are well defined even in the case of a full 180-degree
turn since γ is not allowed to intersect itself, and in this way we see the difference between ∆φj “ π

and ∆φj “ ´π. With this restriction in place, the function φ is uniquely defined modulo a constant
multiple of 2π. There is also a possible angle change at the end point γpaq “ γpbq that we will
need to keep track of, so let us define this by

∆φN :“ φpaq ´ φpbq ` 2πk P r´π, πs,
where there is a unique choice of k P Z that makes this number lie in the correct interval and
satisfy the convention regarding counterclockwise/clockwise turns. The main observation we need
to make now is that the total change in φ as t traverses the interval from a to b, including the
jump discontinuities, must be exactly 2π:

(29.2)
ż 1

0

9φptq dt`
Nÿ
j“1

∆φj “ 2π.

This statement is obvious whenever P is e.g. a disk with smooth boundary or a convex polygon,
and it will in fact be obviously true for every example we are likely to consider, thus you might
as well regard it as an extra condition in Definition 29.1. It is true but not so straightforward to
prove that it actually follows from the conditions already stated in that definition—if you want to
know why, see §29.3 at the end of this lecture.

Definition 29.3. A smooth polygon in Σ is a compact subset P Ă Σ admitting an open
neighborhood U Ă Σ with a chart x : U Ñ R2 that identifies P with a smooth polygon P0 in R2.
The points and smooth curves identified by this chart with the vertices and edges of P0 are called
the vertices and edges of P .

The orientation of Σ restricts to any smooth polygon P Ă Σ and induces a natural orientation
on its edges, whose union we again denote by BP . The metric also restricts to each edge ℓ Ă BP
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and defines a natural “volume form”
dvolBP P Ω1pℓq.

Although BP is not generally a smooth manifold, it’s easy to see that Stokes’ theorem still holds:ż
P

dλ “
ż
BP
λ

for any λ P Ω1pΣq, where the integral over BP is defined by summing the integrals over the edges.
One can prove this by an approximation argument, perturbing BP to a smooth loop that bounds a
region Pǫ on which

ş
Pǫ
dλ is almost the same. (A similar argument was sketched in Example 12.14

for applying Stokes’ theorem on the product of two manifolds with boundary, which is technically
a manifold with boundary and corners.)

We can apply Stokes’ theorem in particular to compute
ş
P
KG dvolΣ for any smooth polygon

P Ă Σ. For this purpose, recall that since the bundle TΣ is equipped with both an orientation
and a positive bundle metric, it has structure group SOp2q, which we can identify with Up1q as
in §28.2, thus making TΣ into a complex line bundle on which scalar multiplication by i is the
counterclockwise 90-degree rotation map J : TΣÑ TΣ. From this perspective, a Up1q-compatible
frame for TΣ over a region U Ă Σ is simply a vector fieldX P XpUq that has unit length everywhere;
indeed, one obtains a real orthonormal frame from this by putting X together with JX . It is now
easy to see that TΣ always admits such a frame on some neighborhood of a smooth polygon P Ă Σ:
simply choose a chart pU , px1, x2qq with P Ă U as in Definition 29.3 and define the vector field

X :“ B1
|B1| P XpUq.

Let us denote the corresponding local trivialization by Φ : TΣ|U Ñ U ˆ C and the associated
connection 1-form for the Levi-Cività connection by

A :“ iλ P Ω1pU , up1qq,
thus defining a real-valued 1-form λ P Ω1pUq. The discussion in §28.2 then implies KG dvolΣ “
iF “ i dA “ ´dλ, hence by Stokes’ theorem,ż

Σ

KG dvolΣ “ ´
ż
BP
λ.

Our remaining task is to compute
ş
BP λ.

Let us assume the boundary BP has N P N edges, and thus N vertices at which it is not
required to be smooth, and denote the angles formed between neighboring edges at these vertices
by

α1, . . . , αN P r0, 2πs.
Note that the definition of these angles requires the orientation: the convention is that αj P r0, πq if
there is a counterclockwise turn and αj P pπ, 2πs for a clockwise turn. The case αj “ π is allowed,
and in this way we can also accommodate situations where BP is completely smooth.

Next, choose a parametrization of BP as a piecewise-smooth simple closed curve γ : r0, T s Ñ Σ,
oriented so that the parametrization of each edge is orientation preserving. The length T ą 0 of
the the interval can be choosen so that | 9γptq| “ 1 for all t, except at the finitely-many parameter
values

0 ă t1 ă . . . ă tN´1 ă T

where 9γptq may fail to exist, and we will assume αj P r0, 2πs is the angle formed by a vertex at
time tj for j “ 1, . . . , N ´ 1, or times 0 and T for j “ N . One can now find a piecewise-continuous
function θ : r0, T s Ñ R such that

9γptq “ eiθptqXpγptqq for all t P r0, 1sztt1, . . . , tN´1u,
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where θ is smooth on the open intervals ptj´1, tjq and is allowed to have jump discontinuities

∆θj :“ lim
tÑt

`
j

θptq ´ lim
tÑt

´
j

θptq “ π ´ αj P r´π, πs, j “ 1, . . . , N ´ 1,

in which the orientation of Σ can be used to distinguish between ∆θj “ π and ∆θj “ ´π via
the same counterclockwise/clockwise convention that we used to define ∆φj . These conditions
determine the function θptq uniquely modulo a constant multiple of 2π. We can also keep track of
the angle αN at γpaq “ γpbq by writing

π ´ αN “ ∆θN :“ θpaq ´ θpbq ` 2πk P r´π, πs,
for the unique choice of k P Z that puts this number in the right interval and distinguishes
correctly between counterclockwise and clockwise turns. With these definitions in place, the jumps
∆θj P r´π, πs are related to the angles αj P r0, 2πs by
(29.3) αj “ π ´∆θj , j “ 1, . . . , N.

Lemma 29.4.
ż T
0

9θptq dt`
Nÿ
j“1

∆θj “ 2π.

Proof. It is clear from the definitions that this number is at least an integer multiple of 2π.
Let γ0 :“ ϕ´1 ˝γ : r0, T s Ñ R2, so γ0 is a piecewise-smooth simple closed curve parametrizing BP0,
whose image under the embedding ϕ : U0 Ñ U Ă Σ is BP . If we equip U0 Ă R2 with the pullback
metric ϕ˚g, then the way in which our frame X P XpUq was defined gives a new interpretation
of θptq: it is the angle of the tangent vector 9γ0ptq P R2 relative to the standard basis vector e1,
as measured using the metric ϕ˚g. If ϕ˚g were the standard Euclidean metric on R2, the lemma
would now just be a restatement of Equation 29.2. Unfortunately, we cannot assume ϕ˚g is the
standard Euclidean metric; this would be a very strong restriction, forcing pΣ, gq to be locally flat
on the region U . However, the space of all Riemannian metrics is convex, so we can define a smooth
family of metrics on U0 Ă R2 by

gs :“ sϕ˚g ` p1´ sqgE , s P r0, 1s,
where gE :“ dx2 ` dy2 denotes the Euclidean metric, so gs interpolates between g1 “ ϕ˚g and
g0 “ gE. For each s P r0, 1s, we can now define a corresponding function θsptq in the same manner
as above, but using the metric ϕ˚gs on U Ă Σ to measure angles. The sum

şT
0
9θsptq dt`řN

j“1 ∆θ
s
j

depends continuously on the parameter s, and since it is always a multiple of 2π, we get the same
answer for s “ 1 and s “ 0, so that the result in the case of the Euclidean metric is also valid in
the general case. �

Now let’s compute
ş
ℓj
λ for a specific edge ℓj :“ γprtj´1, tjsq Ă BP . This requires computing

λp 9γptqq “ ´iAp 9γptqq, which can be deduced by computing a covariant derivative in the direction
of 9γptq. In particular, 9γptq itself is expressed relative to our chosen frame X as the complex-valued
function eiθptq, thus

∇t 9γptq “
´
Bteiθptq `Ap 9γptqqeiθptq

¯
Xpγptqq “

´
9θptq ` λp 9γptqq

¯
ieiθptqXpγptqq

“
´
9θptq ` λp 9γptqq

¯
i 9γptq.

(29.4)

This last expression has a useful geometric interpretation.

Definition 29.5. Suppose ℓ is a 1-dimensional submanifold of a Riemannian 2-manifold pΣ, gq
and ν P ΓpTΣ|ℓq is unit normal vector field along ℓ. The (signed) geodesic curvature of ℓ is then
defined as the unique function

κℓ : ℓÑ R



248 FIRST SEMESTER (DIFFERENTIALGEOMETRIE I)

such that for any local parametrization γ : pa, bq Ñ ℓ of ℓ satisfying | 9γ| ” 1,

∇t 9γptq “ κℓpγptqqνpγptqq
for all t.

This definition makes sense because if γ is parametrized with unit speed, differentiating the
relation x 9γptq, 9γptqy “ 1 reveals that ∇t 9γptq is always orthogonal to 9γptq, and is therefore a real
multiple of νpγptqq. Moreover, one could change the local parametrization γ of ℓ, but all other
parametrizations with unit speed take the form t ÞÑ γp˘t` cq for a constant c, so one obtains the
same definition of κℓ. It does depend on the choice of normal vector field: reversing ν changes κℓ
by a sign. It follows that κℓ cannot be defined in this way if ℓ has non-orientable normal bundle,
but this situation does not arise in the application that we have in mind. In the non-orientable
case, one can still define an unsigned geodesic curvature |κℓ| ě 0, which is actually just the norm
of ∇t 9γ, and the latter is given as a definition of the term “geodesic curvature” in many books.
In either case, it should be emphasized that geodesic curvature is a purely extrinsic notion, as it
depends on the embedding of the submanifold ℓ into the surface Σ. (Indeed, Exercise 27.4 shows
that there is no interesting notion of intrinsic curvature for Riemannian 1-manifolds, as they are
all locally flat.) The geodesic curvature is a measurement of the extent to which ℓ Ă Σ fails locally
to the image of a geodesic in pΣ, gq; in particular, κℓ ” 0 if and only if ℓ can be parametrized
locally by geodesics.

With this definition understood, (29.4) can be reinterpreted using the observation that i 9γptq
is a 90-degree counterclockwise rotation of 9γptq, pointing inwards through the boundary of P . If
we take this as a choice of normal vector field along ℓj , the relation now says:

Lemma 29.6. For t P rtj´1, tjs, 9θptq ` λp 9γptqq “ κℓj pγptqq. �

We now have enough ingredients in place to write down a revealing formula for
ş
BP λ: combining

Lemmas 29.6 and 29.4 with (29.3), we have:ż
BP
λ “

Nÿ
j“1

ż
ℓj

λ “
Nÿ
j“1

ż tj
tj´1

λp 9γptqq dt “
Nÿ
j“1

ż tj
tj´1

κℓj pγptqq dt´
ż T
0

9θptq dt

“
Nÿ
j“1

ż tj
tj´1

κℓj pγptqq dt´
˜
2π ´

Nÿ
j“1

∆θj

¸
“

Nÿ
j“1

ż tj
tj´1

κℓj pγptqq dt´ 2π `
Nÿ
j“1

pπ ´ αjq

“
Nÿ
j“1

ż tj
tj´1

κℓj pγptqq dt` pN ´ 2qπ ´
Nÿ
j“1

αj .

Since γ was parametrized to have unit speed on each edge, the integrals in this last expression are
actually just the integrals of the 1-forms κℓj dvolBP over the respective edges, and using Stokes’
theorem to rewrite

ş
BP λ in terms of the Gaussian curvature, we obtain from this the first version

of the Gauss-Bonnet formula:

Theorem 29.7 (Gauss-Bonnet formula, polygon version). Suppose pΣ, gq is an oriented Rie-
mannian 2-manifold with Gaussian curvature KG : Σ Ñ R, P Ă Σ is a smooth polygon with N
smooth edges ℓ1, . . . , ℓN Ă BP and angles α1, . . . , αN P r0, 2πs at its vertices, and the signed geo-
desic curvature κℓj of each edge ℓj is defined with respect to a normal vector field pointing inwards.
Then

Nÿ
j“1

αj “ pN ´ 2qπ `
ż
P

KG dvolΣ `
Nÿ
j“1

κℓj dvolBP .

�
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We have arranged this formula to look like a generalization of the fact that triangles in the
Euclidean plane have angles adding up to π; that is just the case where N “ 3, KG ” 0 and all
edges are geodesic segments. More generally, the integral of the Gaussian curvature can now be
viewed as a correction term that measures the failure of this relation to hold:

Corollary 29.8. If P Ă Σ is a smooth polygon with N edges that are all geodesic segments,
then the angles α1, . . . , αN at the vertices satisfy

Nÿ
j“1

αj “ pN ´ 2qπ `
ż
P

KG dvolΣ.

�

Remark 29.9. The assumption that Σ carries an orientation is not actually necessary for
Theorem 29.7, because even if Σ is not globally orientable, a neighborhood of the polygon P Ă Σ is
diffeomorphic to an open subset of R2, so an orientation can always be chosen on this neighborhood.
If one reverses the orientation, none of the terms in the Gauss-Bonnet formula actually change:
for the angles αj and the term pN ´ 2qπ this is obvious, though it takes a bit more thought for the
two integrals. We already saw in the previous lecture that KG does not change if the orientation
is switched; the geodesic curvatures also do not change since they depend on the choice of normal
vector field at the boundary and this was defined independently of all orientations. Changing the
orientations of Σ and ℓj changes the volume forms dvolΣ and dvolℓj by a sign, but a cancelling sign
is caused by the fact that

ş
´M ω “ ´ ş

M
ω for any oriented manifold M and any top-dimensional

form ω.

Example 29.10. Now is a good moment to look again at Figure 8 in Lecture 19, which shows
a geodesic triangle in the unit sphere S2 whose angles are all π{2. This triangle occupies exactly
1{8 of the total area of S2, so its area is π{2, and this is also

ş
Σ
KG dvolΣ since KG ” 1 by

Example 27.13. The formula in Corollary 29.8 thus becomes 3π{2 “ π ` π
2
in this case.

Exercise 29.11. According to Exercise 27.22, the Poincaré half-plane pH, hq has constant
curvature KG ” ´1.

(a) Write down the Riemannian volume form on pH, hq, and show that any region of the form
ra, bs ˆ rc,8q Ă H for ´8 ă a ă b ă 8 and c ą 0 has finite area, while regions of the
form ra, bs ˆ p0, cs Ă H have infinite area.

(b) Show that every compact region in pH, hq bounded by three geodesics has area strictly
less than π, though its area can be arbitrarily close to π.
Hint: Use the result of Exercise 24.18.

29.2. Triangulation and the Euler characteristic. Next question: what happens if we
integrate KG over a region on which TΣ is not trivializable? A nice way to approach this is by
decomposing Σ into a union of polygons glued together along their edges.

Definition 29.12. Let Σ be a 2-dimensional manifold, possibly with boundary. A polygonal
triangulation of Σ is a collection of smooth polygons tPα Ă ΣuαPI with Σ “Ť

αPI Pα, called the
faces of the triangulation, while each edge or vertex of each of these polygons is called an edge
or vertex of the triangulation respectively. They are required to satisfy the following conditions:

(1) Each edge ℓ is either contained in BΣ or satisfies ℓXBΣ Ă Bℓ, and in the latter case, it is
an edge of exactly two faces.

(2) Two distinct faces are either disjoint or their intersection is a union of common edges.
(3) Every vertex is a vertex of at most finitely many faces.
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The sets of vertices and edges of the triangulation are sometimes denoted by Σ0,Σ1 Ă Σ and also
called the 0-skeleton and 1-skeleton respectively. Note that if BΣ ‰ H, then BΣ Ă Σ1. We say
the triangulation is finite if it has only finitely many faces (and therefore also finite-many vertices
and edges).

Polygonal triangulations are somewhere in between two similar notions that are popular in
topology: they are more general than what are normally just called triangulations (in which all the
faces are required to be actual triangles), while also being special cases of the more general notion
of CW-complexes. It is a general fact that all smooth surfaces admit polygonal triangulations, and
one can even arrange without loss of generality for them to be triangulations in the stricter sense,
in which every face has three edges. A similar result (based on simplices, a higher-dimensional
generalization of triangles) also holds for smooth manifolds of all dimensions, though not generally
for topological manifolds above dimension 3. In practice, we will not need to have such general
existence results, because for our purposes it is more interesting to look at specific examples in
which explicit triangulations are not hard to construct. But just out of interest, here is the most
relevant special case of the general result:

Proposition 29.13. Every compact smooth surface Σ admits a finite polygonal triangulation
consisting only of triangles.

Sketch of the proof. Every point in Σ admits a compact neighborhood that is a smooth
polygon contained in the domain of a chart, and since Σ is compact, it can be covered with finitely
many such polygons. After small perturbations, we can also arrange without loss of generality that
no edge of any of these polygons intersects a vertex of another one, and that whenever two edges
intersect, they do so transversely (and therefore only finitely-many times). Define Σ0 to be the
union of the set of vertices of all these polygons with the finite set of intersections between their
edges; we should correspondingly redefine the word “edge” to mean any potentially shorter segment
of one of the original edges that is bounded by two points of Σ0. Each connected component in
the complement of the set of edges is now an open region with compact closure contained in
the domain of a chart, and bounded by some disjoint union of piecewise-smooth simple closed
curves. It therefore remains only to show the following: any region P Ă R2 bounded by piecewise-
smooth simple closed curves can be decomposed into a union of smooth polygons that each have
three edges and intersect each other only along matching pairs of edges. This can be achieved
by adding new edges, i.e. choosing new smooth paths through the interior of P that connect
previously unconnected pairs of vertices. Once you’ve added enough of these, every component of
the complement is bounded by a triangle. �

Remark 29.14. There’s a subtlety in the construction of triangulations that should be men-
tioned. Most authors’ definition of the term “smooth triangle” is stricter than ours: we are assuming
a smooth polygon in R2 can be any compact region bounded by a piecewise-smooth simple closed
curve, and we call it a triangle if that curve has three smooth edges, but in practice, such an object
does not need to look very similar to what we typically imagine as a triangle. (Try drawing an
example where the edges form gratuitously complicated spirals and vertices have angles 2π ´ ǫ.)
Most authors add the condition that a “triangle” must actually be homeomorphic to a perfectly
ordinary convex triangle with straight edges in R2. We are not assuming this, but it follows from
our definition for somewhat nontrivial reasons, and you’ll find this fact lurking in the background
of Equation (29.2) if you look into the details as discussed in §29.3. Our argument in that appendix
appeals to the classification of closed surfaces in order to show that every smooth polygon by our
definition really is homeomorphic to a disk. One needs to be a bit careful about circularity here,
because most popular proofs of the classification of surfaces are based on the fact that all surfaces
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can be triangulated. (There are ways to get around this, however, e.g. the proof via Morse theory
in [Hir94] is quite illuminating and does not require triangulations.)

In practice, all useful constructions of triangulations on surfaces require some nontrivial topo-
logical input at some step to ensure that compact regions bounded by simple closed curves in R2

are always homeomorphic to disks. If the boundary curve is continuous but not smooth, then this
fact requires a difficult classical result known as the Schoenflies theorem (see [Moi77]). In the
smooth category there is a standard way to avoid this by using geodesics: the idea is to choose a
Riemannian metric on Σ and carry out the proof of Proposition 29.13 so that every edge in the tri-
angulation becomes the unique shortest geodesic between two nearby points. The final subdivision
step is less obvious in this setting, but with a bit more care it can still be done, and in this way
one obtains a triangulation whose edges are all geodesics. It is much easier than the Schoenflies
theorem to see (e.g. by working in Riemann normal coordinates based at a vertex) that any region
bounded by three short geodesics is homeomorphic to a disk.

Definition 29.15. Given a finite polygonal triangulation of Σ with v vertices, e edges and f
faces, the Euler characteristic of Σ is the integer

χpΣq “ v ´ e` f.

The Euler characteristic turns out to be a topological invariant of Σ, though our definition
makes this far from obvious—a priori it appears to depend rather crucially on a choice of triangu-
lation. It will follow from Theorem 29.17 below that this is not the case, that in fact χpΣq depends
at most on the differentiable structure of Σ. Proving that it only depends on the topology of Σ
requires methods from algebraic topology: the standard approach is to define χpΣq in terms of
singular homology and use either cellular or simplicial homology to prove that the quantity above
matches this definition for any triangulation. Details may be found in e.g. [Hat02,Bre93,Wen18].

Exercise 29.16. Taking it on faith for the moment that the Euler characteristic doesn’t
depend on a choice of triangulation, show that χpS2q “ 2, χpD2q “ 1 and χpT2q “ 0.

We shall now compute the integral of KG over a compact surface using a finite polygonal
triangulation with v vertices, e edges and f faces. Assume e = e0 ` eB where eB is the number of
edges contained in BΣ, and similarly v “ v0 ` vB. Observe that every vertex on BΣ is a boundary
point of exactly two edges on BΣ, and since every edge likewise has two boundary points, eB “ vB.74
By Theorem 29.7,

ş
Σ
KG dvolΣ contains a term of the form

´ÿ
j

ż
ℓj

κℓj dvolℓj `
ÿ
j

αj ´ pN ´ 2qπ

for each face, assuming the face in question has N edges. Adding these up for all faces, we make
the following observations:

(1) Every edge ℓ Ă ΣzBΣ is an edge for two distinct faces and thus appears twice with two
oppositely-oriented choices of normal vector field pointing toward different faces. The
geodesic curvature terms for these edges cancel in the sum.

(2) The geodesic curvature terms for all edges ℓ Ă BΣ add up to

´
ż
BΣ
κBΣ dvolBΣ

if we define κBΣ with respect to a normal vector field pointing inward at the boundary.

74There is a small loop-hole in this argument: our definition of smooth polygons allows the possibility that
there is only one edge, whose two boundary points then coincide to form a single vertex, but if this happens, the
claim that eB “ vB remains valid.
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(3) The sum of all angles αj at an interior vertex (for every face adjacent to that vertex)
is 2π, and for boundary vertices the sum is π. Thus altogether these terms contribute
2πv0 ` πvB “ 2πv ´ πvB .

(4) Every interior edge is counted twice and boundary edges are counted once, so the ´pN ´
2qπ terms add up to ´πp2e0 ` eB ´ 2fq “ 2πpf ´ eq ` πeB.

Summing all these contributions, we have

´
ż
BΣ
κBΣ ds` 2πv ` 2πpf ´ eq ´ πvB ` πeB “ ´

ż
BΣ
κBΣ ds` 2πχpΣq.

This proves:

Theorem 29.17 (Gauss-Bonnet formula, global version). Assume pΣ, gq is a compact oriented
2-dimensional Riemannian manifold, possibly with boundary, and the signed geodesic curvature
κBΣ : BΣ Ñ R is defined with respect to a normal vector field pointing inward at the boundary.
Then ż

Σ

KG dvolΣ `
ż
BΣ
κBΣ dvolBΣ “ 2πχpΣq.

Remark 29.18. In keeping with Remark 29.9, Theorem 29.17 remains true if pΣ, gq is not
oriented or orientable, though in this case the two integrals on the left hand side require some
additional effort to interpret. The global volume form dvolΣ P Ω2pΣq does not exist if Σ is not
orientable, but recall from §11.4 that every Riemannian manifold, regardless of orientability, admits
a canonical volume element, which is a density rather than a differential form. We can interpret
both of the integrals in Theorem 29.17 as integrals of smooth real-valued functions with respect
to measures defined via the canonical volume elements determined by the metric on Σ and BΣ.
In practice, the volume element on pΣ, gq matches |dvolΣ| on any region where an orientation can
be chosen, so for instance

ş
Σ
KG dvolΣ can be computed as the sum of the terms

ş
Pα
KG dvolΣ

over all the faces Pα of a polygonal triangulation, where dvolΣ and the integral are defined in each
case by choosing an arbitrary orientation of TΣ|Pα

, and Remark 29.9 shows that the result does
not depend on this choice. Once this is understood, the proof of Theorem 29.17 also works in the
non-oriented case.

Several wonderful things follow immediately from the global Gauss-Bonnet formula. Observe
that the left hand side has nothing to do with the triangulation, while the right hand side makes
no reference to the metric or curvature.

Corollary 29.19. The Euler characteristic χpΣq does not depend on the choice of triangula-
tion, and for any two diffeomorphic surfaces Σ1 and Σ2, χpΣ1q “ χpΣ2q. �

Corollary 29.20. For a fixed compact surface Σ, the sum
ş
Σ
KG dvolΣ ` ş

BΣ κBΣ dvolBΣ is
an integer multiple of 2π, and is the same for any choice of Riemannian metric. �

In particular, the latter statement imposes serious topological restrictions on the kinds of
metrics that are allowed on any given surface: e.g. it is impossible to find a metric with everywhere
positive Gaussian curvature on a surface with negative Euler characteristic. To get a handle on
this, it helps to have some concrete examples in mind; these are provided by the following exercises.

Exercise 29.21. Suppose Σ is a compact oriented surface with boundary and ℓ1, ℓ2 Ă BΣ
are two distinct connected components of BΣ. We can glue these two components to produce
a new surface Σ1 as follows: since ℓ1 and ℓ2 are both circles, there is an orientation reversing
diffeomorphism ϕ : ℓ1 Ñ ℓ2, which we use to define

Σ1 “ Σ{ „
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where the equivalence identifies p P ℓ1 with ϕppq P ℓ2, thus identifying ℓ1 and ℓ2 to a single circle,
now in the interior of Σ1. Show that χpΣ1q “ χpΣq. Note: Σ need not be a connected surface to
start with, so this trick can be used to glue together two separate surfaces along components of
their boundaries.
Hint: A given triangulation of Σ may have different numbers of vertices on ℓ1 and ℓ2, but one can
always modify the triangulation by adding more vertices and edges so that these numbers become
the same. The number of edges on each boundary component will also always match the number
of vertices. (Why?)

Exercise 29.22. Let Σ be the closed unit disk in R2 with two smaller disjoint open disks
removed: the resulting surface is called a pair of pants. Show that χpΣq “ ´1.

Similarly, a handle is a surface Σ diffeomorphic to the torus T2 with one open disk removed.
Show that χpΣq “ ´1.

Exercise 29.23. Suppose Σ is a compact surface with boundary. The operation of gluing a
handle to Σ is defined as follows: choose a smoothly embedded closed disk in the interior of Σ,
remove its interior, and glue the resulting surface along its new boundary component to a handle
(see Exercise 29.22). Show that this operation decreases the Euler characteristic of Σ by 2.

Exercise 29.24. A closed oriented surface of genus g is any compact surface Σ without
boundary that is diffeomorphic to a surface obtained from S2 by gluing g handles. Special cases
include the sphere itself (g “ 0) and the torus (g “ 1). Show that

χpΣq “ 2´ 2g.

For Σ a compact surface with boundary, we say it has genus g if it is diffeomorphic to a closed
surface of genus g with finitely many small open disks cut out. Show that if such a surface has m
boundary components, then χpΣq “ 2´ 2g ´m.

Remark 29.25. In case you didn’t already believe this, we now have a simple proof of the
fact that two closed oriented surfaces with differing genera (that is the plural of “genus”) are not
diffeomorphic: if they were, then their Euler characteristics would have to match. The converse
is also true, but harder to prove; it follows from the topological classification of surfaces (see
e.g. [Wen18, Lecture 19] or [Hir94]).

The Gauss-Bonnet theorem enables us to make some sweeping statements regarding what
kinds of metrics may exist on various compact surfaces. In general, we say that a surface Σ with a
Riemannian metric has positive (or zero or negative) curvature if its Gaussian curvature is positive
(or zero or negative) at every point.

Theorem 29.26. Let Σ be a closed oriented surface of genus g. Then Σ admits a Riemannian
metric with positive curvature if and only if Σ – S2, zero curvature if and only if Σ – T2, and
negative curvature if and only if g ě 2.

Proof. We shall not provide the entire proof, but by this point the result should at any rate
seem believable, and in one direction the claim is clear: the stated conditions on the genus are
necessary due to the Gauss-Bonnet theorem and the formula χpΣq “ 2´ 2g. It’s easy to see that
the sphere admits a metric with positive curvature: this is true for the induced metric coming from
the standard embedding of S2 in R3. Things are similarly simple for the torus, though the usual
embedding of T2 into R3 (as a doughnut) is the wrong picture to look at. Instead take R2 with
its standard flat metric and define T2 as R2{Z2: the translation invariance of the Euclidean metric
implies that it gives a well defined metric on the quotient, and it is indeed locally flat.

The only part that is less obvious is that every surface of genus g ě 2 admits a metric of
negative curvature—in fact, by a famous result in the theory of surfaces, one can always find a
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metric that has constant curvature ´1. One approach is to take the Poincaré half-plane pH, hq as
a model (see Exercise 27.22) and show that every such surface can be constructed by drawing a
smooth polygon in pH, hq and identifying certain edges appropriately. We refer to [Spi99b, Chapter
6, Addendum 1] for details. One can also prove this using geometric PDE methods, see for instance
[Tro92]. �

Remark 29.27. For a surface Σ of genus g ě 2, the standard way of embedding Σ into R3

as a surface with g handles is misleading in some respects: as a hypersurface in R3, its Gaussian
curvature is sometimes positive and sometimes negative. Exercise 29.28 below shows that this
will always be true, for any embedding of Σ in Euclidean R3, though the Gauss-Bonnet theorem
guarantees at least that the part with negative curvature is the majority. Unfortunately (from the
perspective of people who like to visualize things), there is no isometric embedding of any closed
surface with everywhere negative curvature into R3. (This is a less deep observation than Hilbert’s
theorem about embeddings of the hyperbolic plane, mentioned in Remark 27.23. The exercise
below does not say anything about the hyperbolic plane since it is not compact.)

Exercise 29.28. Prove: A closed surface Σ in Euclidean R3 cannot have KG ď 0 everywhere.
Hint: For some R ą 0, Σ must lie inside the closed ball of radius R and touch its boundary
tangentially at some point.

29.3. Addendum: Polygons are disks. You should perhaps not bother to read this section
unless you felt uncomfortable calling Equation (29.2) “obvious”. Here is one way I can think of to
prove it, using only the assumption that γ : ra, bs Ñ R2 is a piecewise-smooth simple closed curve
bounding a compact region P . There may also be easier ways that I haven’t thought of, but the
basic idea of what I have in mind is to deform γ via a so-called regular homotopy to a smooth
loop bounding a standard disk, for which (29.2) really is obvious. Let us call γ : ra, bs Ñ R2

a smoothly immersed loop if it is smooth and satisfies γpaq “ γpbq, 9γpaq “ 9γpbq and 9γptq ‰ 0

for all t. One can associate to any smoothly immersed loop a smooth function φ : ra, bs Ñ R,
unique modulo 2π, that measures the angle of 9γptq P R2 relative to a standard basis vector, andşb
a
9φptq dt “ φpbq ´ φpaq is then 2πk for some k P Z, called the twisting number of γ. A regular

homotopy of loops is a smooth family of smoothly immersed loops tγs : ra, bs Ñ R2usPr0,1s. Given
such a family, the corresponding angle functions φsptq can also be chosen to depend smoothly on
both s and t, so that

şb
a
9φsptq dt depends continuously on s, and therefore so does the twisting

number. Since the latter is always in integer, this implies that it is the same for γ0 and γ1, i.e. the
twisting number is invariant under regular homotopy. Our goal in the following is thus to show
that, after smoothing the angles in order to make BP a smooth loop, it admits a regular homotopy
to the boundary of a round disk, whose twisting number is clearly 1.

Step 1 : Since γ : ra, bs Ñ R2 has only finitely-many nonsmooth points, each one is isolated,
and it is therefore easy to modify γ by a C0-small perturbation in small neighborhoods of these
points to make it a smooth embedding with γpaq “ γpbq and 9γpaq “ 9γpbq. This is an example
of what topologists call “smoothing the corners”, and the contribution to

şb
a
9φptq dt from the small

neighborhoods of tj where this modification is done then corresponds to ∆φj , so the left hand side
of (29.2) now contains only the integral term, and computes 2π times the twisting number of γ.
(Note: It is really important in this step to make sure that you’re using the right convention about
the distinction between ∆φj being `π or ´π, i.e. counterclockwise vs. clockwise rotations!)

Step 2 : The compact region P Ă R2 bounded by γ is now a compact oriented smooth 2-
manifold with connected boundary, and we claim that it is diffeomorphic to a disk D2. Indeed,
the classification of surfaces (see e.g. [Wen18, Lecture 19] or [Hir94]) implies that P must be
diffeomorphic to the complement of an open disk in a closed orientable surface Σg of some genus
g ě 0, so our claim is equivalent to the assertion that g “ 0. To see this, one can add a “point
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at infinity” to R2, making it diffeomorphic to the sphere S2, so that the unbounded region of R2

lying outside of γ becomes another compact oriented smooth 2-manifold with connected boundary,
embedded in S2. Applying the classification of surfaces again, this region is diffeomorphic to the
complement of an open disk in a closed orientable surface Σh of some genus h ě 0. Gluing the
two pieces together presents S2 as the connected sum of Σg and Σh, which is Σg`h. But S2 is not
diffeomorphic to Σg`h unless g ` h “ 0, thus g “ h “ 0.

Step 3 : We now know that P is diffeomorphic to D2, and by the tubular neighborhood theorem,
BP has a neighborhood in R2 diffeomorphic to p´1, 1q ˆ S1, where BP itself is identified with
t0u ˆ S1. This is enough information to construct an open neighborhood U Ă R2 of P with a
diffeomorphism ψ : U Ñ B2

r onto the open ball B2
r Ă R2 of some radius r ą 1 such that ψpP q is

the closed unit disk D2. Let us equip U with the Riemannian metric g :“ ψ˚pdx2 ` dy2q. The
point of this definition is that we can easily understand the geodesics for this metric: they are the
images under ψ´1 of straight lines in B2

r . As a consequence, we can now write

γptq “ expgppXptqq,
where p :“ ψ´1p0q, ra, bs Ñ TpU “ R2 : t ÞÑ Xptq is a parametrization of the unit circle in TpU
with respect to the metric g, and the superscript g is included to emphasize that we are using this
metric (rather than the Euclidean metric) to define the exponential map.

Step 4 : Since pU , gq is isometric via ψ to a standard ball with the Euclidean metric, expgp
defines a diffeomorphism from a ball in TpU containing the loop Xptq onto U . The family

γsptq :“ expgppsXptqq, s P rǫ, 1s
therefore defines a regular homotopy between γ and some loop γǫ : ra, bs Ñ U that can be assumed
to lie in an arbitrarily small neighborhood of p by choosing ǫ ą 0 small.

Step 5 : Consider the smooth family of Riemannian metrics gs :“ sg ` p1 ´ sqgE on U for
s P r0, 1s, where gE :“ dx2 ` dy2 is the Euclidean metric. For a sufficiently small neighborhood
O Ă TpU of 0, we can assume that the corresponding exponential maps expgsp are embeddings of
O onto open neighborhoods of p in U . Now define

Xsptq P TpU “ R2

for each s P r0, 1s and t P ra, bs as the unique positive rescaling of Xptq P R2 that makes it a unit
vector with respect to the metric gs, and define another family of smooth loops by

βsptq :“ expgsp pǫXsptqq s P r0, 1s.
Taking ǫ ą 0 small enough so that ǫXsptq P O for all s, t, these loops are all embeddings, and thus
define a regular homotopy between β1 “ γǫ and β0, where the latter is a parametrization of the
ǫ-disk about p with respect to the Euclidean metric. We conclude that γǫ and therefore also γ have
the same twisting number as β0, which is 1.

30. The first Chern class

We are not yet done extracting mileage out of the formula

F “ dAα.

Recall from §28.2: this relates a local connection 1-form Aα P Ω1pUα, gq to a globally-defined Lie
algebra-valued curvature 2-form F P Ω2pM, gq on any vector bundle E ÑM with abelian structure
group G carrying a compatible connection. The Gauss-Bonnet formula arose from the special case
where E is the tangent bundle of an oriented Riemannian 2-manifold, so that the group G was
SOp2q – Up1q, but this is not the only type of vector bundle with structure group Up1q one might
want to consider. We will explore what else can be done with this in §30.1 and §30.2, giving
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a rudimentary introduction to the much larger subject of characteristic classes and Chern-Weil
theory. We then apply this again to the case E “ TΣ in §30.3, and deduce yet another useful
interpretation of the Euler characteristic, including some discussion of spheres with hair.

30.1. An invariant of complex line bundles. The basic object of study in this section is
a smooth complex line bundle

π : E ÑM

over a manifoldM of some dimension n P N. We are going to construct an algebraic invariant that
can detect whether two such bundles are isomorphic. There are many reasons one might want to
do this. One easy one to name is that vector bundles arise naturally in the tubular neighborhood
theorem (cf. Exercise 23.4), where they serve as local models for neighborhoods of submanifolds, so
if one can classify the isomorphism classes of vector bundles of a given rank over a given manifold,
one obtains a picture of all possible neighborhoods of embeddings of that manifold into a larger
one up to diffeomorphism. Since Up1q – SOp2q, classifying complex line bundles is equivalent to
classifying oriented real bundles of rank 2, which arise whenever one studies the embeddings of an
oriented manifold into another oriented manifold two dimensions larger. The simplest case of the
latter situation is knot theory, which studies embeddings of S1 into 3-manifolds, and this is only
one of many situations in topology and related areas where certain types of vector bundles need
to be classified.

The construction of our invariant will depend on two choices of auxiliary data:
(1) A bundle metric x , y, thus making E Ñ M a Hermitian line bundle and reducing its

structure group from GLp1,Cq to Up1q;
(2) A metric connection ∇, represented in any Up1q-compatible local trivialization Φα :

E|Uα
Ñ Uα ˆ C by an imaginary-valued connection 1-form Aα P Ω1pUα, up1qq.

These choices are crucial for the definition of the invariant, but we will see that the invariant itself
does not depend on them.

A clue about the right thing to do arises out of the observation in §28.2 that in this situation,
there is a globally-defined imaginary-valued 2-form F P Ω2pM, up1qq that matches dAα for every
choice of local trivialization. In particular, it is obvious that F is closed, but it might not be exact
since each of the individual 1-forms Aα is defined only on the domain Uα and not necessarily on all
of M . As we saw in Lecture 13, the distinction between closed and exact forms on a manifold is
measured by its de Rham cohomology, so one wonders whether the cohomology class represented
by F might carry interesting information. A further hint in this direction comes from the following:

Lemma 30.1. If p∇ is another metric connection on E Ñ M with curvature 2-form pF P
Ω2pM, up1qq, then pF “ F ` i dλ for some λ P Ω1pMq.

Proof. The difference between two connections is always a bundle map, i.e. there exists a
smooth bilinear bundle map B : TM ‘E Ñ E such that p∇Xv “ ∇Xv`BpX, vq for all X P XpMq
and v P ΓpEq, and B can also be interpreted as a bundle-valued 1-form

β P Ω1pM,EndpEqq, βpXqv :“ BpX, vq.
Since the fibers Ep for all p P M are 1-dimensional, all endomorphisms Ep Ñ Ep come from
scalar multiplication, giving a natural isomorphism CÑ EndpEpq so that β can be replaced with a
complex -valued 1-form β P Ω1pM,Cq such that p∇Xv “ ∇Xv ` βpXqv. Writing down this relation
in the local trivialization Φα : E|Uα

Ñ Uα ˆ C then gives the relationpAαpXq “ AαpXq ` βpXq,
where pAα P Ω1pUα, up1qq is the local connection 1-form for p∇. Since Aα and pAα are both purely
imaginary-valued, the same is therefore true for β, giving β “ iλ for some real-valued 1-form
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λ P Ω1pMq. Taking the exterior derivative of pAα “ Aα` iλ then gives the stated relation between
F and pF . �

Strictly speaking, we cannot talk about the de Rham cohomology class represented by F P
Ω2pM, up1qq without slightly altering our previous definition of de Rham cohomology, because F
is not a real-valued form. But that is easily fixed, and Lemma 30.1 then tells us that the following
definition is independent of the choice of metric connection:

Definition 30.2. The first Chern class of the complex line bundle π : E ÑM with bundle
metric x , y is the de Rham cohomology class

c1pEq :“
„
´ 1

2πi
F


P H2

dRpMq,
where F P Ω2pM, up1qq is the curvature 2-form associated to any choice of metric connection on
E ÑM .

The reason for the factor of 2π and the minus sign in this definition will become clear when
we discuss computations in §30.2.

Theorem 30.3. The first Chern class of complex line bundles has the following properties.
(1) c1pEq is independent of the choice of bundle metric x , y on E ÑM .
(2) For the trivial line bundle E0 :“M ˆ CÑ C, c1pE0q “ 0.
(3) If E,E1 Ñ M are two complex line bundles admitting a bundle isomorphism E Ñ E1,

then c1pEq “ c1pE1q.
(4) For any complex line bundle E Ñ M and any smooth map f : N Ñ M , the pullback

bundle f˚E Ñ N has c1pf˚Eq “ f˚c1pEq P H2
dRpNq.

Proof. The easiest property to prove is (2), so we start with that: on the trivial bundle we
can choose ∇ to be the trivial connection, and there is an obvious global trivialization in which the
resulting connection 1-form vanishes identically, implying the same for the curvature 2-form and
thus r´F {2πis “ 0. Alternatively, one can reach the same conclusion without assuming anything
about the connection: it suffices to observe that since a trivialization can be defined on Uα :“M ,
there is a globally-defined connection 1-form Aα P Ω1pM, up1qq, whose exterior derivative is F ,
hence ´F {2πi is exact.

Moving on, we will prove a slightly stricter version of property (3) that depends on a bundle
metric, and then use this to prove (1). For two line bundles E Ñ M and E1 Ñ N equipped with
bundle metrics, a smooth linear bundle map Ψ : E Ñ E1 covering a smooth map ψ : M Ñ N

will be called a bundle isometry if for every p PM , Ψ defines an isomorphism Ep Ñ E1
ψppq that

is unitary, meaning it preserves the inner products. If E,E1 Ñ M admit a bundle isomorphism
Ψ : E Ñ E1, then for any choice of bundle metric on E, there is a unique one on E1 that makes Ψ a
bundle isometry. With this data in place, any metric connection ∇ on E can be “pushed forward”
via Ψ to define a metric connection ∇1 on E1, namely by

∇1
Xv :“ Ψ

`
∇XpΨ´1vq˘ .

It is an easy exercise to check that ∇1
X satisfies the Leibniz rule required to be a connection

on E1 and is also compatible with the bundle metric. We can also use Ψ to push forward local
trivializations: given a trivialization Φα : E|Uα

Ñ Uα ˆ C, we can define a trivialization Φ1α :

E1|Uα
Ñ Uα ˆ C by

Φ1α :“ Φα ˝Ψ´1.

For this choice, the section v P ΓpEq has the same local representation vα : Uα Ñ C as the section
Ψv P ΓpE1q, and the local connection 1-forms Aα, A1α P Ω1pUα, up1qq from our two connections via
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these two trivializations are exactly the same. It follows that the curvature 2-forms for ∇ and ∇1
are identical over Uα, and since the same trick can be done on any region where E is trivializable,
they are therefore identical everywhere, proving c1pEq “ c1pE1q.

We can now prove (1) as follows. The space of bundle metrics on E Ñ M is convex, so any
two bundle metrics x , y0 and x , y1 can be connected by a smooth family of bundle metrics

x , ys :“ sx , y1 ` p1´ sqx , y0, s P r0, 1s.
Let pE Ñ r0, 1sˆM denote the pullback of E ÑM via the obvious projection map r0, 1sˆM ÑM ,
and endow pE with a bundle metric such that the inner product at the point ps, pq P r0, 1s ˆM

is x , ys at the point p. Choosing a metric connection on pE, parallel transport along the paths
s ÞÑ ps, pq for each p PM now defines a bundle isometry pE, x , y0q Ñ pE, x , y1q, and the result of
the previous paragraph thus implies that the two definitions of c1pEq via these two bundle metrics
match.

Finally, we prove (4): assuming E ÑM is a line bundle with bundle metric x , y and f : N Ñ
M is a smooth map, equip f˚E Ñ N with the unique bundle metric so that the canonical bundle
map f˚E Ñ E covering f is a bundle isometry. For any metric connection ∇ on E, the pullback
connection on f˚E is then also compatible with the bundle metric, and the discussion following
Equation (21.3) shows that for any local trivialization Φα : E|Uα

Ñ Uα ˆ C with connection 1-
form Aα P Ω1pUα, up1qq, there is a pullback trivialization of f˚E over f´1pUαq Ă N in which the
connection 1-form for the pullback connection is f˚Aα. Taking the exterior derivative, it follows
that the pullback f˚F P Ω2pN, up1qq of the curvature 2-form F P Ω2pM, up1qq for∇ is the curvature
2-form for the pullback connection, thus c1pf˚Eq “ r´f˚F {2πis “ f˚r´F {2πis “ f˚c1pEq. �

30.2. Computing the first Chern number. For c1pEq P H2
dRpMq to be a truly useful

invariant, we need a practical means of computing it. As a rule, the best way to understand a 2-
dimensional cohomology class rωs P H2

dRpMq is by integrating it over closed oriented 2-dimensional
submanifolds Σ Ă M : the result is independent of the 2-form ω P Ω2pMq representing rωs since,
by Stokes’ theorem, integrals of exact forms over closed manifolds always vanish. Integrating ω
over Σ Ă M is the same as computing

ş
Σ
j˚ω for the natural inclusion map j : Σ ãÑ M . More

generally, one can also consider integrals of the form
ş
Σ
f˚ω for arbitrary closed oriented surfaces

Σ and smooth maps f : Σ ÑM , which need not be embeddings; in this situation, if ω represents
c1pEq P H2

dRpMq, then f˚ω represents c1pf˚Eq P H2
dRpΣq according to Theorem 30.3. It can

be deduced from de Rham’s theorem and a result of Thom75 that these integrals for all possible
choices of surfaces Σ and maps f : Σ Ñ M completely characterize rωs P H2

dRpMq. I will not
prove that here, but am mentioning it only as support for the following assertion: if you want to
compute c1pEq in general, then it suffices in principle if you know how to compute the first Chern
classes of bundles over closed oriented surfaces, as this is what the pullback bundles f˚E Ñ Σ are.
Moreover, the essential information about c1pEq for a bundle E Ñ Σ is contained in the integralş
Σ
ω P R for any choice of 2-form ω representing c1pEq P H2

dRpΣq. This number deserves a name.

Definition 30.4. For a complex line bundle E over a closed oriented surface Σ, the numberż
Σ

c1pEq :“
ż
Σ

ω,

defined by choosing any representative ω P Ω2pMq of the cohomology class c1pEq P H2
dRpMq, is

called the first Chern number of E Ñ Σ.

75The result in question comes from the famous paper [Tho54], and states that every singular homology class
A P HkpM ;Zq can be written as A “ 1

q
f˚rΣs for some closed oriented k-manifold Σ, smooth map f : Σ Ñ M and

q P N.
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According to the definition of c1pEq, one can compute the first Chern number in principle by
choosing a bundle metric and metric connection, which give rise to an imaginary-valued curvature
2-form F P Ω2pM, up1qq, and then integratingż

Σ

c1pEq “ ´ 1

2πi

ż
Σ

F.

We already know how to do this in the case E “ TΣ with the Levi-Cività connection: the answer
comes from the Gauss-Bonnet formula, which we’ll come back to in §30.3 below. But without
making any further assumptions about the line bundle E Ñ Σ or the connection, it is possible to
compute this integral in another way that has interesting applications. Let us make the following
assumption, which we will see below is completely realistic: suppose Σ can be decomposed into two
compact (but not necessarily connected) surfaces Σα,Σβ Ă Σ with a common boundary consisting
of a finite set of disjoint circles C1, . . . , CN Ă Σ,

BΣβ “ BΣα “
Nž
j“1

Cj ,

such that both subsets are contained in open neighborhoods Uα,Uβ Ă Σ on which there exist
Up1q-compatible trivializations Φα and Φβ respectively. Denote the transition function relating
these trivializations by

g :“ gβα : Uα X Uβ Ñ Up1q,
and observe that it is defined in particular on each of the circles Cj . Both Σα and Σβ inherit
orientations from Σ such that the boundary orientations of BΣα and BΣβ are opposite; let us
orient the individual circles Cj to match the boundary orientation of BΣβ . Stokes’ theorem then
gives

(30.1)
ż
Σ

F “
ż
Σα

dAα `
ż
Σβ

dAβ “
ż
BΣα

Aα `
ż
BΣβ

Aβ “
ż
BΣβ

pAβ ´Aαq “
Nÿ
j“1

ż
Cj

pAβ ´Aαq.

A formula relating Aα and Aβ to each other on Uα X Uβ was worked out in Exercise 20.9, namely

AαpXq “ gppq´1AβpXqgppq ` gppq´1 dgpXq, for p P Uα X Uβ , X P TpM,

and in the present case, the fact that Up1q is abelian simplifies it to

Aα “ Aβ ` g´1 dg on Uα X Uβ ,

so that (30.1) becomes ż
Σ

F “ ´
Nÿ
j“1

ż
Cj

g´1 dg.

This formula is further confirmation that c1pEq is an essentially topological quantity with no
dependence on the choice of connection. Now observe that since g takes values in Up1q, we can
write it as g “ eiθ for a uniquely defined smooth function

θ : Uα X Uβ Ñ R{2πZ.
It should be emphasized that θ cannot necessarily be defined as a real -valued function on UαXUβ,
at least not if we want it to be continuous, though a real-valued version could indeed be defined
on a sufficiently small neighborhood of any given point in Uα X Uβ . Such a local function would
be unique only up to the addition of constant multiples of 2π, but this means that its differential
is uniquely defined as a perfectly ordinary closed (but not necessarily exact) real-valued 1-form

dθ P Ω1pUα X Uβq.
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We can therefore write g´1 dg “ e´iθdpeiθq “ ie´iθeiθ dθ “ i dθ, giving

(30.2)
ż
Σ

c1pEq “ ´ 1

2πi

ż
Σ

F “ 1

2π

Nÿ
j“1

ż
Cj

dθ.

This last integral looks at first like it should vanish, but remember that dθ is not necessarily an exact
1-form since θ is not a real-valued function. We encountered something similar in Example 13.12,
and the following definition provides a useful topological interpretation for integrals of this type.

Definition 30.5. Suppose S is an oriented manifold diffeomorphic to S1, and f : S Ñ Czt0u
is a smooth function. The winding number

windSpfq P Z

of f is then the unique integer with the following property: for any smooth orientation-preserving
map γ : r0, 1s Ñ S that satisfies γp0q “ γp1q and is an embedding on p0, 1q, and any smooth
functions ρ, φ : r0, 1s Ñ R such that ρ ą 0 and fpγptqq “ ρptqeiφptq for all t,

windSpfq “ 1

2π
rφp1q ´ φp0qs .

To see that windSpfq in Definition 30.5 is independent of the various choices involved, one can
reinterpret it as the integral

(30.3) windSpfq “ 1

2π

ż
S

dθ,

where the 1-form dθ P Ω1pSq is defined from the unique smooth function θ : S Ñ R{2πZ satisfying
fppq “ rppqeiθppq for some positive function r : S Ñ R. Indeed, suppose γ : r0, 1s Ñ S is an
orientation-preserving parametrization of S as in the definition: then we can write fpγptqq “
rpγptqqeiφptq for some smooth function φ : r0, 1s Ñ R such that θpγptqq is the image of φptq
under the quotient projection R Ñ R{2πZ. Differentiating this relation between θ and φ gives
dφ “ dθ ˝ Tγ “ γ˚dθ. Now for any small ǫ ą 0, γ is an orientation-preserving diffeomorphism
of rǫ, 1´ ǫs onto its image Sǫ Ă S, so the change-of-variables formula gives

ş
Sǫ
dθ “ ş

rǫ,1´ǫs γ
˚dθ.

After taking ǫÑ 0, this givesż
S

dθ “
ż
r0,1s

γ˚dθ “
ż
r0,1s

dφ “ φp1q ´ φp0q,

thus proving (30.3). (Caution: If we had manipulated the symbols in this last equation without
thinking about their meaning, we might have said

ş
r0,1s γ

˚dθ “ ş
r0,1s dpγ˚θq “

ş
r0,1s dpθ ˝ γq “

θpγp1qq ´ θpγp0qq “ 0. This is where it is crucial to remember that θ is not a real -valued function
on S, but instead takes values in the manifold R{2πZ. Thus dpγ˚θq cannot be interpreted as an
exact 1-form, and we cannot use Stokes’ theorem to compute it.)

An easy corollary of (30.3) is that windSpfq is not only independent of the choice of parametriza-
tion γ : r0, 1s Ñ S, but it is also homotopy invariant : if f0, f1 : S Ñ Czt0u are two ends of a
smooth family of nowhere-zero functions tfs : S Ñ Czt0uusPr0,1s, then windSpf0q “ windSpf1q.
One can see this from the fact that the integral

ş
S
dθ in this situation will depend continuously on

the parameter s, and since it is also an integer multiple of 2π, this implies that it cannot change
at all.

We can now rewrite (30.2) in terms of winding numbers:
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Proposition 30.6. For the complex line bundle E Ñ Σ “ Σα Y Σβ as described above with
transition function g “ gβα : Uα X Uβ Ñ Up1q,ż

Σ

c1pEq “
Nÿ
j“1

windCj
pgq.

�

It should now be obvious why the factor of 1{2π was included in the definition of c1pEq: it
makes the value of

ş
Σ
c1pEq an integer, a fact which was far from obvious in its definition.

Proposition 30.6 is of practical use for computing first Chern numbers. It can also be used to
approach the following question, which you might not expect should have a well-defined answer at
all:

Question 30.7. How many zeroes should a section s P ΓpEq be expected to have?

If you think of sections of a complex line bundle over a surface as something analogous to
complex-valued functions on an open domain in R2, then this does not at first seem like a sensible
question, because the number of zeroes will generally depend on the choice of function, and one
could always just choose a nonzero constant function for which the answer zero. But on a line
bundle over a closed surface, nowhere-zero sections might not exist—indeed, a nowhere-zero section
in this situation is equivalent to a frame, so such a thing exists if and only if the bundle is globally
trivial. This observation hints that the issue in Question 30.7 is fundamentally topological, at least
if we have the correct interpretation of the words “how many”. Let us restrict our attention to
smooth sections s : ΣÑ E such that the zero set

s´1p0q :“  
p P Σ

ˇ̌
sppq “ 0 P Ep( Ă Σ

is finite. One can show that all sections in an open and dense subset of ΓpEq have this property
(see Remark 30.12 below). One could now count the number of elements in s´1p0q, but this
notion of counting is too naive to give an answer independent of the choice of section. The right
interpretation of the words “how many” turns out to be one that attaches to each individual zero
an integer-valued weight, and this weight can be defined as a winding number:

Definition 30.8. Suppose p P Σ is an isolated point in the zero set s´1p0q of a section
s P ΓpEq. The index of s at p (also sometimes called the order of the zero p) is defined as the
integer

indps; pq :“ windBDpsαq,
where D Ă Σ is a small disk containing p in its interior such that s´1p0qXD “ tpu, and sα : D Ñ C

is the local representative of s in some trivialization Φα of E defined on a neighborhood of D.

Remark 30.9. The winding number in Definition 30.8 requires BD to be oriented, so we assign
it the boundary orientation, where D inherits an orientation from Σ. Reversing the orientation of
Σ thus changes the sign of indps; pq, and the index can only be defined up to a sign if Σ is not
orientable.

Exercise 30.10. Use the homotopy-invariance of winding numbers to show that the index
indps; pq in Definition 30.8 does not depend on the choices of disk D Ă Σ surrounding p and local
trivialization Φα over D.
Hint: The crucial detail is that s does not vanish on D except at the point p.

Exercise 30.11. Recall from Exercise 19.7 that at any point p P s´1p0q in the zero-set of
a section s P ΓpEq, there is a well-defined linearization Dsppq : TpΣ Ñ Ep. For the following
statement, we can regard Ep as an oriented 2-dimensional real vector space by defining any basis
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of the form pv, ivq for v ‰ 0 P Ep to be positively oriented. Convince yourself that this orientation
is well defined, and then prove the following: if Dsppq is invertible, then indps; pq “ ˘1, positive if
Dsppq is orientation preserving and negative if Dsppq is orientation reversing.

Remark 30.12. We do not have time for a proper treatment of transversality theory in this
course, but if you know the basic definitions, you may be able to convince yourself without much
difficulty that the linearization Dsppq : TpΣ Ñ Ep at a zero p P s´1p0q is invertible if and only if
the intersection at 0 P Ep Ă E between the zero-section Z :“ Ť

pPΣ 0 Ă E and the submanifold
spΣq Ă E is transverse. General results in transversality theory (see e.g. [Hir94]) then imply that
all zeroes satisfy this condition for all sections in some open and dense subset of ΓpEq. This is why
we know there always exist sections whose zero-sets are finite.

Exercise 30.13. Suppose s P ΓpEq is an isolated zero p P s´1p0q with indps; pq ‰ 0. Show
that for any neighborhood U Ă Σ of p, any sufficiently C0-small perturbation of s must also vanish
somewhere in U . In other words, zeroes with nonvanishing index cannot be perturbed away.
Hint: Consider only perturbations of s such that the winding number along some fixed circle
around p does not change.

Exercise 30.14. On the trivial complex line bundle E “ R2 ˆ CÑ R2, find an example of a
section s P ΓpEq with an isolated zero at one point p P R2 with indps; pq “ 0, such that s admits
small perturbations with no zeroes at all.

Definition 30.15. Suppose s P ΓpEq has a finite zero set. The algebraic count of zeroes
of s is the integer

#s´1p0q :“ ÿ
pPs´1p0q

indps; pq P Z.

Theorem 30.16. Suppose Σ is a closed oriented surface and E Ñ Σ is a complex line bundle.
Then for any section s P ΓpEq with at most finitely-many zeroes,

#s´1p0q “
ż
Σ

c1pEq.
Proof. Assuming s´1p0q Ă Σ is finite, choose for each p P s´1p0q a small closed disk Dp Ă Σ

whose boundary encircles p, and assume all of these disks are small enough so that they do not
intersect each other and they are contained in a neighborhood on which E is trivializable. Set

Σβ :“ ď
pPs´1p0q

Dp, Σα :“ ΣzΣβ,

and let v P ΓpE|Uβ
q denote an arbitrary choice of section over some open neighborhood Uβ Ă Σ

of Σβ such that |v| ” 1, hence v can be interpreted as a Up1q-compatible frame over Uβ and gives
rise to a corresponding trivialization Φβ . On Uα :“ Σzs´1p0q, s itself determines a Up1q-compatible
trivialization, defined by interpreting the normalized section s{|s| as a Up1q-compatible frame, and
we can denote the corresponding trivialization by Φα. This means that the local representation
of s with respect to Φα is a positive real-valued function sα ą 0; its representation with respect
to Φβ is related to this by sβ “ gsα for the transition map g :“ gβα : Uα X Uβ Ñ Up1q, and is
therefore just a positive rescaling of g. This proves that for each zero p P s´1p0q,

windBDp
psβq “ windBDp

pgq,
so the equality of #s´1p0q and ş

Σ
c1pEq now follows from Proposition 30.6. �

Exercise 30.17. By counting zeroes of sections, show that for any pair of complex line bundles
E,E1 Ñ Σ over a closed oriented surface Σ,

ş
Σ
c1pE bE1q “ ş

Σ
c1pEq ` ş

Σ
c1pE1q.
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Exercise 30.18. For any vector bundle E ÑM over F P tR,Cu, with dual bundle E˚ ÑM ,
there is a canonical bilinear bundle map from E b E˚ to the trivial line bundle M ˆ F Ñ M ,
defined at each point P PM by

Ep bEp̊ Ñ F : v b λ ÞÑ λpvq.
(a) Show that if rankpEq “ 1, the bundle E bE˚ is trivial.
(b) Show that for any complex line bundle E over a compact oriented surface Σ,

ş
Σ
c1pE˚q “

´ ş
Σ
c1pEq.

Exercise 30.18 reveals an interesting difference between real and complex vector bundles. For
any real bundle E ÑM , choosing a bundle metric x , y gives rise to a bundle isomorphism

E Ñ E˚ : v ÞÑ xv, y.
This trick does not work in the complex case because bundle metrics are complex linear only in
one argument and complex antilinear in the other, so the map E Ñ E˚ above can be defined, but
it is complex antilinear on each fiber and thus not a complex bundle isomorphism. Exercise 30.18
shows that this is not just a defect in our method of finding isomorphisms: the bundles E and
E˚ really are not generally isomorphic in the complex case, as their first Chern classes will differ
whenever they are nonzero. There do exist complex line bundles with c1pEq ‰ 0: we will see some
explicit examples in the next section, and more generally, it is not hard to construct examples
over surfaces that have arbitrary interger values for

ş
Σ
c1pEq. The trick is to glue simpler pieces

together in clever ways, e.g. if you present the sphere S2 with its north and south poles p˘ P S2

as the union of the two open subsets U˘ :“ S2ztp˘u, then you can take two trivial line bundles
E˘ :“ U˘ˆCÑ U˘, and glue these together to produce a bundle E Ñ S2 with local trivializations
over U` and U´ having any desired transition function g : U` X U´ Ñ Up1q.

30.3. The Poincaré-Hopf theorem on surfaces. If E Ñ Σ is the tangent bundle TΣ
of a closed oriented surface with a Riemannian metric, one can choose ∇ to be the Levi-Cività
connection, and by Proposition 28.8 and the Gauss-Bonnet formula, the first Chern number then
becomes ż

Σ

c1pTΣq “ ´ 1

2πi

ż
Σ

F “ 1

2π

ż
Σ

iF “ 1

2π

ż
Σ

KG dvolΣ “ χpΣq.
This is the most famous explicit computation of a first Chern number, and is the main one that you
should commit to memory if you don’t have space for any others. Combining it with the results
of the previous section now gives a new interpretation of the Euler characteristic:

Theorem 30.19 (Poincaré-Hopf). For any vector field X P XpΣq with at most finitely-many
zeroes on a closed oriented surface Σ, the algebraic count of zeroes is

#X´1p0q “ χpΣq.
�

I recommend taking a moment to think about what this implies for the most familiar surfaces.
For the torus T2, whose Euler characteristic according to Exercise 29.16 is 0, it is consistent with
the observation that nowhere-zero vector fields on T2 are easy to construct. The most famous
consequence of the Poincaré-Hopf theorem applies to S2, whose Euler characteristic is 2: it is often
summarized by the colorful phrase, “you cannot comb the hair on a sphere”.

Corollary 30.20. There does not exist a nowhere-zero vector field on S2. �

Exercise 30.21. For a closed oriented surface Σg of genus g ě 0, we can use the Poincaré-Hopf
theorem to compute χpΣgq without needing to choose triangulations. Recall from Exercise 29.22
the notion of a pair of pants.
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(a) Show that a pair of pants admits a smooth vector field that is tangent to the boundary
and nonzero there, and has only one zero in the interior, with index ´1.
Hint: Just try to draw the flow lines. They should form the leaves of a foliation, with
one singular point where two leaves intersect transversely.

(b) By gluing together pairs of pants, show that Σg admits a vector field with exactly 2´ 2g

zeroes, all of index ´1.
30.4. Addendum: counting zeroes in general. Having seen the definition of the first

Chern class, it will surely not surprise you to learn that there is also a second, and a third and so
forth: for every k P N one can associate to every complex vector bundle π : E Ñ M of arbitrary
rank a kth Chern class

ckpEq P H2k
dRpMq.

Its definition when either k ě 2 or rankpEq ą 1 is more complicated than we have space to discuss
here: this is the subject of a large sub-branch of differential topology known as Chern-Weil theory,
which is one of the topics we might discuss near the end of next semester’s followup course. One
can also define analogous so-called characteristic classes for real vector bundles E Ñ M , such as
the Pontryagin classes

pkpEq P H4k
dRpMq

for each k P N. In Chern-Weil theory, characteristic classes of a bundle E Ñ M with structure
group G are always constructed in terms of closed forms determined by the curvature of some
chosen G-compatible connection, on which the cohomology class turns out not to depend. One can
show as in §30.2 that the integrals of these classes over closed oriented submanifolds of suitable
dimensions are always integers, despite this being highly nonobvious from their definition. This
hints at the fact that all characteristic classes can also be constructed by completely different
methods, using algebraic topology, where they live naturally in Z-modules such as singular or
Čech cohomology with integer coefficients, rather than the real vector space Hd̊RpMq. (The major
exceptions to this last statement are the Stiefel-Whitney classes, which can be defined for all real
vector bundles and take values in cohomology with Z2 coefficients, thus there is no sensible way to
define them in de Rham cohomology.) The fact that the Pontryagin numbers are integers played a
major role e.g. in Milnor’s discovery that the topological manifold S7 admits smooth structures not
diffeomorphic to its standard one. The fact that the widely differing constructions of characteristic
classes via algebraic topology vs. Chern-Weil theory give equivalent results is also a deep theorem
with many applications.

I’d like to add a word about one other characteristic class which places the discussion of §30.2
into a wider context. There is a certain perspective from which it is not at all surprising that the
question “How many zeroes should a section s :M Ñ E have?” might have a well-defined answer.
The idea is roughly as follows: suppose π : E ÑM is an oriented real vector bundle of rank n over
a closed oriented n-manifold M , and call a section s P ΓpEq generic if for every point p P s´1p0q
in its zero-set, the linearization

Dsppq : TpM Ñ Ep

is invertible. As mentioned in Remark 30.12, there is always an open and dense set of sections in
ΓpEq that satisfy this condition, and the inverse function theorem then implies that the zeroes of
s are isolated; since M is assumed compact, this means there are only finitely many. Generalizing
Exercise 30.11, one can now associate an index indps; pq “ ˘1 to each zero by defining it to be `1
if Dsppq is orientation preserving and ´1 if Dsppq is orientation reversing.

The key idea now is to regard the zero set s´1p0q as a compact oriented 0-dimensional subman-
ifold of M , with the orientation of each point defined by the sign of indps; pq. Now if s0, s1 P ΓpEq
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are two generic sections, we can find a smooth homotopy between them, i.e. a map

H : r0, 1s ˆM Ñ E

such that st :“ Hpt, ¨q P ΓpEq for each t; such a map always exists, for instance the linear
interpolation Hpt, pq :“ ts1ppq ` p1´ tqs0ppq. By a nontrivial bit of transversality theory, one can
always make a small perturbation of H so as to assume without loss of generality that its image
in E meets the zero-section transversely, in which case H´1p0q Ă r0, 1s ˆM is a smooth oriented
1-dimensional submanifold with boundary. Then

B `H´1p0q˘ “ `t1u ˆ s´1
1 p0q˘Y `t0u ˆ p´s´1

0 p0qq˘ ,
where the minus sign on the right hand side indicates reversal of orientation. The 1-manifold
H´1p0q will generally have multiple connected components, which come in three flavors:

(1) Circles in the interior of r0, 1s ˆM ;
(2) Arcs with one boundary point in t1uˆ s´1

1 p0q, and the other a point in t0uˆ s´1
0 p0q with

the same orientation;
(3) Arcs with both boundary points in either t1u ˆ s´1

1 p0q or t0u ˆ s´1
0 p0q, having opposite

orientations.
The result is that the points in the disjoint union of s´1

1 p0q with s´1
0 p0q come in pairs: matching

pairs of zeros of s1 and s0, or cancelling pairs of zeros of s1 alone or s0 alone. Thus the count of
positive points in s´1

1 p0q minus negative points in s´1
1 p0q is the same as the corresponding count

for s0, and we conclude that for all generic sections s P ΓpEq, the algebraic count
#s´1p0q “ ÿ

pPs´1p0q
indps; pq P Z

is the same. This number is called the Euler number of the bundle E ÑM , and it corresponds
to an Euler class epEq P Hn

dRpMq such that
ş
M
epEq is the Euler number. In this context,

Theorem 30.16 can be rephrased as the statement that for any complex line bundle E ÑM , if one
regards it as an oriented real vector bundle of rank 2, its Euler class matches its first Chern class.
The reason however for the terminology is that when E is TM for a closed oriented manifold M ,
its Euler number matches the Euler characteristic:ż

M

epEq “ χpMq.
This is the general version of the Poincaré-Hopf theorem. It can be proved in various ways,
depending on whether one prefers to define epEq via Chern-Weil theory or algebraic topology. Add
this to our to-do list for next semester.

If you want to read the full details on why algebraic counts like #s´1p0q do not depend on the
choice of generic section, and how to generalize them without always assuming indps; pq “ ˘1, I
highly recommend Milnor’s short book [Mil97]. It’s something every mathematics student should
read sooner or later.

Exercise 30.22. The argument sketched above for proving #s´1
0 p0q “ #s´1

1 p0q appealed to
the classification of compact 1-manifolds with boundary, i.e. their connected components are each
diffeomorphic to either a circle S1 or a compact interval r0, 1s. This is a basic result in topology,
but one doesn’t really need to use it for this purpose: the main fact we actually needed was that
wheneverM is a compact oriented 1-manifold with boundary, the signed count of boundary points
vanishes: ÿ

pPBM
εppq “ 0,
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where ε : BM Ñ t1,´1u is the boundary orientation (see §12.1). Prove this without assuming
anything about the topology of M .
Hint: Integrate an exact 1-form over M .

31. Sectional curvature

In this last lecture of the semester, we’ll introduce a generalization of the Gaussian curvature
that makes sense in all dimensions, not just on surfaces. Like the Gaussian curvature on sur-
faces, the sectional curvature of a Riemannian n-manifold contains all the same information as
the Riemann tensor, but packaged in a more useful way: for instance, sectional curvature makes
it possible to define the notions of positive/negative/zero curvature in arbitrary dimensions and
observe qualitative distinctions between them. We will motivate the definition by investigating a
natural question about geodesics: when can we conclude that a geodesic segment connecting two
(not necessarily nearby) points actually is the only geodesic connecting them?

The following thought experiment shows that this question clearly has something to do with
curvature: suppose ℓ1, ℓ2 Ă Σ are two distinct embedded geodesic curves connecting distinct points
p and q in a Riemannian 2-manifold pΣ, gq. (We know from the example of S2 that this scenario
sometimes happens.) If ℓ1 and ℓ2 do not intersect at any other point between p and q, and if they
are also “close” to each other in some sense, then they form the edges of a smooth polygon P Ă Σ

with vertices at p and q. Their angles α, β P r0, 2πs at p and q must be positive in this situation,
because any two geodesics that meet tangentially must be identical. The Gauss-Bonnet formula
then gives

0 ă α` β “
ż
P

KG dvolΣ,

which is a contradiction if the Gaussian curvature of pΣ, gq happens to be everywhere nonpositive.
This proves a uniqueness result: if curvature is never positive, then any geodesic from p to q is
the only geodesic among nearby curves connecting those two points. Our aim is to extend this
observation to arbitrary dimensions.

31.1. The second variation of the energy functional. Throughout this lecture, pM, gq is
a Riemannian manifold of arbitrary dimension. A more elaborate version of the question mentioned
above can be stated as follows:

Question 31.1. On a Riemannian manifold pM, gq, suppose γ : ra, bs Ñ M is a geodesic
segment with γpaq “ p and γpbq “ q. Is there any other geodesic segment from p to q near γ? Is γ
in fact the shortest path between p and q?

The issue here is different from what we discussed in §23.2, because we are now allowing the
points p and q to be arbitrarily far apart. It is clear from examples that non-short geodesics
connecting two points need not be unique: consider for instance the geodesics in S2 Ă R3 from
the north pole to the south pole, which come in a whole 1-parameter, all equally long. We’ll find
that this is only allowed because S2 has positive curvature; it cannot happen on a surface with
negative or zero curvature.

To better understand the global relationship between geodesics and length, we can apply an
infinite-dimensional version of the “second derivative test” to the length functional. As in §22.4,
it turns out to be easier for this purpose to work with the energy functional instead of the length
functional, because results about the latter can be derived from results about the former, but energy
is easier to compute with. Recall the following notation: for two parameter values a ă b P R and
points p, q PM , we denote by

P :“ C8pra, bs,M ; p, qq
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the space of smooth paths γ : ra, bs Ñ M starting at p and ending at q. We think of this space
intuitively as an infinite-dimensional smooth manifold, with tangent spaces

TγP :“ tη P Γpγ˚TMq | ηpaq “ 0 and ηpbq “ 0u.
We then have two functionals ℓ, E : P Ñ R, the length

ℓpγq “
ż b
a

| 9γptq| dt,
and the energy

Epγq “ 1

2

ż b
a

| 9γptq|2 dt,
where an extra factor of 1{2 has been inserted in front of the energy functional to make some of
the expressions below look a bit nicer. For a smooth 1-parameter family of paths γs P P with
γ0 “ γ and Bsγs|s“0 “ η P TγP , we computed in §22.4 the first variation of the energy functional:

dEpγqη :“ d

ds
Epγsq

ˇ̌̌̌
s“0

“
ż b
a

x´∇t 9γptq, ηptqy dt.
We can express this more succinctly by defining an inner product on the space of sections Γpγ˚TMq
for each γ P P : for two such sections ξ and η, let76

xξ, ηyL2 “
ż b
a

xξptq, ηptqy dt.
Informally, we can think of x , yL2 as defining a Riemannian metric on P . Now the first variation
can be expressed as

dEpγqη “ x∇Epγq, ηyL2,

where
∇Epγq :“ ´∇t 9γ P Γpγ˚TMq

is the so-called L2-gradient of the energy functional. In this notation, γ is a geodesic if and only
if ∇Epγq “ 0.

Informally again, we think of ∇E as a vector field on P which represents the first derivative
of E, though it would be more accurate to call it a section of a vector bundle E Ñ P with fibers
Eγ :“ Γpγ˚TMq, as ∇Epγq need not take values in the subspace TγP Ă Γpγ˚TMq. In any case,
we would like to compute the derivative of this section, i.e. it’s linearization (cf. Exercise 19.7)
at a point γ P P where ∇Epγq “ 0, and interpret it as the Hessian of E at the critical point γ.
For η P TγP , we choose a 1-parameter family γs P P with γ0 “ γ and Bsγs|s“0 “ η and define a
“covariant derivative” ∇η∇E P Γpγ˚TMq by

p∇η∇Eqptq :“ ∇sp∇Epγsqptqq|s“0 .

A quick computation using the definition of the Riemann tensor shows that this does indeed only
depend on η rather than the 1-parameter family γs:

∇sp∇Epγsqq|s“0 “ ´ ∇s∇tBtγs|s“0 “ ´∇t∇sBtγs ´RpBsγs, BtγsqBtγs|s“0 “ ´∇2
tη ´Rpη, 9γq 9γ.

With this calculation as motivation, define for any γ P P a linear operator

(31.1) ∇2Epγq : Γpγ˚TMq Ñ Γpγ˚TMq : η ÞÑ ´∇2
tη ´Rpη, 9γq 9γ.

We can now state the second variation formula:

76The subscript L2 refers to the standard notation for the Hilbert space completion of Γpγ˚TMq with respect
to this inner product.
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Proposition 31.2. Suppose γ P P is a geodesic and γσ,τ P P is a smooth 2-parameter family
of paths with γ0,0 “ γ, with variations ξ, η P TγP defined by

ξ “ Bσγσ,τ |σ“τ“0
and η “ Bτγσ,τ |σ“τ“0

.

Then
B2
BσBτ Epγστ q

ˇ̌̌̌
σ“τ“0

“ x∇2Epγqξ, ηyL2 .

Proof. Compute:

B2
BσBτ Epγσ,τ q

ˇ̌̌̌
σ“τ“0

“ B
Bσ

ˆ B
Bτ Epγσ,τ q

ˇ̌̌̌
τ“0

˙ˇ̌̌̌
σ“0

“ B
Bσ

@
∇Epγσ,0q, Bτγσ,τ |τ“0

D
L2

ˇ̌̌̌
σ“0

“ B
Bσ

ż b
a

@
∇Epγσ,0qptq, Bτγσ,τ ptq|τ“0

D
dt

ˇ̌̌̌
ˇ
σ“0

“
ż b
a

@
∇σ∇Epγσ,0qptq|σ“0

, ηptqD dt`
ż b
a

@
∇Epγqptq, ∇σBτγσ,τ |σ“τ“0

D
dt

“
ż b
a

xp∇ξ∇Eqptq, ηptqy dt “ x∇2Epγqξ, ηyL2 .

Note that we used the assumption that γ is geodesic, so ∇Epγq “ 0. �

For a 1-parameter family of paths tγs P PusPp´ǫ,ǫq, one can plug γσ,τ :“ γσ`τ into the second
variation formula and extract from it the first nontrivial term in the Taylor expansion of Epγsq as
a function of s: we have

Epγsq “ Epγq ` 1

2
s2 ¨ xη,∇2EpγqηyL2 `Op|s|3q

“ Epγq ´ 1

2
s2 ¨ xη,∇2

tη `Rpη, 9γq 9γyL2 `Op|s|3q
If we want a criterion to guarantee that Epγsq is locally minimized at s “ 0, the first important
thing to understand is whether the coefficient on the quadratic term is positive. This coefficient
breaks up into two terms, and the sign of the first one can easily be ascertained after integrating
by parts: since Btxη,∇tηy “ |∇tη|2 ` xη,∇2

tηy and η vanishes at the end points, we have

´xη,∇2
tηyL2 “ x∇tη,∇tηyL2 “: }∇tη}2L2 ě 0,

with strict inequality unless η is parallel along γ, which would mean η ” 0 since ηpaq “ 0. The
other term is

(31.2) ´ xη,Rpη, 9γq 9γyL2 “ ´
ż b
a

Riempηptq, ηptq, 9γptq, 9γptqq dt,

and evidently the question of whether this must be positive or not depends in some way on the
curvature. This question merits a more thorough discussion.

31.2. Sectional curvature. At any given point, the vectors 9γptq and ηptq appearing in the
integrand of (31.2) can be completely arbitrary, so the real question here is whether any meaningful
condition can be formulated that would determine the signs of real numbers of the form

xX,RpX,Y qY y “ RiempX,X, Y, Y q



31. SECTIONAL CURVATURE 269

for arbitrary tangent vectors X,Y P TpM at a point p PM . We’ve seen products like this before:
in the case dimM “ 2, if X and Y are taken to be a basis of TpM , we saw in (27.7) that
RiempX,X, Y, Y q determines the Gaussian curvature by the formula

(31.3) KGppq “ RiempX,X, Y, Y q
|dvolM pX,Y q|2 “ RiempX,X, Y, Y q

xX,XyxY, Y y ´ xX,Y y2 ,
where in the second expression we have used Exercise 11.12 to write

dvolM pX,Y q “
d
det

ˆxX,Xy xX,Y y
xY,Xy xY, Y y

˙
.

The fact that this formula remains equally valid for any choice of the basis X,Y P TpM is both
non-obvious and useful, and the following definition will help us generalize it to higher dimensions.

Definition 31.3. Suppose pM, gq is a Riemannian manifold and P Ă TpM is a 2-dimensional
subspace in the tangent space at some point p PM . The sectional curvature KSpP q P R along
P is defined as follows. Choose a sufficiently small neighborhood 0 P Op Ă TpM so that expp
restricts to a diffeomorphism from Op to a neighborhood of p in M . Then

ΣP :“ expppOp X P q ĂM

is a 2-dimensional submanifold containing p, and we set

KSpP q :“ KGppq,
where KG : ΣP Ñ R is the Gaussian curvature of ΣP with respect to the Riemannian metric
induced by its embedding in pM, gq.

Lemma 31.4. For the embedded surface ΣP ĂM through p PM in Definition 31.3, the second
fundamental form II : TΣP ‘ TΣP Ñ pTΣP qK vanishes at p.

Proof. Given any X,Y P TpΣP and constants a, b P R, the geodesic γptq “ exppptpaX` bY qq
lies in ΣP for t close to 0, thus aX ` bY extends to a parallel vector field on ΣP along this curve,
giving

IIpaX ` bY, aX ` bY q “ p∇aX`bY paX ` bY qqK “ 0

at p “ γp0q. Since a, b P R were arbitrary, this implies IIpX,Xq “ IIpY, Y q “ 0, and IIpX,Y q “ 0

then follows from IIpX ` Y,X ` Y q “ 0 using bilinearity and symmetry. �

Remark 31.5. If you remember the construction of Riemann normal coordinates in §23.1,
you may have noticed that we used a trick from that construction in Lemma 31.4. We could
alternatively have used normal coordinates to deduce the lemma: if we pick any orthonormal vectors
X1, X2 P TpΣP and extend them to an orthonormal basis X1, . . . , Xn of TpM , we obtain a normal
coordinate system px1, . . . , xnq near p in which ΣP looks like the “flat” plane tx3 “ . . . “ xn “ 0u
and X1 and X2 match the coordinate vector fields B1, B2. The vanishing of II at p then follows from
the fact that in normal coordinates centered at p, the Christoffel symbols (which are equivalent to
the covariant derivatives ∇jpBkq) vanish at p.

Proposition 31.6. On a Riemannian manifold pM, gq, the relation

RiempX,X, Y, Y q “ KSpP q ¨AreapX,Y q2 “ KSpP q ¨ `xX,XyxY, Y y ´ xX,Y y2˘
holds for any 2-dimensional subspace P Ă TpM and any X,Y P P , where AreapX,Y q ě 0 de-
notes the area of the parallelogram in TpM spanned by X and Y , as measured with respect to the
metric x , y. In particular, whenever X,Y is a basis of P , this gives rise to the formula

KSpP q “ RiempX,X, Y, Y q
xX,XyxY, Y y ´ xX,Y y2
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for the sectional curvature of pM, gq along P .
Proof. Both sides of the relation vanish if X and Y are linearly dependent: for the left

hand side this follows from the symmetries of the Riemann tensor, and on the right hand side it
follows because the parallelogram spanned by X and Y has no area. We are thus free to assume
X and Y form a basis of P “ TpΣP . Lemma 31.4 and the Gauss equation (Prop. 28.5) now imply
that the Riemann tensor of the submanifold ΣP at p is just the restriction of the Riemann tensor
R P ΓpT 1

3Mq of pM, gq to the subspace TpΣP Ă TpM . The result thus follows from the definition
of sectional curvature and the formula (31.3) for the Gaussian curvature. �

Just as the Gaussian curvature determines the Riemann tensor in dimension 2, one can show
that the Riemann tensor is determined in general by the sectional curvature. The proof of this
requires a more thorough discussion of the symmetries of the Riemann tensor than we have given
so far, thus we will save it for next semester, and merely record it here as a fact:

Proposition 31.7. The Riemann tensor R P ΓpT 1
3Mq at a point p PM is determined by the

values of the sectional curvature KSpP q P R on all possible 2-dimensional subspaces P Ă TpM .
In particular, a Riemannian manifold is locally flat if and only if its sectional curvature vanishes
identically.

Definition 31.8. A Riemannian manifold pM, gq is said to have positive (or negative or
zero) curvature if KSpP q is positive (or negative or zero respectively) for every 2-dimensional
subspace P Ă TpM at every point p PM .

In §24.4, we discussed three emblematic examples of Riemannian n-manifolds that can be
defined for each n ě 2: Euclidean space Rn, the sphere Sn and hyperbolic space Hn. The
following exercises show that these are manifolds of constant sectional curvature, vanishing in the
case of Rn, positive for Sn and negative for Hn.

Exercise 31.9. Suppose pM, gq is a Riemannian manifold, p, q PM are points and P Ă TpM

and Q Ă TqM are 2-dimensional subspaces such that there exists an isometry ϕ P IsompM, gq with
ϕppq “ q and ϕ˚P “ Q. Show that the sectional curvature of pM, gq satisfies KSpP q “ KSpQq.

Exercise 31.10. Show that Hn contains a point p P Hn with a 2-dimensional subspace
P Ă TpH

n for which the surface ΣP Ă Hn appearing in the definition of sectional curvature is
isometric to the hyperbolic plane H2. Deduce from this and Exercise 31.9 that Hn has sectional
curvature KSpP q “ ´1 for all 2-dimensional subspaces P Ă THn.
Hint: What kind of submanifold is the intersection of Hn Ă Rn`1 with the subspace R3 ˆ t0u Ă
Rn`1? Recall from §24.4 that the geodesics in Hn can be written down quite explicitly.

Exercise 31.11. Use a similar trick to Exercise 31.10 to prove that the sphere Sn Ă Rn`1 has
constant sectional curvature `1, and (this one is more obvious) Euclidean space Rn has vanishing
sectionsl curvature.

An important result we will prove next semester states that up to rescaling by positive con-
stants, these are the only geodesically complete and simply connected Riemannian n-manifolds with
constant sectional curvature. This statement is no longer true if one removes the words “simply
connected”: there are many interesting examples of manifolds with constant sectional curvature,
also called Riemannian space forms. But if you know a bit of covering space theory from algebraic
topology, you will recognize that the specific examples Sn, Rn and Hn always remain relevant,
because they appear as universal covers of space forms, implying that every Riemannian space form
is isometric to a quotient of one of these three examples by a discrete group acting by isometries.
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Exercise 31.12. The copy ofH2 embedded isometrically inHn in Exercise 31.10 is an example
of a totally geodesic submanifold: we say that a submanifold N Ă M in a Riemannian manifold
pM, gq is totally geodesic if all geodesics in N (with its induced metric) are also geodesics in
pM, gq. One nice way to recognize totally geodesic submanifolds is via isometries: suppose N ĂM

is a submanifold that is also the fixed-point set N “ Fixpϕq :“ tp PM ˇ̌
ϕppq “ pu of an isometry

ϕ P IsompM, gq. Show that N is then totally geodesic.

Exercise 31.13. Find an example of an isometry on the hyperbolic n-space Hn whose fixed
point set is a submanifold isometric to H2.

31.3. Nonpositive curvature and geodesics. The notion of sectional curvature now pro-
vides a simply-stated condition that is sufficient to guarantee that geodesics are local minima of
the length functional. We recall from §31.1 the notation P :“ C8pra, bs,M ; p, qq and TγP :“ 
η P Γpγ˚TMq ˇ̌ ηpaq “ 0 and ηpbq “ 0

(
.

Lemma 31.14. Suppose pM, gq is a Riemannian manifold with everywhere nonpositive sectional
curvature KS ď 0, and γ P P is a nonconstant geodesic. Then the second variation operator
∇2Epγq : Γpγ˚TMq Ñ Γpγ˚TMq defined in (31.1) satisfies

x∇2Epγqη, ηyL2 ě 0

for all η P Γpγ˚TMq, and the inequality is strict for all nontrivial η P TγP.
Proof. We have already observed that x´∇2

tη, ηyL2 “ }∇tη}2L2 ě 0, with strict inequality
whenever η is a nontrivial section in TγP . Using Proposition 31.6, the other term in x∇2Epγqη, ηyL2

is the integral from a to b of

´Riempηptq, ηptq, 9γptq, 9γptqq “ ´KSpPtq ¨Areapηptq, 9γptqq2 ě 0,

where Pt Ă TγptqM can be taken to be any 2-dimensional subspace containing ηptq and 9γptq. �

Theorem 31.15. Suppose pM, gq is a Riemannian manifold with nonpositive sectional cur-
vature and γ : ra, bs Ñ M is a geodesic connecting γpaq “ p to γpbq “ q. Then for any smooth
1-parameter family of paths γs : ra, bs Ñ M with γspaq “ p, γspbq “ q and γ0 ” γ such that
Bsγs|s“0 is not everywhere tangent to 9γ, there is a number ǫ ą 0 such that:

(1) γ is the only geodesic among the paths γs for s P p´ǫ, ǫq;
(2) For all paths γs with s P p´ǫ, ǫq and s ‰ 0,

ℓpγsq ą ℓpγq.
Proof. The result is already clear if p “ q and γ is a constant path, so let us assume γ is

nonconstant, in which case 9γ is everywhere nonzero since it is a geodesic.
The second statement is easily proved if we replace length with energy, because by the second

variation formula and Lemma 31.14,

d2

ds2
Epγsq

ˇ̌̌̌
s“0

“ x∇2Epγqη, ηyL2 ą 0 for η :“ Bsγs|s“0 ‰ 0.

In order to apply this result to the length functional, we can use the same trick as in the proof of
Corollary 22.11 and reparametrize each of the paths γs : ra, bs Ñ M so that they have constant
speed; here we can restrict s if necessary to a neighborhood of 0 so that 9γsptq can always be assumed
nonzero, and after reparametrizing, its norm is a positive number indepenent of t, namely

| 9γsptq| “: vs “ ℓpγsq
b´ a

.
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The assumption that η “ Bsγs|s“0 is not everywhere tangent to 9γ implies that after this reparametriza-
tion, η is still not everywhere zero. Since γ0 is a geodesic, we know from Corollary 22.11 that
d
ds
ℓpγsq

ˇ̌
s“0

“ 0 and thus Bsvs|s“0 “ 0, so

d2

ds2
ℓpγsq

ˇ̌̌̌
s“0

“ d

ds

ż b
a

Bs
a| 9γsptq|2 dt

ˇ̌̌̌
ˇ
s“0

“ d

ds

ż b
a

1

2
a| 9γsptq|2 Bs| 9γsptq|

2 dt

ˇ̌̌̌
ˇ
s“0

“
ż b
a

B
Bs

ˆ
1

2vs
Bs| 9γsptq|2

˙ˇ̌̌̌
s“0

dt “ 1

2v0

ż b
a

B2s | 9γsptq|2
ˇ̌
s“0

dt

“ 1

v0

d2

ds2
1

2

˜ż b
a

| 9γsptq|2 dt
¸ˇ̌̌̌
ˇ
s“0

“ 1

v0

d2

ds2
Epγsq

ˇ̌̌̌
s“0

ą 0.

This proves that ℓpγsq ą ℓpγq for s ‰ 0 close to 0.
To see that γ is the only geodesic among the family γs for s close to 0, we can differentiate the

L2-inner product of ∇Epγsq “ ∇t 9γs P Γpγs̊ TMq with ηs :“ Bsγs P Γpγs̊ TMq at s “ 0, using the
fact that ∇Epγq “ 0:

d

ds
x∇Epγsq, ηsyL2

ˇ̌̌̌
s“0

“ x∇2Epγqη, ηyL2 ` x∇Epγq,∇sηs|s“0yL2 “ x∇2Epγqη, ηyL2 ą 0.

It follows that x∇Epγsq, ηsy ‰ 0 for sufficiently small |s| ‰ 0, implying that ∇Epγsq itself cannot
be 0, so γs is not a geodesic. �

These results give a small hint of the larger story of geodesics on manifolds with nonpositive
curvature. The general pattern is that nonpositive curvature implies uniqueness phenomena that
clearly do not hold in simple examples with positive curvature, such as the sphere. Here is another
example, which we will prove next semester as a consequence of the Hopf-Rinow and Cartan-
Hadamard theorems:

Theorem. Suppose pM, gq is a connected and geodesically complete Riemannian manifold with
nonpositive sectional curvature, and p, q P M are two points. Then every homotopy class (with
fixed end points) of paths from p to q contains exactly one geodesic segment, up to parametrization.

The intuition here, which you will find reasonable if you compare what you know about the 2-
sphere and the hyperbolic plane, is that positive curvature typically causes two geodesics emerging
from the same point to come back together at a later time, whereas negative curvature tries always
to force them further apart. On a simply connected manifold, the latter guarantees that they never
meet again, producing an absolutely unique shortest path between p and q. On surfaces, a slightly
weaker version of the uniqueness statement in this theorem can be derived from the Gauss-Bonnet
formula:

Exercise 31.16. Assume pΣ, gq is a Riemannian 2-manifold with KG ď 0.
(a) Show that pΣ, gq does not admit any periodic geodesic (i.e. a geodesic γ : RÑ Σ satisfying

γpt ` T q “ γptq for all t P R and some fixed T ą 0) whose image bounds an embedded
disk.

(b) Given a pair of distinct points p, q P Σ and a pair of geodesic segments γ0, γ1 : r0, 1s Ñ Σ

with γ0p0q “ γ1p0q “ p and γ0p1q “ γ1p1q “ q, show that there does not exist any smooth
family of paths tγs : r0, 1s Ñ ΣusPr0,1s from p to q, matching the given geodesics for
s “ 0, 1, such that the map r0, 1s ˆ p0, 1q Ñ Σ : ps, tq ÞÑ γsptq is an embedding.

(c) Find an example of a periodic geodesic on a surface with nonpositive Gaussian curvature.
(Note that by part (a), it had better not form the boundary of an embedded disk.)

(d) Show that the phenomenon ruled out by part (b) can actually happen on S2.
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31.4. Addendum: Gauss and sectional curvature with indefinite metrics. I have thus
far completely excluded metrics of indefinite signature in this lecture, and also in the discussion
of Gaussian curvature in §27.3. For sectional curvature on a general pseudo-Riemannian manifold
pM, gq, the standard procedure is to take the formula in Proposition 31.6 as a definition, namely

(31.4) KSpP q “ RiempX,X, Y, Y q
xX,XyxY, Y y ´ xX,Y y2 ,

assuming X,Y to be any basis of the 2-dimensional subspace P Ă TpM . There are two very large
caveats here: first, the determinant in the denominator is nonzero if and only if the restriction of
the metric g to the subspace P Ă TpM is nondegenerate, a condition that came for free when g
was positive, but in the indefinite case it imposes a restriction on the set of subspaces P Ă TpM

along which KS can be defined. This should not be surprising however, as it is another symptom
of the fact that arbitrary submanifolds are not always pseudo-Riemannian submanifolds, and if
we want to interpret KSpP q as the Gaussian curvature at p of a submanifold ΣP Ă M tangent
to P , we certainly want g to be nondegenerate on that submanifold. The second caveat is that it
is not obvious at this stage why the right hand side of (31.4) should be independent of the choice
of basis X,Y P P . If g|P is positive, then ΣP ĂM is a Riemannian submanifold and we can again
recognize (31.4) as a formula for the Gaussian curvature of ΣP , which proves independence of the
choices. If g|P is nondegenerate but not positive, then a similar argument will work, but we must
first discuss how to define KG on a surface with an indefinite metric.

For a pseudo-Riemannian surface pΣ, gq, g is either positive or negative or has signature p1, 1q.
The negative case is essentially the same as the positive case: it means simply that pΣ,´gq is a
Riemannian manifold, and since the Levi-Cività connections and volume forms with respect to g
and ´g are the same, their Riemann tensors and Gaussian curvatures are also the same.

The more interesting case is where pΣ, gq is a Lorentzian 2-manifold, with signature p1, 1q. The
formula RpX,Y qZ “ ´KG dvolpX,Y qJZ in the Riemannian case was based on the fact that at
each point p P Σ, the space of antisymmetric bilinear forms on TpΣ is 1-dimensional, and so is the
space of antisymmetric linear maps TpΣÑ TpΣ, for which we chose the 90-degree counterclockwise
fiberwise rotation J : TΣÑ TΣ as a canonical basis at each point. If we instead have an indefinite
metric x , y on TΣ, then antisymmetry of a map TpΣ Ñ TpΣ with respect to this metric means
something qualitatively different, and we will have to choose a new generator J : TΣ Ñ TΣ.
In the Riemannian case, our generator was characterized by the property that for any unit vector
X P TpΣ, pX, JXq forms a positively-oriented orthonormal basis. This turns out to be a reasonable
condition to generalize.

Lemma 31.17. Assume V is an oriented 2-dimensional vector space with a nondegenerate
symmetric bilinear form x , y of signature p1, 1q. Then there exists a unique linear map J : V Ñ V

with the property that for every positively-oriented basis pv, wq of V that is orthonormal with respect
to x , y,77

Jv “ w and Jw “ v.

Moreover, J is antisymmetric with respect to x , y, and also satisfies J2 “ 1 and xJv, Jwy “
´xv, wy for all v, w P V .

Proof. Choosing a positively-oriented orthonormal basis of V allows us to assume without loss
of generality that V “ R2 with the standard Minkowski inner product xv, wy “ vT ηw determined

by the matrix η :“
ˆ
1 0

0 ´1
˙
. The standard basis is then positively oriented and orthonormal, so

77Note that when we talk about an orthonormal basis pv, wq of V with respect to an indefinite inner product
of signature p1, 1q, the order matters: our convention is that xv, vy “ 1 and xw,wy “ ´1.
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if a transformation J : R2 Ñ R2 with the stated properties exists, then it is clearly unique: it is
given by the matrix

(31.5) J0 :“
ˆ
0 1

1 0

˙
,

which reflects R2 orthogonally across the diagonal subspace tpx, xqu Ă R2. To see that this does
the trick, observe that every positively-oriented orthonormal basis of pR2, x , yq is of the form pv, wq
with

v “
ˆ
x

y

˙
, w “

ˆ
y

x

˙
such that x2 ´ y2 “ 1,

so J :“ J0 does indeed send v ÞÑ w and w ÞÑ v. This proves that J : V Ñ V is defined
independently of the choice of positively-oriented orthonormal basis on V . The relations J2 “
1 and xJv, Jwy “ ´xv, wy are now quick computations, and antisymmetry follows: xv, Jwy “
´xJv, J2wy “ ´xJv, wy. �

Remark 31.18. The fact that the reflection J : V Ñ V in Lemma 31.17 is represented by the
same matrix in any positive orthonormal basis reveals that the subspaces ℓ˘ Ă V spanned by the
vectors represented by p1,˘1q in coordinates do not actually depend on the chosen coordinates.
Their invariant description is as follows: ℓ` Y ℓ´ is the set of all light-like vectors v P V , i.e. those
which satisfy xv, vy “ 0. One can use the orientation on V to distinguish between ℓ` and ℓ´, and
then define J as the reflection along ℓ´ about ℓ`.

Remark 31.19. On R2 with the Minkowski inner product, the group of orientation-preserving
isometries is the 1-dimensional abelian group

SOp1, 1q :“ Op1, 1q X SLp2,Rq “
#
˘eθJ0 “ ˘

ˆ
cosh θ sinh θ

sinh θ cosh θ

˙ ˇ̌̌̌
ˇ θ P R

+
Ă GLp2,Rq,

where J0 is the matrix defined in (31.5). From this perspective, J0 can be regarded as a canonical
generator of the Lie algebra sop1, 1q, and the fact that SOp1, 1q is abelian is what makes it possible
to define J : V Ñ V in Lemma 31.17 via this matrix without it depending on the choice of
positively-oriented orthonormal basis.

By Lemma 31.17, we can define on our oriented Lorentzian surface pΣ, gq a canonical antisym-
metric bundle map

J : TΣÑ TΣ

such that whenever pX1, X2q is a positively-oriented orthonormal basis of some tangent space TpΣ,

X2 “ JX1 and X1 “ JX2.

Every antisymmetric bundle map TΣÑ TΣ is then of the form fJ for some function f : ΣÑ R,
so the symmetries of the Riemann tensor imply

(31.6) RpX,Y qZ “ ´KG dvolpX,Y qJZ
for a uniquely determined function KG : ΣÑ R, which will be known henceforth as the Gaussian
curvature of pΣ, gq. We can compute KG from the Riemann tensor in much the same way as in
the Riemannian case: since J is antisymmetric, one checks by plugging in a positively-oriented
orthonormal basis that

dvolpX,Y q “ xX, JY y
for all X,Y P TpΣ, thus

RiempX,X, Y, Y q “ xX,RpX,Y qY y “ ´KGppq ¨
ˇ̌
dvolpX,Y q2 ˇ̌2



31. SECTIONAL CURVATURE 275

and if X and Y are chosen to be linearly independent, we can write

(31.7) KGppq “ ´RiempX,X, Y, Y q
|dvolpX,Y q|2 .

If you look at (27.7), you’ll notice that this formula has an extra minus sign compared with the
Riemannian case, but this is more sensible than you might think. Recall from Exercise 18.30 how
the canonical volume form is computed in the indefinite case: when x , y has signature p1, 1q, the
symmetric matrix

g :“
ˆxX,Xy xX,Y y
xY,Xy xY, Y y

˙
has one positive and one negative eigenvalue, so its determinant is negative, implying

dvolpX,Y q “a´ detg “a´xX,XyxY, Y y ` xX,Y y2.
The extra minus sign turns (31.7) into

(31.8) KGppq “ RiempX,X, Y, Y q
xX,XyxY, Y y ´ xX,Y y2 ,

a formula that is equally valid in the Riemannian and Lorentzian cases. In local coordinates, (27.8)
now generalizes in the form

KG “ R1122

g11g22 ´ pg12q2 .
With this definition of KG in place, our original definition of the sectional curvature KSpP q

also makes sense in pseudo-Riemannian manifolds: it is the Gaussian curvature at p of a particular
2-dimensional pseudo-Riemannian submanifold ΣP Ă M tangent to P at p, and (31.4) gives a
correct formula for computing it, due to (31.8).

In order for KG to be truly useful, we’d like to be able to generalize the results of §27.3 and
have a convenient way of computing it for surfaces embedded as pseudo-Riemannian submanifolds
in R3. In order for Σ Ă R3 to have signature p1, 1q, we need to assume pR3, gq has signature either
p2, 1q or p1, 2q, so let’s take the metric to be plus or minus the Minkowski metric,

g :“ ˘gM , gM “ ´dx2 ` dy2 ` dz2.

If we take the plus sign in this definition, then pR3, gq has signature p2, 1q, and g is thus positive on
the normal bundle TΣK Ă TR3|Σ of any pseudo-Riemannian surface Σ Ă R3 with signature p1, 1q.
Taking the minus sign makes the signature of pR3, gq into p1, 2q, so g is then negative on TΣK. A
unit normal vector field ν P ΓpTΣKq can thus be said to satisfy

xν, νy “ ˘1,
so that it takes values in the connected hyperboloid

H2
L :“  

X P R3
ˇ̌ xX,Xy “ ˘1( “ tgM pX,Xq “ 1u “  

y2 ` z2 ´ x2 “ 1
( Ă R3,

defining a Gauss map
ν : ΣÑ H2

L,

whose derivative at any point p P Σ again defines a linear self-map of TpΣ:

Tpν : TpΣÑ TνppqH2
L “ νppqK “ TpΣ.

Proposition 31.20. For a 2-dimensional pseudo-Riemannian submanifold Σ in pR3,˘gM q,
the Gaussian curvature KG : ΣÑ R is related to the Gauss map ν : ΣÑ R by

KGppq “ ˘ detpTpνq.
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Proof. The arguments of §28.1 apply equally well to this situation up to and including
Equation 28.3. The rest of the proof requires modification, because while ∇νppq : TpΣ Ñ TpΣ is
self-adjoint with respect to the bundle metric x , y on TΣ, that does not generally imply that it is
diagonalizable if the metric is indefinite. The main danger here is that there could be a light-like
eigenspace, which is its own orthogonal complement and thus does not imply the existence of any
complementary eigenspace. (If you try writing down simple examples of symmetric operators on
Minkowski R2, you will find that this really can happen.)

As luck would have it, the orthonormal basis of eigenvectors we used for proving Theorem 27.17
in §28.1 was convenient, but not truly necessary. We could have argued more generally as follows.
Choose any positively-oriented orthonormal basis pX1, X2q of TpΣ; recall that in the Lorentzian
case, this means

(31.9) xX1, X1y “ 1, xX2, X2y “ ´1, xX1, X2y “ 0 and dvolpX1, X2q “ 1,

and the defining property of the reflection J : TΣÑ TΣ then implies

(31.10) X2 “ JX1, and X1 “ JX2.

In this basis, the transformation ∇νppq : TpΣ Ñ TpΣ is represented by a matrix
ˆ
a b

c d

˙
, so

applying the Gauss equation as in §28.1 gives

xV, pRpX1, X2qZy “ xIIpV,X1q, IIpX2, Zqy ´ xIIpV,X2q, IIpX1, Zqy
“ @xV,∇νppqX1y νppq, xZ,∇νppqX2y νppqD´ @xV,∇νppqX2y νppq, xZ,∇νppqX1y νppqD
“ ˘pxV,∇νppqX1yxZ,∇νppqX2y ´ xV,∇νppqX2yxZ,∇νppqX1yq
“ ˘ pxV, aX1 ` cX2yxZ, bX1 ` dX2y ´ xV, bX1 ` dX2yxZ, aX1 ` cX2yq
“ xV,˘pxZ, bX1 ` dX2ypaX1 ` cX2q ´ xZ, aX1 ` cX2ypbX1 ` dX2qqy ,

implying pRpX1, X2qZ “ ˘xZ, bX1 ` dX2ypaX1 ` cX2q ¯ xZ, aX1 ` cX2ypbX1 ` dX2q
“ ˘pad´ bcq pxZ,X2yX1 ´ xZ,X1yX2q .

To simplify the last expression in parentheses, recall that J preserves x , y with an extra sign, so
using (31.9) and (31.10),

xZ,X2yX1 ´ xZ,X1yX2 “ ´xJZ,X1yX1 ` xJZ,X2yX2 “ ´JZ,
and our computation thus becomespRpX1, X2qZ “ ¯ detp∇νppqqJZ “ ¯ detp∇νppqq dvolpX1, X2qJZ “ ´KG dvolpX1, X2qJZ.

�

Example 31.21. The hyperboloid H2
L “ ty2 ` z2 ´ x2 “ 1u has the identity map H2

L Ñ H2
L

as its Gauss map, so it has KG ” 1 with the metric gM , and KG ” ´1 if the metric is ´gM .

Exercise 31.22. In pn`1q-dimensional Minkowski space pRn`1, gM q with coordinates pτ, x1, . . . , xnq
and the metric gM :“ ´dτ2 ` pdx1q2 ` . . .` pdxnq2, the connected n-dimensional hyperboloid

Hn
L :“  

X P Rn`1
ˇ̌ xX,Xy “ 1

( “  pτ,xq P Rˆ Rn
ˇ̌ |x|2 ´ τ2 “ 1

(
is a Lorentzian submanifold, i.e. its signature is pn´ 1, 1q.
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(a) Show that for p P Hn
L and v P TpHn

L “ pK Ă Rn`1, the following curves γ : R Ñ Rn`1

are all examples of geodesics in HN
L :

γptq “
$’&’%
pcosh tqp` psinh tqv if xv,vy “ ´1,
p` tv if xv,vy “ 0,

pcos tqp` psin tqv if xv,vy “ 1.

Show moreover that every geodesic in Hn
L is a parametrization of one of these curves.

(b) Show that the isometry group of Hn
L is as large as possible (in the sense of Theorem 24.3).

Hint: Use the Lorentz group Opn, 1q.
(c) Find an isometrically embedded copy of H2

L in Hn
L, and deduce via Example 31.21 and

the abundance of isometries that Hn
L has constant sectional curvature 1.

Remark 31.23. If we instead regard the hyperboloid Hn
L in Exercise 31.22 as a submanifold

of signature p1, n´ 1q in pRn`1,´gMq, then its constant sectional curvature becomes ´1.
We can now adapt Theorem 31.15 to the study of time-like geodesics in Lorentzian manifolds.

Here it is necessary to make a choice as to whether “Lorentzian” means the signature is pn´ 1, 1q
or p1, n ´ 1q; I have used the latter convention in Remarks 22.12 and 23.8, and will thus stick
with it here, even though the other convention seems to be slightly more popular in the literature
on mathematical relativity. In a manifold pM, gq of signature p1, n ´ 1q, we say a tangent vector
X P TM is time-like if xX,Xy is positive and space-like if it is negative. If we were instead using
signature pn ´ 1, 1q, we would have to define the terms “time-like” and “space-like” the other way
around; the rule of thumb in order for these terms to be meaningful is that there should always be
exactly one time dimension, though we can consider arbitrarily many spatial dimensions.

The following detail requires slightly more care than in the Riemannian case: if tγs P PusPp´ǫ,ǫq
is an arbitrary smooth family of time-like paths with γ :“ γ0 a geodesic, then for the vector field
η :“ Bsγs|s“0 P Γpγ˚TMq along γ, the integralż b

a

xηptq, ηptqy dt
can no longer be viewed as the square of an L2-norm, and its integrand might be sometimes
positive and sometimes negative. This is where it becomes important to assume there is only
one time dimension, because in this case, reparametrizing to achieve constant speed removes the
uncertainty:

Lemma 31.24. On a pseudo-Riemannian manifold pM, gq, suppose tγs P PusPp´ǫ,ǫq is a smooth
family of paths with fixed end points γspaq “ p, γspbq “ q such that γ :“ γ0 is a geodesic segment
and for each s, the “speed squared” x 9γsptq, 9γsptqy P R is nonzero and independent of t. Then the
vector field η :“ Bsγs|s“0 along γ and its covariant derivatives ∇k

t η P Γpγ˚TMq of arbitrary orders
k ě 0 are everywhere orthogonal to 9γ.

Proof. By assumption Btx 9γsptq, 9γsptqy vanishes for all s and t, thus
0 “ BsBtx 9γsptq, 9γsptqy|s“0 “ BtBsx 9γsptq, 9γsptqy|s“0 “ 2Btx∇sBtγsptq|s“0 , 9γptqy
“ 2Btx∇tηptq, 9γptqy “ 2x∇2

tηptq, 9γptqy,
where in the last line the term involving ∇t 9γptq does not appear since γ is a geodesic. This proves
that ∇2

tη P Γpγ˚TMq is everywhere orthogonal to 9γ. Since x 9γ, 9γy ‰ 0 by assumption, the image of
γ is a pseudo-Riemannian submanifold of pM, gq, and it follows that TγptqM “ R 9γptq ‘ 9γptqK for
each t, so that η P Γpγ˚TMq splits uniquely into a sum

ηptq “ fptq 9γptq ` ηKptq
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with a function f : ra, bs Ñ R and a section ηK P Γpγ˚TMq that is everywhere orthogonal to 9γ.
Since 9γ is parallel along γ, differentiating the relation x 9γ, ηKy ” 0 gives x 9γ,∇tη

Ky ” 0, and applying
the Leibniz rule to f 9γ, we obtain

∇tηptq “ 9fptq 9γptq `∇tη
Kptq

with ∇tη
K also everywhere orthogonal to 9γ. Repeating this same argument one more time gives

∇2
t ηptq “ :fptq 9γptq `∇2

tη
Kptq

with ∇2
tη

K also everywhere orthogonal to 9γ, and since we already know the same holds for ∇2
tη, it

follows that :f ” 0. The function f : ra, bs Ñ R is therefore affine, and since ηpaq “ 0 and ηpbq “ 0,
the condition fpaq “ fpbq “ 0 then implies f ” 0, so η is everywhere orthogonal to 9γ. The same
now follows for all derivatives ∇k

t η by repeatedly differentiating the relation xη, 9γy ” 0. �

Let us now assume we are in the setting of Theorem 31.15, but with the following modifications:
pM, gq has signature p1, n´1q and the geodesic γ : ra, bs ÑM is time-like. The paths in the family
γs : ra, bs Ñ M with γ0 “ γ and η :“ Bsγs|s“0 can then be assumed to be all time-like after
restricting s to a small enough neighborhood of 0, and we are also free to reparametrize them so
that they all have constant speed. Lemma 31.24 then implies xηptq, 9γptqy “ 0 for all t, making η a
section of the orthogonal complement bundle along the image of γ. Since γ satisfies x 9γ, 9γy ą 0 and
the signature of pM, gq is p1, n´ 1q, the restriction of g to this complementary subbundle must be
strictly negative, implying

´x∇2
tη, ηyL2 “ x∇tη,∇tηyL2 ď 0,

with strict inequality unless η vanishes. This is a significant change compared with the proof of
Lemma 31.14, but the second term in x∇2Epγqη, ηyL2 undergoes a similar change: whenever ηptq
is nonzero, the restriction of the metric to the space spanned by X :“ ηptq and Y :“ 9γptq has
signature p1, 1q, making the determinant

det

ˆxX,Xy xX,Y y
xY,Xy xY, Y y

˙
negative, so that this determinant is not AreapX,Y q2, but instead ´AreapX,Y q2 ď 0. Using
(31.4), we thus have

´Riempηptq, ηptq, 9γptq, 9γptqq “ KSpPtq ¨ Areapηptq, 9γptqq2 ď 0,

assuming KS ď 0. The result is that in contrast to Lemma 31.14, the operator ∇2Epγq is now neg-
ative-definite, and Theorem 31.15 becomes the following statement about the proper time (cf. Re-
mark 23.8) of a time-like geodesic:

Theorem 31.25. Suppose pM, gq is a pseudo-Riemannian manifold of signature p1, n´1q with
nonpositive sectional curvature and γ : ra, bs Ñ M is a time-like geodesic connecting γpaq “ p

to γpbq “ q. Then for any smooth 1-parameter family of paths γs : ra, bs Ñ M with γspaq “ p,
γspbq “ q and γ0 ” γ such that Bsγs|s“0 is not everywhere tangent to 9γ, there is a number ǫ ą 0

such that:

(1) γ is the only geodesic among the paths γs for s P p´ǫ, ǫq;
(2) For all paths γs with s P p´ǫ, ǫq and s ‰ 0, the proper time τpγsq satisfies

τpγsq ă τpγq.
�
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Remark 31.26. In the literature, results similar to Theorem 31.25 are often stated with
signature pn ´ 1, 1q instead of p1, n ´ 1q, in which case the definitions of the terms “time-like”
and “space-like” must be interchanged. The argument via Lemma 31.24 above then leads to the
conclusion that x∇tη,∇tηyL2 ě 0, so that the hypothesis necessary for the proof to work becomes

KS ě 0

instead of KS ď 0. To get an idea of why this makes sense, take another look at the 2-dimensional
case of Exercise 31.22. The hyperboloid H2

L has constant positive curvature in pR3, gM q, and since
signature p1, 1q can be interpreted as either pn´ 1, 1q or p1, n´ 1q, we have some freedom here as
to which curves we choose to call time-like vs. space-like. If we view the signature as pn ´ 1, 1q,
then a tangent vector X is considered time-like if xX,Xy ă 0, so the time-like geodesics have
the form γptq “ pcosh tqp ` psinh tqv, and there is indeed only one connecting any given pair of
points, consistent with the conclusions of Theorem 31.25. But if the signature is instead viewed
as p1, n´ 1q, then time-like means xX,Xy ą 0, and the time-like geodesics are all periodic curves
of the form pcos tqp ` psin tqv. Note that we have not changed the metric, so the curvature is
still `1, making this a situation in which Theorem 31.25 simply does not apply, and we can see
this explicitly since the geodesic segments from a point p to itself are clearly not isolated.78 In
order to apply the literal statement of Theorem 31.25 to this example, one should follow the advice
of Remark 31.23 and view it as a submanifold of pR3,´gM q with signature p1, n´ 1q, so that its
curvature becomes ´1, and the time-like geodesics are again the paths γptq “ pcosh tqp`psinh tqv.

I have one final remark about sectional curvature in the indefinite case. On any manifold M ,
the set of all 2-dimensional subspaces P Ă TpM at points p P M can be given the structure of a
smooth manifold,

Gr2pTMq :“  
P Ă TpM

ˇ̌
p PM, dimP “ 2

(
,

known as a Grassmannian. This manifold is compact ifM is, so if pM, gq is a compact Riemannian
manifold, its sectional curvature can be viewed as a smooth function on a compact manifold,

KS : Gr2pTMq Ñ R,

and is therefore necessarily bounded. In the indefinite case, this is no longer true, because KS is
not defined on all of Gr2pTMq, but only on the open subset

Gr2̊ pTM, gq :“  
P P Gr2pTMq ˇ̌ g|P is nondegenerate

(
,

which is always noncompact when dimM ě 3 unless g is positive or negative. It’s not just that
KS can be unbounded in this case: by a theorem of Kulkarni and Nomizu, it must be unbounded,
both above and below, outside of exceptional cases like the hyperboloid Hn

L in Exercise 31.22 for
which KS is constant. More details on this theorem can be founded e.g. in [Bau06].

78Let it be said that this would in any case be an extremely strange spacetime manifold to consider: all time-like
geodesics being periodic means a universe in which time travel is not just possible, but mandatory!





Second semester (Differentialgeometrie II)

Prologue: Some terminology and notation

This is the second semester of a year-long course, but it should be possible to follow it without
having learned everything that was covered in the first semester. Several things that appeared
in the first course will be reviewed in this one, albeit quickly, and sometimes in more general or
abstract settings. It is of course important to be clear on what will not be reviewed: I will assume
in this course that you are familiar with the basic theory of smooth n-dimensional manifolds,
including the notions of vector fields and the Lie bracket, tensors, differential forms, integration
and Stokes’ theorem. Aside from the obvious prerequisites in analysis, linear algebra and basic
topology, all the knowledge that I will assume in the near future is contained in the notes from
the first semester of this course. Later on, when we talk about Hodge theory, some knowledge of
functional analysis will be useful, but it will be possible to take the relevant results as black boxes
without losing the thread.

Let’s make sure we are all clear on the meaning of certain terms and symbols. For smooth
manifolds M and N , we write

C8pM,Nq :“  
f :M Ñ N

ˇ̌
f is smooth

(
,

for the space of smooth maps, and abbreviate the space of real-valued functions on M by

C8pMq :“ C8pM,Rq.
The tangent space to M at a point p P M is denoted by TpM , so the tangent bundle is TM “Ť
pPM TpM . Differentiating a smooth map f :M Ñ N defines its tangent map

Tf : TM Ñ TN, Tpf :“ Tf
ˇ̌
TpM

P HompTpM,TfppqNq for p PM,

which is also sometimes denoted by
f˚ : TM Ñ TN

and called the pushforward operation on tangent vectors. If the target of f :M Ñ V is a vector
space V , then the tangent map can be expressed more succinctly via the differential

df : TM Ñ V, dpf :“ df
ˇ̌
TpM

P HompTpM,V q for p PM.

When V “ R, dpf : TpM Ñ R defines an element of the cotangent space Tp̊M “ HompTpM,Rq,
and the union T ˚M “ Ť

pPM Tp̊M is the cotangent bundle of M .
For integers k, ℓ ě 0, the space of smooth tensor fields of type pk, ℓq, also known as tensors

that are contravariant of rank k and covariant of rank ℓ, is denoted by

ΓpT kℓ Mq :“ tsmooth tensor fields of type pk, ℓq on Mu .
An element S P ΓpT kℓ Mq associates to each point p PM a multilinear map

Sp : Tp̊M ˆ . . .ˆ Tp̊Mlooooooooooomooooooooooon
k

ˆTpM ˆ . . .ˆ TpMloooooooooomoooooooooon
ℓ

Ñ R,
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where by convention one defines Sp in the case k “ ℓ “ 0 to be simply a real number, so that
ΓpT 0

0Mq “ R. Note that for S P ΓpT 1
ℓMq, the canonical isomorphism of TpM with the dual of its

dual space implies that Sp can be identified canonically with a multilinear map

Sp : TpM ˆ . . .ˆ TpMloooooooooomoooooooooon
ℓ

Ñ TpM,

and it is usually more convenient to think of type p1, ℓq tensor fields in this way. In particular, this
identifies ΓpT 1

0Mq with the space of smooth vector fields

XpMq “ ΓpT 0
1Mq “  

X P C8pM,TMq ˇ̌ Xppq P TpM for all p PM(
.

We recall that XpMq also has a natural isomorphism with the space of all derivations on the ring
C8pMq, identifying each vector field X P XpMq with the Lie derivative operator

LX : C8pMq Ñ C8pMq : f ÞÑ LXf :“ dfpXq.
Many books use these two perspectives on vector fields interchangeably and thus write Xf :“
LXf P C8pMq for X P XpMq and f P C8pMq; my personal preference however is to keep the
distinction between vector fields and derivations by always writing LX for the latter. The major
exception is the coordinate vector fields associated to a chart x “ px1, . . . , xnq : U Ñ Rn on
some open subset U ĂM , for which it is standard to use the derivations defined by the resulting
partial derivative operators as notation for vector fields,

Bj :“ B
Bxj P XpUq, j “ 1, . . . , n.

We will typically denote the flow of a vector field X P XpMq over some time t P R by ϕtX , hence

ϕt0Xppq :“ γpt0q where γptq PM satisfies 9γptq “ Xpγptqq and γp0q “ p.

The domain of pt, pq ÞÑ ϕtX ppq is in general an open subset of RˆM containing t0u ˆM , though
various conditions will sometimes imply that it is all of R ˆM , in which case we say that X is a
complete vector field, or that it has a global flow. This is true in particular whenever M is a
closed manifold, i.e. compact and with empty boundary.

Given a diffeomorphism ϕ :M Ñ N , there are natural pushforward maps ϕ˚ and pullback
maps ϕ˚ between the respective spaces of tensor fields,

ϕ˚ : ΓpT kℓ Mq Ñ ΓpT kℓ Nq, ϕ˚ : ΓpT kℓ Nq Ñ ΓpT kℓ Mq,
all of which can be derived in natural ways from the pushforward ϕ˚ : TpM Ñ TϕppqN of tangent
vectors mentioned above, together with its dualization, the pullback of cotangent vectors

ϕ˚ : T ˚ϕppqN Ñ Tp̊M, pϕ˚λqpXq :“ λpϕ˚Xq.
So for example, the pullback ϕ˚X P XpMq of a vector field XpNq is determined by the relation

ϕ˚ppϕ˚Xqppqq “ Xpϕppqq, for p PM,

and the pushforward ϕ˚J P ΓpT 1
1Nq of a type p1, 1q tensor field J P ΓpT 1

1Mq by
pϕ˚Jqϕppqpλ, ϕ˚Xq “ Jppϕ˚λ,Xq, for p PM , X P TpM , λ P T ˚ϕppqN.

If we view Jp instead as a linear map TpM Ñ TpM , the latter relation becomes

pϕ˚Jqϕppqpϕ˚Xq “ ϕ˚pJppXqq, for p PM , X P TpM.

The Lie derivative of a tensor field S P ΓpT kℓ Mq with respect to a vector field X P XpMq is the
tensor field LXS P ΓpT kℓ Mq defined by

LXS :“ d

dt
pϕtXq˚S

ˇ̌̌̌
t“0

.
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Recall that for fully covariant tensor fields S P ΓpT 0
ℓ Nq, pullbacks ϕ˚S P ΓpT 0

ℓMq are well defined
for all smooth maps ϕ :M Ñ N and not just for diffeomorphisms, as the formula

pϕ˚SqppX1, . . . , Xℓq “ Sϕppqpϕ˚X1, . . . , ϕ˚Xℓq, for p PM , X1, . . . , Xℓ P TpM
makes sense without any need to assume ϕ is invertible.

Finally, we denote by
ΩkpMq Ă ΓpT 0

kMq
the space of differential k-forms for each integer k ě 0, i.e. the antisymmetric tensor fields of
type p0, kq.

Wherever appropriate, we will use the Einstein summation convention, meaning that when a
product contains a matching pair of upper and lower indices, then a summation over the possible
values of that index is implied. For example, if Aij denote the entries of an m-by-n matrix and
Bij are the entries of an n-by-p matrix, the standard definition of matrix multiplication can be
written as

pABqik “ AijB
j
k :“

nÿ
j“1

AijB
j
k .

Similarly, a very quick proof of the relation trpABq “ trpBAq takes the form
trpABq “ pABqii “ AijB

j
i “ B

j
iA

i
j “ BijA

j
i “ pBAqii “ trpBAq.

Whenever two indices i, j take values in the same set, we can define the symbols

δij “ δij “ δij :“
#
1 if i “ j,

0 if i ‰ j,

known collectively as the Kronecker delta. So for instance, the statement that Aij and B
i
j are

inverse matrices now becomes
AijB

j
k “ δik.

Note that for the matricesA and B, the notation is designed to keep track of not only the distinction
between upper and lower indices but also the order in which they appear, whereas for the Kronecker
delta the order does not matter.

For a tensor field S P ΓpT kℓ Mq in a local chart x “ px1, . . . , xnq : U Ñ Rn on some open subset
U ĂM , we can use the coordinate vector fields Bj P XpUq and coordinate differentials dxj P Ω1pUq
for j “ 1, . . . , n to define the component functions Si1...ikj1...jℓ : U Ñ R by

Si1...ikj1...jℓ :“ Spdxi1 , . . . , dxik , Bj1 , . . . , Bjℓq,
and thus write S locally as

S “ Si1...ikj1...jℓ Bi1 b . . .b Bik b dxj1 b . . .b dxjℓ , on U .

32. Vector bundles and connections

In this lecture we give a quick review of the essentials on vector bundles and connections, with
emphasis on aspects that will be needed in the next few lectures for proving results in Riemannian
geometry. Some deeper aspects of the subject that were discussed last semester will be glossed
over for now, as we plan to cover them later in the more general context of fiber bundles.

We will consider both real and complex vector bundles, so in order to allow both possibilities
whenever possible, we will use the symbol

F P tR,Cu
to denote either of the two fields R or C. We will generally not specify one or the other unless it is
necessary in the given context. For each integer m ě 0, the vector space Fm will be endowed with
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its standard topology and smooth structure, making it a smooth manifold of dimension m in the
case F “ R, or 2m in the case F “ C.79

32.1. Topological vector bundles. In the topological category, a vector bundle (Vektor-
bündel) π : E Ñ B of rank (Rang) m ě 0 over the field F consists of two topological spaces E,B
related by a continuous surjective map π, such that for each p P B the fiber (Faser)

Ep :“ π´1ppq
is an m-dimensional vector space, and moreover, p has a neighborhood Uα Ă B on which there
exists a local trivialization (lokale Trivialisierung) pUα,Φαq, meaning a homeomorphism

Φα : E|Uα
:“ π´1pUαq Ñ Uα ˆ Fm

that sends Eq for each q P Uα to tqu ˆ Fm as a vector space isomorphism. The topological spaces
B and E are called the base (Basis) and total space (Totalraum) respectively of the bundle. We
call π : E Ñ B a real vector bundle if F “ R and a complex bundle if F “ C, and in either case,
we call it a line bundle (Geradenbündel) if rankpEq “ 1.

A vector bundle isomorphism between two vector bundles E,F Ñ B is a homeomorphism
Ψ : E Ñ F such that for every p P B, Ψ maps Ep to Fp as a vector space isomorphism. We say
that two vector bundles are isomorphic if there exists a bundle isomorphism between them, and
the bundle E Ñ B is called (globally) trivial if it is isomorphic to the product bundle

B ˆ Fm Ñ B : pp, vq ÞÑ p,

also known as the trivial m-plane bundle.
A section (Schnitt) of π : E Ñ B is a continuous map

s : B Ñ E such that π ˝ s “ IdB ,

meaning sppq belongs to the specific fiber Ep for each p P B. The set of all sections forms a vector
space (infinite dimensional unless rankpEq “ 0), which is often denoted by

ΓpEq :“ tsections of π : E Ñ Bu ,
though we will modify the meaning of this symbol in a moment when we discuss smoothness.
Observe that for any subset U Ă B, the restriction (Einschränkung)

E|U :“ π´1pUq πÝÑ U

is also a (real or complex) vector bundle of rank m over the base U , and every section s P ΓpEq
has a restriction s|U P ΓpE|Uq; a section of E|U is also sometimes called a section of E over U .
A local trivialization Φα : E|Uα

Ñ Uα ˆ Fm provides a natural isomorphism of ΓpE|Uα
q with the

space of continuous functions Uα Ñ Fm: namely, we associate to any section s P ΓpEq its local
representative

sα : Uα Ñ Fm, such that Φαpsppqq “ pp, sαppqq for p P Uα.

Equivalently, it is often convenient to describe a local trivialization in terms of a frame (Rahmen)
for E over Uα, meaning a collection of sections e1, . . . , em P ΓpE|Uα

q whose values form a basis of
Ep at every point p P Uα. The natural frame corresponding to the trivialization Φα consists of the
sections that are identified by the bijection ΓpE|Uα

q Ñ C8pUα,Fmq : s ÞÑ sα with the constant
functions whose values are the standard basis vetors e1, . . . , em P Fm, i.e. we set

ebppq :“ Φ´1
α pp, ebq, for b “ 1, . . . ,m.

79This remark about the smooth structure of Fm is the reason why we are not allowing F to be a more general
field such as Q or Zp, as would be allowed for instance in algebraic geometry. It is crucial for our purposes that we
have a standard notion of differentiability for F-valued functions on open subsets of Fm.
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We can then write s P ΓpEq over Uα in the form80

(32.1) sppq “ sbppqebppq
for uniquely-determined component functions

s1, . . . , sm : Uα Ñ F,

which are actually just the individual coordinates of sα “ ps1, . . . , smq. We will sometimes also
use this notation for individual vectors v P Ep in fibers over a single point p P Uα, thus

Φαpvq “ pp, vαq, v “ vbeb, vα “ pv1, . . . , vmq P Fm.

Whenever two local trivializations pUα,Φαq and pUβ ,Φβq have overlapping domains UαXUβ ‰
H, they can be related to each other by uniquely-defined transition functions (Übergangsfunk-
tionen)

gαβ, gβα : Uα X Uβ Ñ GLpm,Fq
such that for p P Uα X Uβ and v P Fm,

Φβ ˝ Φ´1
α pp, vq “ pp, gβαppqvq, Φα ˝ Φ´1

β pp, vq “ pp, gαβppqvq.
These functions are continuous, and the corresponding local representatives of a section s P ΓpEq
are now related to each other on Uα X Uβ by

sβ “ gβαsα, sα “ gαβsβ .

A collection of local trivializations tpUα,ΦαquαPI such that B “ Ť
αPI Uα is sometimes called a

bundle atlas for π : E Ñ B. Here I is an arbitrary set; we call it an “index set” since it is
used only for bookkeeping purposes. Any bundle atlas tpUα,ΦαquαPI determines a set of transition
functions gαβ as described above, one for every pair pα, βq P I ˆ I.

The following exercise shows that the topology on the total space of a vector bundle does not
really need to be specified so long as one has a bundle atlas with continuous transition functions
(cf. Proposition 2.12 from last semester).

Exercise 32.1. Suppose B is a topological space, tEpupPB is a collection of vector spaces
of rank m over F, and E denotes the set defined as the disjoint union of the vector spaces Ep
for all p P B, with π : E Ñ B denoting the projection map that collapses each space Ep to the
corresponding point p. Define the terms local trivialization Φα : π´1pUαq Ñ Uα ˆ Fm, transition
function and bundle atlas to mean the same thing as above, except without assuming that Φα is
continuous (since we have not equipped E with a topology). Show that if tpUα,ΦαquαPI is a bundle
atlas whose transition functions are all continuous, then the set E admits a unique topology for
which π : E Ñ B is a vector bundle and the maps Φα are all homeomorphisms.

Many types of structure can be added to the fibers of a vector bundle by selecting a bundle
atlas whose transition functions take values in a specified subgroup G Ă GLpm,Fq. A list of the
most interesting possibilities was given in Lecture 18 last semester, and we will revisit this subject
from a more abstract perspective when we discuss principal fiber bundles later in this course. For
now, it will suffice to have the following two examples at our disposal:

Example 32.2. An orientation (Orientierung) of a real vector bundle E Ñ B associates
to each point p P B an orientation of the vector space Ep such that these orientations depend
continuously on p. Recall that an orientation of a real finite-dimensional vector space is by definition
an equivalence class of ordered bases (which we call positively oriented) such that two ordered

80The right hand side of (32.1) is our first use this semester of the Einstein summation convention: the symbol
“
řm

b“1
” is implied but not written. We will use this convention routinely from now on without further comment, so

you should always be on the lookout for matching pairs of upper and lower indices.
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bases are considered equivalent whenever one can be deformed to the other through a continuous
family of ordered bases. (Note that this notion does not make sense on complex vector spaces, since
all ordered bases can be deformed to each other in the complex case.) We leave it as an exercise for
the reader to come up with a sensible definition of the words “depend continuously on p”, but the
right notion can be deduced from the following statement: an orientation of E Ñ B determines
a distinguished class of so-called oriented local trivializations, for which the corresponding frames
define positively-oriented bases of the relevant fibers. Any bundle atlas can then be reduced to one
that consists only of oriented frames, and for any bundle atlas with this property, the transition
functions all take values in the subgroup

GL`pm,Rq :“  
A P GLpm,Rq ˇ̌ detpAq ą 0

(
,

i.e. the group of orientation-preserving isomorphisms on Rm. Conversely, any bundle atlas whose
transition functions all take values in GL`pm,Rq determines an orientation of E Ñ B.

Example 32.3. A (positive) bundle metric on E Ñ B associates to each point p P B an
inner product x , y on the vector space Ep such that these inner products depend continuously
on p. By the Gram-Schmidt procedure, any local frame for E over a subset U Ă B can then be
modified so that it gives an orthonormal basis of every fiber Ep for p P U , producing a so-called
orthonormal frame over U . For any bundle atlas consisting only of trivializations corresponding
to orthonormal frames, the transition functions all take values in the orthogonal group Opmq or
(in the complex case) the unitary group Upmq. Conversely, any bundle atlas whose transition
functions have this property determines a bundle metric that looks like the standard inner product
of Fm in any local trivialization belonging to the bundle atlas.

Remark 32.4. More generally, one can consider bundle metrics that are not positive but have
indefinite signature, meaning that instead of requiring xv, vy ą 0 for every nonzero v P Ep, we
require

for all nonzero v P Ep, xv, wy ‰ 0 for some w P Ep.
Symmetric bilinear pairings that satisfy this condition are called nondegenerate, and they are
characterized algebraically via their signature pk, ℓq, where k and ℓ are the maximal dimensions
of subspaces on which the pairing is positive- or negative-definite respectively. Indefinite bundle
metrics of signature p1,m ´ 1q or pm ´ 1, 1q play an essential role in General Relativity, and a
few of the important theorems about Riemannian manifolds are also valid in the indefinite case,
though in this course we will more often restrict our attention to positive bundle metrics.

If the topology of the base B is sufficiently nice (e.g. it must be paracompact), then one can
glue locally-constructed bundle metrics together via continuous partitions of unity to show that
every vector bundle E Ñ B admits a positive bundle metric. This works mainly due to the fact
that the set of all inner products on a vector space is a convex set, making linear interpolation
between different choices possible. It does not work in general for indefinite bundle metrics, and
it also does not work for orientations, which indeed do not always exist. A real vector bundle is
called orientable (orientierbar) if it admits an orientation.

Exercise 32.5. Show that for any bundle atlas tpUα,ΦαquαPI , the associated transition func-
tions satisfy the following relations for any α, β, γ P I:

(1) gαα ” 1;
(2) gαβgβγ ” gαγ on Uα X Uβ X Uγ .

In particular, gαβ “ g´1
βα.

Remark 32.6. One can show that for any open cover tUαuαPI of B together with a collection
of functions tgαβ : Uα X Uβ Ñ GLpm,Fqupα,βqPIˆI satisfying the relations in Exercise 32.5, there
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exists a vector bundle π : E Ñ B with a bundle atlas having these as its transition functions.
The relation gαβgβγ ” gαγ is known as the cocycle condition, and the following digression on
the origin of this terminology is only for readers who know a bit about Čech cohomology (see
e.g. [Wen18, Lecture 46]). Assume for simplicity that F “ R and the overlaps Uα X Uβ are all
connected sets, in which case the determinant of each of the functions gαβ : Uα X Uβ Ñ GLpm,Rq
is everywhere either positive or negative. Associate to each pα, βq P I ˆ I the number σαβ P Z2

defined by

σαβ :“
#
0 if detpgαβq ą 0,

1 if detpgαβq ă 0,

so the cocycle condition implies

(32.2) σαβ ´ σαγ ` σβγ “ 0 P Z2.

This relation can be interpreted literally as saying that the collection of numbers tσαβ P Z2u
determine a 1-dimensional cocycle in the Čech cohomology qH˚pB;Z2q of B with Z2 coefficients.
More precisely, qH˚pB;Z2q can be defined as the direct limit of a family of cohomologies of cochain
complexes qC˚pU;Z2q, each depending on a choice of open cover U “ tUαuαPI for B. For each
integer k ě 0, elements of the kth cochain group qCkpU;Z2q are Z2-valued functions

pα1, . . . , αk`1q ÞÑ fpα1, . . . , αk`1q P Z2,

defined on the set of all ordered tuples pα1, . . . , αk`1q P Ik`1 such that Uα1
X . . . X Uαk`1

‰ H,
and the coboundary operator δ : qCkpU;Z2q Ñ qCk`1pU;Z2q is defined by

pδfqpα0, . . . , αk`1q “
k`1ÿ
j“0

p´1qjfpα0, . . . , pαj , . . . , αk`1q,

where the hat indicates that the corresponding term does not appear. The function pα, βq ÞÑ σαβ

can thus be understood as a 1-cochain σ P qC1pU;Z2q, and (32.2) then says δσ “ 0, i.e. σ is a cocycle.
The cohomology class it represents in qH1pB;Z2q turns out to be an invariant of the vector bundle
π : E Ñ B up to isomorphism, and is called the first Stiefel-Whitney class w1pEq P qH1pB;Z2q;
this is the simplest of the standard characteristic classes for real vector bundles. It vanishes if and
only if the bundle is orientable (see Exercise 32.7 below).

Exercise 32.7. The cocycle σ P qC1pU;Z2q described in Remark 32.6 is a coboundary if and
only if there exists a function I Ñ Z2 : α ÞÑ oα such that σαβ “ oα ´ oβ for every α, β P I with
Uα X Uβ ‰ H. Show that this is true if and only if E Ñ B is orientable.

32.2. Smoothness. If the base of our vector bundle is not just a topological space B but
also a smooth manifold M , then we can speak of smooth vector bundles over M .

Definition 32.8. A smooth structure (glatte Struktur) on a vector bundle π : E ÑM over
a smooth manifoldM is a maximal bundle atlas with the property that all transition functions are
smooth. When equipped with this extra data, E Ñ M is called a smooth vector bundle, and
the trivializations in its chosen bundle atlas are called smooth trivializations.

Since this is a course on differential geometry rather than topology, we will typically omit the
word “smooth” when we talk about vector bundles and trivializations: all vector bundles in this
course will be assumed smooth unless stated otherwise.

In the same manner as Exercise 32.1, the total space E of a smooth vector bundle π : E ÑM

naturally inherits from its smooth local trivializations and the smooth structure ofM the structure
of a smooth manifold, such that the projection π and all smooth trivializations Φα become smooth
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maps. Having a smooth structure allows us also to speak of smooth sections: a section s :M Ñ E

is called smooth if its local representatives sα : Uα Ñ Fm with respect to smooth trivializations
pUα,Φαq are all smooth functions. This definition makes sense due to the formula sβ “ gβαsα that
relates two local representatives on an overlap domain Uα X Uβ : since the transition function gβα
is smooth, sβ is smooth if and only if sα is smooth. One can alternatively appeal to the smooth
structure on the total space E and consider a section s : M Ñ E smooth if it defines a smooth
map between these two smooth manifolds; this is equivalent to the definition in terms of local
representatives. Since we only intend to consider smooth bundles henceforth, we shall modify the
definition of the notation ΓpEq so as to exclude continuous sections that are not smooth: from now
on,

ΓpEq :“ tsmooth sections of π : E ÑMu .
Similarly, we will typically only consider local frames e1, . . . , em that consist only of smooth sec-
tions, which is true if and only if the corresponding local trivialization is smooth.

Remark 32.9. In the smooth context, it is also appropriate to modify the definition of a
vector bundle isomorphism Ψ : E Ñ F and require Ψ to be a diffeomorphism rather than
just a homeomorphism. This detail makes no actual difference to the question of whether two
bundles are isomorphic, i.e. one can show that if two smooth bundles admit a continuous bundle
isomorphism, then they also admit a smooth one. This is not trivial to prove, but it follows from
general results on approximation of continuous maps by smooth ones as in [Hir94], together with
the important fact from algebraic topology that the isomorphism classes of vector bundles of a
given rank over a given spaceM have a natural bijective correspondence with the homotopy types
of maps from M into some classifying space B. One can then appeal to the fact that two smooth
maps M Ñ B are continuously homotopic if and only if they are smoothly homotopic.

There are obvious generalizations of the notions above to allow only finite differentiability: if
M is a manifold of class Ck, one can define a Ck-structure on a vector bundle E ÑM by requiring
all transition functions to be of class Ck, and the notion of a Ck-section of E Ñ M then makes
sense because products of Ck-functions are also Ck-functions. However, if E Ñ M only has a
Ck-structure and k ă 8, then the notion of a Cℓ-section cannot be defined for ℓ ą k, as it will
typically depend on the choice of local trivialization.

Example 32.10. For any smooth n-dimensional manifold M , the tangent bundle TM Ñ M

is naturally a smooth real vector bundle of rank n, whose smooth sections are the smooth vector
fields

ΓpTMq “ XpMq.
For any smooth chart x “ px1, . . . , xnq : U Ñ Rn, the coordinate vector fields B1, . . . , Bn P XpUq “
ΓpTM |Uq define a smooth frame for TM over U and thus a local trivialization. The smoothness of
the resulting transition functions follows easily from the smoothness of the transition maps in the
atlas ofM . More generally, ifM is a manifold of class Ck for some k ě 1, then TM ÑM becomes
a bundle of class Ck´1; one derivative is lost because the transition functions for TM depend on
first derivatives of the transition maps for M .

An analogous notion in complex geometry is worth mentioning in this context. Recall that on
an open subset U Ă Cn, a function f : U Ñ Cm is called holomorphic (holomorph) if its complex
partial derivatives

(32.3)
Bf
Bzj pz

1, . . . , znq “ lim
zÑ0

fpz1, . . . , zj ` z, . . . , znq ´ fpz1, . . . , znq
z

P Cm

exist for all j “ 1, . . . , n at all points pz1, . . . , znq P U , where it should be emphasized that the
parameter z appearing in the limit is complex. As in the standard story of one complex variable,
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one can show that holomorphic functions of several complex variables are always smooth, where
“smooth” in this case means the same thing that it means in real analysis, i.e. we identify Cn

with R2n in order to view f as a function of 2n real variables. Assembling the complex partial
derivatives at a point p “ pz1, . . . , znq P U into a Jacobian matrix produces a differential

Dfppq : Cn Ñ Cm,

which is a complex-linear map, and it is not too hard to show in fact that a smooth function
f : U Ñ Cm is holomorphic if and only if its differential at every point is complex linear. (Note
that for a real-linear map A : Cn Ñ Cm, one requires Apλvq “ λAv for all λ P R, but not necessarily
for λ P CzR.)

With the notion of holomorphic functions understood, one defines an n-dimensional complex
manifold to be a smooth manifold of real dimension 2n, equipped with a maximal atlas of charts
having the form

M
openĄ U

pz1,...,znqÝÑ Cn “ R2n

such that all the transition maps are holomorphic. An atlas with this property is called a holo-
morphic atlas, or equivalently a complex structure (komplexe Struktur) on M . When M is a
complex manifold, one can define the notion of a holomorphic function f :M Ñ V with values
in any complex vector space V ; it means simply that f looks holomorphic when expressed as a
function of n complex variables in any of the charts in its holomorphic atlas. This notion makes
sense due to the fact that compositions of holomorphic functions are always holomorphic.

The most obvious example of a complex manifold is Cn, and the next most obvious is an
arbitrary open subset of Cn. The most popular compact example is the complex projective space,
defined in the following exercise.

Exercise 32.11. The complex projective n-space (komplexer projektiver Raum) is defined
as the set of all complex lines through the origin in Cn`1: more precisely,

CPn “ pCn`1zt0uqL „,
where two nontrivial vectors v, w P Cn`1 are considered equivalent if and only if v “ λw for some
λ P C. It is convenient to denote points in CP

n via so-called homogeneous coordinates, in
which the symbol

rz0 : . . . : zns P CP
n

means the equivalence class containing the vector pz0, . . . , znq P Cn`1zt0u. For j “ 0, . . . , n, define
the open subset Uj :“  rz0 : . . . : zns P CPn

ˇ̌
zj ‰ 0

(
and a map ϕj : Cn Ñ CPn by

ϕjpw1, . . . , wnq :“ rw1 : . . . : wj : 1 : wj`1 : . . . : wns.
(a) Show that for each j “ 0, . . . , n, ϕj is an injective map onto Uj , thus its inverse defines

a chart.
(b) Show that the charts ϕ´1

j : Uj Ñ Cn for j “ 0, . . . , n define a holomorphic atlas on CPn.
(c) Show that CP1 is diffeomorphic to S2.

Definition 32.12. Suppose M is a complex manifold and π : E Ñ M is a complex vector
bundle. A holomorphic structure on π : E Ñ M is a maximal bundle atlas with the property
that all transition functions are holomorphic. With this extra data, π : E Ñ M is called a
holomorphic vector bundle, and the trivializations in its bundle atlas are called holomorphic
trivializations.

Exercise 32.13. Show that for any complex manifold M , the tangent bundle TM Ñ M has
a natural holomorphic structure.
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For a holomorphic bundle E Ñ M , one calls s P ΓpEq a holomorphic section if its local
representatives sα : Uα Ñ Cm in holomorphic trivializations Φα : E|Uα

Ñ Uα ˆ Cm are all
holomorphic functions. This notion makes sense due to the fact that whenever gβα and sα are both
holomorphic functions on Uα X Uβ Ă M , the product sβ “ gβαsα is also holomorphic. Note that
on an arbitrary smooth complex vector bundle over a complex manifold—without a holomorphic
structure—the notion of holomorphic sections is not well defined, because the question of whether
sα is holomorphic will depend on the choice of trivialization Φα.

Exercise 32.14. Show that on any holomorphic vector bundle π : E Ñ M , the total space
E inherits a natural complex structure such that the projection π and the holomorphic local
trivializations Φα : E|Uα

Ñ Uα ˆCm are all holomorphic maps. Moreover, a section s :M Ñ E is
holomorphic if and only if it defines a holomorphic map between complex manifolds.

Remark 32.15. One serious qualitative difference between smooth and holomorphic vector
bundles is the following. On a smooth vector bundle E ÑM , the space ΓpEq of smooth sections is
always very large, and in fact any smooth section defined in coordinates near a given point p can be
extended globally to a smooth section M Ñ E just by multiplying it by a smooth bump function
supported near p and extending it to the rest of M as 0. For holomorphic sections this trick does
not work, because compactly-supported bump functions are never holomorphic, and this is one
symptom of the fact that in general, one cannot expect nontrivial globally-defined holomorphic
sections to exist. But holomorphic sections do always exist locally, i.e. every point p P M has an
open neighborhood U ĂM such that the restriction E|U Ñ U is a holomorphic vector bundle with
an abundance of holomorphic sections. For this reason, complex geometry makes extensive use
of sheaf theory in order to extract interesting global information from nontrivial data of a purely
local nature.

Holomorphic vector bundles play a large role in complex geometry, just as smooth vector
bundles do in the geometry of smooth manifolds. We will focus for most of this course on smooth
manifolds without complex structures, but we may come back to this subject near the end of the
semester.

I want to mention one more definition that is in the same spirit as the last two. One way
of characterizing holomorphicity for functions on a domain U Ă Cn with complex coordinates
zj “ xj ` iyj for j “ 1, . . . , n is via the differential operators

(32.4)
B
Bzj :“ 1

2

ˆ B
Bxj ´ i

B
Byj

˙
,

B
Bz̄j :“ 1

2

ˆ B
Bxj ` i

B
Byj

˙
,

which are obtained via a formal application of the chain rule if one pretends that f : U Ñ Cn

is a function of 2n “independent” variables z1, . . . , zn, z̄1, . . . , z̄n with Bzj
Bxj “ 1, Bz̄j

Byj “ ´i and so
forth. I put the word “independent” in quotation marks here because it is a fiction: the variables
z̄j “ xj ´ iyj are not independent of zj “ xj ` iyj, but pretending they are leads to a few
useful conventions such as the definition (32.4), which makes many equations and computations in
complex geometry more concise. One can check in particular that f : U Ñ Cm is holomorphic if
and only if

Bf
Bz̄1 “ . . . “ Bf

Bz̄n ” 0,

and if this holds, then the remaining partial derivatives Bf
Bz1 , . . .

Bf
Bzn are precisely the limits that

were written in (32.3). From this perspective, a holomorphic structure is a smooth bundle atlas
for which all the transition functions are annihilated by a certain set of differential operators.
One could now take this further: what happens if we demand for the transition functions to be
annihilated by all first-order partial derivative operators?
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Definition 32.16. A flat structure on a vector bundle π : E Ñ M is a maximal bundle
atlas with the property that all transition functions are locally constant. With this extra data,
π : E Ñ M is called a flat vector bundle, and the trivializations in its bundle atlas are called
flat trivializations.

On a flat vector bundle π : E Ñ M , one can define the notion of a flat section, meaning
a section s : M Ñ E whose local representatives sα : Uα Ñ Fm in arbitrary flat trivializations
Φα : E|Uα

Ñ Uα ˆ Fm are locally constant. If π : E Ñ M is not equipped with a flat structure,
then there is no special significance to the condition of sα : Uα Ñ Fm being constant, because the
same section will generally have another local representative sβ : Uβ Ñ Fm that is not constant.
This issue—the fact that vector bundles in general do not come with any natural definition of
“constant sections”—is the fundamental motivation for the notion of connections.

32.3. Connections. While flat vector bundles come with a natural notion of “locally con-
stant” sections, flat structures do not actually arise very often in nature: one can for instance use
the first Chern class to show that most complex vector bundles do not admit any flat structure at
all. Connections provide a less stringent notion that makes “locally constant” a well-defined notion
without restricting the class of smooth bundles that we consider.

The definition of a connection comes in several equivalent variants: we surveyed all of them in
Lectures 19 and 20 last semester, and will do so again in the more general setting of fiber bundles
later this semester. For now, the following variant will be the most useful:

Definition 32.17. A connection (Zusammenhang) on the vector bundle π : E Ñ M is a
real-bilinear operator

XpMq ˆ ΓpEq Ñ ΓpEq : pX, sq ÞÑ ∇Xs

satisfying the following two properties for all X P XpMq and s P ΓpEq:
(1) (C8-linearity) ∇fXs “ f∇Xs for all f P C8pM,Rq;
(2) (Leibniz rule) ∇X pfsq “ dfpXqs` f∇Xs for all f P C8pM,Fq.
Observe that if F “ C, then pX, sq ÞÑ ∇Xs is real linear in X but complex linear in s, as one

sees by taking constant complex-valued functions in the Leibniz rule. By C8-linearity, the value
of ∇Xs P ΓpEq at a single point p PM depends linearly on the value of X at p but not otherwise
on the vector field X P XpMq, thus it is sensible to write

∇Xppqs :“ p∇Xsqppq P Ep
and interpret this as the directional derivative of s at p P M in the direction Xppq P TpM .
Directional derivatives defined in this way via a connection are called covariant derivatives
(kovariante Ableitungen).

Connections on a bundle E Ñ M are not unique, but for any two connections ∇,∇1 on the
same bundle, the difference ApX, sq :“ ∇1

Xs ´ ∇Xs is C8-linear in both X and s, thus for each
p PM there is a bilinear map Ap : TpM ˆEp Ñ Ep satisfying

∇1
Xs “ ∇Xs`AppX, sppqq

for all s P ΓpEq and X P TpM . The set of connections is thus an affine space over the space of
all bilinear bundle maps TM ‘ E Ñ E (see the next lecture for the notions of direct sum and
bundle maps); in particular, it is a convex set. One can use this fact to piece local constructions
of connections together via a partition of unity and thus show that every vector bundle admits a
connection, a fact that we will prove in much more general terms when we discuss principal bundles.
One sees a special case of the relation between two different connections whenever one writes down
a connection in local coordinates. Recall that any local trivialization Φ : E|U Ñ U ˆ Fm defines a
bijection between ΓpE|Uq and C8pU ,Fmq, thus it also determines a so-called trivial connection
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∇0 on E|U whose action on sections is just the usual directional derivative of Fm-valued functions.
Now, if U Ă M is an open subset admitting both a chart x “ px1, . . . , xnq : U Ñ Rn and a frame
e1, . . . , em P ΓpE|Uq for E, then any connection ∇ can be described over U via its Christoffel
symbols

Γaib : U Ñ F, a, b P t1, . . . ,mu, i P t1, . . . , nu,
defined as the components of the covariant derivative of eb in the ith coordinate direction,

Γaib :“ p∇iebqa, i.e. ∇ieb “ Γaibea,

where we abbreviate
∇i :“ ∇Bi .

Applying the Leibniz rule to an arbitrary section s “ saea over U now gives the formula

(32.5) p∇isqa “ Bisa ` Γaibs
b,

in which the first term on the right hand side is a coordinate representation for the trivial connec-
tion ∇0, and the Christoffel symbols describe the bilinear bundle map ∇´∇0.

33. Affine connections and geodesics

We have a few more things to recall about connections on general vector bundles before spe-
cializing to the case of a tangent bundle, so that we can talk about geodesics and venture into
Riemannian geometry.

33.1. The pullback connection. For any continuous map f : N Ñ M , a vector bundle
E ÑM determines a vector bundle over N called the pullback or induced bundle

f˚E Ñ N,

which has fibers pf˚Eqp :“ Efppq for p P N . Sections of f˚E Ñ N are maps s that send points
p P N to vectors sppq P Efppq, and these are also often called sections of E along f . For example,
if s P ΓpEq is any section of E, then the composition s ˝ f is a section of f˚E, though in general
sections of f˚E may take more general forms than this. Any frame e1, . . . , em for E Ñ M over
an open subset U Ă M gives rise to a frame for f˚E over f´1pUq Ă N consisting of the sections
e1 ˝ f, . . . , em ˝ f , and in this way any bundle atlas tpUα,ΦαquαPI for E Ñ M with transition
functions gβα : Uα X Uβ Ñ GLpm,Fq gives rise to a bundle atlas for f˚E Ñ N whose transition
functions are

gβα ˝ f : f´1pUαq X f´1pUβq Ñ GLpm,Fq.
If f is smooth, it follows that any smooth structure on E ÑM induces a natural smooth structure
on f˚E Ñ N .

Continuing under the assumption that f : N Ñ M is a smooth map, any connection ∇ on
E Ñ M now induces a natural connection on f˚E Ñ N , called the pullback connection, via
the condition that for any s P ΓpEq, p P N and X P TpM ,

(33.1) ∇X ps ˝ fq :“ ∇f˚Xs P Efppq “ pf˚Eqp.
Exercise 33.1. If you haven’t seen pullback connections before, convince yourself that a

connection on f˚E satisfying (33.1) does indeed exist and is unique.
Hint: Uniqueness is easy since any section of f˚E can be written locally in terms of a frame of the
form e1 ˝ f, . . . , em ˝ f for some frame e1, . . . , em on E. You need to check that the resulting local
definition of the pullback connection does not depend on the choice of frame.
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Given a frame e1, . . . , em for E near fppq and charts x “ px1, . . . , xkq for N near p and
y “ py1, . . . , ynq for M near fppq, let us write

y ˝ f “ pf1, . . . , fnq
on a neighborhood of p. The relation (33.1) then determines the covariant derivatives of ej ˝ f
for each j “ 1, . . . ,m, and the Christoffel symbols pΓaib for the pullback connection in the chosen
coordinates are thus related to the Christoffel symbols Γajb of the connection on E ÑM by

pΓaibppq “ ´
∇ B

Bxi ppqpeb ˝ fq
¯a “ ´

∇ Bf
Bxi ppqeb

¯a “ ˆBf j
Bxi ppq∇ B

Byj pfppqqeb
˙a

“ ΓajbpfppqqBf
j

Bxi ppq.
The local formula for the covariant derivative of a section s P Γpf˚Eq along f using the pullback
connection is therefore

(33.2) p∇isqa “ Bisa ` pΓajb ˝ fq pBif jqsb.
Given a connection ∇ on π : E Ñ M and a smooth map f : N Ñ M , a section s P Γpf˚Eq

along f is called parallel if ∇s ” 0. While parallel sections cannot generally be expected to exist,
even locally, there is an important exception: if N is an interval I Ă R and I ÑM : t ÞÑ γptq is a
smooth path, then the equation ∇ts :“ ∇ BBt

s ” 0 for a section s P Γpγ˚Eq along the path becomes
a first-order linear ODE with smooth coefficients, and thus has unique solutions determined linearly
by an initial value. If 0 P I, then we shall write

P tγ : Eγp0q Ñ Eγptq, t P I
for the unique smooth family of vector space isomorphisms such that t ÞÑ P tγpvq is a parallel
section along γ for each v P Eγp0q, and we call these the parallel transport (Parallelverschiebung)
isomorphisms along γ. For an arbitrary section sptq P Eγptq, the Leibniz rule now gives another
formula for the covariant derivative of s with respect to t at t “ 0: it is the ordinary derivative
after parallel transporting sptq along γ so that its values lie in a single fiber,

(33.3) ∇tsp0q “ d

dt
pP tγq´1psptqq

ˇ̌̌̌
t“0

P Eγp0q.

33.2. Algebraic constructions. To conclude our quick survey on connections, recall that
various algebraic operations one can perform on vector spaces give rise to similarly natural oper-
ations on vector bundles, and for each of there are also natural notions of induced connections.
In case you have doubts about any of the objects described below having natural smooth vector
bundle structures, I recommend thinking about how you might use a choice of local frames on the
given bundles E and/or F to derive the most natural choice of frame on the constructed bundle.
A similar trick using parallel transport and the formula (33.3) leads to the most natural choice of
a connection on each. (For more detailed discussions of these bundles, see §17.4 and §21.3 from
the first semester.)

33.2.1. Duals. Any bundle E ÑM has a dual bundle (Dualbündel)

E˚ ÑM

whose fiber over a point p PM is the dual space Ep̊ “ HompEp,Fq of the corresponding fiber of E.
Given a connection on E, the induced connection on E˚ is uniquely determined by the Leibniz
rule

LX pλpηqq “ p∇Xλqpηq ` λp∇Xηq for all X P XpMq, η P ΓpEq and λ P ΓpE˚q,
where the pairing λpηq is understood as the smooth scalar-valued functionM Ñ F : p ÞÑ λppq pηppqq.
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Exercise 33.2. Suppose px1, . . . , xnq and e1, . . . , em are a chart for M and a frame for E
repsectively, both defined over an open subset U ĂM , and let e1˚, . . . , em˚ denote the dual frame
for E˚ over U , defined by the condition

ea˚pebq ” δab .

Writing sections λ P ΓpE˚q on U in the form λ “ λae
a˚ in terms of component functions λa : U Ñ F,

show that the Christoffel symbols Γaib of a chosen connection on E give rise to the local formulas

p∇ie
b˚qa “ ´Γbia, and thus p∇iλqa “ Biλa ´ Γbiaλb

for the induced connection on E˚.

33.2.2. Direct sums. For any two bundles E,F ÑM , there is a direct sum (direkte Summe)
bundle

E ‘ F ÑM

whose fiber over a point p P M is the Cartesian product (or equivalently direct sum) of vector
spaces Ep ˆ Fp. Given connections on E and F , the induced connection on E ‘ F is described
very simply via the formula

∇Xpη, ξq “ p∇Xη,∇Xξq for all X P XpMq, η P ΓpEq and ξ P ΓpF q,
where we use the obvious identification of ΓpE ‘ F q with ΓpEq ˆ ΓpF q.

33.2.3. Tensor products. For any two bundles E,F Ñ M , there is a tensor product (Ten-
sorprodukt) bundle

E b F ÑM

whose fiber over a point p PM is the tensor product of vector spaces Ep b Fp. Given connections
on E and F , the induced connection on E b F is uniquely determined by the Leibniz rule

∇X pη b ξq “ ∇Xη b ξ ` η b∇Xξ for all X P XpMq, η P ΓpEq and ξ P ΓpF q,
where we denote pη b ξqppq :“ ηppq b ξppq P Ep b Fp. This definition determines the covariant
derivatives of arbitrary sections of E b F since locally all of them are linear combinations of
products of the form η b ξ. By induction, any finite collection of vector bundles over M has a
tensor product that inherits a natural connection from any choice of connections on its factors. An
important special case is

Ekℓ :“ Ebk b pE˚qbℓ :“ E b . . .bEloooooomoooooon
k

bE˚ b . . .bE˚loooooooomoooooooon
ℓ

for integers k, ℓ ě 0, whose fiber over a point p PM has a natural identification with the space of
multilinear maps

Ep̊ ˆ . . .ˆEp̊loooooooomoooooooon
k

ˆEp ˆ . . .ˆEplooooooomooooooon
ℓ

Ñ F,

and we adopt the convention that pEpqkℓ :“ F for k “ ℓ “ 0, so E0
0 is the trivial line bundle overM .

When E is the tangent bundle TM , we prefer to write

T kℓM :“ pTMqkℓ ,
so that sections in ΓpT kℓ Mq are tensor fields of type pk, ℓq. Any connection on E induces a connec-
tion first on E˚ via §33.2.1 and then on Ekℓ via the tensor product construction, so in particular,
a connection on TM ÑM gives rise to a natural covariant derivative operator on tensor fields

∇ : ΓpT kℓ Mq Ñ ΓpT kℓ`1Mq,
where ∇S P ΓpT kℓ`1Mq is defined for S P ΓpT kℓ Mq by

∇Spλ1, . . . , λk, X0, . . . , Xℓq :“ p∇X0
Sqpλ1, . . . , λk, X1, . . . , Xℓq.
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Exercise 33.3. Assume a connection on E Ñ M has been chosen and Ekℓ Ñ M is equipped
with the induced connection.

(a) Show that the connections on E and E˚ determine the connection on Ekℓ via the Leibniz
rule

LX
`
Spλ1, . . . , λk,η1, . . . , ηℓq˘ “ p∇XSqpλ1, . . . , λk, η1, . . . , ηℓq

` Sp∇Xλ
1, . . . , λk, η1, . . . , ηℓq ` . . .` Spλ1, . . . ,∇Xλ

k, η1, . . . , ηℓq
` Spλ1, . . . , λk,∇Xη1, . . . , ηℓq ` . . .` Spλ1, . . . , λk, η1, . . . ,∇Xηℓq

for S P ΓpEkℓ q, λ1, . . . , λk P ΓpE˚q, η1, . . . , ηℓ P ΓpEq and X P XpMq.
Hint: It suffices (why?) to consider sections of the form S “ ξ1b . . .b ξkbα1b . . .bαℓ P
ΓpEkℓ q for ξ1, . . . , ξk P ΓpEq and α1, . . . , αℓ P ΓpE˚q.

(b) In the case k “ 1, there is a canonical identification of sections of E1
ℓ with multilin-

ear bundle maps E‘ℓ Ñ E; show that from this perspective, the connection on E1
ℓ is

determined by the connection on E via the Leibniz rule

∇XpSpη1, . . . , ηℓqq “ p∇XSqpη1, . . . , ηℓq ` Sp∇Xη1, . . . , ηℓq ` . . .` Spη1, . . . ,∇Xηℓq
for S P ΓpE1

ℓ q, η1, . . . , ηℓ P ΓpEq and X P XpMq.
Exercise 33.4. Fix a chart px1, . . . , xnq and frame e1, . . . , em over a subset U Ă M as in

Exercise 33.2, let Γaib denote the correpsonding Christoffel symbols for a chosen connection on E,
e1˚, . . . , em˚ denote the dual frame for E˚ determined by e1, . . . , em, and write sections S P ΓpEkℓ q
over U in terms of their components Sa1...akb1...bℓ : U Ñ F as

S “ Sa1...akb1...bℓ ea1 b . . .b eak b eb1˚ b . . .b ebℓ˚ .

Show that the induced connection on Ekℓ is then given locally by the formula

p∇iSqa1...akb1...bℓ “ BiSa1...akb1...bℓ ` Γa1ic S
ca2...ak

b1...bℓ
` . . .` Γakic S

a1...ak´1c

b1...bℓ

´ Γcib1S
a1...ak

cb2...bℓ
´ . . .´ ΓcibℓS

a1...ak
b1...bℓ´1c

.

33.2.4. Bundle maps. For any two bundles E,F ÑM , the bundle of linear maps

HompE,F q ÑM

has fiber HompEp, Fpq :“  
A : Ep Ñ Fp

ˇ̌
A linear

(
for a point p PM , and is canonically isomorphic

to E˚ b F . The special case E “ F comes up often and has its own notation: it gives us the
endomorphism bundle

EndpEq :“ HompE,Eq ÑM.

The connection that HompE,F q – E˚ b F inherits from any choice of connections on E and F
via §33.2.1 and §33.2.3 can also be described via the Leibniz rule

∇X pAηq “ p∇XAqη `Ap∇Xηq for all η P ΓpEq, A P ΓpHompE,F qq and X P XpMq.
Sections of HompE,F q are known as smooth linear bundle maps E Ñ F ; we will call them
bundle maps for short when the rest is understood from context.

The notation Homp¨, ¨q allows us also to regard connections ∇ on E ÑM as linear operators

∇ : ΓpEq Ñ ΓpHompTM,Eqq, p∇ηqpXq :“ ∇Xη

that satisfy the Leibniz rule ∇pfηq “ dfp¨qη ` f ∇η for all f P C8pM,Fq and η P ΓpEq. From this
perspective, the C8-linearity condition in Definition 32.17 is redundant, as it is implied by the
assumption that ∇s is a section of HompTM,Eq.
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33.2.5. Subbundles and quotients. A subset F Ă E of a vector bundle π : E Ñ B is called
a subbundle (Unterbündel) if F admits the structure of a vector bundle over B such that the
inclusion F ãÑ E is a linear bundle map. This means in particular that the fibers of F are linear
subspaces of the fibers of E. There is then also a quotient bundle (Quotientenbündel)

E{F Ñ B,

whose fiber at p P B is the quotient vector space Ep{Fp, and the quotient projections Ep Ñ Ep{Fp
define a smooth fiberwise-surjective linear bundle map

E Ñ E{F : v ÞÑ rvs.
Any connection ∇ on E then descends to a connection on E{F by defining

∇X rηs :“ r∇Xηs for all η P ΓpEq.
It is not true in general that a connection on E naturally determines a connection on every
subbundle F Ă E, as covariant derivatives of sections of F using a connection on E take values
in E, but not necessarily in F . There are some important exceptions, however, such as the exterior
(äußere) tensor bundles

ΛkE Ă Ek0 “ Ebk, ΛkE˚ Ă E0
k “ pE˚qbk,

whose fibers ΛkEp and ΛkEp̊ over a point p P M can be regarded as the space of antisymmetric
k-fold multilinear forms on Ep̊ or Ep respectively. The most familiar example is ΛkT ˚M , whose
sections are the smooth differential k-forms

ΓpΛkT ˚Mq “ ΩkpMq.
The next exercise shows that any choice of connection on E also determines natural connections
on ΛkE and ΛkE˚ for each k ě 0.

Exercise 33.5. Given a connection on E ÑM and an integer k ě 2, show that if ω P ΓpE0
kq

is antisymmetric, then so is ∇Xω P ΓpE0
kq for every X P XpMq.

33.3. Affine connections. A connection on the tangent bundle TM Ñ M of a smooth
manifoldM is often called an affine connection (affiner Zusammenhang), or simply a connection
on M . In a local chart px1, . . . , xnq on some subset U Ă M , it is natural to use B1, . . . , Bn as a
frame for TM over U and write the covariant derivative in terms of the corresponding Christoffel
symbols

Γijk “ p∇jpBkqqi , i, j, k P t1, . . . , nu.
We must now recall two important facts about connections in this special case.

The first is that any affine connection ∇ on M determines a distinguished class of smooth
paths γ : I ÑM ; here I Ă R is an interval. We call γ a geodesic (Geodäte or Geodätische Linie)
if its velocity vector 9γptq :“ d

dt
γptq P TγptqM is parallel along γ, meaning γ satisfies the geodesic

equation
∇t 9γptq “ 0.

If γ takes values in the domain of a chart x “ px1, . . . , xnq, we can write x ˝ γ “ pγ1, . . . , γnq and
apply the formula (33.2) to write the geodesic equation in the form

:γiptq ` Γijkpγptqq 9γjptq 9γkptq “ 0,

or more succintly,

(33.4) :γi ` Γijk 9γj 9γk “ 0.
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As a second-order ODE, this equation has a unique solution with any given initial position γp0q P
M and velocity 9γp0q P Tγp0qM , and we use this fact to define the so-called exponential map
(Exponentialabbildung)

TM Ą O
expÝÑM,

namely by setting

exppXq “ expppXq :“ γp1q, for p PM , X P TpM,

where γ is the unique geodesic satisfying γp0q “ p and 9γp0q “ X . The domain

O Ă TM

of exp is an open subset consisting of all X P TM for which the maximal solution γ to ∇t 9γ “ 0

with 9γp0q “ X has 1 in its domain. It is straightforward to check that for every constant c P R

and geodesic γptq, the path t ÞÑ γpctq is also a geodesic, and as a consequence, the path

γptq :“ exppptXq
is in fact the unique geodesic with γp0q “ p and 9γp0q “ X P TpM . The exponential map is often
used in this manner to write down parametrizations of geodesics.

Exercise 33.6. Given a manifold M with a chart M
openĄ U

px1,...,xnqÝÑ Rn and affine connec-
tion ∇, suppose γ : I Ñ U is a nonconstant geodesic with image in U , write γi :“ xi ˝ γ for
i “ 1, . . . , n and define ρ : I Ñ r0,8q by

ρptq :“ rγ1ptqs2 ` . . .` rγnptqs2.
Prove: there exists an ǫ ą 0 such that every t P I with ρptq ă ǫ satisfies ρ2ptq ą 0. What can you
conclude about the paths of geodesics in small coordinate balls about a point?
Hint: Using the geodesic equation, derive a formula for ρ2ptq involving no second derivatives of
the γi. Then prove and make use of the estimate

ˇ̌̌ř
i,j 9γi 9γj

ˇ̌̌
ď n2

ř
kp 9γkq2.

The second fact to recall about affine connections is that since ∇ defines a bilinear map
XpMq ˆ ΓpTMq Ñ ΓpTMq : pX,Y q ÞÑ ∇XY and ΓpTMq “ XpMq, there is a symmetry condition
that can be imposed. It is most easily stated in terms of the torsion tensor

T P ΓpT 1
2Mq, T pX,Y q :“ ∇XY ´∇YX ´ rX,Y s P XpMq for X,Y P XpMq,

where one checks easily that the right hand side is C8-linear with respect to both X and Y and
thus defines a smooth bilinear bundle map T : TM ‘ TM Ñ TM , i.e. a tensor field of type p1, 2q.
In local coordinates, one derives from (32.5) a formula for the components of the torsion tensor in
terms of the Christoffel symbols, namely

(33.5) T ijk “ Γijk ´ Γikj .

The connection ∇ is called symmetric (symmetrisch) if its torsion tensor vanishes identically.
The most useful consequence of this condition arises when one considers maps of the form

R2 openĄ V ÑM : ps, tq ÞÑ fps, tq,
in which case the partial derivatives Bsf and Btf define vector fields on M along f , i.e. sections
of the pullback bundle f˚TM . If f takes values in the domain of a chart x “ px1, . . . , xnq and we
write x ˝ f “ pf1, . . . , fnq, then applying (33.2) in this situation gives

p∇sBtfqi “ BsBtf i ` pΓijk ˝ fq Bsf j Btfk.
Combined with (33.5) and the definition of the torsion tensor, this implies

(33.6) ∇sBtf ´∇tBsf “ T pBsf, Btfq,
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and it follows that the relation

(33.7) ∇sBtf “ ∇tBsf
holds for all smooth maps R2 Ą V

fÑM if and only if ∇ is symmetric.
It is straightforward to show (see Exercise 33.7) that any affine connection can be “sym-

metrized” to produce one that is symmetric, thus symmetric connections exist on every manifold.
However, one obtains a much more important variant of this statement when bundle metrics are
incorporated into the picture; see Theorem 33.10 below.

Exercise 33.7. Show that for any affine connection ∇ on a manifold M , there exists a sym-
metric affine connection ∇1 that has the same geodesics as ∇.
Hint: Write ∇1 “ ∇`A for a bundle map A.

33.4. Riemannian metrics. A Riemannian metric (Riemannsche Metrik) on a manifold
M is a positive bundle metric x , y on the tangent bundle TM ÑM . Such a bundle metric defines
a tensor field g P ΓpT 0

2Mq such that

gppX,Y q “ xX,Y y for X,Y P TpM , p PM,

and the pair pM, gq is then called a Riemannian manifold (Riemannsche Mannigfaltigkeit).
If we drop the condition that x , y is positive and allow it to be an indefinite bundle metric
(cf. Remark 32.4), then g is called a pseudo-Riemannianmetric and pM, gq a pseudo-Riemannian
manifold. We will generally refer to both simply as “metrics” when the distinction does not matter
and there is no danger of confusion.

In local coordinates px1, . . . , xnq, we write the components of a metric g P ΓpT 0
2Mq as gij :“

xBi, Bjy, and the symmetry gpX,Y q “ gpY,Xq allows us to write

g “ gij dx
i b dxj “ ÿ

iďj
gij dx

i dxj ,

where in the second expression we are refraining from the Einstein summation convention and
using the symmetrization

dxi dxj :“ 1

2

`
dxi b dxj ` dxj b dxi

˘
.

One example that comes up frequently is the Euclidean metric on Rn, which in the standard
global coordinates px1, . . . , xnq takes the form

gE :“ pdx1q2 ` . . .` pdxnq2.
The nondegeneracy of the pairing x , y on each tangent space implies that it defines bundle

isomorphisms

5 : TM Ñ T ˚M : X ÞÑ X5 :“ xX, ¨y, 7 :“ 5´1 : T ˚M Ñ TM : λ ÞÑ λ7,
often called musical isomorphisms due to the notation. This gives rise to a natural definition
of a bundle metric on T ˚M by

xα, βy :“ xα7, β7y,
and in local coordinates, the resulting pairing of coordinate differentials is often denoted by

gij :“ xdxi, dxjy.
The notational convention for musical isomorphisms in terms of components in local coordinates
is to use the same symbol for the corresponding vectors and 1-forms but raise or lower the index
accordingly, thus

X “ X iBi ô X5 “ Xi dx
i, λ “ λi dx

i ô λ7 “ λiBi.
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The local coordinate formula for the isomorphisms themselves then takes the form

Xi “ gijX
j, λi “ gijλj ,

which shows in particular that the matrices with entries gij and gij are inverse to each other:

gijgjk “ δik.

Definition 33.8. Suppose g “ x , y P ΓpE0
2 q is a smooth bundle metric on a real vector

bundle E Ñ M . A connection ∇ on E Ñ M is called a metric connection if it satisfies any of
the following equivalent conditions:

(1) LXxη, ξy “ x∇Xη, ξy ` xη,∇Xξy for all η, ξ P ΓpEq and X P XpMq;
(2) ∇g ” 0 for the induced connection on E0

2 ÑM ;
(3) The parallel transport maps P tγ : Eγp0q Ñ Eγptq along any path γptq P M satisfy

xP tγpvq, P tγpwqy “ xv, wy for all v, w P Eγp0q.
We also say in this case that ∇ is compatible with the bundle metric g.

Exercise 33.9. Show that the three conditions in Definition 33.8 really are equivalent.

The next result is sometimes called the fundamental theorem of Riemannian geometry :

Theorem 33.10. On any pseudo-Riemannian manifold pM, gq, there exists a unique symmetric
connection that is compatible with g.

The connection provided by Theorem 33.10 is known as the Levi-Cività connection on pM, gq.
A proof of the theorem appeared in Lecture 22 last semester, and we will not repeat it here. That
proof also produced a local coordinate formula for the Christoffel symbols of the Levi-Cività con-
nection in terms of the components of the metric:

(33.8) Γℓij “ 1

2
gkℓ pBigjk ` Bjgik ´ Bkgijq .

We will henceforth always use the Levi-Cività connection when discussing covariant derivatives
of vector or tensor fields on pseudo-Riemannian manifolds. In particular, the connection appearing
in the geodesic equation will be assumed to be the Levi-Cività connection whenever there is a
pseudo-Riemannian metric in the picture.

34. Geodesics in a Riemannian manifold

For most of this lecture, pM, gq is a Riemannian manifold and ∇ is its Levi-Cività connection.
We will occasionally be able to generalize slightly and allow g “ x , y to be an indefinite pseudo-
Riemannian metric, but for the most important results, the assumption that g is positive definite
will be crucial. The main reason is that we want to use g to define distances between points, and
examine the special role that geodesics play in measuring such distances. Note that, by a standard
argument involving partitions of unity, every vector bundle admits a positive bundle metric, and
consequently, every smooth manifold admits a Riemannian metric.

Every connected Riemannian manifold pM, gq can in turn be viewed in a natural way as a
metric space: the idea is to define the length (Länge) of any smooth curve γ : ra, bs ÑM by

(34.1) ℓpγq :“
ż b
a

| 9γptq| dt, where |X | :“axX,Xy for X P TM,

and then define the distance between points p, q PM as

(34.2) distpp, qq :“ inf
γ
ℓpγq,
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where the infimum is taken over all smooth paths γ from p to q. This trick does not work for
indefinite pseudo-Riemannian metrics: if xX,Xy is not always positive for X ‰ 0, then g does not
define a natural notion of distance. The length of a path γ can still be an interesting concept if
restricted to so-called time-like or space-like paths—for which the sign of x 9γ, 9γy is prescribed—but
with the exception of a few remarks, we will not consider that in the present lecture.

34.1. Length-minimizing paths. A smooth path γ : ra, bs ÑM in a Riemannian manifold
pM, gq with end points γpaq “ p and γpbq “ q is called length-minimizing (minimierend) if its
length as defined in (34.1) satisfies

ℓpγq ď ℓppγq
for all other smooth paths pγ : ra1, b1s Ñ M with the same end points pγpa1q “ p and pγpb1q “ q. If
M is connected, one can use the distance function (34.2) to rephrase this condition as

ℓpγq “ distpp, qq.
Two remarks are in order. First, one should not generally expect a length-minimizing path between
two distinct points p, q PM to exist: the function γ ÞÑ ℓpγq on the set of paths connecting them is
certainly bounded from below, but it need not attain a minimum. Second, as parametrized maps,
length-minimizing paths are never truly unique if they exist, since the length functional (34.1) is
parametrization-invariant, i.e. one has ℓpγq “ ℓpγ ˝ ϕq for any diffeomorphism ϕ : ra1, b1s Ñ ra, bs.
It may happen however that all paths other than the reparametrizations of γ have strictly larger
length than γ, in which case we can say that there is a unique length-minimizing path up to
parametrization.

If γ : ra, bs Ñ M is an immersion, then it admits a distinguished class of reparametrizations,
namely those which have constant speed

| 9γ| ” const.

If the constant speed is 1, then one says also that γ is parametrized by arc length (nach
Bogenlänge parametrisiert), because the length of γ along any segment rt0, t1s Ă ra, bs is precisely
t1 ´ t0.

Theorem 34.1. In a Riemannian manifold pM, gq, every length-minimizing path with constant
speed is a geodesic.

Exercise 34.2. Prove Theorem 34.1 via the following standard variational argument. Suppose
γ is length-minimizing with constant speed, and tγs : ra, bs Ñ MusPp´ǫ,ǫq is a smooth family of
paths with fixed end points γspaq “ p and γspbq “ q for all s, such that γ0 “ γ. The assumption
ℓpγq ď ℓpγsq for all s implies d

ds
ℓpγsq

ˇ̌
s“0

“ 0.
(a) Consider the energy (Energie) functional

Epγq :“ 1

2

ż b
a

| 9γptq|2 dt
for smooth paths γ : ra, bs ÑM from p to q. Show that γ satisfies the geodesic equation
if and only if d

ds
Epγsq

ˇ̌
s“0

“ 0 for all possible smooth families tγsu as described above.
(b) Prove that if γ has constant speed and d

ds
ℓpγsq

ˇ̌
s“0

“ 0, then d
ds
Epγsq

ˇ̌
s“0

also vanishes.
Hint: If you get stuck, see §22.4 from last semester’s course.

The argument in Exercise 34.2 also shows conversely that a compact geodesic segment is always
a critical point of the length functional on paths connecting its two end points, though this does
not immediately imply that it is a length-minimizing path. In general, geodesics need not even be
local minima of the length functional, e.g. one can easily think up examples of long geodesic paths
on the unit sphere S2 Ă R3 that are longer than a family of nearby paths. But as we will recall
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in §34.4 below, compact geodesic segments are always guaranteed to be length-minimizing if they
are short enough.

Remark 34.3. One minor irritation about Theorem 34.1 is that at first glance, it only applies
to immersed paths, since only these can be reparametrized to have constant speed. We will see
however in Exercise 34.16 that this is not a loss of generality.

Remark 34.4. Very little in this section admits straightforward adaptations to the case of an
indefinite pseudo-Riemannian metric, though the result of Exercise 34.2(a) does hold in general
for the (not necessarily positive) energy functional Epγq :“ 1

2

şb
a
x 9γptq, 9γptqy dt. If one restricts to

so-called time-like or space-like paths for which x 9γ, 9γy is required to be either positive or negative,
then the length functional ℓpγq can also be defined (possibly after inserting a sign under the square
root), and Exercise 34.2(b) then also holds and applies equally well to length-maximizing paths.
The latter are important in general relativity, where g always has Lorentzian signature p1, n´ 1q
or pn´ 1, 1q; cf. Remark 34.17.

34.2. Injectivity radius. For any affine connection ∇ on M , consider the exponential map

expp : Op ÑM

restricted to a fixed point p PM , where Op Ă TpM is the (necessarily open) largest neighborhood
of 0 P TpM on which expp is defined. As an open subset of the vector space TpM , all tangent
spaces of Op are canonically identified with TpM , and since γptq :“ exppptXq for each X P TpM
defines the unique geodesic with 9γp0q “ X , the derivative of expp at 0 P TpM is then canonically
identified with the identity map,

T0pexppq : T0Op “ TpM
1ÝÑ TpM.

This implies via the inverse function theorem that expp maps any sufficiently small neighborhood
of 0 in TpM diffeomorphically onto a neighborhood of p in M .

If pM, gq is a Riemannian manifold and ∇ the Levi-Cività connection, then the observation
above implies that the following number is always positive:

Definition 34.5. On a Riemannian manifold pM, gq, the injectivity radius (Injektivitätsra-
dius)

injppq P p0,8s
at a point p P M is defined as the supremum of all numbers r ą 0 such that expp is well defined
on Brp0q :“  

X P TpM
ˇ̌ |X | ă r

(
and maps it diffeomorphically onto a neighborhood of p in M .

When 0 ă r ă injppq, the set
expppBrp0qq ĂM,

is then called the geodesic ball of radius r about p. The injectivity radius of pM, gq is
defined as

injpM, gq :“ inf
pPM injppq.

Proposition 34.6. On any Riemannian manifold pM, gq, the function inj : M Ñ p0,8s is
lower semicontinuous.

Proof. For each p P M , let Bpr Ă TpM denote the open ball of radius r about the origin,
using the norm on TpM determined by the Riemannian metric, and let sBpr denote its closure. One
needs to show that for any given p P M and ǫ ą 0, there exists a neighborhood U Ă M of p such
that injpqq ą injppq ´ ǫ for all q P U . Such a neighborhood is provided by the following claim: if
expp is a well-defined embedding on sBpr for some r ą 0, then expq is a well-defined embedding onsBqr for all q sufficiently close to p. Since it is slightly inconvenient to consider a family of maps
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defined on different domains, let us instead consider a family of maps ΦY : sBpr ÑM dependent on
a parameter Y P TpM lying in a small neighborhood of 0, defined by

ΦY :“ expexpppY q ˝ΨY
ˇ̌̌
sBp
r

: sBpr ÑM,

where ΨY : TpM Ñ TexpppY qM denotes the parallel transport isomorphism along the path r0, 1s Ñ
M : t ÞÑ exppptY q. This isomorphism is orthogonal since ∇ is compatible with g, thus it mapssBpr diffeomorphically to sBqr for q :“ expppY q. Clearly the claim is true if the maps ΦY are all
embeddings for Y P TpM sufficiently close to 0, and the latter holds because for smooth maps on
a compact domain, the condition of being an embedding is C1-open; see Exercises 34.7 and 34.8
below. �

Exercise 34.7. Suppose K Ă Rk is a compact set, fj : Uj Ñ Rn is a sequence of C1-smooth
maps defined on open neighborhoods Uj Ă Rk of K, and f : U Ñ Rn is another such map such
that fj and their first partial derivatives all converge uniformly on K to f and its respective first
derivatives. Prove that if f |K : K Ñ Rn is an injective immersion, then the same is true of
fj |K : K Ñ Rn for all j sufficiently large.
Hint: Show that if fjppjq “ fjpqjq for some sequences of distinct points pj, qj P K, then Dfppq :
Rk Ñ Rn must have nontrivial kernel for some p P K. Use the definition of the derivative.

Exercise 34.8. For smooth manifolds M and N , let us say that a sequence of continuously
differentiable maps fj P C1pM,Nq is C1

loc-convergent to a map f P C1pM,Nq if for all charts
pU , xq on M and pV , yq on N , the maps y ˝ fj ˝ x´1 and their first derivatives converge uniformly
to y ˝ fj ˝ x´1 and its respective first derivatives on all compact subsets of their domains. Deduce
from Exercise 34.7 that under this condition, if f is an embedding and M is compact, then fj is
also an embedding for all j sufficiently large.

Corollary 34.9. For any compact Riemannian manifold pM, gq, injpM, gq ą 0. �

Exercise 34.10. Find an example of a noncompact surface Σ Ă R3 such that, if Σ is endowed
with the Riemannian metric g determined by the Euclidean inner product, then all geodesics on
Σ exist for all time, but injpΣ, gq “ 0. Prove it with a picture.

Remark 34.11. We will not use this, but it can be shown in fact that inj :M Ñ p0,8s is also
upper semicontinuous, and thus continuous. In the case where pM, gq is geodesically complete, a
proof of continuity may be found in [Lee18, Prop. 10.37]. Without any completeness assumption,
[Bou, §10.8] carries out another proof (attributed to Stephen McKeown and John Lee).

34.3. Normal coordinates. The notion of Riemann normal coordinates was introduced last
semester in §23.1; here is a quick review. Suppose p is a point in a pseudo-Riemannian manifold
pM, gq, and X1, . . . , Xn P TpM is a choice of orthonormal basis, meaning

xXi, Xjy “ ˘δij ,
where the signs ˘ may vary depending on the signature of g, and in particular they are all positive
if g is positive. The map

(34.3) pt1, . . . , tnq ÞÑ exppptiXiq
then defines a diffeomorphism from some neighborhood of 0 in Rn to a neighborhood of p in M ,
and the coordinates px1, . . . , xnq defined as the inverse of this map are called Riemann normal
coordinates about p. These coordinates identify the point p with the origin in Rn. If the metric
g is positive, then the embedding (34.3) is well-defined on any open ball of radius r ă injppq,
and the domain of the normal coordinate system is then the geodesic ball of radius r about p.
More generally, so-called geodesic normal coordinates about a point p P M can be defined
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in a similar manner on any manifold equipped with an affine connection, after choosing a (not
necessarily orthonormal) basis of TpM .

Exercise 34.12. Assume px1, . . . , xnq are coordinates near p PM defined as the inverse of the
map (34.3) for any choice of affine connection ∇ on M and basis X1, . . . , Xn of TpM .

(a) Show that for any vector field Y P XpMq whose components in the chart px1, . . . , xnq are
constant near p, ∇Y ppqY “ 0.

(b) Deduce via the multilinearity of ∇Bi`Bj pBi ` Bjq that if the connection ∇ is symmetric,
then ∇iBj “ 0 at p for all i, j P t1, . . . , nu. In particular, the Christoffel symbols Γkij in
these coordinates all vanish at p.

It follows from Exercise 34.12 that in Riemann normal coordinates, the components gij :“
xBi, Bjy of the metric satisfy gijppq “ ˘δij and Bkgijppq “ x∇kBi, Bjy ` xBi,∇kBjy|p “ 0, thus if we
write gij as a function of the coordinates x1, . . . , xn in U , we have

(34.4) gijpx1, . . . , xnq “ ˘δij `Op|x|2q.
At this level, one sees no local distinction between any two given Riemannian metrics—they both
look locally the same up to first order. We will see next week that the second-order term in the
Taylor expansion of gij is determined by the curvature of pM, gq, and thus cannot generally be
eliminated by clever choices of coordinates.

34.4. The Gauss lemma. Here is the promised result stating that geodesics on a Riemann-
ian manifold form unique shortest paths between sufficiently nearby points.

Theorem 34.13. For any point p P M in a Riemannian manifold pM, gq and r ă injppq, let
Brppq denote the geodesic ball of radius r about p. Then for every q P Brppq, M contains a unique
(up to parametrization) length-minimizing path from p to q, and it is a geodesic contained in Brppq.

Corollary 34.14. In any Riemann normal coordinate system pU , px1, . . . , xnqq about a point
p in a Riemannian manifold pM, gq, one has

distpp, qq “arx1pqqs2 ` . . .` rxnpqqs2
for every q P U . �

It is obvious from the definition of geodesic balls that for q “ expppXq P Brppq, the only
geodesic segment r0, 1s Ñ M from p to q contained in Brppq is exppptXq. There may in general
be more geodesic segments connecting p to q in M , but they cannot be contained fully in the
neighborhood Brppq. That this particular geodesic is the shortest path from p to q follows via the
Pythagorean theorem from a result known as the Gauss lemma, whose statement and proof we
now recall:

Proposition 34.15 (Gauss lemma). Assume p P M is a point in a Riemannian manifold
pM, gq and γptq “ exppptXq is a nonconstant geodesic based at p, defined for t in some interval
I Ă R. Then for every t P I and every vector Y P TtXpTpMq that is tangent to the sphere of radius
|tX | in TpM , we have

x 9γptq, TtX pexppqpY qy “ 0.

In particular, for every r P p0, injppqq, the image under expp of the sphere of radius r is a subman-
ifold of M orthogonal to every geodesic emerging from p.

Proof. We can assume without loss of generality |X | “ 1. After possibly shrinking the
interval I Ă R a bit, we can then consider a smooth map of the form

f : I ˆ p´ǫ, ǫq ÑM : ps, tq ÞÑ expppsXptqq
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for some small ǫ ą 0 and a smooth path of unit vectors Xptq P TpM such that Xp0q “ X . The
lemma follows from the claim that for any map of this form,

xBsf, Btfy ” 0.

When s “ 0 this is immediate, because fp0, tq “ p for all t and thus Btfp0, tq “ 0. Using the
properties of the Levi-Cività connection and the fact that s ÞÑ fps, tq “ expppsXptqq is a geodesic
for each fixed t, we also have

(34.5) BsxBsf, Btfy “ x∇sBsf, Btfy ` xBsf,∇sBtfy “ xBsf,∇tBsfy.
Next observe that for each fixed t, the geodesic equation implies that xBsf, Bsfy is a constant inde-
pendent of s (i.e. geodesics have constant speed), from which it follows that xBsfps, tq, Bsfps, tqy “
xBsfp0, tq, Bsfp0, tqy “ xXptq, Xptqy “ 1. This proves

0 “ BtxBsf, Bsfy “ 2x∇tBsf, Bsfy,
so that (34.5) now vanishes, thus establishing that xBsfps, tq, Btfps, tqy “ xBsfp0, tq, Btfp0, tqy “ 0

for all ps, tq. �

For a reminder of why the Gauss lemma implies that the distinguished geodesics in Theo-
rem 34.13 or shorter than all other paths between the same points, see the proof of Theorem 23.5
in Lecture 23 from last semester.

Exercise 34.16. Deduce from Theorem 34.13 that in a Riemannian manifold pM, gq, every
length-minimizing path between two distinct points has the same image as one that is embedded.
Hint: If γ : ra, bs ÑM is a path with 9γ “ 0 on some compact subinterval rt0, t1s Ă ra, bs, what can
you say about the shortest path from γpt0 ´ ǫq to γpt1 ` ǫq for ǫ ą 0 small?

Remark 34.17. The Gauss lemma admits a relatively straightforward generalization to indef-
inite pseudo-Riemannian manifolds pM, gq, and if g has Lorentz signature p1, n´ 1q or pn´ 1, 1q,
then the proof of Theorem 34.13 can be adapted to show that sufficiently short time-like geodesics
are always length-maximizing (not minimizing). For details, see Proposition 23.6 and Remark 23.8
from last semester’s course.

34.5. Geodesic convexity. A subset K Ă M in a Riemannian manifold is called geodesi-
cally convex if for every pair of points p, q P K, there exists a unique (up to parametrization)
length-minimizing path in M from p to q, and that path is contained in K. Here is a basic fact
about the local geometry of Riemannian manifolds:

Theorem 34.18. For every point p in a Riemannian manifold pM, gq and every r P p0, injppqq
sufficiently small, the geodesic ball Brppq ĂM of radius r about p is geodesically convex.

Proof. Since the injectivity radius is a lower-semicontinuous function onM , we can find r ą 0

small enough to ensure that injpqq ą 2r for every q P Brppq. Let us also assume r is small enough
so that in Riemann normal coordinates on Brppq, any geodesic passing through Brppq satisfies the
conclusions of Exercise 33.6. For any two points x, q P Brppq, the fact (due to Corollary 34.14) that
both have distance less than r from p implies distpx, qq ă 2r, thus each is contained in a geodesic
ball of radius 2r about the other, implying the existence of a unique length-minimizing geodesic
from x to q. That this geodesic is contained in Brppq then follows from Exercise 33.6. �

Theorem 34.18 is frequently applied in differential topology to show that all smooth manifolds
admit open coverings with a particularly nice property: we say that an open covering tUαuαPI of
M is a good cover if for every finite subset J Ă I such that the intersection

Ş
αPJ Uα is nonempty,
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this intersection is also smoothly contractible.81 Good covers are especially useful for studying the
Čech cohomology of manifolds.

Exercise 34.19. Let us say that a subset K of a Riemannian n-manifold pM, gq is small if for
every pair of points p, q P K, p is contained in a geodesic ball about q of some radius r ă injpqq.
Prove:

(a) The intersection of any two small subsets is also small.
(b) The intersection of any two geodesically convex subsets is also geodesically convex.
(c) Any small geodesically convex open subset is diffeomorphic to an n-dimensional star-

shaped domain, i.e. a set of the form trx P Rn | x P Sn´1, ´fpxq ă r ă fpxqu for some
(not necessarily continuous) function f : Sn´1 Ñ p0,8s.

(d) Every n-dimensional star shaped domain is smoothly contractible.
(e) Every smooth n-manifold admits a good cover.

Remark 34.20. For topological manifolds without a smooth structure, one can reasonably de-
fine the term “good cover” to mean that all the nonempty finite intersections are either contractible
or homeomorphic to open balls. It does not seem to be known, however, whether all topological
manifolds admit coverings with these properties.82

34.6. The Hopf-Rinow theorem. A pseudo-Riemannian manifold pM, gq is called geodesi-
cally complete if all of its geodesics can be defined for all time, which is equivalent to saying
that the domain of the exponential map is all of TM . We proved in Lecture 23 last semester that
this is true on any compact (not pseudo-) Riemannian manifold: this follows essentially from the
fact that geodesics can be derived from the flow of a vector field on the tangent bundle TM , called
the geodesic flow, and this flow preserves the submanifolds tX P TM | xX,Xy “ r2u, which are
compact if the metric is positive and M itself is compact. On the other hand, you already know
examples of Riemannian manifolds that are noncompact but nonetheless geodesically complete,
e.g. Euclidean space. The Hopf-Rinow theorem gives a useful characterization that also applies
in the noncompact case, in addition to providing an existence (though not uniqueness) result for
geodesics connecting two points that are allowed to be arbitrarily far from each other.

Theorem 34.21 (Hopf-Rinow). For a connected Riemannian manifold pM, gq, the following
conditions are equivalent:

i pM, gq is geodesically complete;
ii pM, gq is a complete metric space with the distance function defined by (34.2);
iii For some point p PM , expp is well defined on all of TpM .

Moreover, if any of these conditions hold, then for every pair of points p, q P M , there exists a
length-minimizing geodesic segment γ : r0, 1s ÑM from γp0q “ p to γp1q “ q.

Proof. The implication (ii) ñ (i) holds because if pM, gq is not geodesically complete, then
it contains a geodesic γ : pa, bq Ñ M that cannot be continued to some finite time b P R, and for
any sequence tj P pa, bq with tj Ñ b, γptjq is then a Cauchy sequence in M that does not converge.

The implication (i) ñ (iii) is immediate from the definition of geodesic completeness.
Before proving (iii) ñ (ii), we prove the following version of the existence statement: if M is

connected and expp is well defined on all of TpM , then for every q P M , there exists a geodesic
γ : r0, 1s Ñ M : t ÞÑ exppptXq that ends at γp1q “ q and satisfies ℓpγq “ distpp, qq. To find a
candidate for γ, the idea is to apply Theorem 34.13 and start with a short geodesic from p to some

81Various minor modifications of this definition can also be found in the literature: one could instead require
that the finite intersections are topologically (but maybe not smoothly) contractible, or that they are homeomorphic
or diffeomorphic to open balls.

82See for instance https://mathoverflow.net/questions/165850/good-covers-of-manifolds .

https://mathoverflow.net/questions/165850/good-covers-of-manifolds
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nearby point x, but use the distance between x and q as a means of “aiming” the geodesic so that
its continuation will eventually hit q. Concretely, pick a positive number ǫ ă injppq{2 such that
the geodesic 2ǫ-ball B2ǫppq Ă M about p does not contain q. The boundary of the metric ball of
radius ǫ about p is then the pn´ 1q-dimensional sphere

Sǫppq :“  
expppXq

ˇ̌
X P TpM with |X | “ ǫ

( ĂM,

and since this is compact, the function Sǫppq Ñ p0,8q : x ÞÑ distpx, qq attains a minimum at some
point x P Sǫppq. (Note that x might not be unique—this is why the geodesic we end up with might
also be non-unique.) Any path from p to q must have length at least ǫ as it travels from p to Sǫppq,
and at least distpx, qq as it travels from Sǫppq to q, implying distpp, qq ě ǫ ` distpx, qq. But since
distpp, xq “ ǫ by construction, the triangle inequality turns this into an equality:

distpp, qq “ ǫ` distpx, qq.
We claim now that following the shortest geodesic from p through x far enough will eventually
reach q in the shortest time possible: in other words, the unique geodesic of the form

γptq :“ exppptXq, |X | “ 1

satisfying γpǫq “ x also satisfies γpdistpp, qqq “ q. To see this, let

T :“ sup
 
t P r0, distpp, qqs ˇ̌ distpp, qq “ t` distpγptq, qq( ě ǫ.

Note that whenever t satisfies the relation defining this set, the triangle inequality also implies
distpp, qq ď distpp, γptqq ` distpγptq, qq ď t` distpγptq, qq, thus both inequalities must be equalities
and it follows that distpp, γptqq “ t. Moreover, since the distance function is continuous, the set in
question is closed, implying that T itself satisfies

(34.6) distpp, qq “ T ` distpγpT q, qq and distpp, γpT qq “ T.

We claim that T “ distpp, qq, in which case (34.6) will imply γpdistpp, qqq “ q. Arguing by
contradiction, suppose T ă distpp, qq, and repeat the previous step with p replaced by the point
p1 :“ γpT q ‰ q, i.e. for ǫ1 ą 0 sufficiently small, choose

x1 P Sǫ1pp1q
to minimize the distance from Sǫ1pp1q to q. It follows that

distpp1, x1q “ ǫ1 and distpp1, qq “ ǫ1 ` distpx1, qq,
thus

(34.7) distpp, qq “ T ` distpp1, qq “ T ` ǫ1 ` distpx1, qq.
Here, we can interpret T ` ǫ1 as the length of the piecewise smooth path that follows the geodesic
γ from p to p1 and then follows a possibly different geodesic from p1 to x1. It is easy to see
however that if these two geodesics are actually different, i.e. if their intersection at p1 is not
tangential, then the path from p to x1 can be made strictly shorter: indeed, pick a point p2 along
γ close to p1 and deduce from Theorem 34.13 that the shortest path from p2 to some point on
the geodesic between p1 and x must be a smooth geodesic, not just piecewise smooth. This would
imply distpp, x1q ă T ` ǫ1 and thus contradict the triangle inequality when combined with (34.7):

distpp, qq ď distpp, x1q ` distpx1, qq ă T ` ǫ1 ` distpx1, qq “ distpp, qq.
It follows that the geodesic from p1 to x1 is actually just a continuation of our original geodesic γ,
so x1 “ γpT ` ǫ1q, and (34.7) thus becomes

distpp, qq “ pT ` ǫ1q ` distpγpT ` ǫ1q, qq,



35. THE RIEMANN CURVATURE TENSOR 307

contradicting the definition of T . This establishes the existence of a length-minimizing geodesic
from p to q.

The proof that (iii) ñ (ii) now goes as follows: given a Cauchy sequence qj P M , we can
choose Xj P TpM such that r0, 1s ÑM : t ÞÑ exppptXjq is a length-minimizing geodesic from p to
qj for each j. Since Cauchy sequences are bounded, Xj is now also a bounded sequence and thus
has a subsequence convergent to some X P TpM , implying that the corresponding subsequence of
qj converges to q :“ expppXq. The Cauchy condition now implies that the entire sequence also
converges to q, so pM, gq is a complete metric space. �

Remark 34.22. For an indefinite pseudo-Riemannian manifold pM, gq, the statement of the
Hopf-Rinow theorem does not immediately make sense since g does not naturally define a metric
space structure on M . One might still wonder however whether there is a similar existence result
for geodesics: if pM, gq is geodesically complete and connected, does it follow that any two points
inM can be connected by a geodesic? Remarkably, the answer is no: an explicit counterexample is
furnished by the de Sitter spacetime, a geodesically complete n-dimensional Lorentzian hyperboloid
Hn
L – R ˆ Sn´1 that appeared in Exercise 31.22 at the end of last semester’s notes, and is

connected for n ě 3. For a more detailed discussion, see [Bär, §1.2]. Less naive adaptations of
the Hopf-Rinow theorem to the Lorentzian setting are nonetheless possible under some technical
assumptions, e.g. showing that whenever two points are connected by a smooth time-like path,
they are also connected by a time-like geodesic (see [Sei67,Sán01]).

Exercise 34.23. Show that a Riemannian manifold pM, gq with injpM, gq ą 0must be geodesi-
cally complete.

35. The Riemann curvature tensor

In this lecture we examine various ways of measuring curvature on a Riemannian or pseudo-
Riemannian manifold.

35.1. Definition of the Riemann tensor. Given any vector bundle E Ñ M with a con-
nection ∇, one defines the Riemann curvature tensor (Riemannscher Krümmungstensor) as
the unique smooth multilinear bundle map

R : TM ‘ TM ‘E Ñ E : pX,Y, vq ÞÑ RpX,Y qv
satisfying the relation

RpX,Y qs “ ∇X∇Y s´∇Y∇Xs´∇rX,Y ss
for all X,Y P XpMq and s P ΓpEq. It is straightforward to check that this last expression is
C8-linear with respect to each of its three arguments. In local coordinates, writing Rajkb :“
pRpBj , Bkqebqa, one derives from (32.5) a formula for the Riemann tensor in terms of the Christoffel
symbols,

Rajkb “ BjΓakb ´ BkΓajb ` ΓajcΓ
c
kb ´ ΓakcΓ

c
jb.

The Riemann tensor often arises in calculations involving the following scenario. Given a
vector bundle E ÑM and a smooth map

R2 openĄ V ÑM : ps, tq ÞÑ fps, tq,
we can consider the covariant derivatives with respect to s and t of a section η P Γpf˚Eq along f .
If one temporarily adds the assumption that f is an embedding, then after restricting V to a
sufficiently small neighborhood of one point ps0, t0q P V , there exists an extension of f to a dif-
feomorphism pf : pV Ñ M onto an open neighborhood of fps0, t0q in M , where pV is an open
neighborhood of V ˆ t0u in Rn and pf |Vˆt0u “ f ; in this situation the inverse of pf can be viewed
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as a chart for which the vector fields Bsf and Btf along f are just the restrictions to the subman-
ifold fpVq Ă M of the coordinate vector fields B1 and B2 respectively. One can now also extend
η P Γpf˚Eq to a section pη P ΓpEq that matches η along fpVq, so RpBsf, Btfqη is just RpB1, B2qpη
restricted to the submanifold fpVq Ă M . At any point on fpVq, the definition of the Riemann
tensor then gives

RpBsf, Btfqη “ RpB1, B2qpη “ ∇1∇2pη ´∇2∇1pη “ ∇s∇tη ´∇t∇sη,

where the Lie bracket term does not appear since coordinate vector fields commute with each other.
The result is the useful relation

(35.1) ∇s∇tη ´∇t∇sη “ RpBsf, Btfqη,
which is reminiscent of the relation (33.6) that holds for the covariant derivatives of the vector fields
Bsf, Btf P Γpf˚TMq. Just like that relation, we claim that (35.1) also holds for any smooth map
f : V Ñ M and section η P Γpf˚Eq along f , without needing to assume that f is an embedding.
There are at least two possible ways to see this: if dimM ě 2, then one can always perturb f near
any given point ps0, t0q P V to make it an embedding near that point, in which case our proof above
for (35.1) works, and if the relation is valid under such perturbations, then continuity implies that
it must also have been valid beforehand. (The perturbation trick is impossible when dimM “ 1,
but for this case, see Exercise 35.1 below.) Alternatively, one can verify (35.1) directly by writing
down both sides in local coordinates, as we did for (33.6).

Exercise 35.1. Show that for any connection ∇ on a vector bundle E Ñ M whose base M
is 1-dimensional, the Riemann tensor vanishes and Equation (35.1) is also valid, meaning in this
case that ∇s∇tη “ ∇t∇sη for all sections η P Γpf˚Eq along a map V ÑM : ps, tq ÞÑ fps, tq.
Hint: Near any given point in V , you can write η in the form ηps, tq “ ηips, tqeipfps, tqq for a set
of scalar-valued functions ηips, tq and parallel sections ei of E. (This is not possible for arbitrary
connections on arbitrary vector bundles, but is always possible when dimM “ 1.)

Theorems 35.2 and 35.3 below are the most important results about the Riemann tensor,
though they will not yet play a serious role until later in this course. A connection ∇ on E ÑM

is called flat (flach) if for every p PM and v P Ep, there exists a neighborhood U ĂM of p and a
parallel section s P ΓpE|Uq such that sppq “ v. In this case one can always form local frames out
of parallel sections, so flatness is equivalent to saying that ∇ looks like the trivial connection in
some local trivialization defined near any given point. Similarly, a pseudo-Riemannian metric g on
M is called locally flat (lokal flach) if every point p PM has a neighborhood U ĂM admitting a
chart px1, . . . , xnq : U Ñ Rn such that g “ ˘pdx1q2 ˘ . . .˘ pdxnq2 on U , where as usual the signs
in front of the individual terms may vary depending on the signature of g, but are positive if g is
positive.

Theorem 35.2. A connection on a vector bundle is flat if and only if its Riemann tensor
vanishes identically. �

Theorem 35.3. A pseudo-Riemannian metric g on a manifold M is locally flat if and only if
its Levi-Cività connection is flat. �

A proof of Theorem 35.2 appeared last semester in §26.3, where it followed mainly from two
ingredients: (1) a calculation identifying the Riemann tensor with a different object defined in terms
of Lie brackets of horizontal lifts, called the curvature 2-form, and (2) the Frobenius integrability
theorem, which implies in the situation at hand that the horizontal subbundle HE Ă TE defined
by the connection is integrable if and only if the curvature 2-form vanishes. We will give a more
general version of this proof when we discuss fiber bundles later in the course. Given this result,
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Theorem 35.3 is a relatively easy corollary, and we will also prove a more general version of it
involving Riemannian manifolds of constant sectional curvature later in this semester.

Exercise 35.4. Show that any flat connection on a vector bundle E ÑM determines a natural
flat structure (see Definition 32.16) on E Ñ M , for which the flat sections on open subsets of M
are precisely the parallel sections. Conversely, show that any flat vector bundle over a smooth
manifold carries a natural flat connection with the same property.

35.2. Symmetries of the Riemann tensor. On the tangent bundle of an n-manifold M ,
the Riemann tensor is determined in local coordinates by n4 components, which is a large number
even in the simplest nontrivial case, i.e. when n “ 2. In order to make the information carried
by these components seem more manageable, it will be useful to be aware of certain nontrivial
relations that they satisfy. One of them is immediate from the definition: for every connection on
every vector bundle E ÑM we have

(35.2) RpX,Y qv `RpY,Xqv “ 0 for all X,Y P TpM , v P Ep, p PM,

which translates into local coordinates as the relation

(35.3) Raijb `Rajib “ 0.

Further relations hold if we impose extra conditions on the connection, conditions that will all be
satisfied in the case of the Levi-Cività connection on a pseudo-Riemannian manifold.

Proposition 35.5. If the connection ∇ is compatible with a bundle metric x , y on E ÑM ,
then for every X,Y P TpM at a point p PM , the linear map RpX,Y q : Ep Ñ Ep is antisymmetric
with respect to x , y, i.e. we have

(35.4) xRpX,Y qv, wy ` xv,RpX,Y qwy “ 0 for all X,Y P TpM , v, w P Ep, p PM.

Proof. For any two vector fields X,Y P XpMq, the differential operator D :“ LXLY ´
LY LX ´ LrX,Y s on C8pM,Fq is zero by the definition of the Lie bracket. Given two sections
v, w P ΓpEq, apply this operator to the function xv, wy : M Ñ F, use the compatibility of ∇ with
the metric, plug in the definition of the Riemann tensor and cancel all terms that can be cancelled:
the result is (35.4). �

For an affine connection ∇ onM , the Riemann tensor is a multilinear map TM‘TM‘TM Ñ
TM and can thus be regarded as a type p1, 3q tensor field,

R P ΓpT 1
3Mq.

Proposition 35.6 (First Bianchi identity). For any symmetric affine connection ∇ on M ,
the Riemann tensor satisfies

RpX,Y qZ `RpY, ZqX `RpZ,XqY “ 0 for all X,Y, Z P XpMq.
Proof. We calculate, using the definitions of R and the symmetry relation ∇XY ´∇YX “

rX,Y s:
RpX,Y qZ `RpY, ZqX `RpZ,XqY “ ∇X∇Y Z ´∇Y∇XZ `∇Y∇ZX ´∇Z∇YX

`∇Z∇XY ´∇X∇ZY ´∇rX,Y sZ ´∇rY,ZsX ´∇rZ,XsY
“ ∇X p∇Y Z ´∇ZY q `∇Y p∇ZX ´∇XZq `∇Z p∇XY ´∇YXq

´∇rX,Y sZ ´∇rY,ZsX ´∇rZ,XsY
“ ∇X rY, Zs ´∇rY,ZsX `∇Y rZ,Xs ´∇rZ,XsY `∇Z rX,Y s ´∇rX,Y sZ
“ rX, rY, Zss ` rY, rZ,Xss ` rZ, rX,Y ss.

This last term vanishes by the Jacobi identity for the Lie bracket. �
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Assume now that pM, gq is a pseudo-Riemannian manifold and∇ is the Levi-Cività connection.
Writing x , y :“ g for the bundle metric on TM , it is often convenient in this setting to replace
R P ΓpT 1

3Mq with its fully covariant version

Riem P ΓpT 0
4Mq, RiempV,X, Y, Zq :“ xV,RpX,Y qZy,

which carries all the same information as R since nondegeneracy of the bundle metric means that
TM Ñ T ˚M : V ÞÑ V5 :“ xV, ¨y is a bundle isomorphism. In local coordinates px1, . . . , xnq, it is
conventional to write the components of Riem with the same symbol as the Riemann tensor but
four lower indices, thus

Rijkℓ :“ RiempBi, Bj, Bk, Bℓq “ xBi, RpBj, BkqBℓy “ xBi, RmjkℓBmy “ gimR
m
jkℓ.

The next result assembles all the symmetry properties ofR proved above into a statement about Riem.

Theorem 35.7. On any pseudo-Riemannian manifold pM, gq, the covariant Riemann tensor
Riem P ΓpT 0

4Mq satisfies the following relations for all p PM and V,X, Y, Z P TpM :
i RiempV,X, Y, Zq `RiempV, Y,X,Zq “ 0

ii RiempV,X, Y, Zq `RiempZ,X, Y, V q “ 0

iii RiempV,X, Y, Zq `RiempV, Y, Z,Xq `RiempV, Z,X, Y q “ 0 (first Bianchi identity)
iv RiempV,X, Y, Zq “ RiempY, Z, V,Xq (interchange symmetry)

Proof. Properties (i), (ii) and (iii) follow from (35.2) and Propositions 35.5 and 35.6 respec-
tively. We claim that these three properties imply property (iv). The main idea of the proof is,
well—cleverness:

RiempV,X, Y, Zq (ii)“ ´RiempZ,X, Y, V q (iii)“ RiempZ, Y, V,Xq `RiempZ, V,X, Y q
(ii)“ ´RiempX,Y, V, Zq ´RiempY, V,X,Zq
(iii)“ RiempX,V, Z, Y q `RiempX,Z, Y, V q `RiempY,X,Z, V q `RiempY, Z, V,Xq
(i)`(ii)“ 2RiempY, Z, V,Xq ´RiempV, Z, Y,Xq ´RiempV,X,Z, Y q
(iii)“ 2RiempY, Z, V,Xq `RiempV, Y,X,Zq (i)“ 2RiempY, Z, V,Xq ´RiempV,X, Y, Zq.

�

In local coordinates, relations (i), (ii) and (iv) in Theorem 35.7 become

Rijkℓ “ ´Rℓjki “ ´Rikjℓ “ Rkℓij

and the Bianchi identity (iii) becomes

Rijkℓ `Rikℓj `Riℓjk “ 0.

Exercise 35.8. Show that in the case dimM “ 2, the relations (iii) and (iv) in Theorem 35.7
are redundant, i.e. they follow from (i) and (ii).
Hint: Use (i) and (ii) to show that in local coordinates, all components Rijkℓ are determined
by R1122.

35.3. Gaussian curvature. Exercise 35.8 shows that in local coordinates, the Riemann ten-
sor on a pseudo-Riemannian 2-manifold is determined by one of its components, the real-valued
function R1122. We shall now derive a global coordinate-invariant version of this statement, under
the simplifying assumption that the metric g is positive. (This assumption is not essential; for a
discussion of the case with signature p1, 1q, see §31.4 at the end of last semester’s notes.)
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Assuming the bundle metric g “ x , y is positive, let
EndantipTMq Ă EndpTMq

denote the subbundle of EndpTMq “ HompTM, TMq “ T 1
1M whose fiber over p PM is the space

of linear maps TpM Ñ TpM that are antisymmetric with respect to the inner product x , y. By
Theorem 35.7(i) and (ii), R can be viewed as a section of the vector bundle

Λ2T ˚M b EndantipTMq,
whose fibers are canonically isomorphic to the spaces of antisymmetric bilinear maps TpMˆTpM Ñ
EndantipTpMq. In the case dimM “ 2, both Λ2T ˚M and EndantipTMq are line bundles, and so
therefore is Λ2T ˚M b EndantipTMq. In fact, if we assume additionally that M is oriented, then
both even come with canonical frames determined by the orientation and the metric. For Λ2T ˚M ,
this is the Riemannian volume form

dvol P Ω2pMq,
uniquely determined by the condition that dvolpX,Y q “ 1 for every positively-oriented orthonor-
mal basis pX,Y q of each tangent space TpM . For EndantipTMq, we define the unique tensor field
J P ΓpT 1

1Mq “ EndpTMq such that for each p P M , Jp : TpM Ñ TpM is the 90-degree counter-
clockwise rotation, where “counterclockwise” means that pX, JXq is a positively-oriented basis of
TpM whenever X P TpM is nonzero. This operator satisfies

J2 “ ´1 and xJX, JY y “ xX,Y y
for all X,Y P TpM and p PM , and is therefore antisymmetric:

xJX, Y y “ xJ2X, JY y “ ´xX, JY y.
There is a simple relationship between dvol and J : since the bilinear form pX,Y q ÞÑ xJX, Y y is
antisymmetric, it is a scalar multiple of dvol at every point, and plugging in a basis pX,Y q :“
pX, JXq with |X | “ 1 reveals that the constant of proportionality is 1, so

(35.5) dvolpX,Y q “ xJX, Y y for all X,Y P TpM , p PM.

More importantly, dvol b J defines a global frame for Λ2T ˚M b EndantipTMq, and even better,
this frame does not depend on the choice of orientation for M , as reversing the orientation puts
a sign in front of both dvol and J , so these two signs cancel out. For this reason, the following
definition does not require M to be orientable, but requires only a choice of local orientation on a
neighborhood of any given point, so that dvol and J can be defined on such a neighborhood—what
matters in the definition is their product, which does not depend on the choice.

Definition 35.9. For a Riemannian 2-manifold pM, gq, theGaussian curvature (Gaußkrüm-
mung) is the unique function KG : M Ñ R such that for any choice of orientation on a neighbor-
hood of each point p PM ,

RpX,Y qZ “ ´KGppq dvolpX,Y qJZ for all X,Y, Z P TpM.

For surfaces embedded in Euclidean R3, the Gaussian curvature has an elegant and geomet-
rically intuitive interpretation that we do not have space to review here, but I highly recommend
reading §27.3 in the notes from the first semester if you have not seen it before.

For computational purposes, recall that on any real oriented vector space V with an inner
product and a positively-oriented orthonormal basis e1, . . . , en P V , its dual basis e1˚, . . . , en˚ P V ˚
can be used to write down the canonical volume form

µ :“ e1˚ ^ . . .^ en˚ P ΛnV ˚,
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which satisfies µpv1, . . . , vnq “ 1 whenever v1, . . . , vn P V is a positively-oriented orthonormal
basis. Now for any v1, . . . , vn P V , not necessarily linearly independent or orthonormal, the result
of Exercise 11.12 gives

µpv1, . . . , vnq “

gffffedet

¨̊
˝xv1, v1y ¨ ¨ ¨ xv1, vny

...
. . .

...
xvn, v1y ¨ ¨ ¨ xvn, vny

‹̨‚,
where the determinant vanishes if v1, . . . , vn are linearly dependent and is otherwise positive since
the symmetric bilinear form x , y is positive definite. We can use this and (35.5) to derive a formula
for KG in terms of the Riemann tensor: for any X,Y P TpM , we have

RiempX,X, Y, Y q “ xX,RpX,Y qY y “ ´KGppqxX, dvolpX,Y qJY y “ KGppq dvolpX,Y qxJX, Y y
“ KGppq |dvolpX,Y q|2 “ KGppq ¨ det

ˆxX,Xy xX,Y y
xY,Xy xY, Y y

˙
“ KGppq ¨ `xX,XyxY, Y y ´ xX,Y y2˘ .

Whenever X and Y are linearly independent, the determinant in this last expression is positive,
so we conclude

(35.6) KGppq “ RiempX,X, Y, Y q
xX,XyxY, Y y ´ xX,Y y2 ,

or in local coordinates,

KG “ R1122

g11g22 ´ g212
.

Remark 35.10. The formula (35.6) can also be taken as a definition of the Gaussian curvature
KG : M Ñ R for pseudo-Riemannian 2-manifolds pM, gq of arbitrary signature, though in the
indefinite case, a slightly different argument is required for showing that KGppq does not depend
on the choice of basis X,Y P TpM (see §31.4).

35.4. Sectional curvature. The next definition provides a way of measuring the same geo-
metric information as Gaussian curvature when the dimension is greater than 2. We continue
under the assumption that g is positive, though as explained in §31.4, this condition can be lifted
with a bit of care.

Definition 35.11. Assume pM, gq is a Riemannian manifold with dimM ě 2, p PM is a point
and P Ă TpM is a 2-dimensional linear subspace. The sectional curvature (Schnittkrümung) of
pM, gq along P , denoted by

KSpP q P R,

is defined as the Gaussian curvature at p of the embedded surface ΣP ĂM defined by

ΣP :“ expppO X P q ĂM,

where O Ă TpM is a neighborhood of 0 on which the map O
exppÝÑ M is an embedding, and the

Riemannian metric on ΣP is the restriction of g.

Proposition 35.12. The sectional curvature of pM, gq along P Ă TpM satisfies

KSpP q “ RiempX,X, Y, Y q
xX,XyxY, Y y ´ xX,Y y2

for every linearly-independent pair of tangent vectors X,Y P P .
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Proof. This follows from (35.6) and the fact that the Riemann tensor pR P ΓpT 1
3ΣP q of ΣP

at p is simply the restriction to TpΣP “ P Ă TpM of the Riemann tensor R P ΓpT 1
3Mq of pM, gq.

The latter follows from a general result about Riemannian submanifolds, the Gauss equation (see
Prop. 28.5 from the first semester),zRiempV,X, Y, Zq “ RiempV,X, Y, Zq ` xIIpV,Xq, IIpY, Zqy ´ xIIpV, Y q, IIpX,Zqy,
where zRiem P ΓpT 0

4ΣP q denotes the fully covariant version of pR and II : TΣP ‘TΣP Ñ pTΣP qK is
the second fundamental form, defined so that IIpX,Y q is the part of ∇XY P ΓpTM |ΣP

q orthogonal
to TΣP for any X,Y P XpΣP q. At the point p P ΣP , the second fundamental form vanishes for
the following reason: for any X P TpΣP , the path γptq “ exppptXq for t close to 0 is a geodesic of
pM, gq that is also contained in ΣP , implying that X can be extended to a vector field on ΣP near
p that matches 9γ along γ and therefore satisfies ∇XX “ 0 at p. This implies

IIpX,Xq “ 0

for all X P TpΣP . Expanding IIpX ` Y,X ` Y q for any X,Y P TpΣP and using the fact that II is
symmetric then proves IIpX,Y q “ 0. �

One can think of sectional curvature as a real-valued function

KS : Gr2pTMq Ñ R,

where the Grassmannian of 2-planes in TM is defined as the set

Gr2pTMq :“ ď
pPM

Gr2pTpMq, Gr2pTpMq :“ t2-dimensional subspaces P Ă TpMu .

We will see later that Gr2pTMq inherits a natural smooth manifold structure from that of M ;
in fact it is an important example of a smooth fiber bundle, whose fiber over each point p is
the compact smooth manifold Gr2pTpMq. We say that a Riemannian manifold pM, gq has posi-
tive/negative sectional curvature if the values of the function KS : Gr2pTMq Ñ R are everywhere
positive/negative, and the notions of nonpositive/nonnegative or vanishing sectional curva-
ture are defined similarly. The ability to state such definitions and prove theorems about them is
one of the principal advantages of the notion of sectional curvature in comparison with the Rie-
mann tensor. The following result shows however that, secretly, the function KS : Gr2pTMq Ñ R

and tensor R P ΓpT 1
3Mq are completely equivalent objects.

Theorem 35.13. On any Riemannian manifold pM, gq, the Riemann tensor Rp : TpM ˆ
TpM ˆ TpM Ñ TpM at a point p P M is determined by the values of the sectional curvature
function KSpP q on the set of all 2-planes P P Gr2pTpMq at p. In particular, the tensor field
R P ΓpT 1

3Mq vanishes if and only if the function KS : Gr2pTMq Ñ R vanishes.

Proof. By Proposition 35.12, the main thing we need to show here is that if the values
RiempX,X, Y, Y q P R are known for every pairX,Y P TpM , then these determine RiempV,X, Y, Zq
for all tuples V,X, Y, Z P TpM , and in particular the latter will always vanish if RiempX,X, Y, Y q
always vanishes. The proof is a purely algebraic argument based on the symmetries listed in
Theorem 35.7.

Suppose Riem, zRiem P ΓpT 0
4Mq are two tensor fields that both satisfy the relations in The-

orem 35.7 and satisfy RiempX,X, Y, Y q “ zRiempX,X, Y, Y q for all pairs X,Y . Then D :“zRiem´Riem P ΓpT 0
4Mq also satisfies the relations in Theorem 35.7, and additionally

(35.7) DpX,X, Y, Y q “ 0 for all X,Y P TpM , p PM.
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We claim that these assumptions imply D ” 0. As a first step, exploiting the symmetries in
Theorem 35.7 gives

DpV,X, Y, Y q (iv)“ DpY, Y, V,Xq (i)`(ii)“ DpX,V, Y, Y q
for any three vectors V,X, Y P TpM at a point p P M , and using (35.7) to eliminate terms that
are trivial, multilinearity then implies

0 “ DpV `X,V `X,Y, Y q “ DpV,X, Y, Y q `DpX,V, Y, Y q “ 2DpV,X, Y, Y q.
Choosing a fourth vector Z P TpM , the latter implies

0 “ DpV,X, Y ` Z, Y ` Zq “ DpV,X, Y, Zq `DpV,X,Z, Y q,
so DpV,X, Y, Zq is antisymmetric under the interchange of Y and Z. It is also antisymmetric under
the interchange of X and Y by Theorem 35.7(i), so applying the Bianchi identity (iii), we conclude

0 “ DpV,X, Y, Zq `DpV, Y, Z,Xq `DpV, Z,X, Y q “ 3DpV,X, Y, Zq.
�

Remark 35.14. The formula in Proposition 35.12 can be taken as a general definition of
sectional curvature for pseudo-Riemannian manifolds of arbitrary signature, but in addition to the
need for an additional argument to prove independence of the basis X,Y P P , there is a further
caveat that does not arise in the Riemannian setting: if x , y is nondegenerate but not positive, then
the denominator xX,XyxY, Y y ´ xX,Y y2 can vanish. This reflects the fact that g does not have
a nondegenerate restriction to arbitrary 2-dimensional submanifolds ΣP Ă M , i.e. they are not
all pseudo-Riemannian submanifolds, and without nondegeneracy, the Gaussian curvature of ΣP
cannot be defined. For this reason, KS is only defined on the open and dense subset of Gr2pTMq
consisting of planes P Ă TpM on which the bundle metric is nondegenerate. For more details, see
§31.4.

36. Jacobi, Ricci and Cartan-Hadamard

36.1. Ricci and scalar curvature. In addition to the Gaussian and sectional curvatures
discussed in the previous lecture, there are other ways of reducing the Riemann tensor R P ΓpT 1

3Mq
of a Riemannian manifold pM, gq to a more manageable set of information. The object we define
next turns out to play a large role in many deep theorems about smooth manifolds, including
Perelman’s solution to the Poincarè conjecture. In the setting of pseudo-Riemannian manifolds
with Lorentz signature p1, n ´ 1q or pn ´ 1, 1q, it is also one of the key ingredients in Einstein’s
equation, which describes the evolution of the metric representing gravitation on the spacetime
manifold of General Relativity.

Definition 36.1. TheRicci curvature (Ricci-Krümmung) of a pseudo-Riemannian manifold
pM, gq is the type p0, 2q tensor field Ric P ΓpT 0

2Mq defined by

RicpY, Zq :“ tr pTpM Ñ TpM : X ÞÑ RpX,Y qZq , Y, Z P TpM, p PM,

where for any finite-dimensional vector space V , one defines the trace (Spur) of a linear map
A : V Ñ V as the trace of its matrix representative with respect to any basis.

Exercise 36.2. Show that the trace of a linear map A : V Ñ V as described in Definition 36.1
does not depend on the choice of basis for V .
Hint: Use the relation trpABq “ trpBAq.
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The trace in Definition 36.1 is a special case of a general operation on tensors known as
contraction. For a tensor field S P ΓpT kℓ Mq with k, ℓ ě 1, there are in general kℓ ways of
contracting S to produce a tensor field of type pk ´ 1, ℓ´ 1q. In the case of the Riemann tensor,
there are two other contractions we could have considered besides the one in Definition 36.1; let’s
temporarily call them Ric1,Ric2 P ΓpT 0

2Mq and define them by

Ric1pX,Zq :“ tr pY ÞÑ RpX,Y qZq , Ric2pX,Y q :“ tr pZ ÞÑ RpX,Y qZq .
A moment’s thought about the algebraic properties of the Riemann tensor reveals why we did
not define Ric2 before: the compatibility of ∇ with the metric implies that Z ÞÑ RpX,Y qZ is an
antisymmetric map TpM Ñ TpM for any X,Y P TpM . It follows that in any orthonormal basis,
the matrix representing this map has zeroes along the diagonal, and Ric2 is thus trivial. The
variant Ric1 is not as uninteresting, but actually it is just ´Ric, since

Ric1pY, Zq “ tr pX ÞÑ RpY,XqZq “ tr pX ÞÑ ´RpX,Y qZq “ ´RicpY, Zq.
We conclude that up to a sign, Ric is the only potentially interesting contraction of the Riemann
tensor.

Exercise 36.3. Show that for any orthonormal basis e1, . . . , en P TpM at a point p PM and
any Y, Z P TpM ,

RicpY, Zq “
nÿ
j“1

xej, ejy ¨ Riempej , ej, Y, Zq.

Remark 36.4. In books on Riemannian geometry, one sometimes sees

RicpY, Zq “
nÿ
j“1

Riempej , ej, Y, Zq

given as a definition of the Ricci tensor. This is just Exercise 36.3 in the case where xej, ejy “ 1

for all j “ 1, . . . , n, which is true if and only if the metric is positive. Since we are allowing
indefinite pseudo-Riemannian metrics in our discussion, the term “orthonormal” means for us that
each xej, ejy is ˘1, with k positive terms and ℓ negative terms if the metric has signature pk, ℓq.

Here is another important consequence of the symmetries of the Riemann tensor:

Proposition 36.5. The Ricci tensor is symmetric: RicpX,Y q “ RicpY,Xq for all X,Y .
Proof. We use relations (i), (ii) and (iv) from Theorem 35.7 and compute the Ricci tensor

via Exercise 36.3 with a choice of orthonormal basis e1, . . . , en P TpM :

RicpY, Zq “
nÿ
j“1

xej, ejy ¨ Riempej , ej, Y, Zq (i)`(ii)“
nÿ
j“1

xej, ejy ¨RiempZ, Y, ej , ejq

(iv)“
nÿ
j“1

xej, ejy ¨ Riempej , ej, Z, Y q “ RicpZ, Y q.

�

Remark 36.6. Like the Riemann tensor, the Ricci curvature can be defined for any affine
connection ∇ on a manifold M , but if ∇ is something other than the Levi-Cività connection for a
metric, then Ric need not be symmetric since the Riemann tensor might not satisfy the relations
(ii)–(iv) in Theorem 35.7.
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Since Ric is symmetric, we can view it as a quadratic form on each tangent space, and its
general values RicpX,Y q are determined by the values RicpX,Xq for arbitrary X P TpM ; indeed,
RicpX,Y q can be deduced from RicpX`Y,X`Y q, RicpX,Xq and RicpY, Y q via bilinearity. If the
metric is positive, then Exercise 36.3 provides an interpretation of RicpX,Xq as a kind of “average”
value (more accurately a sum) of sectional curvatures along planes tangent to X . More precisely,
if we normalize X so that |X | “ 1 and choose the orthonormal basis e1, . . . , en so that e1 “ X ,
then since Riempe1, e1, e1, e1q “ 0, Exercise 36.3 and Prop. 35.12 give
(36.1)

RicpX,Xq “
nÿ
j“2

Riempej , ej, e1, e1q “
nÿ
j“2

KSpPjq, where Pj :“ Re1 ‘ Rej Ă TpM.

It is therefore possible when dimM ě 3 for the Ricci curvature to vanish even if the sectional
curvatures do not. Metrics with Ric ” 0 are called Ricci flat, and they enjoy a special status
both in Riemannian and in pseudo-Riemannian geometry; in a Lorentzian manifold, in particular,
the Einstein equations give Ricci flat metrics an interpretation as possible configurations for the
gravitational field on spacetime in the absence of matter. Another geometric interpretation of Ricci
curvature in terms of volume will appear in §36.3 below.

It is possible to reduce the Riemann tensor even further via another contraction. This makes
more explicit use of the metric: we can transform the fully covariant Ricci tensor Ric P ΓpT 0

2Mq
into a mixed tensor Ric# P ΓpT 1

1Mq, defined as the unique linear bundle map Ric# : TM Ñ TM

satisfying
RicpX,Y q “ xX,Ric#pY qy for all X,Y P TpM , p PM.

This works for the same reason that the musical isomorphism # : T ˚M Ñ TM is well defined: the
nondegeneracy of the bundle metric implies that there is a bundle isomorphism 5 : T 1

1M Ñ T 0
2M

defined by A5pX,Y q :“ xX,AY y, and the inverse # : T 0
2M Ñ T 1

1M of this isomorphism sends
Ric to Ric7. We can now contract Ric# to a tensor field of type p0, 0q, i.e. a real-valued function,
defning the scalar curvature (Skalarkrümmung) Scal :M Ñ R by

Scalppq :“ trgpRicpq :“ tr
´
TpM Ñ TpM : X ÞÑ Ric#pXq

¯
.

Exercise 36.7. Show that for any orthonormal basis e1, . . . , en P TpM at a point p PM ,

Scalppq “
nÿ
i“1

nÿ
j“1

xei, eiy ¨ xej, ejy ¨ Riempei, ei, ej, ejq.

Together with Prop. 35.12, Exercise 36.7 interprets the scalar curvature of a Riemannian
manifold as a sum of the sectional curvatures along any complete orthogonal set of 2-planes in TpM .
Its vanishing at p thus means that the sectional curvatures along all possible 2-planes at p balance
each other out.

If M is 2-dimensional, the sum in Exercise 36.7 contains only two nontrivial terms, both of
which are the Gaussian curvature, thus

Scal “ 2KG when dim “ 2.

We see in this way that the scalar curvature completely determines the Riemann tensor when M
is 2-dimensional.

Exercise 36.8. Show that on any pseudo-Riemannian 2-manifold pM, gq, Ric “ KG ¨ g.
In local coordinates, it is conventional to write the components of the Ricci tensor with the

same letter as for the Riemann tensor, but only two indices:

Rij :“ RicpBi, Bjq “ tr pRp¨, BiqBjq “ Rkkij ,
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and the symmetry of the Ricci tensor then means

Rij “ Rji.

To compute the scalar curvature, one can write the components of Ric7 as Rij :“ Ric7pdxi, Bjq “
dxipRic7Bjq, so the relation RicpX,Y q “ RijX

iY j “ xX,Ric#pY qy “ gijX
iR

j
kY

k “ gikR
k
jX

iY j

implies Rij “ gikR
k
j . Using the fact that the matrix with entries gij :“ xdxi, dxjy :“ xpdxiq7, pdxjq7y

is inverse to the matrix with entries gij , we deduce

Rij “ gikRkj ,

and thus
Scal “ Rii “ gikRki “ gikR

j
jki.

36.2. Jacobi vector fields. The geodesic equation is nonlinear, as one can see clearly from
the quadratic term in its local coordinate expression, :γi`Γijk 9γj 9γk “ 0.83 But nonlinear equations
can be linearized: in general this means that one imagines a smooth 1-parameter family of solutions
tγsusPp´ǫ,ǫq and derives a linear differential equation that must be satisfied by η :“ Bsγs|s“0 P
Γpγ˚TMq. If the maps γs : ra, bs Ñ M are all geodesics in particular, then ∇t 9γs “ 0 for all s, so
using (35.1) and (33.6), we have

0 “ ∇s∇tBtγs|s“0 “ ∇t∇sBtγs|s“0 ` RpBsγs, BtγsqBtγs|s“0

“ ∇t∇tBsγs|s“0 ` ∇t pT pBsγs, Btγsqq|s“0 `Rpη, 9γq 9γ
“ ∇

2
tη `∇t pT pη, 9γqq `Rpη, 9γq 9γ.

The linear differential equation

(36.2) ∇
2
tη `∇t pT pη, 9γqq `Rpη, 9γq 9γ “ 0

for vector fields η P Γpγ˚TMq along a geodesic γ in a manifold with an affine connection ∇ is
called the Jacobi equation, and its solutions are called Jacobi vector fields. (Note that they
are not actually “vector fields” on M , but are instead vector fields along γ, i.e. sections of the
pullback bundle γ˚TM .) In the situation we consider most frequently, where ∇ is the Levi-Cività
connection on a Riemannian manifold, the torsion term vanishes and (36.2) thus simplifies to

(36.3) ∇
2
tη `Rpη, 9γq 9γ “ 0.

Exercise 36.9. If γ takes values in the domain of a chart x “ px1, . . . , xnq and we write
x ˝ γ “ pγ1, . . . , γnq and η “ ηiBi P Γpγ˚TMq, show that the Jacobi equation for η takes the form
:ηiptq ` F ij ptq 9ηjptq `Gijptqηjptq “ 0 for suitable smooth functions F ij and Gij . (Don’t worry too
much about what these functions are—it’s a bit of a mess, and we will never actually need to
know.)

As solutions to a second-order linear ODE, Jacobi vector fields along a geodesic γ : pa, bq ÑM

with t0 P pa, bq are uniquely determined by an initial value ηpt0q P Tγpt0qM and an initial velocity,
which in this situation can be taken to mean the first covariant derivative ∇tηpt0q P Tγpt0qM . With
this understood, Jacobi vector fields provide a way of writing down the derivative of the map

expp : Op ÑM

for p PM , whereO Ă TM denotes the domain of exp and Op :“ OXTpM . Suppose γs : r0, 1s ÑM

is a smooth 1-parameter family of geodesics starting at γsp0q “ p for every s, write γ :“ γ0,

83Strictly speaking, every differential equation for maps taking values in a manifold M must be considered
nonlinear—in the sense that its solution set will not form a vector space—unless M itself happens to be a vector
space. But the quadratic term means that the geodesic equation is nonlinear even in the latter case, unless the
connection is trivial so that the Christoffel symbols vanish.
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η :“ Bsγs|s“0, Xs :“ 9γsp0q P TpM , X :“ X0 and Y :“ BsXs|s“0 P TpM . Since the domain Op is
an open subset of the vector space TpM , we have a canonical identification of its tangent spaces
with TpM , and can thus write the derivative of expp at a point X P Op as a linear map

TXpexppq : TpM Ñ TexpppXqM.

By definition, exppp 9γsp0qq “ γsp1q, and since s ÞÑ γsp0q is a constant path,∇tηp0q “ ∇tBsγsp0q|s“0 “
∇sBtγsp0q|s“0 ` T p 9γp0q, Bsγsp0q|s“0q “ BsXs|s“0 ` T pX, 0q “ Y . Differentiating the expression
exppp 9γsp0qq “ γsp1q with respect to s thus proves:

Proposition 36.10. For p PM , X P Op and Y P TpM , we have

TXpexppqY “ ηp1q,
where η P Γpγ˚TMq is the unique Jacobi vector field along γptq :“ exppptXq satisfying the initial
conditions ηp0q “ 0 and ∇tηp0q “ Y . �

We’ll discuss two applications of the Jacobi equation in the next two subsections.

36.3. Geometry in normal coordinates. Recall from §34.3 that for any point p in a
pseudo-Riemannian manifold pM, gq, one can choose a Riemann normal coordinate system that
identifies p with the origin in Rn so that the metric looks like a standard flat metric up to first
order:

(36.4) gijpx1, . . . , xnq “ ˘δij `Op|x|2q.
According to Theorem 35.3, we can achieve gij ” ˘δij to all orders if and only if the Riemann
tensor of pM, gq vanishes. We will now show that if R does not vanish, then the failure of the
equation gij ” ˘δij near the point p is visible already in the quadratic term on the right hand side
of (36.4). This requires computing the Hessian of gij at p, which is determined by the individual
second derivatives of the form

(36.5) L2
Y gijppq “ LY LY xBi, Bjy|p “

A
∇2
Y Bi

ˇ̌
p
, Bj

E
`
A
Bi, ∇2

Y Bj
ˇ̌
p

E
,

where Y P XpMq is any vector field that has constant components in normal coordinates near p,
and we have eliminated terms involving first covariant derivatives since these vanish at p. To
compute the second covariant derivatives in this expression, the key trick is to notice that in
normal coordinates, every radial path of constant velocity emerging from the origin is a geodesic,
and as a consequence, one can easily find some Jacobi vector fields. Suppose in particular that
Xpsq P TpM is a smooth family of tangent vectors at p with Xp0q “ Y and BsXp0q “ Bj; then
ηptq :“ Bs exppptXpsqq

ˇ̌
s“0

is a Jacobi vector field along γptq :“ exppptY q, and since the paths
t ÞÑ exppptXpsqq appear in normal coordinates as t ÞÑ tpX1psq, . . . , Xnpsqq, we have ηptq “ tBj.
The Jacobi equation for η at the point γptq “ exppptY q thus takes the form

0 “ ∇2
tη `Rpη, 9γq 9γ “ ∇t∇tptBjq `RptBj, Y qY “ ∇tpBj ` t∇Y Bjq ` tRpBj, Y qY

“ ∇Y Bj ` `
∇Y Bj ` t∇2

Y Bj
˘` tRpBj, Y qY “ 2∇Y Bj ` t

`
∇2
Y Bj `RpBj , Y qY ˘ .

If we now take the inner product of this relation with Bi, symmetrize with respect to i and j, and
divide by t, we find

0 “ 2
xBi,∇Y Bjy ` x∇Y Bi, Bjy

t
` xBi,∇2

Y Bjy ` x∇2
Y Bi, Bjy `RiempBi, Bj, Y, Y q `RiempBj , Bi, Y, Y q

“ 2
LY gij

t
` xBi,∇2

Y Bjy ` x∇2
Y Bi, Bjy `RiempBi, Bj , Y, Y q `RiempBj , Bi, Y, Y q

“ 2
LY gij

t
` xBi,∇2

Y Bjy ` x∇2
Y Bi, Bjy ` 2RiempBi, Bj, Y, Y q,
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where in the last line we’ve used the symmetries of the Riemann tensor. This relation is valid
specifically at the point exppptY q, so taking the limit as tÑ 0 and plugging in (36.5), we deduce

0 “ 2L2
Y gij ` L2

Y gij ` 2RiempBi, Bj , Y, Y q “ 3L2
Y gij ` 2RiempBi, Bj, Y, Y q,

or in other words,

(36.6) L2
Y gij “ ´2

3
RiempBi, Bj, Y, Y q at p.

The bilinear form BkBℓgij dxkbdxℓ is now uniquely determined by the condition that it is symmetric
and must match this expression whenever two of the same vector pY, Y q are fed into it, so we
conclude

(36.7) BkBℓgij “ ´1

3
pRijkℓ `Rijℓkq at p,

and the Taylor expansion of gij at p therefore becomes:

Proposition 36.11. In Riemann normal coordinates about a point p P M in a pseudo-
Riemannian manifold pM, gq, the components of the metric take the form

gijpx1, . . . , xnq “ ˘δij ´ 1

3
Rijkℓppqxkxℓ `Op|x|3q.

Proof. By (36.7), the quadratic term in the Taylor expansion is´ 1
6
pRijkℓppq `Rijℓkppqq xkxℓ,

which simplifies after observing that the roles of the summed indices k and ℓ can be interchanged
in the second (implied) summation without changing the sum. �

Let us now assume for simplicity that g is positive and write down a similar local approximation
formula for the Riemannian volume form

dvol “a
detg dx1 ^ . . .^ dxn,

where g is the matrix with entries gij .

Exercise 36.12. Suppose Aptq P Fmˆm is a smooth 1-parameter family of m-by-m matrices
over F P tR,Cu such that Ap0q “ 1 and BtAp0q “ . . . “ Bk´1

t Ap0q “ 0 for some k P N. Show that

Bt detpAptqq|t“0 “ . . . “ Bk´1
t detpAptqqˇ̌

t“0
“ 0 and Bkt detpAptqq

ˇ̌
t“0

“ tr
`BktAp0q˘ .

Hint: Write detAptq in terms of the columns of Aptq and look at its Taylor expansion to order k.

Choosing again a vector field Y P XpMq with constant components in normal coordinates
near p, Exercise 36.12 and (36.6) enable us to compute

L2
Y

a
detg

ˇ̌̌
p
“ 1

2
a
detpgq|p tr

´
L2
Y pgijq

ˇ̌
p

¯
“ ´1

3

nÿ
i“1

RiempBi, Bi, Y, Y q “ ´1

3
RicpY, Y q at p.

In light of the symmetry of the Ricci tensor, this implies

BkBℓ
a
detg

ˇ̌̌
p
“ ´1

3
Rkℓ,

so that the Taylor expansion for the volume form near p becomes:

Proposition 36.13. In Riemann normal coordinates about a point p P M in a Riemannian
manifold pM, gq, the Riemannian volume form takes the form

dvolpx1,...,xnq “
ˆ
1´ 1

6
Rkℓx

kxℓ `Op|x|3q
˙
dx1 ^ . . .^ dxn.

�
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This gives a nice geometric interpretation of the Ricci curvature at a point p in the Riemannian
setting: it measures the degree to which volume gets distorted in small neighborhoods of p.

36.4. Nonpositive sectional curvature. At the end of last semester, we introduced sec-
tional curvature in the context of geodesics between two fixed points, and computed the second
variation of the energy functional in order to show that such geodesics always occur in isolation if
the sectional curvature is nonpositive. We can now use the Jacobi equation to reprove and improve
upon that result.

Definition 36.14. In a Riemannian manifold pM, gq, suppose γ : ra, bs ÑM is a nonconstant
geodesic from γpaq “ p to γpbq “ q. We say that the points p and q are conjugate along γ if
there exists a nontrivial Jacobi vector field η P Γpγ˚TMq with ηpaq “ 0 and ηpbq “ 0.

The standard example to think of is on S2 Ă R3, where any two antipodal points are conjugate
along any great circle that connects them, the reason being that there exists a whole 1-parameter
family of such great circles, so differentiating them with respect to the parameter gives a nontrivial
Jacobi field that vanishes at the end points. Intuitively, this is the kind of scenario in which we
expect conjugate points to arise, though in general a nontrivial Jacobi vector field might exist even
if there is no corresponding 1-parameter family of geodesics.84 The main observation we’d like to
make now is that in the example of the sphere, the curvature is positive, and if it weren’t, then
conjugate points could not exist:

Proposition 36.15. Suppose pM, gq is a Riemannian manifold with everywhere nonpositive
sectional curvature KS ď 0. Then no two points in M are conjugate along any geodesic.

Proof. Suppose γ : ra, bs ÑM is a nonconstant geodesic and η P Γpγ˚TMq is a Jacobi field
satisfying ηpaq “ 0 and ηpbq “ 0. The Jacobi equation and the assumption KS ď 0 then imply

xηptq,∇2
t ηptqy “ ´xηptq, Rpηptq, 9γptqq 9γptqy “ ´Riempηptq, ηptq, 9γptq, 9γptqq ě 0

for all t. But since Btxη,∇tηy “ |∇tη|2`xη,∇2
tηy and η vanishes at the end points, we can integrate

by parts, giving

0 ď
ż b
a

xηptq,∇2
tηptqy dt “ ´

ż b
a

|∇tηptq|2 dt ď 0,

which implies that η must be parallel along γ. Since it vanishes at the end points, it follows that
η is trivial. �

Recall that a smooth map f :M Ñ N is called a local diffeomorphism if every point p PM
has a neighborhood U ĂM such that f |U is a diffeomorphism onto an open set fpUq Ă N . By the
inverse function theorem, this is equivalent to the condition that Tpf : TpM Ñ TfppqN is invertible
for every p PM .

Corollary 36.16. If pM, gq is a Riemannian manifold with nonpositive sectional curvature,
then for every p PM , the map expp : Op ÑM is a local diffeomorphism.

Proof. For any X P Op and Y P TXpOpq “ TpM , Proposition 36.10 gives TXpexppqY as
the end value ηp1q for the unique Jacobi vector field η along γptq :“ exppptXq such that ηp0q “ 0

and ∇tηp0q “ Y . By Proposition 36.15, ηp1q cannot be 0 for any Y ‰ 0, otherwise the points p
and expppXq would be conjugate along γ. This proves that TXpexppq : TpM Ñ TexpppXqM is an
injective map, and it is therefore also surjective. �

84The following is certainly true: if η P Γpγ˚TMq is a Jacobi vector field along γ : ra, bs Ñ M such that ηpaq
and ηpbq both vanish, then η “ Bsγs|s“0

for some 1-parameter family of geodesics γs : ra, bs Ñ M with γ0 “ γ,
γspaq “ γpaq for all s and Bsγspbq|s“0

“ 0. However, the latter does not guarantee that γspbq “ γpbq for all s, and
it may or may not be possible to find a family with this property.
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To appreciate the implications of this result, it helps to be familiar with covering space theory,
as treated in a standard first course on algebraic topology (see e.g. [Wen18, Lectures 14–17]).
Such familiarity will be assumed for the remainder of this lecture. Here is the main result:

Theorem 36.17 (Cartan-Hadamard). Suppose pM, gq is a complete and connected Riemannian
n-manifold with nonpositive sectional curvature. Then for any point p P M , expp : TpM Ñ M is
a covering map. In particular, expp is the universal cover of M , so if M is simply connected, it
follows that M is diffeomorphic to Rn.

Before getting into the proof, here is a typical application.

Corollary 36.18. If pM, gq is a complete and connected Riemannian manifold with nonpos-
itive sectional curvature, then for any two points p, q PM , there exists a unique geodesic segment
in every homotopy class of paths from p to q.

Proof. By standard results on covering spaces, every continuous path γ from p to q inM has
a unique lift rγ to the covering space TpM that begins at the point rp :“ 0 P TpM , ending at some
point X P TpM with expppXq “ q, and since TpM is simply connected, this lifting construction
gives a bijection between the set of homotopy classes (with fixed end points) of paths from p to q
and the set of all possible lifted end points

 
X P TpM

ˇ̌
expppXq “ q

(
. Each homotopy class thus

corresponds to a unique X in this set, and t ÞÑ expppXq is then the unique geodesic from p to q in
that homotopy class. �

Recall that for two Riemannian manifolds pM, gq and pN, hq, a smooth map ϕ : M Ñ N is
called an isometry if it is a diffeomorphism and ϕ˚h “ g. If ϕ :M Ñ N is a local diffeomorphism,
then for any Riemannian metric h on N , the pullback g :“ ϕ˚h is a Riemannian metric onM such
that every point p PM has a neighborhood pU , gq that ϕ maps isometrically to a neighborhood of
ϕppq in pN, hq. We say in this case that ϕ is a local isometry from pM, gq to pN, hq.85

Proof of Theorem 36.17. Using the popular notation in topology for the universal cover,
let us fix p PM and write ĂM :“ TpM, π :“ expp :

ĂM ÑM.

Since π is (according to Corollary 36.16) a local diffeomorphism, the pullbackrg :“ π˚g P ΓpT 0
2
ĂMq

is a Riemannian metric on ĂM , and π is then a local isometry from pĂM, rgq to pM, gq. It follows that
whenever rγ is a path in ĂM and γ :“ π ˝ rγ, rγ is a geodesic in pĂM, rgq if and only if γ is a geodesic
in pM, gq. In particular, the paths t ÞÑ tX for every X P TpM are therefore geodesics in pĂM, rgq,
and since these are defined for all t P R, it follows via the Hopf-Rinow theorem that pĂM, rgq is also
complete. The theorem now follows from Lemma 36.19 below. �

We used:

Lemma 36.19. For any local isometry f : pM, gq Ñ pN, hq between Riemannian manifolds, if
pM, gq is complete, then f is a covering map.

Proof. We need to show that every p P N has a neighborhood Up Ă N that is evenly covered,
meaning that f´1pUpq is a union of disjoint open subsets Vα Ă M that are each mapped by f

homeomorphically (and in this case diffeomorphically) onto Up. Choose Up to be the geodesic ball
expppBpǫ q Ă N for some ǫ ă injppq, where Bpǫ Ă TpN denotes the open ball of radius ǫ around the

85For reasons of time, the proof of Theorem 36.17 was omitted from the actual lecture, excepting some brief
remarks about the important role played by Corollary 36.16.
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origin. Since f is a local diffeomorphism, the set f´1ppq ĂM is discrete, and for each q P f´1ppq,
we can define Vq :“ expqpBqǫ q ĂM , noting that expq is guaranteed to be defined on Bqǫ for every
q PM since pM, gq is complete. In fact, we claim that Vq is also a geodesic ball, and is mapped by
f diffeomorphically onto Up. This follows mainly from the local isometry condition, which implies
that Tqf maps Bqǫ bijectively onto Bpǫ , and also that expp ˝Tqf “ f ˝ expq, hence f maps geodesics
in pM, gq to geodesics in pN, hq, and the map Up Ñ Vq defined as the composition

TpN TqM

Ă Ă
Up Bpǫ Bqǫ Vq

pTqfq´1

pexppq´1 pTqfq´1 expq

is a smooth inverse for Vq
fÑ Up. We claim next that Vq X Vq1 “ H for any two distinct points

q, q1 P f´1ppq. To see this, observe that any point x P Vq X Vq1 would be the end point of both a
geodesic segment rα through Vq starting at q and a geodesic segment rβ through Vq1 starting at q1.
Then α :“ f ˝ rα and β :“ f ˝ rβ are both geodesic segments through Up from p to fpxq, and must
therefore be identical (up to parametrization). It follows that rα and rβ are tangent to each other
when they intersect at x, and must therefore also be identical up to parametrization; this is only
possible if q “ q1.

Finally, to see that f´1pUpq “Ť
qPf´1ppq Vq, note that whenever x P f´1pUpq, there is a unique

geodesic segment through Up from fpxq to p, which we can denote by r0, 1s Ñ Up : t ÞÑ γptq :“
expfpxqX for some X P TfpxqN , and note that 9γp1q P Bpǫ Ă TpN . Writing rX :“ pTxfq´1pXq Ă
TxM , the geodesic segment r0, 1s ÑM : t ÞÑ rγptq :“ expxpt rXq then satisfies f ˝rγ “ γ, thus it ends
at a point q P f´1ppq with velocity 9γp1q P Bqǫ Ă TqM , from which it follows that γ is contained
in Vq. �

Exercise 36.20. Show that Lemma 36.19 becomes false in general if the assumption that
pM, gq is complete is dropped.
Hint: Take a well-behaved covering space and remove one point.

Exercise 36.21. On a pseudo-Riemannian manifold pM, gq with a geodesic segment γ :

ra, bs ÑM from γpaq “ p to γpbq “ q, prove that the following conditions are equivalent:
(i) p and q are not conjugate along γ;
(ii) For all X P TpM and Y P TqM , there exists a unique Jacobi vector field η P Γpγ˚TMq

satisfying ηpaq “ X and ηpbq “ Y .

37. Lie groups and their Lie algebras

37.1. Main definitions and examples. We have encountered several examples so far of
groups that are also smooth manifolds in a natural way. The most popular are the matrix
groups GLpn,Fq for F P tR,Cu and their well-known subgroups Opnq, SOpnq, SLpn,Rq Ă GLpn,Rq,
Upnq, SUpnq, SLpn,Cq Ă GLpn,Cq and so forth. These arise whenever one considers a manifold or
vector bundle with some extra geometric structure such as a bundle metric or volume form; the
so-called structure group of the bundle is then a matrix group consisting of all linear transforma-
tions that preserve the relevant structure on a single fiber of the bundle. Moving forward, we will
increasingly also have to consider examples like the isometry group IsompM, gq of a Riemannian
manifold pM, gq, which is not a group of matrices in any natural way, but we will see that it is
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nonetheless a smooth manifold. For all these reasons and more, we are somewhat overdue for a
more systematic examination of the intersection between differential geometry and group theory.

Definition 37.1. A topological group (topologische Gruppe) G is a group with a topology
such that the maps

GˆGÑ G : pa, bq ÞÑ ab and GÑ G : a ÞÑ a´1

are both continuous.
Similarly, a Lie group (Liesche Gruppe or Lie-Gruppe) is a group that is also a smooth

manifold (without boundary) such that the two maps above are both smooth.
For a Lie group G, a Lie subgroup is a subgroup H Ă G that is also a smooth submanifold.
If G and H are both Lie groups, a Lie group homomorphism G Ñ H is a group homo-

morphism that is also a smooth map. We call it a Lie group isomorphism if it is a group
isomorphism and a diffeomorphism.

Remark 37.2. Since smooth maps restrict smoothly to smooth submanifolds, a Lie subgroup
H Ă G of a Lie group G is (according to the definition above) also a Lie group in a natural way,
and the inclusion map H ãÑ G is then a Lie group homomorphism, as well as an embedding.

Remark 37.3. The reader should be warned that our definition of the term “Lie subgroup” is
stricter than what is found in many other sources: these allow a Lie subgroup to be a subgroup with
its own Lie group structure such that the inclusion is an injective immersion but not necessarily an
embedding (in which case the subgroup would not be a submanifold by our definition). Since the
most interesting examples satisfy the stricter definition, I will stick with it until someone convinces
me to change it.

Example 37.4. For F P tR,Cu and n P N, the general linear group GLpn,Fq is an open set in
the vector space Fnˆn of all n-by-nmatrices over F, and basic theorems in linear algebra imply that
the maps GLpn,Fq ˆGLpn,Fq Ñ GLpn,Fq : pA,Bq ÞÑ AB and GLpn,Fq Ñ GLpn,Fq : A ÞÑ A´1

are both smooth, hence GLpn,Fq is a Lie group with the smooth structure it inherits as an open
subset of a finite-dimensional vector space. One can then use the implicit function theorem to
show that the classical matrix groups such as GL`pn,Rq, Opnq, Opk, ℓq, SOpnq, Upnq, SUpnq,
SLpn,Rq and SLpn,Cq are each Lie subgroups of GLpn,Rq or GLpn,Cq. These were all worked out
as exercises last semester—see especially §4.6 and §18.1.

Example 37.5. Every finite-dimensional vector space V over F P tR,Cu is naturally an abelian
Lie group, with vector addition as the group operation. After identifying V with Fn via a choice
of basis, the map

Fn Ñ GLpn` 1,Fq : v ÞÑ
ˆ
1nˆn v

01ˆn 1

˙
defines an injective Lie homomorphism, identifying V with a Lie subgroup of GLpn` 1,Fq.

Example 37.6. Every group with at most countably many elements can be regarded as a
0-dimensional Lie group by assigning it the discrete topology; we refer to Lie groups of this form
as discrete groups. Whether this is actually a reasonable thing to do depends on the situation:
it is universally appropriate for finite groups, though for instance the countable subgroup Qzt0u “
GLp1,Qq Ă GLp1,Rq inherits a natural topology from R1ˆ1 “ R that is quite different from the
discrete topology; Qzt0u with its natural topology is not a manifold of any dimension, and thus
not a Lie group.

Example 37.7. The quotient of any finite-dimensional vector space V by any discrete subgroup
Γ Ă V inherits from V a natural smooth structure that makes it an abelian Lie group. This fact
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will follow as a special case of a general theorem about quotients of Lie groups by subgroups, but it
is easy to see it directly in the most popular examples, e.g. the n-torus Tn “ S1ˆ . . .ˆS1 becomes
a Lie group when identified with the quotient of Rn by the lattice Zn. In particular, the circle S1

can be identified either with the quotient group R{Z or with the unit circle in C˚ :“ Czt0u with
its multiplicative group structure; there is a Lie group isomorphism between these two models.
Viewing S1 as the unit circle in C also identifies it with the matrix group Up1q Ă GLp1,Cq “ C˚.

We will not have very much to say in this course about topological groups that are not Lie
groups, but one or two popular examples are important to be aware of. If X is any topological
space, it is natural to consider the group of all homeomorphisms X Ñ X ,

HomeopXq :“  
ϕ : X Ñ X

ˇ̌
ϕ is a homeomorphism

(
,

where the group multiplication law is defined via composition of maps. A natural topology to
define on HomeopXq is the so-called compact-open topology, which is generated by all sets of the
form

UK,V :“  
ϕ P HomeopXq ˇ̌ ϕpKq Ă V

(
where K Ă X is an arbitrary compact set and V Ă X an arbitrary open set. For our purposes, it
is easiest to describe what this means under the additional assumption that X is a metric space:
then a sequence ϕk P HomeopXq converges to ϕ P HomeopXq in the compact-open topology if and
only if it converges uniformly on all compact subsets of X . For this reason, we also sometimes
call it the C0

loc-topology. Under additional mild technical assumptions on X such as the second
countability axiom, one can define a metric on the space of all continuous maps X Ñ X for
which the induced notion of convergence is C0

loc-convergence, so in this setting, the compact-open
topology is metrizable. Unfortunately, it is not always true that HomeopXq with the compact-open
topology is a topological group, but it is true under fairly mild assumptions about the topology ofX .
Concretely, the map HomeopXqˆHomeopXq Ñ HomeopXq : pϕ, ψq ÞÑ ϕ˝ψ is continuous whenever
X is locally compact and Hausdorff, and if X is additionally either compact or locally connected,
then HomeopXq Ñ HomeopXq : ϕ ÞÑ ϕ´1 is also continuous, making HomeopXq a topological
group. In particular, this is always true if X is a finite-dimensional topological manifold. (For a
more detailed discussion of these facts, see [Wen18, Exercise 7.27].)

For a smooth manifold M , one similarly considers the group

DiffpMq :“  
ϕ :M ÑM

ˇ̌
ϕ is a diffeomorphism

(
,

which is a subgroup of HomeopMq, but it is natural to take advantage of the additional structure
provided by differentiability and assign to DiffpMq a stronger topology:

Definition 37.8. Suppose M and N are smooth manifolds. A sequence of smooth maps
fk : M Ñ N is called C8

loc-convergent to a smooth map f : M Ñ N if for every pair of smooth
charts M Ą U

xÑ Rm and N Ą V
yÑ Rn, the partial derivatives of all nonnegative orders of

the functions y ˝ fk ˝ x´1 converge uniformly on all compact subsets of their domains to the
corresponding partial derivatives of y ˝ f ˝ x´1.

One can use coverings of M and N by countably-many charts to construct a metric on the
space of all smooth maps C8pM,Nq for which the notion of convergence is C8

loc-convergence as
described in Definition 37.8. Such a metric will inevitably depend on a multitude of arbitrary
choices, but the induced topology on C8pM,Nq does not; we call it the C8

loc-topology. As a
subset of C8pM,Mq, the group DiffpMq inherits this topology and becomes a topological group.
It cannot be a Lie group, however, at least according to our current definitions, as it is too large
to be a finite-dimensional manifold.86

86There are various ways of defining the notion of an infinite-dimensional Lie group so that DiffpMq becomes
an example, but this involves a multitude of thorny technical issues that call the usefulness of such a notion into
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On the other hand, interesting examples of Lie groups do sometimes arise as natural subgroups
of DiffpMq with the C8

loc-topology. One that we will examine later more closely is the isometry
group of a pseudo-Riemannian manifold pM, gq,

IsompM, gq :“  
ϕ P DiffpMq ˇ̌ ϕ˚g “ g

(
.

This is our first example of a Lie group that is not generally a matrix group in any natural way,
and actually proving that it’s a Lie group will require a substantial effort. While most concrete
examples we consider can at least be shown to admit injective Lie group homomorphisms into
GLpn,Rq for some n P N sufficiently large, it can be proved that not all Lie groups have this
property. (Contrast this with the standard theorem in differential topology that every smooth
n-manifold admits a smooth embedding into RN for N sufficiently large.)

Example 37.9. A map ϕ : Fn Ñ Fn is called affine if it has the form

ϕpvq “ Av ` b

for some A P GLpn,Fq and b P Fn. These form the group of affine transformations (affine
Transformationen) on Fn, which we will denote by

AffpFnq Ă DiffpFnq,
and the obvious bijection AffpFnq Ø GLpn,Fq ˆFn endows it with a smooth structure that makes
it into a Lie group. (Exercise: Convince yourself that the resulting topology on AffpFnq matches
the C8

loc-topology.) The groups GLpn,Fq and Fn both live naturally inside AffpFnq as the Lie
subgroups  

v ÞÑ Av
ˇ̌
A P GLpn,Fq( and

 
v ÞÑ v ` b

ˇ̌
b P Fn

(
respectively, and AffpFnq can be identified with a group-theoretic construction called the semidi-
rect product of these two groups. The same trick can be used to produce many other Lie groups
by replacing GLpn,Fq with one of its subgroups: for instance, the semidirect product of Opnq with
Rn is the Euclidean group

tϕ P DiffpRnq | ϕpvq “ Av ` b for some A P Opnq and b P Rnu,
which we will later see is precisely the isometry group of Rn with its standard Euclidean metric.
An important cousin of this group arises in Einstein’s theory of Special Relativity: the Poincaré
group is the semidirect product of the Lorentz group Op1, 3q with R4, and it turns out to be
identical to the isometry group of R4 with the Minkowski metric. In light of the injective Lie group
homomorphism

AffpFnq Ñ GLpn` 1,Fq : pv ÞÑ Av ` bq ÞÑ
ˆ

A b

01ˆn 1

˙
,

all Lie subgroups of AffpFnq can be identified with Lie subgroups of GLpn` 1,Fq.
Notation. Whenever G is an arbitrary group, as opposed to one of the concrete examples

such as matrix groups or subgroups of DiffpMq, we will typically denote the identity element by

e P G,
hence the relation

ge “ eg “ g

is assumed to hold for every g P G. We will also often use the notation

i : GÑ G

for the inversion map ipgq :“ g´1.

question, and place it in any case outside the realm of standard differential geometry. In other words, we won’t
discuss it any further here.
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Exercise 37.10. Prove that on any Lie group G, Tei : TeGÑ TeG is multiplication by ´1.
37.2. Left and right translation. In a Lie group G, every element g P G determines

two diffeomorphisms on G known as left translation (Linkstranslation) and right translation
(Rechtstranslation):

Lg : GÑ G : h ÞÑ gh, Rg : GÑ G : h ÞÑ hg.

You should take a moment to convince yourself that both are smooth and have smooth inverses;
the former follows from the smoothness of the group operations on G, and the latter from the fact
that every element of G has an inverse.

Definition 37.11. A tensor field S P ΓpT kℓ Gq on a Lie group G is called left-invariant
(linksinvariant) if Lg̊S “ S for every g P G, and right-invariant (rechtsinvariant) if Rg̊S “ S for
every g P G. If S is both left- and right-invariant, it is called bi-invariant.

Remark 37.12. Since we are dealing with diffeomorphisms and every group element has an
inverse, Definition 37.11 could equally well have been stated in terms of pushforwards instead of
pullbacks: for instance, the pushforward operator pLgq˚ is the same thing as the pullback via
pLgq´1 “ Lg´1 , so a tensor field S is left-invariant if and only if pLgq˚S “ S for all g P G.

Recall that for a finite-dimensional vector space V and integers k, ℓ ě 0, we denote V kℓ :“
V bk b pV ˚qbℓ, so a tensor field S P ΓpT kℓ Mq of type pk, ℓq on a manifold M assigns to each p PM
an element Sp P pTpMqkℓ .

Proposition 37.13. For every Se P pTeGqkℓ , there exists a unique left-invariant tensor field
SL P ΓpT kℓ Gq and a unique right-invariant tensor field SR P ΓpT kℓ Gq whose values at e P G are
both Se.

Proof. The uniqueness of SL is seen as follows: since Lgpeq “ g for each g P G, left-invariance
implies that for every λ1, . . . , λk P Tg̊ G and X1, . . . , Xℓ P TgG,

SLg pλ1, . . . , λk, X1, . . . , Xℓq “ ppLgq˚SLqgpλ1, . . . , λk, X1, . . . , Xℓq
“ SLe pLg̊λ1, . . . , Lg̊λk, Lg̊X1, . . . , Lg̊Xℓq
“ SepLg̊λ1, . . . , Lg̊λk, TLg´1pX1q, . . . , TLg´1pXℓqq.

To prove the existence of SL, it now suffices to prove that the tensor field defined on G in terms of
Se via this last expression really is left-invariant; this is a straightforward exercise. The existence
and uniqueness of SR is proved similarly, using right instead of left translation. �

Exercise 37.14. Show that for any X P TeG, the unique left-invariant vector field XL P XpGq
and right-invariant vector field XR P XpGq satisfying XLpeq “ XRpeq “ X are given by

XLpgq “ TLgpXq, XRpgq “ TRgpXq.
Exercise 37.15. A manifold is called parallelizable (parallelisierbar) if its tangent bundle

is a trivial bundle, or equivalently, if its tangent bundle admits a global frame. Show that every
Lie group is parallelizable.

Proposition 37.13 shows that one should not generally expect nontrivial bi-invariant tensor
fields to exist, at least not if G is non-abelian (in which case right and left translation are equiv-
alent). In general, a bi-invariant tensor field S P ΓpT kℓ Gq with a given value Se at the identity
element will exist if and only if the unique left- and right-invariant tensors SL and SR with that
value happen to be identical, which in general they will not be. We will see later that there are a
few important exceptions to this.
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Using the notation ipgq “ g´1 for the inversion map G
iÑ G, the next exercise provides a

useful tool for understanding the relationship between left- and right-invariant tensors:

Exercise 37.16. For a tensor field S P ΓpT kℓ Gq on a Lie group G, prove that S is left-invariant
if and only if i˚S is right-invariant.
Hint: Rewrite the compositions i ˝ Lg and Lg ˝ i for arbitrary g P G in terms of right translation.

37.3. The Lie algebra of a Lie group. Left- and right-invariant vector fields play a special
role in the theory of Lie groups. We will use the following notation for them:

XLpGq :“ tleft-invariant vector fieldsu Ă XpGq, XRpGq :“ tright-invariant vector fieldsu Ă XpGq,
and for each X P TeG, we let

XL P XLpGq, XR P XRpGq
denote the unique invariant vector fields satisfyingXLpeq “ XRpeq “ X , as guaranteed by Proposi-
tion 37.13. The evaluation map XpGq Ñ TeG : X ÞÑ Xpeq restricts to each of XLpGq and XRpGq as
an isomorphism, with inverse given by X ÞÑ XL or X ÞÑ XR respectively, thus XLpGq and XRpGq
are both finite-dimensional subspaces of XpGq. They are also Lie subalgebras, meaning they are
closed under the Lie bracket of vector fields: e.g. using the obvious analogue of Exercise 6.5 for
pullbacks instead of pushforwards, one finds

X,Y P XLpGq ñ Lg̊ rX,Y s “ rLg̊X,Lg̊Y s “ rX,Y s @g P G ñ rX,Y s P XLpGq,
and similarly for X,Y P XRpGq.

Exercise 37.17. Show that every left- or right-invariant vector field on G has a global flow.
Hint: If X P XLpGq and ϕtXpeq is defined for all t P p´ǫ, ǫq, show that ϕtX : G Ñ G is globally
defined for all t in this range. Use left translation to find flow lines through arbitrary points.

Recall from Lecture 5 in the first semester: a Lie algebra (Lie-Algebra) in general is a vector
space V that is endowed with an antisymmetric bilinear “bracket” operation r¨, ¨s : V ˆ V Ñ V

satisfying the Jacobi identity

rv, rw, uss ` rw, ru, vss ` ru, rv, wss “ 0 for all v, w, u P V .
Given two Lie algebras V and W , a Lie algebra homomorphism A : V Ñ W is a linear map
that preserves the bracket structures, meaning

rAu,Avs “ ru, vs for all u, v P V ,
and we call it a Lie algebra isomorphism if it is also bijective. A linear subspace W Ă V of a
Lie algebra V is a Lie subalgebra if ru, vs P W for all u, v P W , in which case W itself becomes
a Lie algebra for which the inclusion map W ãÑ V is an injective Lie algebra homomorphism.

The only interesting concrete example of a Lie algebra we have considered previously in this
course is the space of vector fields XpMq on a manifoldM , but restricting to invariant vector fields
on a Lie group now gives us finite-dimensional examples as well.

Definition 37.18. Given an n-dimensional Lie group G, the Lie algebra associated to G

is the n-dimensional vector space
g :“ TeG,

endowed with the unique bracket r¨, ¨s for which the map TeGÑ XLpGq : X ÞÑ XL is a Lie algebra
isomorphism; that is,

rX,Y s :“ rXL, Y Lspeq P g for X,Y P g.
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Notation. The convention for denoting the Lie algebra associated to a Lie group is to use
the same letter or letters but in lowercase Fraktur. So for instance, the Lie algebra of a Lie group
H is called h, the Lie algebras of GLpn,Fq and SOpnq are called glpn,Fq and sopnq respectively,
and so forth.

The Lie algebra g comes with a canonical Lie algebra isomorphism to the Lie algebra XLpGq
of left-invariant vector fields, and some books therefore also give XLpGq itself as an equivalent
definition of g. This perspective is useful to keep in mind, though for our purposes, it will usually
be most convenient to regard the elements of g as actual tangent vectors to G at e rather than
vector fields.

You may now be wondering: why do we formulate Definition 37.18 in terms of left-invariant
rather than right-invariant vector fields, and does it make a difference? The following exercise
shows that, yes, it makes a slight difference, but the difference is a trivial matter of inserting a
minus sign into the definition of r , s on g. With this understood, the choice to define g in terms of
XLpGq instead of XRpGq is an arbitrary convention without any deep meaning, though fortunately,
this convention is observed consistently throughout the literature.

Exercise 37.19. For a Lie group G with inversion map i : GÑ G, prove:
(a) For each X P TeG, XR “ ´i˚XL.

Hint: Use Exercises 37.10 and 37.16.
(b) Defining a second bracket on g “ TeG in terms of right-invariant vector fields by rX,Y s1 :“

rXR, Y Rspeq gives rX,Y s1 “ ´rX,Y s for all X,Y P g. In particular, the map X ÞÑ ´X
is a Lie algebra isomorphism from pg, r , sq to pg, r , s1q.

Exercise 37.20. What can you deduce from Exercise 37.19 about the Lie algebra g if the Lie
group G is abelian?

37.4. The exponential map. The exponential map was previously defined in terms of
geodesics on a pseudo-Riemannian manifold, but in Lie group theory, the same terminology and
notation is used for a map

exp : gÑ G

that bears some formal similarity to our previous notion while having nothing intrinsically to do
with metrics or geodesics.

Lemma 37.21. For a smooth path γ : R Ñ G with γp0q “ e, the following conditions are
equivalent:

(i) γps` tq “ γpsqγptq for all s, t P R;
(ii) γ is a flow line of a left-invariant vector field;
(iii) γ is a flow line of a right-invariant vector field.

Proof. Write X :“ 9γp0q P TeG, and suppose the first condition holds. Then for each t P R,

9γptq “ d

ds
γpt` sq

ˇ̌̌̌
s“0

“ d

ds
Lγptq pγpsqq

ˇ̌̌̌
s“0

“ TLγptqpXq “ XLpγptqq
by Exercise 37.14, showing that γ is a flow line of XL P XLpGq. A similar computation using
γps`tq “ Rγptq pγpsqq shows that γ is also a flow line of XR P XRpGq. Conversely, if γptq “ ϕt

XLpeq,
then for any fixed s P R, we can compare the two paths α, β : RÑ G defined by

αptq :“ γps` tq, βptq :“ γpsqγptq “ Lγpsq pγptqq ,
which have the same starting point αp0q “ βp0q “ γpsq. Clearly 9αptq “ XLpαptqq, and since XL is
left-invariant, we also have

9βptq “ TLγpsqp 9γptqq “ TLγpsqpXLpγptqqq “ XLpγpsqγptqq “ XLpβptqq,
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hence α and β are two flow lines of XL with the same initial value, and are therefore identical.
There is again an analogous argument if γ is a flow line of XR. �

Lemma 37.21 implies that for each X P g “ TeG, there exists a unique Lie group homomor-
phism

γX : RÑ G, such that 9γXp0q “ X,

namely the flow line of XL starting at e P G (or the corresponding flow line of XR, which happens
to be the same). We can thus define the exponential map (Exponentialabbildung) of G by

exp : gÑ G : X ÞÑ γXp1q.
The proposition implies the formula

(37.1) exppXq “ ϕ1
XLpeq “ ϕ1

XRpeq,
which shows that exp is a smooth map. Moreover:

Exercise 37.22. Assume G is a Lie group.
(a) Show that for each X P g, the unique Lie group homomorphism γ : RÑ G with 9γp0q “ X

is given by γptq “ expptXq.
(b) Generalize (37.1) to the formula

(37.2) expptXq “ ϕtXLpeq “ ϕtXRpeq for X P g, t P R.

(c) Deduce from the inverse function theorem that exp : gÑ G maps a neighborhood of 0 in
g diffeomorphically onto a neighborhood of e in G.

(d) Generalize (37.2) one step further by showing that for all g P G, t P R and X P g,

(37.3) ϕtXLpgq “ g expptXq, and ϕtXRpgq “ expptXqg.
Hint: For a left-invariant vector field, every left translation Lg : GÑ G sends flow lines
to flow lines.

The Lie group homomorphismRÑ G : t ÞÑ expptXq is also called the 1-parameter subgroup
generated by X P g. This term is a bit misleading since the map R Ñ G need not be injective in
general, and its image (even in the injective case) might fail to be an embedded submanifold and
thus a Lie subgroup. Nonetheless, the terminology is standard.

With the exponential map as a tool, we can now write down a more direct and revealing formula
for the Lie bracket on g. To start with, suppose M is a manifold, with vector fields X,Y P XpMq,
a function f P C8pMq and a point p PM . Recall from Lecture 6 in the first semester that the Lie
bracket rX,Y s is the same as the Lie derivative of Y with respect to X , so

rX,Y sppq “ LXY ppq “ d

dt

`pϕtX q˚Y ˘ ppqˇ̌̌̌
t“0

“ d

dt
Tϕ´tX

`
Y pϕtXppqq

˘ˇ̌̌̌
t“0

.

To express this in a more useful form, we can use the flow of Y to write Tϕ´tX pY pϕtX ppqqq “Bs `ϕ´tX ˝ ϕsY ˝ ϕtX ppq
˘ˇ̌
s“0

, implying

(37.4) rX,Y sppq “ Bt
´
Bs`ϕ´tX ˝ ϕsY ˝ ϕtXppq

˘ˇ̌
s“0

¯ˇ̌̌
t“0

P TpM,

in which the expression being differentiated with respect to t is a family of vectors in the fixed
tangent space TpM , and thus has a well-defined derivative in TpM . If we now use this to compute
rX,Y s “ rXL, Y Lspeq for some elements X,Y P g in the Lie algebra of a Lie group G, applying
(37.3) gives

(37.5) rX,Y s “ Bt
´
Bs` expptXq exppsY q expp´tXq˘ˇ̌s“0

¯ˇ̌̌
t“0

.
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Here again, the expression being differentiated with respect to t is a family of tangent vectors in
TeG “ g and therefore has a well-defined derivative in g. The formula (37.5) gives an interpretation
of the Lie bracket on g as a measurement of the failure of elements of G near the identity to
commute with each other. In particular, it immediately implies something that was hinted at in
Exercise 37.20: if G is abelian, then the bracket on g vanishes. This statement also has a converse,
though to state it properly, we need to make a distinction between connected and disconnected
Lie groups.

Given any topological group G, it is straightforward to check that the path-component

G0 Ă G

of G containing the identity element e P G is a subgroup, i.e. if g, h P G both admit continuous
paths to e, then so do their inverses and their product. This subgroup is called the identity
component of G. If G is a Lie group, then since the identity component is an open subset, it is
also a Lie group, and its Lie algebra is the same as that of G.

Lemma 37.23. In a path-connected topological group G, any open neighborhood U Ă G of e P G
generates G, i.e. every g P G is a product of finitely-many elements in U .

Exercise 37.24. Prove Lemma 37.23 by showing that any continuous path γ : r0, 1s Ñ G

admits a partition 0 “ t0 ă t1 ă . . . ă tN´1 ă tN “ 1 such that γptjqγptj´1q´1 P U for all
j “ 1, . . . , N .

Theorem 37.25. A connected Lie group G is abelian if and only if the bracket on its Lie
algebra g is zero.

Proof. If G is abelian then (37.5) implies rX,Y s “ 0 for all X,Y P g. Conversely, if the
bracket on g vanishes, it means that all left-invariant vector fields on G commute with each other,
and by the fundamental theorem regarding Lie brackets and commuting flows (see §6.4 from last
semester), it follows via (37.3) that for any X,Y P g and s, t P R,

exppsXq expptY q “ ϕtY L ˝ ϕsXL
peq “ ϕsXL ˝ ϕtY Lpeq “ expptY q exppsXq.

This proves that all elements in some neighborhood of e P G commute with each other; by
Lemma 37.23, these elements also generate G, so the result follows. �

In algebraic terms, a Lie algebra V is called abelian if its bracket is zero, i.e. ru, vs “ 0 for
all u, v P V , so Theorem 37.25 can be rephrased as the statement that a connected Lie group is
abelian if and only if its Lie algebra is abelian. The next example shows that the restriction of this
result to connected Lie groups cannot generally be relaxed.

Example 37.26. The connected Lie group SOp2q consists of rotations of R2, all of which
commute with each other, hence SOp2q is abelian. It is also 1-dimensional, thus its 1-dimensional
Lie algebra sop2q is automatically abelian due to the antisymmetry of the bracket. On the other
hand, SOp2q is the identity component of the disconnected Lie group Op2q, whose Lie algebra is
also sop2q, but Op2q is not abelian: rotations and reflections on R2 do not always commute with
each other.

Exercise 37.27. Prove that ifX,Y P g satisfy rX,Y s “ 0, then exppX`Y q “ exppXq exppY q “
exppY q exppXq.
Hint: Use flows of left-invariant vector fields to prove exppsXq expptY q “ expptY q exppsXq for all
s, t P R. Then show that t ÞÑ expptXq expptY q is a flow line of pX ` Y qL.

The next result allows us to interpret the Lie bracket on g as a “linearization” of the group
structure of G.



37. LIE GROUPS AND THEIR LIE ALGEBRAS 331

Theorem 37.28. For any Lie group homomorphism Φ : G Ñ H, the derivative of Φ at the
identity element defines a Lie algebra homomorphism

Φ˚ :“ TeΦ : gÑ h.

Proof. We need to prove rΦ˚X,Φ˚Y s “ Φ˚rX,Y s for all X,Y P g. Observe first that for
any X P g, the map γptq :“ ΦpexpptXqq is a composition of two Lie group homomorphisms and is
therefore the unique 1-parameter subgroup RÑ H satisfying 9γp0q “ Φ˚X , implying the relation

expptΦ˚Xq “ ΦpexpptXqq.
In light of this, (37.5) implies for every X,Y P g,

rΦ˚X,Φ˚Y s “ Bt
´
Bs` expptΦ˚Xq exppsΦ˚Y q expp´tΦ˚Xq˘ˇ̌s“0

¯ˇ̌̌
t“0

“ Bt
´
Bs`ΦpexpptXqqΦpexppsY qqΦpexpp´tXqq˘ˇ̌s“0

¯ˇ̌̌
t“0

“ Bt
´
Bs`ΦpexpptXq exppsY q expp´tXqq˘ˇ̌s“0

¯ˇ̌̌
t“0

“ Bt
´
Φ˚ Bs

`
expptXq exppsY q expp´tXq˘ˇ̌

s“0

¯ˇ̌̌
t“0

“ Φ˚ Bt
´
Bs` expptXq exppsY q expp´tXq˘ˇ̌s“0

¯ˇ̌̌
t“0

“ Φ˚rX,Y s.
�

Corollary 37.29. For any Lie subgroup H Ă G, h “ TeH is a Lie subalgebra of g “ TeG. �

Exercise 37.30. Another equivalent characterization of the Lie bracket on g is given by the
formula

(37.6) dfprX,Y sq “ BsBt pfpexppsXq expptY qq ´ fpexpptY q exppsXqqq|s“t“0 for f P C8pGq.
(a) Prove (37.6).
(b) Use (37.6) to give alternative proofs of Theorems 37.25 and 37.28.

37.5. Matrix groups. In many applications it is useful to observe that the definitions of the
Lie bracket and exponential map can be simplified when G is a Lie subgroup of GLpn,Fq for some
n ě 0 and F P tR,Cu. Let us first note that since GLpn,Fq itself is an open subset in the vector
space Fnˆn of all n-by-n matrices, its tangent space TA GLpn,Fq at every point A P GLpn,Fq is
canonically identified with Fnˆn, and for a Lie subgroup G Ă GLpn,Fq and A P G, TAG is then
a linear subspace of Fnˆn. This implies that vector fields on G are also functions GÑ Fnˆn, and
the Lie algebra g of G is also a linear subspace of

glpn,Fq “ Fnˆn.

Note that in the case F “ C, we are still regarding GLpn,Cq as a real smooth manifold, and
g Ă Cnˆn will in general be a real -linear subspace, but need not be complex linear.

Lemma 37.31. If G is a Lie subgroup of GLpn,Fq, then for any X P g Ă Fnˆn, the unique
left-invariant vector field XL P XLpGq with XLp1q “ X is given by

XLpAq “ AX.

Proof. This follows from Exercise 37.14 since for each A P G, the left-translation diffeomor-
phism LA : GÑ G is the restriction to G Ă GLpn,Fq Ă Fnˆn of a linear map Fnˆn Ñ Fnˆn. �
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Theorem 37.32. On a Lie subgroup G Ă GLpn,Fq, the exponential map exp : gÑ G is given
by the matrix exponential

exppXq “ eX :“
8ÿ
k“0

1

k!
Xk P Fnˆn.

Proof. For X P g and t P R, writing XL P XLpGq for the left-invariant vector field in
Lemma 37.31, the path γptq :“ etX P Fnˆn satisfies 9γptq “ etXX “ XLpγptqq and is therefore the
unique flow line of XL with γp0q “ 1 and 9γp0q “ X. According to (37.2), that is the same thing
as expptXq. �

The following non-obvious consequence of Theorem 37.32 is quite useful:

Corollary 37.33. If G is a Lie subgroup of GLpn,Fq and X P g Ă Fnˆn belongs to its Lie
algebra, then eX P G. �

Example 37.34. The Lie algebra of SOpnq Ă GLpn,Rq is the space sopnq Ă Rnˆn of an-
tisymmetric matrices, so Corollary 37.33 implies that eA is orthogonal whenever A P Rnˆn is
antisymmetric.

Theorem 37.35. For a Lie subgroup G Ă GLpn,Fq, the bracket on the Lie algebra g Ă Fnˆn
is given by the matrix commutator

rX,Ys “ XY ´YX P g Ă Fnˆn.

Proof. In this situation we can view the right hand side of (37.5) as a mixed second partial
derivative of a well-defined Fnˆn-valued function of s and t, and expanding by powers of s and t
gives

rX,Ys “ BtBs`etXesYe´tX˘ˇ̌s“t“0

“ BtBs` `1` tX`Opt2q˘ `1` sY `Ops2q˘ `1´ tX`Opt2q˘ˇ̌
s“t“0

“ BtBs`1` sY ` stpXY ´YXq ` . . .
˘ˇ̌
s“t“0

“ XY ´YX,

where the dots in the last line represent a sum of terms that are at least quadratic in either s or t,
and thus do not contribute to the relevant derivatve. �

As a non-obvious corollary, one obtains many interesting linear subspaces of the matrix algebra
Fnˆn that are closed under the commutator bracket, e.g. this holds for real antisymmetric matrices
(sopnq), complex anti-Hermitian matrices (upnq), traceless matrices (slpn,Fq), and in general any
space that arises as the tangent space at 1 to a smooth matrix group.

Exercise 37.36. Give an alternative proof of Theorem 37.35 using (37.6).

38. Bi-invariance

Recall that a tensor field on a Lie group G is called bi-invariant if it is both left- and right-
invariant. If G is abelian, then left-invariance and right-invariance are equivalent notions, thus
nontrivial bi-invariant tensors always exist, but in the non-abelian case, one should not generally
expect to find any. As was mentioned in the previous lecture, this rule has some notable exceptions,
and it is now time to discuss them. A useful by-product of this discussion will be a highly non-
obvious result about the exponential map, to be proved in the next lecture, implying for instance
that every matrix in SOpnq can be written as eA for some antisymmetric matrix A.
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38.1. The adjoint representation. Given a Lie group G, each element X P g in its Lie
algebra corresponds to a specific left-invariant vector field XL P XLpGq and right-invariant vector
field XR P XRpGq, given by

XLpgq “ TLgpXq, XRpgq “ TRgpXq.
For each g P G, there is then a unique element AdgpXq :“ Y P g such that Y Rpgq “ XLpgq, thus
defining a map

Adg : gÑ g.

We obtain a formula for AdgpXq by writing Y Rpgq “ TRgpAdgpXqq “ XLpgq “ TLgpXq, thus
AdgpXq “ TRg´1 ˝ TLgpXq “ T pRg´1 ˝ LgqpXq “: TCgpXq,

where the last expression refers to the derivative at e P G of the conjugation map

Cg :“ Rg´1 ˝ Lg : GÑ G : h ÞÑ ghg´1.

Since every X P g can be written as the derivative of t ÞÑ expptXq P G at t “ 0, a more direct
formula for Adg takes the form

(38.1) AdgpXq “ d

dt

`
g expptXqg´1

˘ˇ̌̌̌
t“0

.

The maps Cg and Adg have some algebraic properties that are useful to note. First, for each
individual g P G, Cg : GÑ G is a Lie group isomorphism, since

Cgpabq “ gabg´1 “ gag´1gbg´1 “ CgpaqCgpbq
and Cg´1 “ C´1

g . We can thus define a map

C : GÑ AutpGq : g ÞÑ Cg,

where AutpGq denotes the group of Lie group isomorphisms G Ñ G. Second, the map C : G Ñ
AutpGq defined in this way is also a group homomorphism, since

Cghpaq “ ghapghq´1 “ ghah´1g´1 “ Cgphah´1q “ Cg ˝ Chpaq.
As a consequence, the linear maps Adg : g Ñ g can also be packaged together as a group homo-
morphism

Ad : GÑ GLpgq : g ÞÑ Adg,

where GLpgq denotes the group of invertible linear transformations gÑ g, and Ad satisfies

AdghpXq “ TCghpXq “ T pCg ˝ ChqpXq “ TCg ˝ TChpXq “ Adg AdhpXq.
Since g is a real vector space of some finite dimension n ě 0, GLpgq is a Lie group isomorphic to
GLpn,Rq, and Ad : G Ñ GLpgq is then a Lie group homomorphism. It is known as the adjoint
representation (adjungierte Darstellung) of G.

This would be a good moment for a brief digression on representation theory. For a general
vector space V over F P tR,Cu, let us denote

glpV q :“  
A : V Ñ V

ˇ̌
A is F-linear

(
, GLpV q :“  

A P glpV q ˇ̌ A is a bijection
(
.

The latter is a group with respect to composition of maps, and we can make glpV q into a Lie
algebra by endowing it with the commutator bracket

rA,Bs :“ AB ´BA P glpV q for A,B P glpV q.
If V has finite dimension n ě 0, then GLpV q is an open subset of the finite-dimensional vector
space glpV q and thus carries a natural smooth structure that makes it a Lie group; moreover, its
Lie algebra is glpV q with the commutator bracket, as one sees by choosing a basis and applying
Theorem 37.35.
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Definition 38.1. Given a vector space V over F P tR,Cu and a group G, a representation
(Darstellung) of G on V is a group homomorphism

ρ : GÑ GLpV q.
If V is endowed with an inner product, then the representation ρ is called orthogonal (for F “ R)
or unitary (for F “ C) if ρpgq : V Ñ V preserves the inner product for every g P G. If G is a Lie
group and V is finite dimensional, we generally also require ρ : GÑ GLpV q to be a smooth map,
and thus a Lie group homomorphism.

Similarly, a representation of a Lie algebra g on V is a Lie algebra homomorphism

ρ : gÑ glpV q,
where glpV q is endowed with the commutator bracket.

In representation theory, one most frequently considers representations on Fn, which assign
to each element g P G a matrix ρpgq P GLpn,Fq so that the group multiplication law becomes
matrix multiplication. The adjoint representation Ad : G Ñ GLpgq can be understood from
this perspective as well after choosing a basis of g, though in general the choice of basis is not
canonical. By Theorem 37.28, every finite-dimensional Lie group representation ρ : G Ñ GLpV q
can be differentiated at e P G to define a Lie algebra representation ρ˚ : gÑ glpV q. Applying this
to Ad : GÑ GLpgq thus gives a Lie algebra representation

ad : gÑ glpgq : X ÞÑ adX .

An explicit formula for adX : gÑ g can be deduced from (38.1) and (37.5), namely

(38.2) adX Y “ d

ds
AdexppsXqpY q

ˇ̌̌̌
s“0

“ Bs
´
Bt` exppsXq expptY q expp´sXq˘ˇ̌t“0

¯ˇ̌̌
s“0

“ rX,Y s.
The fact that ad is a Lie algebra homomorphism thus means that for all X,Y, Z P g,

adrX,Y s Z “ rrX,Y s, Zs “ adX adY Z ´ adY adX Z “ rX, rY, Zss ´ rY, rX,Zss,
which is equivalent to the Jacobi identity.

Let us say that an element X P g is Ad-invariant if AdgpXq “ X for all g P G. Returning
to the origin of this discussion, the definition of Ad : G Ñ GLpgq immediately gives rise to the
following application:

Proposition 38.2. For X P g, the associated left-invariant vector field XL P XLpGq is also
bi-invariant if and only if X is Ad-invariant. �

Exercise 38.3. For a Lie group G and two elements X,Y P g in its Lie algebra, prove

AdexppXqpY q “ eadX pY q :“
ˆ
1` adX ` 1

2!
padXq2 ` 1

3!
padX q3 ` . . .

˙
Y

“ Y ` rX,Y s ` 1

2!

“
X, rX,Y s‰` 1

3!

“
X, rX, rX,Y ss‰` . . . .

38.2. Bi-invariant metrics. If G is abelian, then the adjoint representation is trivial, mean-
ing Adg P GLpgq is the identity map for every g P G, and every X P g is therefore Ad-invariant; in
light of Proposition 38.2, this is consistent with our initial observation that all left-invariant vector
fields in this case are also bi-invariant. For a non-abelian group, there is generally no reason to
expect the existence of any nontrivial Ad-invariant elements in g. One gets better results however
by focusing on certain other algebraic structures that can be imposed on g, for instance, inner
products. Any nondegenerate symmetric bilinear form x , y on g gives rise to unique left-invariant
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and right-invariant pseudo-Riemannian metrics x , yL, x , yR P ΓpT 0
2Gq on G, characterized by the

relations

xX,Y y “ xXLpgq, Y LpgqyL “ xXRpgq, Y RpgqyR for all g P G, X,Y P g,

and these metrics are positive if and only if x , y is a positive inner product on g. In light of the
relation pAdgXqRpgq “ XLpgq, the two metrics x , yL and x , yR are then identical at some point
g P G if and only if xX,Y y “ xAdgpXq,AdgpY qy for all X,Y P g. We say that a scalar-valued
bilinear form x , y on g is Ad-invariant if xAdgpXq,AdgpY qy “ xX,Y y holds for all g P G and
X,Y P g. This discussion proves:

Proposition 38.4. A left- or right-invariant pseudo-Riemannian metric on G is bi-invariant
if and only if its restriction to a bilinear form on TeG “ g is Ad-invariant. �

This result implies that a Lie group G admits a bi-invariant Riemannian metric if and only if
its Lie algebra g admits an Ad-invariant inner product. We’ll come back to the existence question
for Ad-invariant inner products in §38.4 below.

Exercise 38.5. For X,Y P Cnˆn, define the symmetric bilinear pairing

xX,Yy :“ ´ tr pXYq P C.

For any Lie subgroup G Ă GLpn,Cq, restricting x , y to the real subspace g Ă glpn,Cq “ Cnˆn
defines a symmetric complex-valued real-bilinear form on g. (Note that since GLpn,Rq is naturally
a subgroup of GLpn,Cq, this includes the Lie subgroups of GLpn,Rq, on which the pairing will
automatically be real valued.) Prove:

(a) For every Lie subgroup G Ă GLpn,Cq, the pairing x , y on g is Ad-invariant.
(b) For G “ SOpnq or Opnq, x , y defines an Ad-invariant (positive) inner product on sopnq.
(c) For G “ Upnq or SUpnq, x , y is real-valued on upnq or supnq respectively and also defines

an Ad-invariant inner product.87

Hint: Compare trpXYq with tr
`pXYq:˘.

(d) For n “ 2 and G “ SLp2,Rq or GLp2,Rq, x , y defines a nondegenerate symmetric bilinear
form on slp2,Rq or glp2,Rq respectively. What is its signature?
Hint: There might be cleverer methods, but it isn’t too hard to guess an explicit or-
thonormal basis of slp2,Rq with respect to x , y, and then extend it to an orthonormal
basis of glp2,Rq.

38.3. Haar measures and the modular function. We next consider how to define inte-
grals of functions on an n-dimensional Lie group G for some n P N. As shown in Exercise 37.15, G
is parallelizable, and therefore also orientable, so it admits volume forms. The most natural choice
of volume form will of course be one that is left- and/or right-invariant, and Proposition 37.13 also
guarantees a kind of uniqueness for these: for every ω P ΛnTe̊ G, there are unique left-invariant
and right-invariant n-forms ωL, ωR P ΩnpGq that match ω at e P G, and both will necessarily be
volume forms if ω ‰ 0. If we assume the latter, orient G so that ωL ą 0 and then define volumes
of measurable regions U Ă G by

µpUq :“
ż
U

ωL

the result is a measure µ on G that is left-invariant in the sense that for each measurable subset
U Ă G,

µpLgpUqq “ µpUq for all g P G,
87This is a good moment to emphasize that while upnq and supnq naturally live inside glpn,Cq “ Cnˆn, they

are not complex but only real subspaces, so inner products on these subspaces are required to be R-bilinear, not
sesquilinear.
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and the integrals of functions f on G therefore satisfyż
G

pf ˝ Lgq dµ “
ż
G

f dµ for all g P G.

This follows easily from the left-invariance of ωL since
ş
G
pf˝Lgq dµ “ ş

G
pf˝LgqωL “ ş

G
Lg̊ pf ωLq “ş

LgpGq f ω
L “ ş

G
f ωL “ ş

G
f dµ; note that in defining the orientation of G so that ωL ą 0, we

have ensured that the diffeomorphism Lg : G Ñ G is orientation preserving for every g P G. The
left-invariant measure µ defined on G in this way is called a left Haar measure. It is not unique,
but since dimΛnTe̊ G “ 1, all possible choices of µ are related to each other by multiplication with
a positive constant, and if G is compact, one can single out a canonical choice by requiring

µpGq “
ż
G

ωL “ 1.

In the compact case we refer to “the” left Haar measure as the particular choice of µ that satisfies
this condition. Note that there are two possible choices of the underlying left-invariant volume
form ωL used to define µ; one can replace ωL with ´ωL without changing the value of integrals
such as

ş
U
f dµ :“ ş

U
f ωL, as doing so also reverses the orientation of G and thus inserts a sign to

cancel the change in ωL.
For everything said above about left Haar measures, one could equally well replace “left” with

“right” and obtain a similarly sensible notion, namely a right Haar measure, which satisfiesż
G

pf ˝Rgq dµ “
ż
G

f dµ for all g P G,

and which can again be fixed uniquely via the normalization condition µpGq “ 1 if G is compact. If
a left Haar measure is also a right Haar measure, it is simply called a Haar measure, and we will
show in a moment that this always holds if G is compact. When there is no danger of confusion,
it is common to write the integral of a function f on G with respect to a Haar measure asż

G

fpgq dg :“
ż
G

f dµ.

The question now is this: when does a bi-invariant Haar measure exist, or equivalently, when
is a left Haar measure also a right Haar measure?

The naive way to think about this question turns out to be wrong: one would hope at first
to solve the problem by finding a bi-invariant volume form, or equivalently, finding conditions
under which a left-invariant volume form must also be right-invariant. The reason this won’t
work as often as one might like has to do with orientations: every Lie group is orientable, but
not all choices of orientation are equally good, e.g. not all are invariant under both right and
left translations. Let us say that an orientation of G is left-invariant if the diffeomorphisms
Lg : G Ñ G are all orientation preserving; the notions of right-invariant and bi-invariant
orientations can be defined similarly. On a connected Lie group, every orientation is bi-invariant,
because the existence of continuous paths from arbitrary g P G to e P G means that all of the
diffeomorphisms Lg, Rg : GÑ G can be deformed through continuous families of diffeomorphisms
to the identity map, which is orientation preserving. But on a disconnected group, orientations
can be switched independently on separate connected components, and this can affect whether
they are left- and/or right-invariant. Clearly, a bi-invariant volume form determines a bi-invariant
orientation. It turns out however that some of the simplest interesting Lie groups do not admit
any bi-invariant orientation:
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Exercise 38.6. On Op2q, let oL and oR denote choices of left- and right-invariant orientations
respectively. Show that if oL and oR match on the identity component SOp2q Ă Op2q, then they

differ on the component containing the reflection
ˆ
1 0

0 ´1
˙
.

The conundrum of invariant orientations is the secret reason why we have been focusing our
attention on invariant measures88 rather than volume forms: a measure defined via a volume form
can be bi-invariant even if the volume form itself is not. Two smooth volume forms ω, ω1 P ΩnpGq
define the same measure on G if and only if ω “ ˘ω1, where the sign ˘ will be locally constant
but may differ on different connected components of G. Given a measure defined via the volume
form ω, a diffeomorphism ϕ : G Ñ G will thus preserve this measure if and only if ϕ˚ω “ ˘ω,
where again the sign ˘ is locally constant but may vary.

Assume now that G is a Lie group, pick a nonzero element ω P ΛnTe̊ G and let ωL, ωR P
ΩnpGq denote the unique left-invariant and right-invariant volume forms respectively such that
ωLe “ ωRe “ ω. This means by definition that for every g P G, and X1, . . . , Xn P g,

ωpX1, . . . , Xnq “ ωLg pXL
1 pgq, . . . , XL

n pgqq “ ωRg pXR
1 pgq, . . . , XR

n pgqq,
and the definition of the adjoint representation also implies

ωpAdgpX1q, . . . ,AdgpXnqq “ ωRg pXL
1 pgq, . . . , XL

n pgqq.
Since ω is a top-dimensional form on g, a relationship between the left hand sides of these two
equations is given by

ωpAdgpX1q, . . . ,AdgpXnqq “ det pAdgq ¨ ωpX1, . . . , Xnq,
where det pAdgq P R is by definition the determinant of the matrix representing Adg : g Ñ g in
any choice of basis for g. The resulting relation between ωL and ωR is

(38.3) ωRg “ det pAdgq ¨ ωLg ,
and we conclude that the volume forms ωL and ωR define the same measure on G if and only if
det pAdgq “ ˘1 for every g P G. Notice that if this is true for one choice of nonzero ω P ΛnTe̊ G,
then it will be true for all of them, as they are all related to each other by nonzero constant factors.
It is traditional to express this condition in terms of the so-called modular function

∆ : GÑ Rą0 : g ÞÑ |det pAdgq| ,
which is the composition of the two Lie group homomorphisms Ad : G Ñ GLpgq and | det | :
GLpgq Ñ Rą0 and is therefore also a Lie group homomorphism; here the set of positive real
numbers Rą0 is regarded as a Lie group with respect to multiplication. The Lie group G is called
unimodular if its modular function is identically equal to 1. The preceding discussion proves:

Theorem 38.7. The following conditions on a Lie group G are equivalent:
(i) G admits a bi-invariant Haar measure.
(ii) Every left or right Haar measure on G is bi-invariant.
(iii) G is unimodular.

�

To make this result truly useful, we have:

Theorem 38.8. Every compact Lie group is unimodular.

88One could equivalently frame the discussion in terms of invariant volume elements, which do not require any
choice of orientation in order to define integrals. Two volume forms determine the same volume element if and only
if they differ at most by a sign at each point; see §11.4 in the notes from last semester.
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Proof. The image of the modular function ∆ : GÑ Rą0 is a subgroup of Rą0, and it is also
compact if G is compact, since ∆ is continuous. But the only compact subgroup of Rą0 is the
trivial one. �

Exercise 38.9. Prove the following alternative characterization of the modular function: for
any left-invariant volume form ωL P ΩnpGq and every g P G, ωL ” det pAdgq ¨Rg̊ωL.
Hint: Show first that Rg̊ω

L is also left-invariant for each g P G.
Exercise 38.10. Prove that every Lie group admitting a bi-invariant pseudo-Riemannian

metric is also unimodular.
Hint: Every matrix in Opk, ℓq has determinant ˘1.

Remark 38.11. Exercises 38.10 and 38.5(d) together imply that SLp2,Rq and GLp2,Rq are
unimodular. There are in fact plenty of Lie groups that are noncompact and non-abelian but
nonetheless unimodular!

Exercise 38.12. A popular example of a Lie group that is not unimodular is the following
connected subgroup of the affine group on R (see Example 37.9):

Aff`pRq :“  
ϕ P DiffpRq ˇ̌ ϕptq “ at` b for some a ą 0 and b P R

(
.

There is a global chart px, yq identifying Aff`pRq with the upper half-plane ty ą 0u Ă R2 such that
a point px, yq is identified with the affine transformation t ÞÑ yt ` x. The identity Id P Aff`pRq
thus has coordinates px, yq “ p0, 1q.

(a) Find the unique functions fL, fR : Aff`pRq Ñ p0,8q such that fLpIdq “ fRpIdq “ 1

and the volume forms fL dx^ dy, fR dx^ dy P Ω2pAff`pRqq are left-invariant and right-
invariant respectively.

(b) Show that the modular function ∆ : Aff`pRq Ñ Rą0 is given by ∆px, yq “ y.

38.4. Applications of the Haar measure. The most popular application of Haar integrals
is an averaging trick that underlies several fundamental results in representation theory, starting
with the following:

Theorem 38.13. Suppose G is a compact Lie group and ρ : G Ñ GLpV q is a representation
of G on a vector space V over F P tR,Cu. Then V can be equipped with a positive inner product
that makes ρ orthogonal (if F “ R) or unitary (if F “ C).

Proof. Choose any inner product p , q on V , along with a right Haar measure on G, and
define a new inner product x , y on V by

xv, wy :“
ż
G

pρpgqv, ρpgqwq dg.
It is easy to check that this is an inner product; in particular, xv, vy ą 0 for all v ‰ 0 P V since the
integrand is then positive for all g P G.89 For every h P G, one then has

xρphqv, ρphqwy “
ż
G

pρpgqρphqv, ρpgqρphqwq dg “
ż
G

pρpghqv, ρpghqwq dg “
ż
G

pρpgqv, ρpgqwq dg
“ xv, wy,

where we’ve used the right-invariance relation
ş
G
fpghq dg “ ş

G
fpgq dg. �

We have an immediate application of this theorem that has nothing intrinsically to do with
representation theory: applying it to the adjoint representation and recalling Proposition 38.4 gives

89Positivity of the inner product is explicitly required here—one cannot do this trick in general with indefinite
nondegenerate bilinear forms.
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Corollary 38.14. For every compact Lie group G, the Lie algebra g admits an Ad-invariant
positive inner product, and G therefore admits a bi-invariant Riemannian metric. �

Remark 38.15. Corollary 38.14 obviously also holds for groups that are not necessarily com-
pact but abelian, e.g. vector spaces with their additive structure, and therefore also for any group
that is the Cartesian product of a compact Lie group with a vector space. A theorem of Milnor
[Mil76] states that every Lie group admitting a bi-invariant Riemannian metric is in fact of this
form.

Exercise 38.16. A Lie algebra g is called simple if it contains no nontrivial proper Lie
subalgebra h Ă g such that rX,Y s P h for every X P g and Y P h. In particular, if G is a Lie group
whose Lie algebra g is simple, then no nontrivial proper subspace of g is invariant under the map
adX : gÑ g for every X P g. Prove:

(a) If a Lie group G contains a normal Lie subgroup H Ă G with 0 ă dimH ă dimG, then
its Lie algebra is not simple.

(b) The hypothesis of part (a) applies e.g. to GLpn,Fq and Upnq for all n ě 2.
(c) sop3q and sup2q are simple.
(d) If G is a Lie group admitting a bi-invariant Riemannian metric and its Lie algebra g is

simple, then its bi-invariant metric is unique up to positive scaling.
Hint: If x , y and x , y1 are two Ad-invariant inner products on g, then xX,Y y1 “ xX,AY y
for a linear map A : g Ñ g that is symmetric with respect to x , y and commutes with
Adg for every g P G. Deduce from the latter that for every X P g, adX : gÑ g preserves
each eigenspace of A, and conclude that there can only be one eigenspace.

(e) If G is a connected compact Lie group whose Lie algebra is not simple, then G admits
two bi-invariant Riemannian metrics that are not scalar multiples of each other.
Hint: If h Ă g is invariant under adX for every X P g, show that the same is true for its
orthogonal complement hK Ă g with respect to any Ad-invariant inner product. Then
argue that h and hK are each invariant under the adjoint representation of G, so you are
free to rescale an Ad-invariant inner product independently on the two factors.

You may have noticed that the proof of Theorem 38.13 didn’t actually require the bi-invariance
of the Haar measure; right-invariance was enough. The next two exercises do make use of bi-
invariance.

Exercise 38.17. Prove: on a unimodular Lie group G, any Haar measure satisfiesż
G

fpgq dg “
ż
G

fpg´1q dg
for compactly-supported smooth functions f on G.
Hint: If µL is a left-invariant volume form and G is oriented so that µL ą 0, let G1 denote the
same group but with a possibly different orientation chosen so that the inversion map i : G1 Ñ G :

g ÞÑ g´1 is orientation preserving. What can you now say about i˚µL? (See Exercise 37.16.)

Exercise 38.18. Given a Lie group G and representation ρ : GÑ GLpV q, consider the linear
subspace

V ρ :“  
v P V ˇ̌

ρpgqv “ v for all g P G( .
If G is compact, we can use the Haar measure to define a linear map

Πρ : V Ñ V : v ÞÑ
ż
G

ρpgqv dg.
(a) Show that Πρ is the projection of V onto V ρ along a complementary subspace W ρ Ă V

that is also G-invariant, meaning ρpgqpW ρq “W ρ for every g P G.
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(b) If V carries an inner product such that the representation ρ is orthogonal/unitary, show
that Πρ is self-adjoint.

(c) Suppose V is finite dimensional, and tρτ : GÑ GLpV quτPRd is a family of representations
depending smoothly on the parameter τ P Rd (in other words, the map RdˆGÑ GLpV q :
pτ, gq ÞÑ ρτ pgq is smooth). Prove thatď

τPRd

tτu ˆ V ρτ Ă Rd ˆ V

is then a smooth subbundle of the trivial vector bundle Rd ˆ V over Rd.
Hint: For a fixed σ P Rd and τ P Rd nearby, what can you say about the linear maps
V ρσ ‘W ρσ Ñ V : pv, wq ÞÑ Πρτ v ` p1´Πρτ qw?

39. Geometry and topology of Lie groups

39.1. Bi-invariant Riemannian geometry. Now that we know bi-invariant Riemannian
metrics exist on a substantial subclass of the Lie groups we are interested in, it is worth asking
what kinds of Riemannian manifolds these Lie groups are. This ties in with another important
question: if G is a Lie group carrying a pseudo-Riemannian metric, then the symbol exp has two
possible interpretations, one based on geodesics and the other based on 1-parameter subgroups
RÑ G. It would be nice to know whether these two versions of the exponential map are the same
thing. In general, they will not be unless there is a condition relating the metric to the Lie group
structure. Left-invariance or right-invariance would be natural conditions to impose, but we will
see in Exercise 39.13 that neither on its own is sufficent. It turns out that together, they are:

Theorem 39.1. On a Lie group G endowed with a bi-invariant pseudo-Riemannian metric,
every flow line of a left- or right-invariant vector field is also a geodesic, and conversely, every
geodesic is also a flow line of both a left-invariant and a right-invariant vector field.

Before proving this statement, let’s examine some of its consequences. One of them derives
from Exercise 37.17:

Corollary 39.2. Every Lie group with a bi-invariant pseudo-Riemannian metric is geodesi-
cally complete. �

Remark 39.3. It’s worth noting that for metrics with positive signature, geodesic completeness
also follows from left- or right-invariance alone; bi-invariance is not required. This is because if
x , y is (say) left-invariant, then the diffeomorphisms Lg : G Ñ G are isometries for every g, and
as a consequence, G admits an isometry carrying any point to any other point, implying that its
injectivity radius is constant. As noted in Exercise 34.23, injpM, gq ą 0 implies that pM, gq is
geodesically complete.

Now suppose G is connected and carries a bi-invariant Riemannian metric x , y. Geodesic
completeness implies via the Hopf-Rinow theorem that any two points in G are connected by a
geodesic: in particular, there exist geodesics connecting e P G to any other point g P G, and as flow
lines of left-invariant vector fields, such geodesics take the form expptXq for X P g. This implies:

Corollary 39.4. For any connected Lie group G admitting a bi-invariant Riemannian metric,
the map exp : gÑ G is surjective. �

By Corollary 38.14, this result applies to every compact connected Lie group: popular examples
include SOpnq, Upnq and SUpnq. The next example shows that it is not true for arbitrary connected
Lie groups.

Example 39.5. Prove:
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(a) If G is a Lie group and g P G is in the image of exp : gÑ G, then g “ h2 for some h P G.
(b) The matrices

ˆ´1 0

0 ´2
˙
and

ˆ´1 1

0 ´1
˙
both lie in the identity component of GLp2,Rq

but not in the image of exp : glp2,Rq Ñ GLp2,Rq.
Hint: What kind of spectra could their square roots have?

(c) If A P slp2,Rq has two negative eigenvalues not equal to ´1, then it is not in the image
of exp : slp2,Rq Ñ SLp2,Rq.

Remark 39.6. The result of Exercise 38.5(d) implies that GLp2,Rq and SLp2,Rq both ad-
mit bi-invariant pseudo-Riemannian metrics of Lorentzian signature. This illustrates yet another
failure of the Hopf-Rinow theorem in the pseudo-Riemannian setting: existence of an indefinite bi-
invariant pseudo-Riemannian metric on a connected Lie group does not suffice to make exp : gÑ G

surjective.

Remark 39.7. On the other hand, one can use the Jordan canonical form to show that
exp : glpn,Cq Ñ GLpn,Cq is surjective for every n P N, in spite of noncompactness (see [War83,
Chapter 3, Exercise 15]).

The proof of Theorem 39.1 hinges on a formula for covariant derivatives of left- or right-
invariant vector fields in the presence of a bi-invariant metric. Let us first recall a relation that
was derived in the course of proving the existence and uniqueness of the Levi-Cività connection
last semester (see Equation (22.2)):

Lemma 39.8 (Koszul formula). On any pseudo-Riemannian manifold pM, gq with Levi-Cività
connection ∇, the relation

2x∇XY, Zy “ LXxY, Zy ` LY xZ,Xy ´ LZxX,Y y
` xrX,Y s, Zy ´ xrX,Zs, Y y ´ xrY, Zs, Xy

holds for all X,Y, Z P XpMq. �

Lemma 39.9. If x , y is the restriction to g “ TeG of a bi-invariant pseudo-Riemannian metric,
then for every X P g, the map adX : gÑ g is antisymmetric with respect to this pairing.

Proof. By Proposition 38.4, Adg : g Ñ g is orthogonal for every g P G, and differentiating
the relation xAdexpptXqpY q,AdexpptXqpZqy “ xY, Zy at t “ 0 gives xadX Y, Zy`xY, adX Zy “ 0. �

Exercise 39.10. Lemma 39.9 has a converse of sorts: if G is connected and x , y is a (possibly
indefinite but nondegenerate) inner product on g for which adX : gÑ g is antisymmetric for every
X P g, then x , y is Ad-invariant. Prove it!
Hint: Think about the image of the Lie group homomorphism Ad : GÑ GLpgq.

Proposition 39.11. If x , y is a bi-invariant pseudo-Riemannian metric on G with Levi-
Cività connection ∇ and X,Y P XpGq are either both left-invariant or both right-invariant, then
∇XY “ 1

2
rX,Y s.

Proof. Assume X,Y P XLpGq, and choose a third left-invariant vector field Z P XLpGq. Since
x , y is also left-invariant, the pairings xX,Y y, xY, Zy and xX,Zy are all constant functions on G,
and using (38.2) and Lemma 39.9, the Koszul formula in Lemma 39.8 becomes

2x∇XY, Zy “ xrX,Y s, Zy ´ xrX,Zs, Y y ´ xrY, Zs, Xy
“ xrX,Y s, Zy ` xadZ X,Y y ` xadZ Y,Xy “ xrX,Y s, Zy.

This implies the result for all left-invariant vector fields, since Z P XLpGq can be chosen arbitrarily.
The same argument works for right-invariant vector fields. �
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Proof of Theorem 39.1. Proposition 39.11 implies ∇XX “ 0 whenever X P XpGq is either
left- or right-invariant, thus all of its flow lines are geodesics. Conversely, every geodesic γ satisfies
9γp0q “ XLpγp0qq “ Y Rpγp0qq for unique choices of invariant vector fields XL P XLpGq and
Y R P XRpGq, and γ therefore matches the geodesics that are defined as flow lines of these vector
fields through γp0q. �

Exercise 39.12. Suppose G is a Lie group with a bi-invariant Riemannian metric x , y, and
∇ is its Levi-Cività connection.

(a) Deduce from Proposition 39.11 that for any left-invariant vector fields X,Y, Z P XLpGq,
the Riemann tensor of ∇ satisfies

RpX,Y qZ “ 1

4
rZ, rX,Y ss.

(b) Prove that the sectional curvature of pG, x , yq is everywhere nonnegative: more precisely,
if X,Y P g are orthonormal and P Ă TgG is spanned by the corresponding left-invariant
vector fields XLpgq, Y Lpgq at some point g P G, then

KSpP q “ 1

4
|rX,Y s|2 .

Exercise 39.13. Suppose G is a connected Lie group equipped with a left-invariant pseudo-
Riemannian metric x , y for which every Lie group homomorphism RÑ G is also a geodesic. Prove
that adX : g Ñ g is antisymmetric with respect to x , y for every X P g. It then follows from
Exercise 39.10 that x , ymust in fact by bi-invariant. Having proved this, derive the same conclusion
again starting from the assumption that x , y is right- (but not necessarily left-) invariant.
Hint: Start by using the Koszul formula to deduce something about xadZ X,Xy for every X,Z P g.

Exercise 39.14. Show that for a left- or right-invariant pseudo-Riemannian metric x , y on
a Lie group G, the inversion map i : G Ñ G : g ÞÑ g´1 is an isometry if and only if x , y is
bi-invariant.

39.2. The examples SOp3q and SUp2q. The remainder of this lecture will focus largely on
topological properties of Lie groups, but we begin the discussion with something very concrete.
The groups SOp3q and SUp2q have a number of special properties that make them simultaneously
a good illustration of the general theory and interesting objects of study in their own right. Their
close relationship to each other is important to understand if you want to grasp the big picture on
the interplay between Lie groups and their Lie algebras: in short, their Lie algebras are isomorphic,
which tells you that SOp3q and SUp2q should appear isomorphic in a neighborhood of the identity,
but despite both being compact and connected, they are not isomorphic groups, nor are they
homeomorphic manifolds. The would-be diffeomorphism that one attempts to construct starting
from a Lie algebra isomorphism sup2q –Ñ sop3q turns out instead to be a two-sheeted covering
map SUp2q Ñ SOp3q, thus presenting SUp2q as the universal cover of SOp3q. This will ensure
the relevance of SUp2q when we later talk about spin structures and Dirac operators on oriented
Riemannian manifolds. We will also see in §39.3 that the existence of the cover SUp2q Ñ SOp3q is
a special case of a general theorem.

As a warmup, let us take a look at the 1-dimensional, compact, connected and abelian Lie
group SOp2q:

Exercise 39.15. Show that the matrix J0 :“
ˆ
0 ´1
1 0

˙
spans sop2q Ă R2ˆ2, and every

A P SOp2q can be written as eθJ0 for some (non-unique) θ P R. (Give a direct proof of this,
without appealing to Corollary 39.4.)
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One-dimensional Lie algebras like sop2q are not very interesting, since they are always abelian.
The Lie algebra sop3q is somewhat more exciting: it consists of all real antisymmetric 3-by-3
matrices, and is thus three-dimensional, with a natural basis given by the matrices

(39.1) J1 :“
¨̋
0 0 0

0 0 ´1
0 1 0

‚̨, J2 :“
¨̋

0 0 1

0 0 0

´1 0 0

‚̨, and J3 :“
¨̋
0 ´1 0

1 0 0

0 0 0

‚̨.
I call these basis vectors “natural” because they have straightforward geometric interpretations:
writing e1, e2, e3 P R3 for the standard basis of R3, the linear transformation J1 : R3 Ñ R3

annihilates the span of e1 while rotating its orthogonal complement 90 degrees counterclockwise
with respect to the ordered basis pe2, e3q, and J2 and J3 admit similar characterizations after
making cyclic perturbations of the numbers 1, 2, 3. The commutators of these matrices are easily
computed: we have

rJ1,J2s “ J3, rJ2,J3s “ J1, and rJ3,J1s “ J2,

and the Lie bracket on sop3q is fully determined by these relations due to bilinearity and anti-
symmetry. Now, even if you have never studied Lie groups and Lie algebras before this course, I
guarantee that you have seen this particular Lie algebra before, namely in classical 3-dimensional
vector calculus. The cross product on R3 can be characterized as the unique antisymmetric
bilinear map R3 ˆ R3 Ñ R3 : pv,wq ÞÑ v ˆw such that

e1 ˆ e2 “ e3, e2 ˆ e3 “ e1, and e3 ˆ e1 “ e2.

The next exercise clarifies in what sense the elements of SOp3q define “rotations” on R3, and in so
doing, gives a new interpretation of the cross product on R3: vˆw measures the degree to which
rotations about v fail to commute with rotations about w.

Exercise 39.16. Define Φ : R3 Ñ sop3q as the unique linear map with Φpeiq “ Ji for i “ 1, 2, 3.
(a) Prove that pR3,ˆq is a Lie algebra and Φ : R3 Ñ sop3q is a Lie algebra isomorphism.
(b) For v P R3, show that the transformation Φpvq : R3 Ñ R3 is given by Φpvqw “ v ˆw.

Hint: Verify that the formula holds when v and w are standard basis vectors.
(c) Prove that for all u,v,w P R3, the cross product and Euclidean inner product x , y satisfy`

uˆ pv ˆwq˘` `
v ˆ pw ˆ uq˘` `

w ˆ puˆ vq˘ “ 0,

xuˆ v,wy ` xv,uˆwy “ 0

Hint: Don’t try too hard! Just use the results of parts (a) and (b).
(d) Use your previous knowledge of the cross product to prove that for any v P R3 with

|v| “ 1, the transformation Φpvq : R3 Ñ R3 annihilates the subspace spanned by v and
rotates its orthogonal complement by a right angle.

(e) For any v P R3 with |v| “ 1 and θ P R, show that eθΦpvq P SOp3q is a rotation of angle
θ about the subspace spanned by v. Conclude that for v P R3, eΦpvq “ 1 if and only if
|v| P 2πZ.
Hint: An intelligent choice of basis reduces this to Exercise 39.15.

(f) Show that everyA P SOp3q has 1 as an eigenvalue, and the dimension of the corresponding
eigenspace is 1 unless A “ 1.

(g) Show that whenever A P SOp3q has a 1-dimensional eigenspace ℓ Ă R3 with eigenvalue 1,
A defines a rotation on the orthogonal complement of ℓ, and A “ eΦpvq for some v P ℓ.

Now let’s consider the Lie algebra of SUp2q. It consists of all complex anti-Hermitian 2-by-2
matrices that are also traceless: note that in contrast to the real case, being traceless does not
follow from the anti-Hermitian requirement, but is an extra condition. (This corresponds to the
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fact that SOpnq is a connected component of Opnq and thus has the same Lie algebra, while SUpnq
is by contrast a codimension-one submanifold of Upnq; see Exercise 4.25 from last semester.) It
would be hard to claim that sup2q has a “canonical” basis, but it does have one that is traditionally
favored: it is written in terms of the so-called Pauli matrices

σ1 :“
ˆ
0 1

1 0

˙
, σ2 :“

ˆ
0 ´i
i 0

˙
, σ3 :“

ˆ
1 0

0 ´1
˙
.

These have their origin in quantum mechanics, where they are interpreted as the Hermitian op-
erators (on a complex 2-dimensional Hilbert space) representing the “spin” of a fermionic particle
about the axes spanned by e1, e2, e3 respectively in R3. Since they are traceless and Hermitian,
multiplying them by i makes them traceless and anti-Hermitian, thus forming a basis of sup2q. If
you now compute their commutators, you may soon suspect that you should have first multiplied
them all by ´ 1

2
, because doing so gives rise to the familiar relations„

´ i
2
σ1,´ i

2
σ2


“ ´ i

2
σ3,

„
´ i
2
σ2,´ i

2
σ3


“ ´ i

2
σ1, and

„
´ i
2
σ3,´ i

2
σ1


“ ´ i

2
σ2,

This proves:

Proposition 39.17. The unique linear map sup2q Ñ sop3q that sends ´ i
2
σk ÞÑ Jk for each

k “ 1, 2, 3 is a Lie algebra isomorphism. �

With an isomorphism sup2q Ñ sop3q in hand, we can now observe something rather funny.
Suppose Ψ : SOp3q Ñ SUp2q is a Lie group homomorphism whose derivative Ψ˚ : sop3q Ñ sup2q at
the identity is the isomorphism in Proposition 39.17. In particular, Ψ˚J3 “ ´ i

2
σ3 “

ˆ´i{2 0

0 i{2
˙
,

thus Ψ must give a relation between the corresponding 1-parameter subgroups, namely

ΨpetJ3q “ e´itσ3{2 “
ˆ
e´it{2 0

0 eit{2
˙
.

But this is absurd: the left hand side of this expression is a 2π-periodic function of t, and the right
hand side is not—its minimal period is 4π. In particular, while etJ3 P SOp3q traverses the family
of rotations about e3 exactly once as t goes from 0 to 2π, e´itσ3{2 P SUp2q traverses an embedded
path from 1 to ´1, making Ψ at best a “double-valued” map. One concludes that there is no Lie
group homomorphism SOp3q Ñ SUp2q whose derivative is the isomorphism in Proposition 39.17.
In fact, Exercise 39.21 below will show that there are no nontrivial Lie group homomorphisms
SOp3q Ñ SUp2q at all.

On the other hand, one gets better results by looking for a Lie group homomorphism Ψ :

SUp2q Ñ SOp3q: if we assume Ψ˚ : sup2q Ñ sop3q is the isomorphism in Proposition 39.17, the
discussion above implies

Ψpe´itσ3{2q “ etJ3 .

This does not lead to a contradiction, but it is also clear that Ψ in this situation cannot be a
homeomorphism, as composing the embedding R{4πZ Ñ SUp2q : t ÞÑ e´itσ3 with Ψ produces a
double covering of the aforementioned loop of rotations in SOp3q. A hint of what’s really going on
here is provided by the following exercise.

Exercise 39.18. Prove that if G andH are connected Lie groups and Φ : GÑ H is a Lie group
homomorphism for which the induced Lie algebra homomorphism Φ˚ : g Ñ h is an isomorphism,
then Φ is a covering map.
Hint: For inspiration, see the proof of Lemma 36.19.

As it turns out, there is an easy trick for producing concrete examples of covering maps
SUp2q Ñ SOp3q. It is essentially the adjoint representation:
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Exercise 39.19. Recall that the center of a group G is the subgroup consisting of all elements
that commute with everything in G.

(a) Show that the center of SUp2q contains only the two elements 1 and ´1.
(b) Show that SUp2q is diffeomorphic to S3.

Hint: What does the image of the map SUp2q Ñ C2 : A ÞÑ Av look like for a fixed unit
vector v P C2?

Now fix an Ad-invariant (positive) inner product x , y on sup2q; its existence is guaranteed by
Corollary 38.14 since SUp2q is compact, and Exercise 38.5 gives an explicit example. We can
then denote by Opsup2qq Ă GLpsup2qq the group of linear transformations on sup2q that preserve
x , y, and define SOpsup2qq Ă Opsup2qq as the identity component. The dimension of sup2q is
three, thus any choice of orthonormal basis for sup2q determines a Lie group isomorphism of
SOpsup2qq with SOp3q. Since x , y is Ad-invariant and SUp2q is connected, the adjoint representation
Ad : SUp2q Ñ GLpsup2qq now takes values in SOpsup2qq and thus defines a Lie group homomorphism

Ad : SUp2q Ñ SOpsup2qq – SOp3q.
(c) Show that the Lie algebra homomorphism ad : sup2q Ñ sopsup2qq is an isomorphism.
(d) It follows now from Exercise 39.18 that Ad : SUp2q Ñ SOpsup2qq is a covering map. Show

that its degree is 2, i.e. every element of SOpsup2qq has exactly two elements of SUp2q
in its preimage. Show moreover that for any nontrivial A P sup2q, there exists a unique
τ ą 0 such that the path r0, τ s Ñ SUp2q : t ÞÑ etA defines an embedded path from 1

to ´1, while r0, τ s Ñ SOpsup2qq : t ÞÑ AdeτA is a closed loop containing all the rotations
about a fixed 1-dimensional subspace in sup2q – R3.

(e) Find a diffeomorphism between SOp3q and RP
3.

Remark 39.20. There are also more geometrically intuitive ways to see the diffeomorphism
SOp3q – RP

3 than via the covering map constructed in Exercise 39.19. See for example the
explanation at https://en.wikipedia.org/wiki/3D_rotation_group#Topology.

Let’s round out this discussion with some observations about the special properties of SOp3q,
some of which we will see have important implications for the geometry of Riemannian 3-manifolds.

Exercise 39.21. Recall from Exercise 39.16 the Lie algebra isomorphism Φ : pR3,ˆq Ñ sop3q
given by Φpvqw “ v ˆw. Prove:

(a) Every nontrivial proper Lie subalgebra of sop3q is 1-dimensional.
(b) Every nontrivial Lie algebra homomorphism sop3q Ñ sop3q is an isomorphism.

Hint: What could the dimensions of its kernel and image be?
(c) The transformationA : R3 Ñ R3 is a Lie algebra isomorphism with respect toˆ whenever

A P SOp3q.
(d) Every Lie algebra isomorphism of pR3,ˆq to itself comes from an element of SOp3q as

described in part (c).
Hint: Show first that if ψ : R3 Ñ R3 is a Lie algebra isomorphism and v,w P R3 are
orthogonal, then ψpvq and ψpwq are also orthogonal. You can deduce from this via linear
algebra (cf. the proof of Lemma 24.5 from last semester) that ψ is a positive multiple of
an orthogonal transformation.

(e) For any A P SOp3q, ΦAΦ´1 “ AdA : sop3q Ñ sop3q, i.e. the isomorphism Φ : R3 Ñ sop3q
identifies the natural action of SOp3q on R3 with the adjoint representation of SOp3q.

(f) Every connected nontrivial proper Lie subgroup of SOp3q is of the form  
etA P SOp3q ˇ̌ t P R

(
for some A P sop3q, and is thus isomorphic to SOp2q – S1.

(g) If Ψ : SOp3q Ñ SOp3q is a nontrivial Lie group homomorphism, then Ψ is in fact a Lie
group isomorphism of the form ΨpBq “ ABA´1 for some A P SOp3q.

https://en.wikipedia.org/wiki/3D_rotation_group#Topology
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Hint: Since exp : sop3q Ñ SOp3q is surjective, Ψ is uniquely determined by the relation
ΨpetBq “ etΨ˚B for B P sop3q.

(h) There exist nontrivial Lie group homomorphisms SOp2q Ñ SOp2q that are not isomor-
phisms.

(i) There exist no nontrivial Lie group homomorphisms SOp3q Ñ SUp2q.
Hint: This is easy if you know enough about covering space theory, but you can also do
without that. Deduce from the results above that if such a homomorphism exists, then
the induced Lie algebra homomorphism sop3q Ñ sup2q cannot differ very much from the
isomorphism in Proposition 39.17. Then use the exponential map.

Exercise 39.22. Suppose G is a Lie group with an Ad-invariant positive inner product x , y
on its Lie algebra g.

(a) Show that for any X,Y P g, rX,Y s is orthogonal to both X and Y .
Hint: Use the formula adX Y “ rX,Y s and the fact that adX : gÑ g is antisymmetric.

(b) Show that if g is not abelian and dim g “ 3, then there exists a constant λ ą 0 and an
orthonormal basis e1, e2, e3 P g satisfying

re1, e2s “ λe3, re2, e3s “ λe1 and re3, e1s “ λe2.

(c) Under the assumptions of part (b), deduce that the Lie algebra g is isomorphic to sop3q.
(d) Prove that for every compact connected non-abelian Lie group G with dimG “ 3, there

exists a Lie group homomorphism GÑ SOp3q that is a covering map.
Remark: If you know enough covering space theory, you may realize that this implies G
is isomorphic to either SOp3q or SUp2q. The crucial observation here is that SOp3q – RP3

has fundamental group Z2 and SUp2q – S3 is simply connected, thus the covering map
SUp2q Ñ SOp3q in Exercise 39.19 is the universal cover. It follows that if the cover
G Ñ SOp3q is not an isomorphism, the scenario in Exercise 39.19 is the only other
possibility.

(e) Find an example of a connected non-abelian (but not compact!) 3-dimensional Lie group
whose Lie algebra is not isomorphic to sop3q.

39.3. Simply connected groups. From a topological perspective, there is a simple reason
why our attempt in the previous subsection to lift the Lie algebra isomorphism sop3q – sup2q to
a Lie group homomorphism SOp3q Ñ SUp2q was doomed to failure: by Exercise 39.18, such a
homomorphism would necessarily be a covering map, and you cannot cover a simply connected
manifold like SUp2q – S3 with one like SOp3q – RP

3 that is not simply connected. The next
result clarifies, on the other hand, why our attempt to lift the isomorphism sup2q Ñ sop3q to a
homomorphism SUp2q Ñ SOp3q was guaranteed to succeed:

Theorem 39.23. Suppose G and H are Lie groups and φ : g Ñ h is a Lie algebra homomor-
phism. If G is simply connected, then there exists a unique Lie group homomorphism Φ : GÑ H

such that Φ˚ “ φ.

Notice that if φ is an isomorphism and G and H are both simply connected, the theorem can
be applied in both directions, giving:

Corollary 39.24. If G and H in Theorem 39.23 are both simply connected and φ : gÑ h is
a Lie algebra isomorphism, then Φ : GÑ H is a Lie group isomorphism. In particular, two simply
connected Lie groups are isomorphic if and only if their Lie algebras are isomorphic. �

Sketch of the proof of Theorem 39.23. The uniqueness of Φ : GÑ H is quite easy: if
Φ˚ “ φ, then Φ must satisfy ΦpexppXqq “ exppφpXqq for every X P g, and Φ is thus uniquely de-
termined on the image of exp : gÑ G, which is an open neighborhood of e P G. By Exercise 37.23,
that neighborhood generates G, so it follows that Φ is uniquely determined.
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The proof of existence is more involved, so we will give only enough of a sketch to elucidate
why the various hypotheses are necessary.

Step 1 : We claim that defining Φ on a neighborhood of e P G by ΦpexppXqq “ exppφpXqq gives
a so-called local homomorphism, meaning that for a sufficiently small neighborhood U Ă G of e,
a, b, ab P U implies Φpabq “ ΦpaqΦpbq. This is where the hypothesis of φ : gÑ h being a Lie algebra
homomorphism is essential. Notice first that if a, b P U happen to be of the form a “ exppXq and
b “ exppY q with rX,Y s “ 0, then Exercise 37.27 implies ab “ exppX ` Y q, and thus

Φpabq “ ΦpexppX`Y qq “ exppφpX`Y qq “ exppφpXq`φpY qq “ exppφpXqq exppφpY qq “ ΦpaqΦpbq,
where in the last step we again made use of Exercise 37.27 and the fact that rφpXq, φpY qs “
φprX,Y sq “ 0. Things are more complicated if rX,Y s ‰ 0, as one then needs some information
about the error term Z in the relation exppXq exppY q “ exppX ` Y ` Zq; here Z can be assumed
to depend smoothly on X and Y when they are close enough to 0, and Z will also vanish when
X “ Y “ 0. The standard approach now is to apply the so-called Baker-Campbell-Hausdorff
formula, which presents Z as a convergent series whose terms are all iterated brackets of X and Y :

Z “ 1

2
rX,Y s ` 1

12
rX, rX,Y ss ´ 1

12
rY, rX,Y ss ` . . . .

The point is that since every term in this formula involves brackets and the bracket is preserved
by φ, φpZq now satisfies an identical formula as a function of φpXq and φpY q, and one thus obtains

Φpabq “ ΦpexppX ` Y ` Zqq “ exppφpXq ` φpY q ` φpZqq “ exppφpXqq exppφpY qq “ ΦpaqΦpbq.
For details on the Baker-Campbell-Hausdorff formula, see e.g. [Hal15, Chapter 5] or [DK00, §1.7].

Step 2 : We next write down a formula for Φpgq for arbitrary g P G, though the formula will
appear at first to depend on some choices. In particular, choose a continuous path γ : r0, 1s Ñ G

from γp0q “ e to γp1q “ g, along with a partition 0 “ t0 ă t1 ă . . . ă tN´1 ă tN “ 1, writing
gj :“ γptjq for j “ 0, . . . , N and defining hj P G for j “ 1, . . . , N by the relation gj :“ hjgj´1,
so that g “ hNhN´1 . . . h1. Assume the partition is chosen to be fine enough so that all of the
elements hj and hjhj´1 belong to the neighborhood U Ă G of e on which Φ is already defined and
known to be a local homomorphism. The correct procedure is then obviously to define

(39.2) Φpgq :“ ΦphN qΦphn´1q . . .Φph1q P H,
and we claim that this definition of Φpgq will not change under any sufficiently small perturbation
of the path γ from e to g and the partition points t1, . . . , tN´1. Since our definition depends only on
the points g1, . . . , gN rather than the path γ itself, we can prove this by examining what happens
if these points are altered one at a time, e.g. suppose a particular point gj is replaced by a nearby
point g1j, and define h1j , h1j`1 P G by

g1j “ h1jgj´1, gj`1 “ h1j`1g
1
j.

Then gj`1 “ h1j`1h
1
jgj´1 “ hj`1hjgj´1, implying h1j`1h

1
j “ hj`1hj , and if g1j is close enough

to gj , we can assume as a consequence of the local homomorphism condition that Φph1j`1qΦph1jq “
Φphj`1qΦphjq. As a consequence, the total product in (39.2) does not change when hj and hj`1

are replaced by h1j and h1j`1. Note finally that for similar reasons, the product (39.2) will not
change if the partition t1, . . . , tN´1 is made finer via the addition of a new point dividing one of
the intervals ptj´1, tjq, so in this way the number of points in the partition can always be increased
by 1.

Step 3 : Now it is time to make use of simple connectedness. From step 2, we have for each
g P G a definition of Φpgq that depends on a choice of continuous path γ from e to g and a
fine partition of this path, and the definition is invariant under small changes in this data. But
since G is simply connected, any two such paths can be connected by a continuous 1-parameter
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family of paths from e to g, and after choosing suitable partitions for the paths in this family, the
resulting family of definitions of Φpgq will be independent of the parameter. This proves that the
definition of Φpgq resulting from steps 1 and 2 is independent of all choices, thus defining a global
map Φ : G Ñ H . It is now an easy exercise to check that this map is smooth and is a group
homomorphism. �

Before moving on from this subject, two other results are worth mentioning. First, simply
connected Lie groups are easy to find, in fact:

Theorem 39.25. For every connected Lie group G, there exists a simply connected Lie grouprG with a Lie group homomorphism π : rGÑ G that is a covering map.

The group rG in this theorem is called the universal cover of G, and the existence of the
covering map π : rG Ñ G implies that its Lie algebra is isomorphic to that of G, thus it follows
from Corollary 39.24 above that rG is unique up to a Lie group isomorphism. We saw a nontrivial
example in the previous subsection: SUp2q is the universal cover of SOp3q. Outside of concrete
examples like this one, the group rG can be constructed from an arbitrary connected Lie group G
via a general procedure that is standard in topology: one defines rG as the set of equivalence classes
of continuous paths rG :“  

γ : r0, 1s Ñ G
ˇ̌
γp0q “ e

(M „,
where two paths are considered equivalent if and only if they are homotopic with fixed end points,
and the covering map π : rGÑ G is then given by

πprγsq :“ γp1q.
The obvious group structure to define on rG is

rαsrβs :“ rαβs,
where αβ : r0, 1s Ñ G denotes the path t ÞÑ αptqβptq, and for this choice, π : rGÑ G is manifestly
a group homomorphism. It is not difficult to check that rG can also be endowed with a smooth
structure that makes it a Lie group and the map π : rGÑ G smooth.

Finally, we complete the correspondence between Lie algebras and simply connected Lie groups:
the following result is known as Lie’s third fundamental theorem.

Theorem 39.26. Every finite-dimensional Lie algebra is isomorphic to the Lie algebra of a
Lie group (and therefore also of a simply connected Lie group).

We will not have any further use for Theorem 39.26 in this course, but it is nice to know about
since it provides (in conjunction with Theorems 39.23 and 39.25) a natural bijective correspondence
between finite-dimensional Lie algebras and simply connected Lie groups.

40. Quotient manifolds

Many important examples of smooth manifolds arise naturally as quotients of other manifolds
by smooth group actions. Our main goal in this lecture is to establish the basic notions underlying
such quotients and determine when they are actually smooth.
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40.1. Smooth group actions. A (left) action of a group G on a set M is a map

GˆM ÑM : pg, pq ÞÑ gp

that satisfies

ep “ p for all p PM and pghqp “ gphpq for all g, h P G and p PM.

We also say in this case that G acts from the left on M , and the notation

g ¨ p :“ gp

is sometimes also used. Given a subset U ĂM and/or elements g P G, p PM , we denote

gU :“  
gp PM ˇ̌

p P U
( ĂM,

Gp :“  
gp PM ˇ̌

g P G( ĂM,

GU :“ ď
gPG

gU “ ď
pPU

Gp ĂM,

and call Gp or GU the orbit of p or U respectively under the G-action. The set U is called
G-invariant if GU “ U , and the point p is fixed under the G-action if Gp “ tpu. The set

Gp :“  
g P G ˇ̌

gp “ p
( Ă G

is known as the stabilizer or isotropy subgroup of the point p; note that it is always a subgroup
of G, and it equals G if and only if p is fixed under the action. Any two orbits of a group action
are either identical or disjoint, and the quotient of M by G is defined as the set of all orbits, and
denoted by

M{G :“  
Gp ĂM

ˇ̌
p PM(

.

To put this another way, there is an equivalence relation defined on M such that p „ q if and only
if p and q belong to the same orbit, and M{G is then the quotient by this equivalence relation.
From this perspective, it is common to write elements of the quotient as

rps :“ Gp PM{G
for each p PM .

Given an action of G on two sets M and N , a map f : M Ñ N is called G-equivariant if

fpgpq “ gfppq for all g P G and p PM.

Similarly, a function f on M is called G-invariant if it satisfies fpgpq “ fppq for all g P G and
p PM .

If G is a topological group and M a topological space, one calls a group action continuous if
the map G ˆM Ñ M is continuous; similarly, for G a Lie group and M a smooth manifold, the
action is said to be smooth if the map G ˆM Ñ M is smooth. We say in these cases that G
acts continuously/smoothly (from the left) on M . In particular, a smooth left action of G on
M determines a group homomorphism

GÑ DiffpMq : g ÞÑ ϕg, ϕgppq :“ gp.

WheneverM has a topology, it is natural to equip the quotientM{G with the quotient topology,
defined as the largest topology for which the quotient projection

π :M ÑM{G : p ÞÑ rps
is a continuous map. Concretely, this means that a set U Ă M{G is open if and only if its orbit
π´1pUq “ GU is an open subset ofM . It should be emphasized that even ifM is a smooth manifold
and G acts smoothly, M{G may have horrible topological properties, e.g. it can easily fail to be
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Hausdorff (see Example 40.1 below). One of the main themes of this lecture will be to ascertain
what conditions on a smooth group action allow us to avoid such undesirable quotients.

The notion of a right group action is defined similarly, as a map M ˆGÑM : pp, gq ÞÑ pg

that satisfies the conditions

pe “ p for all p PM and ppghq “ ppgqh for all g, h P G and p PM.

All of the definitions above admit obvious modifications to accommodate right instead of left group
actions.90 While the difference is mostly a matter of bookkeeping, left and right group actions are
not completely equivalent notions—the principal difference is that if one uses a right action to
define diffeomorphisms ϕgppq :“ pg, then the resulting map G Ñ DiffpMq : g ÞÑ ϕg is not a
group homomorphism, but rather an antihomomorphism, i.e. it satisfies ϕgh “ ϕh ˝ ϕg. From
this perspective, the distinction between left and right actions is only truly meaningful when G is
nonabelian, and even in the nonabelian case, any left action G ˆM Ñ M can be converted into
a right action M ˆG Ñ M by defining pg :“ g´1p, or vice versa. For this reason, all important
results about left actions admit minor modifications to produce corresponding results about right
actions, so that we will lose no generality by considering only left actions in most of our exposition.

Example 40.1. Any representation ρ : G Ñ GLpV q of a Lie group G on a finite-dimensional
vector space V defines a smooth left action ofG on V by writing gv :“ ρpgqv for g P G, v P V . Group
actions of this form are sometimes also called linear group actions. The quotient of a vector space V
by a linear group action is typically not a very nice object, e.g. if the homomorphism ρ : GÑ GLpV q
is surjective or contains a large enough subgroup such as SLpV q (assuming dim V ě 2), then V {G
contains only two points, namely r0s and rvs for any v ‰ 0 P V , and the quotient topology on
V {G has the disturbing property that V {G itself is the only open neighborhood of the point r0s,
implying that every sequence converges to r0s. Many of them also simultaneously converge to rvs,
thus V {G is not Hausdorff.

Example 40.2. Variations on the following example of a right group action will arise naturally
when we discuss principal fiber bundles. If V is an n-dimensional real vector space and M is the
set of all vector space isomorphisms φ : Rn Ñ V , then the group GLpn,Rq of invertible linear
transformations Rn Ñ Rn acts on M from the right by φ ¨A :“ φ ˝A. For this action, every point
of M belongs to the same orbit, thus the quotient M{G is a one-point space.

Example 40.3. For every Lie group G, the map GˆGÑ G : pg, hq ÞÑ gh can be interpreted
as a smooth left action or right action of G on itself, depending on whether you choose to view
the first or second copy of G as the manifold that is being acted upon; in either case, every point
belongs to the same orbit, so G{G is a one-point space. More generally, every Lie subgroup H Ă G

naturally has both a smooth left action and a smooth right action on G, defined by

H ˆGÑ G : ph, gq ÞÑ hg, and GˆH Ñ G : pg, hq ÞÑ gh

respectively. For the left action, G{H is the set of right cosets tHg Ă G | g P Gu, whereas the
right action produces the set of left cosets tgH Ă G | g P Gu. These two versions of the quotient
G{H have a canonical identification with each other whenever H is a normal subgroup, in which
case G{H also inherits a natural group structure.

Example 40.4. A smooth action of the group Z2 :“ Z{2Z on a manifold M is equivalent to
a so-called involution, i.e. a diffeomorphism ϕ : M Ñ M satisfying ϕ ˝ ϕ “ Id, which can be

90In situations where M has both a left and a right action by G, it is occasionally convenient to distinguish
between the two quotients by writing M{G for the quotient by a right action but GzM for the quotient by a left
action. I find the latter notation confusing and will not use it for quotients, but will instead write M{G for both
left and right actions.
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defined in this case by ϕppq :“ r1s ¨ p using the unique nontrivial element r1s P Z2. A familiar
example is the map Sn Ñ Sn : p ÞÑ ´p, representing a smooth action of Z2 on Sn whose quotient
is the manifold RPn. Alternatively, RPn can be defined as pRn`1zt0uqLR˚ where the multiplicative
abelian group R˚ :“ Rzt0u acts on Rn`1zt0u via scalar multiplication.

Example 40.5. The complex analogue of Example 40.4 gives two equivalent presentations of
the complex projective space (cf. Exercise 32.11) as quotients:

CPn “ pCn`1zt0uqLC˚ “ S2n´1
L
S1,

where again C˚ :“ Czt0u is a multiplicative abelian group, S2n´1 and S1 are regarded as the unit
spheres in Cn`1 and C respectively, and the second presentation is obtained from the first one by
observing that any point of Cn`1zt0u is in the same C˚-orbit with a unit vector, while two unit
vectors belong to the same C˚-orbit if and only if they belong to the same S1-orbit.

40.2. Fundamental vector fields. A smooth left group action G ˆM Ñ M associates to
each point p PM a smooth map ψp : GÑM defined by ψppgq :“ gp. The fundamental vector
field XF P XpMq corresponding to a given element X P g is then defined by

XF ppq :“ TeψppXq “ d

dt
expptXqp

ˇ̌̌̌
t“0

P TpM.

For right actions M ˆGÑM , one can analogously define XF ppq :“ Btp expptXq|t“0. Denote the
space of all fundamental vector fields for a given group action on M by

XF pMq Ă XpMq.
It is clearly a finite-dimensional vector space since it comes with a surjective linear map g Ñ
XF pMq : X ÞÑ XF , and we will see in a moment that it is also a Lie subalgebra of XpMq.

Example 40.6. If M “ G and we consider a Lie subgroup H Ă G acting on G from the
left as in Example 40.3, then each X P h Ă g produces a fundamental vector field XF P XpGq
given by XF pgq “ Bt expptXqg|t“0 “ BtRgpexpptXqq|t“0

“ TRgpXq “ XRpgq, so XF pGq is the Lie
subalgebra of XRpGq corresponding to h Ă g under the canonical bijection gÑ XRpGq : X ÞÑ XR.
Similarly, if we regard H as acting on G from the right, then the fundamental vector fields are
left-invariant.

Proposition 40.7. For any smooth left group action G ˆM Ñ M , the action on M of the
1-parameter subgroup generated by an element X P g is determined by the flow of the associated
fundamental vector field XF P XpMq, namely by

expptXqp “ ϕtXF ppq for t P R, p PM.

Proof. Clearly the formula is valid for t “ 0, so its validity in general follows by computing
the derivative of the path t ÞÑ expptXqp PM for arbitrary t:

d

dt
pexpptXqpq “ d

ds
exppps` tqXqp

ˇ̌̌̌
s“0

“ d

ds
pexppsXq expptXqq p

ˇ̌̌̌
s“0

“ d

ds
exppsXq pexpptXqpq

ˇ̌̌̌
s“0

“ XF pexpptXqpq.
�

Theorem 40.8. For any smooth left group action GˆM ÑM , the map gÑ XpMq : X ÞÑ XF

is a Lie group anti-homomorphism, i.e. it satisfies

rX,Y sF “ ´rXF , Y F s
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for all X,Y P g, implying in particular that the space XF pMq of fundamental vector fields is a Lie
subalgebra of XpMq.

Proof. As a preliminary remark, observe that for any g P G and X P g, the map R Ñ G :

t ÞÑ g expptXqg´1 is a Lie group homomorphism whose derivative at t “ 0 is AdgpXq, giving rise
to the formula

g expptXqg´1 “ exp ptAdgpXqq .
Given X,Y P g, we can now use (37.4) and Proposition 40.7 to compute

rXF , Y F sppq “ Bt
´
Bs`ϕ´tXF ˝ ϕsY F ˝ ϕtXF ppq˘ˇ̌s“0

¯ˇ̌̌
t“0

“ Bt
´
Bs` expp´tXq exppsY q expptXqp˘ˇ̌s“0

¯ˇ̌̌
t“0

“ Bt
´
Bs exp `sAdexpp´tXqpY q˘ pˇ̌s“0

¯ˇ̌̌
t“0

“ Bt `Adexpp´tXqpY q˘F ppqˇ̌̌
t“0

“ pad´X Y qF ppq “ ´rX,Y sF ppq.
�

Remark 40.9. I’m sure that you, like I, would have liked Theorem 40.8 better without the extra
minus sign in the statement. But you can see why it needs to be there if you consider the example of
a groupG acting from the left on itself: as observed in Example 40.6, the Lie algebra of fundamental
vector fields on G is in this case precisely the Lie algebra of right-invariant vector fields XRpGq,
and the natural map gÑ XF pGq becomes the natural isomorphism gÑ XRpGq : X ÞÑ XR, which
we saw in Exercise 37.19 is not a Lie algebra homomorphism unless one changes the sign of the
bracket on g. This is a side-effect of our choice to define the bracket on g in terms of left-invariant
instead of right-invariant vector fields.

It has an even more unfortunate consequence if one considers the following question: in what
sense is DiffpMq an “infinite-dimensional Lie group”, and what then is its Lie algebra? Heuristically,
one would like to think of the tangent space diffpMq :“ TIdDiffpMq as consisting of derivatives at
s “ 0 of smooth families of diffeomorphisms tϕs P DiffpMqusPp´ǫ,ǫq with ϕ0 “ Id, and computing
such a derivative always gives rise to a vector field

X P XpMq, Xppq :“ Bsϕsppq|s“0 P TpM,

making it natural to define diffpMq :“ XpMq. There is an obvious guess for what the bracket on
diffpMq should be, but Theorem 40.8 tells us that this guess is only correct after changing a sign:
indeed, for the obvious left action of DiffpMq onM defined by ϕ ¨ p :“ ϕppq, the natural surjection
diffpMq Ñ XF pMq becomes the identity map, which is therefore a Lie algebra anti-homomorphism,
meaning that the bracket on diffpMq determined by the group structure of DiffpMq is minus the
standard Lie bracket on XpMq. We wouldn’t have this extra minus sign if we had chosen to
define the Lie algebra of a Lie group in terms of right-invariant instead of left-invariant vector
fields, and this strikes me as a strong argument for doing so, but that would of course lead to
perilous inconsistencies with the existing literature. At present I am aware of exactly one book
that attempts this: see [Olv86, Exercise 1.33].

As a coda to this remark, note that if heuristic discussions of DiffpMq as an infinite-dimensional
Lie group make you uneasy, you can nonetheless apply the same reasoning to any finite-dimensional
Lie group G that occurs as a subgroup of DiffpMq acting smoothly on M , e.g. we will see later
that isometry groups of pseudo-Riemannian manifolds fit this description. The upshot is that the
map g Ñ XF pMq : X ÞÑ XF in this situation gives a natural identification of the Lie algebra g

with some finite-dimensional Lie subalgebra of XpMq, but the bracket on this subalgebra is minus
the standard Lie bracket of vector fields.
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Exercise 40.10. Work out the analogue of Theorem 40.8 for a smooth right action, and show
in particular that the unpleasant minus sign disappears. (This is unfortunately not helpful from
the perspective of Remark 40.9, since DiffpMq cannot really be said to have a canonical right action
on M .)

40.3. Orbits and slices. Quotients in topology can be notoriously ugly objects: it is easy
to cook up simple examples of non-Hausdorff spaces by starting from very nice spaces like Rn

and quotienting them by badly-chosen equivalence relations, e.g. via certain kinds of linear group
actions as in Example 40.1. If we want M{G to be a smooth manifold in particular, then clearly
some conditions need to be imposed.

Assuming GˆM ÑM : pg, pq ÞÑ gp is a smooth action, we begin by fixing a point p PM and
examining the smooth map

(40.1) GÑM : g ÞÑ gp

that sends G onto the orbit of p. Before we state some general results, here are a couple of
instructive examples to keep in mind.

Example 40.11. Writing T2 “ R2{Z2, any pa, bq P R2ztp0, 0qu determines a smooth action of
R on T2 defined by

t ¨ rpθ, φqs :“ rpθ ` at, φ` btqs.
The properties of this action and the quotient T2{R depend heavily on the choice of the constants
a and b. We have the following cases:

(i) If a{b P Q or b “ 0, then the orbitsRrpx, yqs Ă T2 are all submanifolds diffeomorphic to S1,
while each of the maps (40.1) is a non-injective immersion covering the corresponding orbit
infinitely-many times. It is not hard to show that the quotient is then homeomorphic
to S1, and in fact admits a natural smooth structure for which the quotient projection
T2 Ñ T2{R : p ÞÑ rps is smooth. One obtains an even nicer picture after observing that
there exists a unique constant c ą 0 (dependent on a and b) such that the maps RÑ T2

defined by (40.1) are injective on r0, cq but have period c, implying that the action of the
subgroup cZ Ă R on T2 is trivial, so the R-action can be replaced by an action of the
quotient group G :“ R{cZ – S1 without changing the orbits or the quotient. After this
modification, (40.1) gives an embedding GÑ T2 and thus an explicit diffeomorphism of
each orbit Rrpx, yqs “ Grpx, yqs with the group G “ R{cZ – S1.

(ii) If b ‰ 0 and a{b R Q, then each of the maps (40.1) is an injective immersion R Ñ T2

with dense image, making T2{R a horrible non-Hausdorff space in which every sequence
converges to every point, because the only open sets are H and T2{R itself.

Example 40.12. Fix two antipodal points p˘ P S2 and let Z2 act on S2 via the involution
that rotates S2 by 180 degrees around the line in R3 connecting p` to p´. Equivalently, one can
use stereographic projection to identify S2 with the one-point compactification R2 Y t8u of R2

such that p` “ 0 and p´ “ 8, and then define the involution in question as the unique continuous
extension of the antipodal map R2 Ñ R2 : v ÞÑ ´v. For this action, the two points p` and p´
are special because their stabilizers are Z2 and their orbits each consist of only one point, whereas
every point in S2ztp`, p´u has trivial stabilizer and two points in its orbit. A similar Z2-action can
be defined on Sn for any n P N by identifying the latter with Rn Y t8u and letting the nontrivial
element of Z2 act as the unique continuous extension of the antipodal map Rn Ñ Rn, which fixes
the point at infinity. There are again two special points p˘ P Sn that are fixed under this action.

Exercise 40.13. Show that for the Z2-actions on S2 and S3 in Example 40.12:
(a) S2{Z2 is a topological manifold homeomorphic to S2.
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(b) pS3ztp`, p´uq{Z2 admits a smooth manifold structure for which the projection of S3ztp`, p´u
to the quotient is smooth, but S3{Z2 does not. (One can show in fact that Sn{Z2 is not
a topological manifold for any n ě 3; see Remark 40.14 below.)
Hint: The points rp˘s P S3{Z2 each have arbitrarily small neighborhoods bounded by a
surface diffeomorphic to RP

2. Show that if these neighborhoods had smooth structures
compatible with the smooth structure of S3, it would follow that RP2 is orientable.

Remark 40.14 (for readers who like topology). The fact that the quotient S2{Z2 in Exer-
cise 40.13 is a topological manifold should be understood as a by-product of the coincidence that
RP

1 and S1 are homeomorphic. On the flip side, the fact that RPn and Sn are not even weakly
homotopy equivalent for n ě 2 (e.g. their fundamental groups are different since Sn is simply
connected and admits a double cover of RPn) can be used to prove that the two fixed points
rp˘s P Sn{Z2 do not have any neighborhoods homeomorphic to Rn when n ě 3. Indeed, if rp`s
had a compact disk-like neighborhood A1 Ă Sn{Z2 with BA1 – Sn´1, then one could find inside
it two smaller compact neighborhoods A2 Ă B1 Ă A1 such that BA2 – Sn´1, BB1 – RPn´1

and A1zÅ2 – r0, 1s ˆ Sn´1. Continuing in this way gives rise to a nested sequence of com-
pact submanifolds A1 Ą B1 Ą A2 Ą B2 Ą . . . such that BAj – Sn´1 and BBj – RP

n´1 while
AjzÅj`1 – r0, 1s ˆ Sn´1 and BjzB̊j`1 – r0, 1s ˆ RPn´1 for every j. Since inclusion maps such
as Sn´1 ãÑ r0, 1s ˆ Sn´1 are homotopy equivalences, one can use compositions of inclusion maps
in this situation to deduce that RP

n´1 and Sn´1 must be weakly homotopy equivalent. (For a
similar argument in more detail, see [CE12, Lemma 16.13].) Alternatively, when n is odd, one
could appeal to the well-known fact from algebraic topology that RP

n´1 is not homeomorphic
to the boundary of any compact topological manifold. (This follows from Poincaré duality and
the fact that χpRPn´1q in these cases is odd, because gluing two copies of a compact n-manifold
with boundary RP

n´1 along their boundaries would then produce a closed n-manifold whose Euler
characteristic cannot be 0.)

Throughout the following, assume GˆM ÑM : pg, pq ÞÑ gp is a smooth group action.

Lemma 40.15. For each p PM , an element X P g satisfies XF ppq “ 0 if and only if expptXq
belongs to the stabilizer Gp for all t P R.

Proof. If expptXq P Gp for all t P R then XF ppq “ Bt expptXqp|t“0 “ Btp|t“0 “ 0. Con-
versely, XF ppq “ 0 implies via Proposition 40.7 that expptXqp “ ϕt

XF ppq “ p for all t P R, so
expptXq P Gp. �

One piece of intuition you might gather from Example 40.11 is that the space of orbits M{G
is not likely to have a nice structure unless the orbits themselves are well behaved, e.g. we would
ideally hope that they are smooth submanifolds, with the map (40.1) as a natural embedding. The
following condition is clearly necessary for this.

Definition 40.16. An action of G on M is called free if the stabilizer Gp Ă G of every point
p PM is the trivial subgroup. Equivalently, the action is free if for every g P Gzteu, the bijection
M ÑM : p ÞÑ gp has no fixed points. (One also says that G acts without fixed points on M .)

Lemma 40.17. If G acts smoothly and freely onM , then for every p PM , the map ϕ : GÑM :

g ÞÑ gp is an injective immersion, and its derivative at e P G is given by gÑ TpM : X ÞÑ XF ppq.
Proof. If ϕpgq “ ϕphq for some g, h P G, then h´1g P Gp, which implies g “ h since Gp Ă G

is the trivial group, thus ϕ is injective. The formula TeϕpXq “ XF ppq for the derivative of ϕ
follows directly from the definition of fundamental vector fields, and according to Lemma 40.15,
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XF ppq “ 0 if and only if expptXq P Gp for all t P R, which means X “ 0 since Gp is trivial. Finally,
for any g P G, denote ψ : GÑM : h ÞÑ hgp and observe that

ψ “ ϕ ˝Rg,
thus Teψ “ Tgϕ ˝ TeRg, and Tgϕ is therefore injective if and only if Teψ is injective. The latter
follows from the previous argument since the stabilizer group Ggp is also trivial. �

Exercise 40.18. Assume GˆM ÑM is a smooth group action.

(a) Show that whenever p, q PM belong to the same orbit, their stabilizer subgroupsGp, Gq Ă
G are conjugate.

(b) Show that the map (40.1) is still an injective immersion if the action is not free but the
particular stabilizer Gp is trivial.

(c) Show that the map (40.1) is still an immersion (though not injective) if the stabilizer Gp
is nontrivial but discrete.

If the Lie group G is compact, then Lemma 40.17 implies that the orbits of any free smooth
action of G on a manifold M are smooth submanifolds. This need not hold however if G is not
compact, as injective immersions ϕ : G Ñ M are not always embeddings: the inverse map M Ą
ϕpGq Ñ G might fail to be continuous, as seen for instance in the case a{b R Q of Example 40.11.
With this in mind, there is another topological condition one can usefully impose: a map f : X Ñ Y

between two topological spaces is called proper (eigentlich) if for every compact set K Ă Y , the
preimage f´1pKq Ă X is also compact.

Exercise 40.19. Show that for any proper injective continuous map f :M Ñ N between two
metric spaces, the image fpMq Ă N is closed and the inverse N Ą fpMq Ñ M is continuous. In
particular, a smooth proper injective immersion between manifolds is also an embedding, whose
image is a closed subset and smooth submanifold.

The map (40.1) from G to M is automatically proper whenever G is compact, but there are
also plenty of interesting examples involving noncompact groups for which this map is proper. The
next condition ensures that this will hold in a “uniform” manner for all orbits:

Definition 40.20. For a topological group G and topological space M , a continuous action
GˆM ÑM is called proper if the map GˆM ÑM ˆM : pg, pq ÞÑ pp, gpq is proper.

Exercise 40.21. Show that every smooth action of a compact Lie group is proper.

Exercise 40.22. Show that for any smooth and proper action of G on M :

(a) The quotient M{G is Hausdorff.
(b) The stabilizer Gp Ă G is compact for every p PM .
(c) If pj PM is a sequence convergent to p PM , then any sequence gj P Gpj has a subsequence

convergent to an element of Gp.

Corollary 40.23 (of Lemma 40.17). If G is a Lie group acting smoothly, freely and properly
on a manifold M , then for every p PM , the map (40.1) is an embedding and the orbit Gp ĂM is
a closed subset and smooth submanifold of M . �

Exercise 40.24. You may have encountered the following definition in a topology course: a
continuous free actionGˆM ÑM is called properly discontinuous (eigentlich diskontinuierlich)
if every p P M has a neighborhood U Ă M such that gU X U “ H for all g P Gzteu. Show that a
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continuous free action of a Lie group G on a manifold M is properly discontinuous if and only if
it is proper and the group G is discrete.91

We are now ready to state a result that determines which group actions have the nicest quo-
tients.

Theorem 40.25 (slice theorem for free and proper actions). Assume GˆM ÑM is a smooth,
free and proper action of a Lie group G on a manifold M , and Σ Ă M is a smooth submanifold
containing a point p P Σ such that

ΣXGp “ tpu and TpΣ‘ TppGpq “ TpM.

Then after replacing Σ if necessary by a sufficiently small open neighborhood of p in Σ, the map

Φ : Gˆ ΣÑM : pg, qq ÞÑ gq

is a diffeomorphism onto an open and G-invariant neighborhood of Gp in M .

Before proving the theorem, let us explain its main application. Observe that submanifolds
Σ ĂM satisfying the hypotheses of the theorem clearly exist, due to the fact (from Corollary 40.23)
that Gp Ă M is a submanifold: it is easy to write down examples in local coordinates on a
neighborhood of p P M using a slice chart for Gp. A submanifold Σ for which the map Φ in the
theorem is a diffeomorphism is sometimes called a local slice for the group action, as it has the
important property that for some open neighborhood U Ă M{G of rps in the space of orbits, Σ
intersects every orbit in this set exactly once.

Corollary 40.26. For any smooth, free and proper group action GˆM Ñ M , the quotient
M{G admits a smooth manifold structure with

dimpM{Gq “ dimM ´ dimG

such that the quotient projection π :M ÑM{G is a smooth submersion.

Proof. For any p PM , a chart for M{G on a neighborhood of rps PM{G can be defined by
choosing any local slice Σ ĂM through p, as provided by Theorem 40.25, and observing that the
restricted quotient map

(40.2) Σ
πÝÑM{G

is a homeomorphism onto a neighborhood of rps, so that composing its inverse with a smooth chart
for Σ near p defines a chart for M{G. That (40.2) is a homeomorphism onto an open set follows
as an easy exercise from the fact that Φ : G ˆ Σ Ñ M is an equivariant diffeomorphism onto
a G-invariant neighborhood of Gp. To see that any two charts on M{G constructed in this way
from smooth local slices Σ1,Σ2 ĂM are smoothly compatible, let us first simplify the notation by
assuming after shrinking Σ1 and Σ2 that their projections cover the same region

V :“ πpΣ1q “ πpΣ2q ĂM{G,
in which case they also have identical orbits GΣ1 “ GΣ2 “ π´1pVq Ă M . Theorem 40.25 now
gives rise to a G-equivariant diffeomorphism

Gˆ Σ1 π´1pVq Gˆ Σ2,
Φ

Ψ

Φ´1

91I am intentionally avoiding giving a definition of the term “properly discontinuous” for group actions that are
not free. There exist various inequivalent versions of such a definition in the literature, but they are only needed in
situations that are more specialized than we will consider here.
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where equivariance in this case means that Ψ takes the form

Ψpg, qq “ pgfpqq, ϕpqqq
for smooth maps f : Σ1 Ñ G and ϕ : Σ1 Ñ Σ2, and the latter is necessarily a diffeomorphism.
The transition map for our two charts is then a composition of ϕ : Σ1 Ñ Σ2 with charts (or their
inverses) for Σ1 and Σ2, thus it is smooth.

That π :M ÑM{G is a submersion with respect to any of these charts follows from the fact
that the obvious projection Gˆ ΣÑ Σ is a submersion. �

Exercise 40.27. In the setting of Corollary 40.26, show:
(a) A map f :M{GÑ N to another smooth manifold is smooth if and only if the composition

f ˝ π :M Ñ N is smooth.
(b) The derivative at p P M of the quotient projection π : M Ñ M{G descends to a vector

space isomorphism
TpM

L
TppGpq –ÝÑ TrpspM{Gq.

Hint: You do not need to know how the charts on M{G are constructed—all you actually need
to know is that π : M Ñ M{G is a submersion. This also shows that the submersion condition
uniquely determines the smooth structure of M{G.

Exercise 40.28. Assume G ˆ M Ñ M and H ˆ N Ñ N are a pair of smooth, free and
proper group actions. A map F :M Ñ N is said to descend to the quotient if there exists a map
f :M{GÑ N{H such that fprpsq “ rF ppqs for every p PM . Prove:

(a) If G “ H and the map F :M Ñ N is G-equivariant, then it descends to the quotient.
(b) If F :M Ñ N is smooth and descends to the quotient, then the induced map f :M{GÑ

N{H is also smooth.

Exercise 40.29. Check that the group actions in Examples 40.4 and 40.5 whose quotients are
projective spaces are free and proper, and that the resulting smooth structures on RP

n and CP
n

match the smooth structures defined via explicit charts as in Exercise 32.11.
Hint: Thanks to Exercise 40.27, you can use the submersion property to characterize the smooth
structure on any quotient.

Proof of Theorem 40.25. We observe first that the orbit tangent spaces TqpGqq Ă TqM

form a smooth subbundle of TM , as one can see by choosing any basis X1, . . . , Xn P g and using
the values of the corresponding fundamental vector fields XF

1 pqq, . . . , XF
n pqq P TqM as a basis of

TqpGqq at each point. It follows that the condition TpΣ‘TppGpq “ TpM is open, i.e. if it holds at
the given point p P Σ, then it also holds for all nearby points q P Σ. We are thus free to assume
after shrinking Σ if necessary that TqΣ ‘ TqpGqq “ TqM for all q P Σ, and with this assumption
in place, we claim that the map Φ : G ˆ Σ Ñ M : pg, qq ÞÑ gq is a local diffeomorphism. Indeed,
at any point of the form pe, qq P G ˆ Σ, the derivative Tpe,qqΦ : Tpe,qqpG ˆ Σq “ g ˆ TqΣ Ñ TqM

can be written as
Tpe,qqΦpX, vq “ XF pqq ` v for X P g, v P TqΣ,

and this map is an isomorphism since gÑ TqpGqq : X ÞÑ XF pqq is an isomorphism and TqpGqq ‘
TqΣ “ TqM . To understand Tpg,qqΦ at an arbitrary point pg, qq P G ˆ Σ, we can now make use
of the observation that for the obvious G-action on G ˆ Σ defined by g ¨ ph, pq :“ pgh, pq, Φ is
equivariant, i.e.

Φ
`
g ¨ ph, pq˘ “ Φpgh, pq “ ghp “ g ¨ Φph, pq.

For a given g P G, let ϕg :M ÑM and Ψg : Gˆ ΣÑ Gˆ Σ denote the diffeomorphisms defined
via the two G-actions: then Φ ˝Ψg “ ϕg ˝Φ, and thus

Tpe,qqpΦ ˝Ψgq “ Tpg,qqΦ ˝ Tpe,qqΨg “ Tqϕg ˝ Tpe,qqΦ.
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Since Tpe,qqΨg, Tqϕg and Tpe,qqΦ are all isomorphisms, it follows that Tpg,qqΦ is as well, proving
the claim.

Next, we claim that after shrinking Σ further if necessary, Φ is injective. If not, then there exist
sequences pgj , pjq and phj , qjq in GˆΣ such that pj , qj Ñ p, pgj , pjq ‰ phj , qjq and gjpj “ hjqj for
all j. The latter implies qj “ h´1

j gjpj and thus

Φpe, qjq “ qj “ ajpj “ Φpaj , pjq for aj :“ h´1
j gj P G,

and since pj and qj both converge, the properness of the action then implies that aj converges to
some element g P G after restricting to a subsequence. Continuity now implies gp “ p, thus g “ e

since the action is free. Since Φ maps a neighborhood of pe, pq P G ˆ Σ diffeomorphically onto a
neighborhood of p P M , it follows that paj , pjq “ pe, qjq for all j sufficiently large, which means
pgj , pjq “ phj , qjq and is thus a contradiction, proving the claim.

Finally, having restricted Σ to make Φ an injective local diffeomorphism, note that after
shrinking Σ further, we are free to assume that it has compact closure sΣ ĂM and that Φ is still
injective on Gˆ sΣ. The properness of the action then implies that the map Φ|GˆsΣ : Gˆ sΣÑM

is proper, so by Exercise 40.19, its inverse is also continuous. �

Exercise 40.30. Prove a converse to the slice theorem, i.e. assuming GˆM ÑM is a smooth
group action for which local slices as described in Theorem 40.25 exist through any point, prove
that the action must be free and proper. Hint: Given a manifold Σ, what can you say about the
action of G on Gˆ Σ defined by g ¨ ph, pq :“ pgh, pq?

Exercise 40.31. Given a pair of smooth, free and proper group actions G ˆM Ñ M and
H ˆN Ñ N , prove:

(a) The Lie group G ˆH acts smoothly, freely and properly on M ˆ N by pg, hq ¨ pp, qq :“
pgp, hqq.

(b) The map pM ˆNq{pGˆHq Ñ pM{Gq ˆ pN{Hq : rpp, qqs ÞÑ prps, rqsq is well defined and
gives a diffeomorphism with respect to the smooth structures on quotients arising from
Corollary 40.26.

As mentioned in §40.1, all results stated in this lecture for left actions have more-or-less obvious
analogues for right actions. The following exercise uses a right action so that it can subsequently
define a left action on the resulting quotient.

Exercise 40.32. Assume that G is a Lie group with a Lie subgroup H Ă G. Prove:

(a) The left and right actions of H on G defined by

H ˆGÑ G : ph, gq ÞÑ hg and GˆH Ñ G : pg, hq ÞÑ gh

are smooth, free and proper.
(b) Defining G{H as the set of left cosets gH (i.e. the quotient by the right action in part (a))

and endowing it with the smooth structure arising from Corollary 40.26, the map

Gˆ pG{Hq Ñ G{H : pg, aHq ÞÑ gaH

defines a smooth left action of G on G{H .
Hint: Exercise 40.31 makes Gˆ pG{Hq diffeomorphic to the quotient of GˆG by a free
and proper action of some product subgroup. You can therefore use Exercise 40.27 to
check the smoothness of a map defined on Gˆ pG{Hq.

(c) If the subgroup H Ă G is normal, then G{H has a natural Lie group structure for which
the quotient projection GÑ G{H is a Lie group homomorphism.
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Exercise 40.33. A mild generalization of Theorem 40.25 is sometimes needed in the study of
moduli spaces, i.e. sets of geometric objects (such as algebraic curves, or solutions to elliptic PDEs)
which can be described via finitely-many parameters. Assume G ˆM Ñ M is a smooth group
action that is proper and not necessarily free, but instead has finite isotropy, meaning that the
stabilizer Gp Ă G is finite for every p PM .

(a) Show that for each p P M , the orbit Gp Ă M is a smooth submanifold. Unlike the case
of a free action, Gp will not generally be diffeomorphic to G. What instead?

(b) Show that p admits a Gp-invariant neighborhood U ĂM with a Gp-invariant Riemannian
metric, i.e. the diffeomorphisms U Ñ U : q ÞÑ gq are isometries for each g P Gp.
Hint: Start with any metric, then act on it with every element of Gp and take an average.

(c) Construct a submanifold Σ Ă M that satisfies Σ XGp “ tpu and TpΣ‘ TppGpq “ TpM

and, additionally, is invariant under the action of Gp. Hint: Use geodesics.
(d) Show that after possibly shrinking Σ to a smaller neighborhood of p, the map Φ : GˆΣÑ

M : pg, qq ÞÑ gq can be assumed to be a local diffeomorphism satisfying

gpΣq X Σ “ H for all g P GzGp.
(e) Deduce that the map Σ Ñ M{G : p ÞÑ rps descends to the quotient Σ{Gp as a homeo-

morphism onto a neighborhood of rps in M{G.
(f) Writing n :“ dimM ´dimG, conclude that the topological spaceM{G has the following

local structure generalizing the notion of a manifold: every point has a neighborhood
homeomorphic to the quotient of an open subset of Rn by a smooth finite group action.
A space with this local structure is called an n-dimensional orbifold.

(g) Show that every p PM has a neighborhood U ĂM such that |Gq| ď |Gp| for all q P U . In
particular, the set of points with trivial stabilizers is an open G-invariant subsetM˚ ĂM ,
and M˚{G is an n-dimensional manifold.

41. Closed subgroups and their quotients

We have two more pieces of general Lie group theory to cover before moving on to the next
topic. After proving the closed subgroup theorem in §41.1, we will briefly discuss homogeneous
spaces in §41.2, which form a large class of manifolds with smooth group actions, including im-
portant examples such as the Grassmannians and Stiefel manifolds that describe sets of linear
subspaces and frames on those subspaces. These will be discussed in §41.3, and will also arise
naturally in our introduction to fiber bundles in the next lecture.

41.1. The closed subgroup theorem. Subgroups of Lie groups do not have to be Lie
subgroups in general: for example, R is a Lie group with respect to addition, and the rational
numbers Q Ă R form a subgroup, but clearly not a submanifold. The main result of this section
will make it easy to recognize when a subgroup of a Lie group is also a submanifold. It will imply
in particular that for a smooth group action on a manifold, stabilizer subgroups are always Lie
subgroups, and can thus be used to form quotient manifolds as in Exercise 40.32.

The proof of the theorem below would be somewhat easier if one could assume in every Lie
group G that the relation exppX`Y q “ exppXq exppY q holds for all X,Y P g, but of course that is
not true in general if rX,Y s ‰ 0. We therefore need the following lemma as a tool for quantifying
the extent to which this relation fails.

Lemma 41.1. For any Lie group G with Lie algebra g, there exists a neighborhood O Ă gˆ g

of p0, 0q and a smooth function R : O Ñ Hompgˆ g, gq such that for all pX,Y q P O,

exppXq exppY q “ exp
`
X ` Y `RpX,Y qpX,Y q˘, and Rp0, 0q “ 0.
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Proof. Since exp : g Ñ G maps a neighborhood of 0 P g diffeomorphically onto a neighbor-
hood of e P G, there exists for any sufficiently small neighborhood O Ă g ˆ g of p0, 0q a unique
smooth function F : O Ñ g taking values in a similarly small neighborhood of 0 such that

exp
`
X ` Y ` F pX,Y q˘ “ exppXq exppY q.

Moreover, F satisfies F pX, 0q “ 0 for all X and F p0, Y q “ 0 for all Y , implying that both F and
its first derivative vanish at the point p0, 0q. The fundamental theorem of calculus thus implies

F pX,Y q “
ż 1

0

d

dτ
F pτX, τY q dτ “

ˆż 1

0

DF pτX, τY q dτ
˙
pX,Y q,

and we define RpX,Y q P Hompgˆ g, gq as the integral in parentheses. �

Theorem 41.2. Suppose G is a Lie group and H Ă G is a subgroup. Then H is a Lie
subgroup92 of G if and only if it is a closed subset.

Proof. Assume first that H Ă G is a Lie subgroup, meaning that it is both a subgroup and
a submanifold, thus we can find a neighborhood U Ă G of e P G admitting a slice chart for H ,
making H X U a closed subset of U . Now suppose hk P H is a sequence converging in G to an
element g P G. Then since hk is a Cauchy sequence for a suitable choice of metric, we can assume
hkh

´1
j P U whenever j and k are both sufficiently large. Fixing j and letting k Ñ 8, we have

hkh
´1
j Ñ gh´1

j P U , but since hkh´1
j belongs to the closed subset H X U Ă U , this implies gh´1

j is
also in H , and therefore so is g. This completes the proof that H Ă G is closed.

The converse is the truly surprising part: we need to show that if H Ă G is both a subgroup
and a closed subset, then it is a submanifold, i.e. every h P H has a neighborhood in G admitting
a slice chart for H . It suffices in fact to prove this for h “ e, because if G Ą U

xÑ Rn is a slice
chart with e P U , then for any h P H , the map

G Ą LhpUq x˝Lh´1ÝÑ Rn

will be a slice chart with h P LhpUq. (Here the slice condition follows from the observation that
g P H X U if and only if Lhpgq P H X LhpUq.)

With this understood, our goal now is to construct a slice chart for H on a neighborhood of
the identity, or equivalently, to find a vector space V , subspace W Ă V , neighborhood O Ă V

of 0 and smooth map ϕ : O Ñ G that is a diffeomorphism onto a neighborhood of e such that
ϕ´1pHq “W XO. A good candidate for ϕ is the exponential map, so V will be the Lie algebra g,
and we expect the subspaceW Ă V to be the Lie algebra of the subgroupH . With this expectation
in mind, we start by identifying a candidate for the latter: let

h :“  
X P g

ˇ̌
expptXq P H for all t P R

(
.

We will see below that h Ă g is a linear subspace; we can already see clearly that it is closed under
scalar multiplication.

Choose a norm } ¨ } on g and denote the unit sphere in any linear subspace V Ă g by

SpV q :“  
X P V ˇ̌ }X} “ 1

(
.

Here is the first application of the hypothesis that H Ă G is closed: we claim that if Xk P gzt0u is
any sequence converging to 0 such that exppXkq P H for all k and the sequence Xk{}Xk} P Spgq
converges to an element X P Spgq, then X P h. Indeed, for any t P R, the assumption that Xk Ñ 0

92Recall that the definition of the term “Lie subgroup” we are using is stricter than what appears in some
textbooks: for us, a Lie subgroup is always also a smoothly embedded submanifold (cf. Remark 37.3).
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makes it possible to choose a sequence nk P Z with |nk| Ñ 8 such that nkXk Ñ tX . Since H Ă G

is a subgroup and t ÞÑ expptY q is a group homomorphism RÑ G for each Y P g, it follows that

H Q pexppXkqqnk “ exppnkXkq Ñ expptXq,
and since H Ă G is closed, this proves expptXq P H .

We claim next that h Ă g is closed under vector addition and is thus a linear subspace. For
this there is a similar trick as in the previous claim: given X,Y P h and t P R, we plug the product
expptX{kq expptY {kq P H for k P N into Lemma 41.1, take its kth power and let k Ñ8, obtaining

H Q pexpptX{kq expptY {kqqk “
ˆ
exp

ˆ
t

k
pX ` Y q ` t2

k2
RptX{k, tY {kqpX,Y q

˙˙k
“ exp

ˆ
tpX ` Y q ` t2

k
RptX{k, tY {kqpX,Y q

˙
Ñ expptpX ` Y qq.

The assumption that H Ă G is closed thus implies expptpX ` Y qq P H as claimed.
We will now be done if we can show that some neighborhood of e in H is contained in expphq.

To see this, suppose hk P H is a sequence with hk Ñ e but hk R expphq. Choosing a linear subspace
hK Ă g complementary to h, we can if necessary discard finitely many terms lying outside a small
neighborhood of e in order to write

hk “ exppXk ` Ykq,
for unique sequences Xk P h and Yk P hK that both converge to 0. By assumption Yk ‰ 0 for
every k, and since SphKq is compact, we can then assume after restricting to a subsequence that
Yk{}Yk} converges to some element Y P SphKq. But consider the sequence

gk :“ expp´Xkqhk “ expp´Xkq exppXk ` Ykq P H,
which also converges to e and can thus be written as gk “ exppZkq for a unique sequence Zk P g

that converges to 0 and satisfies Zk ‰ 0 for all k. Restricting to a further subsequence, we can
assume the sequence Zk{}Zk} P Spgq has a limit Z P Spgq, which must lie in Sphq according to the
first claim above. Using Lemma 41.1, we have

exppXk ` Ykq “ hk “ exppXkqgk “ exppXkq exppZkq “ exp
`
Xk ` Zk `RpXk, ZkqpXk, Zkq˘,

implying
Yk “ Zk `RpXk, ZkqpXk, Zkq

for all k. Since RpXk, Zkq Ñ Rp0, 0q “ 0, this relation implies Y “ Z, which is impossible since
Sphq X SphKq “ H. �

Corollary 41.3 (using Lemma 40.15). For any smooth group action G ˆM Ñ M and any
point p PM , the stabilizer Gp Ă G is a Lie subgroup, and its Lie algebra gp Ă g is the space of all
X P g for which the corresponding fundamental vector field XF P XpMq vanishes at p. �

41.2. Homogeneous spaces. For a Lie groupG with closed subgroupH Ă G, Exercise 40.32
shows that the smooth actions of H on G from the left or the right are free and proper, so the
resulting quotients G{H always have natural smooth structures, though they are not generally
groups unless the subgroup H is normal. Manifolds that arise in this way as quotients of Lie
groups are called homogeneous spaces. The reason for this term has to do with a special class
of group actions, namely those for which every point is in the same orbit with every other point.

Definition 41.4. A group action is transitive if it has only one orbit.
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Example 41.5. For any smooth manifoldM , the topological group DiffpMq has a natural left
action on M defined by ϕ ¨ p :“ ϕppq. If M is connected, then this action is transitive because
for any two points p, q P M , there exists a diffeomorphism ϕ : M Ñ M with ϕppq “ q. (Hint:
construct ϕ as the flow of a compactly-supported vector field.)

Example 41.6. For a pseudo-Riemannian manifold pM, gq, we will see later in this course
that the group of isometries IsompM, gq Ă DiffpMq has a natural Lie group structure for which
the action IsompM, gq ˆM ÑM : pϕ, pq ÞÑ ϕppq is smooth. We say that pM, gq is homogeneous
if this action is transitive. Homogeneous manifolds form a special class of pseudo-Riemannian
manifolds that can be said to “look the same” (in suitable coordinates) at any point.

Example 41.7. The natural action of a Lie group G on itself from the left or the right is
obviously transitive. More generally, we recall from Exercise 40.32 that if we form a homogeneous
space G{H via a closed subgroup H Ă G acting on G from the right, then G acts smoothly on
G{H from the left by

(41.1) GˆG{H Ñ G{H : pg, aHq ÞÑ gaH.

The transitivity of the action of G on itself implies immediately that this action on the quotient is
also transitive.

Exercise 41.8. Show that for the natural action of SOp3q on S2 Ă R3 by linear transformations
restricted to the unit sphere, the only Lie subgroup of SOp3q that acts transitively on S2 is SOp3q
itself. Hint: See Exercise 39.21.

Exercise 41.9. Show that the analogue of Exercise 41.8 does not hold for SOp4q, i.e. there
exists a proper Lie subgroup G Ă SOp4q that acts transitively on the unit sphere S3 Ă R4.
Hint: Identify R4 with C2 so that GLp2,Cq becomes a subgroup of GLp4,Rq, and show that from
this perspective, SOp4q XGLp2,Cq “ Up2q.

The next result says that every smooth transitive group action is equivalent to (41.1).

Theorem 41.10. For any smooth transitive left group action G ˆM Ñ M and any point
p PM , there exists a G-equivariant diffeomorphism

G{Gp ÑM : rgs ÞÑ gp,

where the G-action on G{Gp is defined as in (41.1).

Proof. Denote the map in question by ψ : G{Gp Ñ M . It is easy to check that ψ is well
defined, injective and G-equivariant, and its smoothness follows from Exercise 40.27 and the fact
that the map GÑM : g ÞÑ gp is smooth. Transitivity is then equivalent to the condition that ψ is
surjective, and it will therefore be a diffeomorphism if and only if its derivative at every point is an
isomorphism. Let us first examine whether this is true at a single point, namely at res P G{Gp. By
Exercise 40.27, the tangent space TrespG{Gpq is naturally isomorphic to the quotient vector space
TeG{TepGpq “ g{gp, and under this identification, Tresψ : TrespG{Gpq Ñ TpM becomes

g{gp Ñ TpM : rXs ÞÑ XF ppq,
which is well defined and injective since by Lemma 40.15, XF ppq “ 0 if and only if X P gp. By
equivariance and transitivity, the same then holds at every point of G{Gp, meaning that ψ is an
immersion, and it will therefore be a diffeomorphism if and only if the dimensions of G{Gp and M
are the same. The alternative would be dimpG{Gpq ă dimM , making ψ a surjective smooth map
from a manifold to another manifold of strictly larger dimension, and there are various ways to see
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that such objects never exist.93 The quickest is perhaps to quote Sard’s theorem (see e.g. [Mil97]),
which states that for a smooth map f :M Ñ N , almost every point q P N is a regular value of f ,
meaning that Tpf : TpM Ñ TqN is surjective for every p P f´1pqq. The only way for this to
hold when dimM ă dimN is if almost every q P N lies outside the image of f , so f cannot be
surjective. �

41.3. Grassmann and Stiefel manifolds. We have previously seen two examples of real
Grassmann manifolds (or Grassmannians for short): one of them is Gr1pRn`1q :“ RPn, in its
interpretation as the space of all 1-dimensional subspaces of Rn`1. Another appeared when we
described the sectional curvature of a Riemannian manifold pM, gq as a real-valued function KS

on the set Gr2pTMq :“ Ť
pPM Gr2pTpMq, where Gr2pTpMq denotes the set of all 2-dimensional

subspaces of TpM . More generally, if V is an n-dimensional vector space over F P tR,Cu and
0 ď k ď n, we define

GrkpV q :“  
W Ă V

ˇ̌
W a linear subspace with dimW “ k

(
.

Here the word “linear subspace” means real or complex subspaces, depending on the field F; taking
F “ C, another example that we’ve seen before is CPn “ Gr1pCn`1q.

It is intuitively clear what kind of topology we’d like to define on GrkpV q, though writing it
down precisely takes a bit more thought. One good approach is to think in terms of bases: if
v1, . . . , vk P V is a basis of W P GrkpV q, then elements W 1 P GrkpV q should be considered “close
to” W if they are spanned by bases v11, . . . , v1k P V such that v1i is close to vi for each i “ 1, . . . , k.
This suggests presenting GrkpV q as a quotient of another object, namely the set of all k-frames
in V ,

StkpV q :“
 pv1, . . . , vkq P V ˆk ˇ̌

v1, . . . , vk are linearly independent
(
.

As an open subset of the vector space V ˆk “ V ˆ . . . ˆ V , StkpV q is clearly a smooth manifold,
and it will often be useful to note that it has a natural diffeomorphism with the open subset
of HompFk, V q consisting of injective linear maps Fk Ñ V , i.e. we associate to each such map
φ : Fk Ñ V the k-frame pφpe1q, . . . , φpekqq, where e1, . . . , ek is the standard basis of Fk. Now
observe that there is a natural surjective map

π : StkpV q Ñ GrkpV q
associating to each k-frame pv1, . . . , vkq the k-dimensional subspace that it spans, or equivalently,
the image of the corresponding injective linear map φ : Fk Ñ V . This is in fact the quotient
projection for a smooth right action of the group GLpk,Fq on StkpV q, defined by composing
injective maps φ : Fk Ñ V with invertible transformations A : Fk Ñ Fk,

StkpV q ˆGLpk,Fq Ñ StkpV q : pφ,Aq ÞÑ φA :“ φ ˝A.
It is straightforward to check that this group action is smooth, free and proper, thus it endows

GrkpV q – StkpV q{GLpk,Fq
with the structure of a smooth manifold. Its dimension in the real case is dimStkpV q´dimGLpk,Fq “
nk´k2 “ kpn´kq, and in the complex case, one can check that GrkpV q is also a complex manifold,
with kpn´ kq as its complex dimension.

93They all depend in some way on the assumption that manifolds are separable and metrizable, or in topological
terms, they satisfy the second countability axiom. Otherwise, one could call

š
tPRttuˆRn´1 a disconnected pn´1q-

manifold and regard its obvious inclusion into Rn as a surjective smooth map. But thanks to separability, manifolds
are not allowed to have uncountably many connected components.
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One important feature of GrkpV q that is not so obvious from the presentation above is that,
unlike StkpV q, GrkpV q is compact. One way to see this is by choosing an inner product x , y on V
and replacing StkpV q with the set of orthonormal k-frames

StOk pV q :“
 pv1, . . . , vkq P StkpV q

ˇ̌ xvi, vjy “ δij for all i, j P t1, . . . , ku( .
In the case V “ Fn, this is traditionally called a Stiefel manifold and denoted by VkpFnq or Vn,k,
though I will stick with the more verbose notation StOk pFnq for now. It is manifestly compact, since
it is a closed subset of the k-fold product of the unit sphere in V . To see that it is also a smooth
submanifold of StkpV q, let us consider the Lie group

OpV q :“  
A P GLpV q ˇ̌ xAv,Awy “ xv, wy for all v, w P V ( ,

which is isomorphic to Opnq if F “ R and Upnq if F “ C. This group has an obvious smooth
left action on StkpV q that preserves StOk pV q, i.e. an orthogonal transformation A P OpV q sends a
k-frame pv1, . . . , vkq to the k-frame pAv1, . . . , Avkq, or equivalently, it sends an injective linear map
φ : Fk Ñ V to the injective linear map A ˝ φ : Fk Ñ V . Since every orthonormal k-frame can be
completed to an orthonormal basis of V , the action of OpV q on StOk pV q is also transitive, which is
a strong hint that StOk pV q should be not only a smooth manifold, but also a homogeneous space.
To make this precise, we need to choose a reference k-frame pe1, . . . , ekq P StOk pV q and examine
its stabilizer under the OpV q-action: this will be the set of all orthogonal transformations V Ñ V

that fix the subspace W Ă V spanned by e1, . . . , ek, thus it is equivalent to the group OpWKq of
orthogonal transformations on the orthogonal complementWK Ă V . Theorem 41.10 then suggests
considering the smooth map

(41.2) OpV qLOpWKq Ñ StkpV q : rAs ÞÑ pAe1, . . . , Aekq,
where the homogeneous space OpV q{OpWKq is defined via the right action of the closed subgroup
OpWKq :“  

A P OpV q ˇ̌ A|W “ 1W

(
on OpV q.

Exercise 41.11. Check that the map (41.2) is an embedding, and its image is StOk pV q, thus
proving that StOk pV q is a smooth submanifold of StkpV q diffeomorphic to OpV q{OpWKq.

To recover the Grassmannian GrkpV q from the Stiefel manifold StOk pV q, we observe that the
restriction of the natural surjection StkpV q Ñ GrkpV q to StOk pV q is also surjective since every
subspace admits an orthonormal basis, and it can also be interpreted as a quotient projection,
where the group acting on StOk pV q from the right is now

OpFkq “
#
Opkq if F “ R,

Upkq if F “ C.

The right action of OpFkq on the larger manifold StkpV q is manifestly smooth, so its restriction
to StOk pV q is also smooth due to the fact that the latter is a smooth submanifold. This action is
also free, and trivially proper since OpFkq is compact, so the quotient is a smooth manifold, and
we thus obtain a new presentation of GrkpV q as
(41.3) GrkpV q “ StOk pV q

L
OpFkq – `

OpV qLOpWKq˘MOpFkq.
Two important observations about this presentation: first, since the inclusion StOk pV q ãÑ StkpV q is
smooth and descends to a well-defined bijection of quotients StOk pV q{OpFkq Ñ StkpV q{GLpk,Fq,
Exercise 40.28 implies that this bijection is also smooth—one can check that it is additionally
a local diffeomorphism, and therefore a diffeomorphism, proving that our two ways of defining
the smooth structure on GrkpV q give the same result. Second, the double quotient on the right
hand side of (41.3) involves two right actions, but this picture can be simplified. Indeed, our
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diffeomorphism of StOk pV q with OpV q{OpWKq depended essentially on two choices: a k-dimensional
subspace W Ă V , and then an orthonormal basis pe1, . . . , ekq of this subspace, or equivalently, an
orthogonal isomorphism Fk Ñ W . The latter gives rise to an identification of the group OpFkq
with the subgroup OpW q Ă OpV q consisting of orthogonal transformations on V that act trivially
onWK, and this subgroup commutes with OpWKq. The result is that instead of a double quotient,
it is equivalent to divideOpV q by the product of these two subgroups, giving an explicit presentation
of GrkpV q as a homogeneous space,

(41.4) GrkpV q – OpV qL `OpW q ˆOpWKq˘ .
The subgroup in this denominator is equivalently H :“ tA P OpV q | ApW q “W u, and an explicit
bijection can be defined by sending the coset AH P OpV q{H to ApW q P GrkpV q. In particular,
this gives

(41.5) GrkpRnq – OpnqLpOpkq ˆOpn´ kqq, GrkpCnq – UpnqLpUpkq ˆUpn´ kqq,
where the subgroup in each case consists of all matrices that admit block decompositions

ˆ
A 0

0 B

˙
determined by a k-by-k block A and an pn´ kq-by-pn´ kq block B.

Exercise 41.12. As a sanity check, compute the dimensions of the two homogeneous spaces
in (41.5), and make sure they match our previous computation of dimGrkpV q.

A minor enhancement of GrkpV q is also worth mentioning: when V is a real n-dimensional
vector space, we denote by ĂGrkpV q ΠÝÑ GrkpV q
the natural two-to-one cover in which each element of ĂGrkpV q is a subspace W P GrkpV q endowed
with the extra data of an orientation, and the projection Π is defined by forgetting the orientation.
The projection π : StOk pV q Ñ GrkpV q factors through this and another projection rπ : StOk pV q ÑĂGrkpV q since each k-frame naturally determines an orientation of the subspace that it spans. I will
leave it as an exercise for the reader to show that when k ă n, the natural smooth structure onĂGrkpV q is obtained by replacing each of the Lie groups in (41.4) with their identity components,
that is, ĂGrkpV q – SOpV qL `SOpW q ˆ SOpWKq˘ ,
and the inclusion map SOpV q ãÑ OpV q then descends to the quotients to define the double cover
Π : ĂGrkpV q Ñ GrkpV q as a smooth map. (This correspondence fails in the case k “ n because
the action of SOpV q on StOn pV q is not transitive, but this detail is unimportant since GrnpV q andĂGrnpV q are not very interesting spaces when n “ dimV .)

Exercise 41.13. Prove that for any n-dimensional vector space V over F P tR,Cu and 0 ď
k ď n,

E :“  pW, vq P GrkpV q ˆ V
ˇ̌
v PW(

defines a smooth subbundle of the trivial vector bundle GrkpV q ˆ V Ñ GrkpV q. (It is called the
tautological vector bundle over GrkpV q.)

Exercise 41.14. On a real vector space V of dimension 2n, let

J pV q :“  
J P EndpV q ˇ̌ J2 “ ´1( .

The elements J P J pV q are called complex structures on V , as each one can be used to endow
V with the structure of an n-dimensional complex vector space on which scalar multiplication is
defined by pa` ibqv :“ av`bJv. Prove that J pV q is a smooth noncompact submanifold of EndpV q
with dimension 2n2, and that it has exactly two connected components.
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Hint: Find a smooth action of GLpV q on EndpV q that preserves J pV q and has stabilizer at some
point J0 P J pV q isomorphic to GLpn,Cq.

42. Fiber bundles

42.1. Examples and main definition. For the next several lectures, we will be considering
various flavors of objects that clearly deserve to be called “bundles”, even though their “fibers” are
not always vector spaces. We will more generally allow fibers of bundles to be smooth manifolds,
typically with some additional structure, satisfying the condition that each fiber admits a smooth
family of diffeomorphisms (preserving whatever additional structure it has) to all the nearby fibers.
Here are some familiar examples with which to motivate the main definition.

Example 42.1. For a smooth vector bundle E ÑM with a positive bundle metric x , y, the
associated unit sphere bundle π : SE Ñ M is defined by restricting the projection E Ñ M to
the subset

SE :“  
v P E ˇ̌ xv, vy “ 1

( Ă E.

If E is a real bundle of rank m, then the fibers SEp :“ π´1ppq Ă SE are all diffeomorphic to the
sphere Sm´1, and every choice of orthonormal frame for E over an open subset U ĂM determines
a smooth family of diffeomorphisms SEp Ñ Sm´1 for every p P U . Unit sphere bundles have the
nice property that whenever M is compact, SE is also a compact manifold; by contrast, the total
space of a vector bundle of positive rank is never compact. We made use of the compactness of
SpTMq once last semester, when we proved that all compact Riemannian manifolds are geodesically
complete (see §23.3).

Example 42.2. A close relative of the unit sphere bundle π : SE ÑM in Example 42.1 is the
unit disk bundle,

DE :“  
v P E ˇ̌ xv, vy ď 1

( Ă E,

which is a smooth manifold with boundary BpDEq “ SE whenever M is a manifold without
boundary,94 and it is compact if M is compact. As in Example 42.1, every orthonormal frame for
E over a subset U Ă M defines a smooth family of diffeomorphisms of the fibers DEp to the disk
Dm for p P U .

Example 42.3. If E Ñ M is a vector bundle of rank m over F, then for each k “ 0, . . . ,m

there are corresponding bundles of Grassmannian and Stiefel manifolds

GrkpEq :“
ď
pPM

GrkpEpq, StkpEq :“
ď
pPM

StkpEpq.

If E is endowed with a positive bundle metric, then we also have the bundle of orthonormal
k-frames

StOk pEq :“
ď
pPM

StOk pEpq,
and if F “ R, the bundle of oriented k-planesĂGrkpEq :“

ď
pPM

ĂGrkpEpq.

Having seen in the previous subsection that all of these objects have fibers that are smooth man-
ifolds, it should be easy to convince yourself that suitable local frames for E always give rise to
smooth families of diffeomorphisms identifying fibers with GrkpFmq, StkpFmq, StOk pFmq or ĂGrkpRmq
respectively.

94If BM ‰ H, then DE can be regarded as a smooth manifold “with boundary and corners”, a notion that does
not quite fit into the definitions in this course, so we are avoiding talking about it.



42. FIBER BUNDLES 367

Example 42.4. The following special cases of Example 42.3 deserve more attention: assuming
rankpEq “ m, we call

FE :“ StmpEq
the frame bundle of E, and if E is a real bundle with a positive bundle metric, there is similarly
the orthonormal frame bundle

FOE :“ StOmpEq.
The fibers of a frame bundle are bases of the fibers of the underlying vector bundle, so in particular,
each fiber FEp of FE is diffeomorphic to the groupGLpm,Fq, though there is generally no canonical
choice of diffeomorphism, nor a natural group structure on FEp that can be defined without
additional choices. What we have instead is a natural smooth right action of GLpm,Fq on FEp,
defined by identifying frames with vector space isomorphisms Fm Ñ Ep and composing those
isomorphisms with invertible linear transformations Fm Ñ Fm. It is easy to check that this group
action is free and transitive, so that any map GLpm,Fq Ñ FEp defined by letting the group act on
a chosen point in FEp is a diffeomorphism. Similarly, the fibers FOEp of the orthonormal frame
bundle are compact manifolds with a natural free and transitive right action of the group

OpFmq :“
#
Opmq if F “ R,

Upmq if F “ C,

implying that they are all (non-canonically) diffeomorphic to OpFmq.
Example 42.5. As an addendum to the previous example, observe that if we endow the

tautological k-plane bundle E Ñ GrkpV q from Exercise 41.13 with the natural bundle metric
induced by any choice of inner product on V , then the natural projection StOk pV q Ñ GrkpV q is
precisely the orthonormal frame bundle of E.

All of the above examples are special cases of the following object.

Definition 42.6. A smooth fiber bundle π : E ÑM consists of a pair of smooth manifolds
E (the total space) andM (the base), and a surjective smooth map π that is locally trivializable
in the following sense. There exists a smooth manifold F , called the standard fiber of E, such
that every point p PM admits a neighborhood U ĂM with a diffeomorphism

Φ : E|U :“ π´1pUq Ñ U ˆ F

sending the fiber Eq :“ π´1pqq over each point q P U to tqu ˆ F . The pair pU ,Φq is in this case
called a local trivialization of the bundle π : E Ñ M . A smooth section of π : E Ñ M is a
smooth map s : M Ñ E such that π ˝ s “ IdM , and the set of all smooth sections will be denoted
by ΓpEq.

There is of course also a topological analogue of this definition, in which every instance of
the word “manifold” is replaced by “topological space” and all maps are required to be continuous
instead of smooth. Geometers sometimes use the word fibration as a synonym for “fiber bundle”,
which is slightly unfortunate because “fibration” means something more general in topology, but
this rarely causes any actual confusion.

The notion of a pullback bundle has a relatively straightforward definition in the world of
smooth fiber bundles. It comes from the observation that if π : E Ñ M and f : N Ñ M are
smooth maps and π is a submersion, then by a bit of basic transversality theory (see Exercise 42.7
below), the set

f˚E :“  pp, xq P N ˆE
ˇ̌
πpxq “ fppq(

is a smooth submanifold of N ˆE, and the smooth map

N ˆE Ą f˚E f˚πÝÑ N : pp, xq ÞÑ p
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is then also a submersion. If π : E Ñ M is a fiber bundle, then one can define from any local
trivialization Φ : E|U ÑM ˆ F a smooth map

f˚Φ : pf˚πq´1pUq Ñ f´1pUq ˆ F : pp, xq ÞÑ pp, pr2 ˝Φpxqq,
where pr2 : UˆF Ñ F denotes the obvious projection, and pf´1pUq, f˚Φq can then be interpreted
as a local trivialization of f˚π : f˚E Ñ N , making the latter a smooth fiber bundle with fibers
pf˚Eqp “ Efppq for every p P N .

Exercise 42.7. Here’s a subject that probably should have been covered in last semester’s
course but wasn’t: given a smooth map f : N Ñ M and a smooth submanifold Q Ă M , we say
that f is transverse to Q and write “f&Q” if for every p P N with q :“ fppq P Q, we have
pimTpfq ` TqQ “ TqM .

(a) Prove that if f&Q, then Σ :“ f´1pQq Ă N is a smooth submanifold with TpΣ “ 
X P TpN

ˇ̌
TpfpXq P TqQ( for every p P Σ and q :“ fppq. What is its dimension?

Hint: This generalizes the version of the implicit function theorem that we have often
used to study level sets of smooth maps at regular values, but it also follows from that
version of the theorem if you work in suitable coordinates near Q.

(b) Suppose f : N ÑM and π : E ÑM are two smooth maps such that π is a submersion.
Prove that the map

f ˆ π : N ˆE ÑM ˆM : pp, xq ÞÑ pfppq, πpxqq
is then transverse to the so-called diagonal submanifold ∆ :“ tpp, pq | p PMu ĂMˆM ,
and thus Σ :“ pf ˆ πq´1p∆q is a submanifold of N ˆ E. Prove moreover that the map
ΣÑ N : pp, xq ÞÑ p is a submersion.

Let’s throw in a word of caution about sections of fiber bundles: since the fibers are no longer
required to be vector spaces, ΓpEq is at this stage only a set rather than a vector space, and we
will see that in many cases of interest, ΓpEq “ H. This is something that never happens with
vector bundles, since they all at least admit the zero-section, and one can always use partitions
of unity to construct many nontrivial sections. But on general fiber bundles, there is typically no
distinguished element of each fiber analogous to the zero element of a vector space, and partitions
of unity are of little use when fibers have no linear structure with which to interpolate. In fact, if
E Ñ M is a vector bundle and FE Ñ M is its frame bundle as defined in Example 42.4, then a
section of FE is the same thing as a global frame for E, which means ΓpFEq ‰ H if and only if
the bundle E is trivial. This observation is one of the main advantages of the notion of a frame
bundle: it reduces many geometric and topological questions about E to questions about sections
of a suitable frame bundle related to E.

42.2. Structure groups. The definition of a fiber bundle in the previous section was a bit
too general to be truly useful in typical applications. Most of the actual examples one encounters
have more structure than was allowed for in that definition, e.g. the fibers of the unit sphere bundle
in Example 42.1 carry natural Riemannian metrics, and fibers of the frame bundles in Example 42.4
come with free and transitive group actions. We shall now introduce a very general framework for
encoding these kinds of structure.

For a fiber bundle π : E ÑM with standard fiber F , we can again use the term bundle atlas
to mean a collection of local trivializations tpUα,ΦαquαPI such that M “ Ť

αPI Uα. At this stage
there is no need to define a notion of “smooth compatibility” since E, M and F were all assumed
already to be endowed with smooth structures, and Definition 42.6 included the condition that
local trivializations are smooth maps. (We did not originally include this condition in the definition
of a smooth vector bundle, but we could have done so without changing anything.) It is instructive
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nonetheless to consider what the notion of a “transition function” might mean in this context. If
pUα,Φαq and pUβ ,Φβq are two local trivializations with a nonempty overlap Uα X Uβ ‰ H, one
obtains a diffeomorphism of the form

pUα X Uβq ˆ F
Φβ˝Φ´1

αÝÑ pUα X Uβq ˆ F : pp, xq ÞÑ pp, fpp, xqq,
where for each p P Uα X Uβ , fpp, ¨q : F Ñ F is a diffeomorphism, thus defining a map

gβα : Uα X Uβ Ñ DiffpF q, gβαppq :“ fpp, ¨q.
If we were dealing with purely topological fiber bundles, in which E,M and F are topological spaces
not equipped with smooth structures, then gβα would instead take values in the group HomeopF q,
and under some mild topological conditions (cf. §37.1), the latter could be understood as a topolog-
ical group such that the transition functions are continuous. For a smooth bundle, the map gβα will
certainly be continuous with respect to the C8

loc-topology on DiffpF q, but we cannot meagingfully
require it to be “smooth” since DiffpF q is not a Lie group in any sense that would be useful for this
discussion. In this regard, the distinction between smooth and topological fiber bundles cannot be
expressed purely in terms of the transition functions gβα, and is thus not precisely analogous to
the case of vector bundles. For most smooth fiber bundles that we will be interested in, however,
there is a reasonable way to define the notion of smooth transition functions: we can require them
to take values in a finite-dimensional Lie group G that acts smoothly on the standard fiber F .

Let us consider a concrete example: suppose π : E Ñ M is a smooth real vector bundle of
rank m, so the standard fiber in this case is F “ Rm, and the diffeomorphisms gβαppq P DiffpRmq
for p P UαXUβ are linear maps. We can then view gβα as taking values in the Lie group GLpm,Rq,
and each matrix in GLpm,Rq defines a diffeomorphism Rm Ñ Rm via the canonical smooth left
action of GLpm,Rq on Rm. If we now suppose additionally that π : E Ñ M is oriented and
endowed with a positive bundle metric, then it also admits a bundle atlas tpUα,ΦαquαPI consisting
only of trivializations that correspond to positively-oriented orthonormal frames, and the transition
functions gβα : UαXUβ Ñ GLpm,Rq relating any two such trivializations will take values in the Lie
subgroup SOpmq Ă GLpm,Rq, which again acts on the standard fiber Rm in a canonical way. Since
each transition function gβα is uniquely determined by the two trivializations Φα : E|Uα

Ñ UαˆRm

and Φβ : E|Uβ
Ñ Uβ ˆ Rm, it is straightforward to check that the entire collection of transition

functions tgβαupα,βqPIˆI automatically satisfies the relations

(42.1) gαα “ 1 on Uα, and gαβgβγ “ gαγ on Uα X Uβ X Uγ

for all α, β, γ P I. One subtlety needs to be mentioned here: the reason we know these relations are
satisfied is that each orientation-preserving orthogonal transformation Rm Ñ Rm is represented by
one and only one matrix in SOpmq, so e.g. we conclude from the fact that gαβgβγg´1

αγ acts trivially
on Rm that its value is everywhere 1 P SOpmq. But one sometimes also encounters group actions
that do not have this property. We say that a smooth left group action GˆM ÑM is effective
if the resulting group homomorphism G Ñ DiffpMq is injective, i.e. the only g P G satisfying
gp “ p for all p P M is g “ e. The canonical action of any Lie subgroup G Ă GLpm,Fmq on Fm

is effective, but for instance, one can use the double cover SUp2q Ñ SOp3q discussed in §39.2 to
define a non-effective action of SUp2q on R3. In such cases, the relations (42.1) will not be satisfied
automatically, but we will find that it is useful to require them explicitly in our definitions. This
detail will be especially relevant when we discuss spin structures.

Taking the example a step further, suppose π1 : E1 ÑM is a second oriented real vector bundle
of rank m with a positive bundle metric, and tpUα,ΦαquαPI1 is a bundle atlas for E1 corresponding
to positively-oriented orthonormal frames, thus giving rise to SOpmq-valued transition functions
tgβα : UαXUβ Ñ SOpmqupα,βqPI1ˆI1 . The preferred class of smooth linear bundle maps Ψ : E Ñ E1
then consists of smooth maps Ψ that restrict to the fibers Ep as orientation-preserving orthogonal
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transformations Ep Ñ E1
p for all p PM . At the level of local trivializations, such a map Ψ admits

the following characterization: for each pair of local trivializations Φα : E|Uα
Ñ Uα ˆ Rm and

Φβ : E1|Uβ
Ñ Uβ ˆ Rm from the given bundle atlases, there exists a unique smooth function

hβα : Uα X Uβ Ñ SOpmq such that

Φβ ˝Ψ ˝ Φ´1
α pp, vq “ pp, hβαppqvq for all p P Uα X Uβ and v P Rm,

and the resulting collection thβαupα,βqPIˆI1 of SOpmq-valued functions then automatically satisfies

(42.2) hαβgβγ “ hαγ on Uα X Uβ X Uγ , gδαhαβ “ hδβ on Uδ X Uα X Uβ ,

for all α, δ P I 1 and β, γ P I. Again, these relations are automatic due to the fact that each of the
functions hαβ : Uα XUβ Ñ SOpmq is uniquely determined by the two corresponding trivializations
pUα,Φαq and pUβ ,Φβq, which is true because SOpmq acts effectively on Rm. If we were dealing
with a non-effective group action, the relations (42.2) would not be guaranteed unless they are
imposed as an extra condition on isomorphisms between fiber bundles. This is what we will do in
the definitions below.

Definition 42.8. Suppose M is a smooth manifold and G is a Lie group. A system of
G-valued transition functions on M consists of the data T “ ptUαuαPI , tgβαupα,βqPIˆIq, where
tUαuαPI is an open covering of M and gβα : Uα X Uβ Ñ G are smooth functions that satisfy

(42.3) gαα “ e on Uα, and gαβgβγ “ gαγ on Uα X Uβ X Uγ

for all α, β, γ P I. If T j :“ ptUαuαPIj , tgβαupα,βqPIjˆIj q for j “ 1, 2 are two systems of G-valued
transition functions on M , then a morphism from T 1 to T 2 is a collection thβα : Uβ X Uα Ñ
Gupα,βqPI1ˆI2 of smooth functions that satisfy

(42.4) hαβgβγ “ hαγ on Uα X Uβ X Uγ , gδαhαβ “ hδβ on Uδ X Uα X Uβ ,

for all α, δ P I2 and β, γ P I1.
The second relation in (42.3) is also often written in the form

gαβgβγgγα “ e,

which follows since gαγgγα “ gαα “ e, implying gγα “ g´1
αγ . It is known as the cocycle condition.

(For the context of this terminology, see Remark 32.6.)

Definition 42.9. Suppose π : E Ñ M is a smooth fiber bundle, G is a Lie group and F is
a manifold. A G-bundle atlas for π : E Ñ M with standard fiber F is a tuple A “ pΦ, T , ρq
consisting of a bundle atlas Φ “ tΦα : E|Uα

Ñ Uα ˆ F uαPI , a system of G-valued transition
functions T “ ptUαuαPI , tgβαupα,βqPIˆIq, and a smooth left action ρ : G ˆ F Ñ F : pg, xq ÞÑ gx

such that for every α, β P I,
Φβ ˝ Φ´1

α pp, xq “ pp, gβαppqxq for all p P Uα X Uβ and x P F .
Suppose moreover that for j “ 1, 2, πj : Ej Ñ M denote two smooth fiber bundles over M , both
equipped with G-bundle atlases Aj “ pΦj , T j , ρq in which the standard fiber F and group action
ρ : G ˆ F Ñ F are identical. A smooth map Ψ : E1 Ñ E2 will then be called a G-bundle
isomorphism from pE1,A1q to pE2,A2q if there exists a morphism thβαupα,βqPI1ˆI2 from T 1 to
T 2 such that for every α P I1 and β P I2,

Φβ ˝Ψ ˝ Φ´1
α pp, xq “ pp, hβαppqxq for all p P Uα X Uβ and x P F .

Note that the map Ψ : E1 Ñ E2 in Definition 42.9 is necessarily invertible, so e.g. in the
case of vector bundles, the definition does not account for smooth linear bundle maps that are not
bundle isomorphisms. Non-invertible linear bundle maps are in any case not very nice objects—
their kernels and images for instance can have varying dimension from point to point, so that they
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are not always vector bundles. We will not attempt to fit them into the general framework we are
developing for fiber bundles.

Lemma 42.10. The inverse of any G-bundle isomorphism Ψ : pE1,A1q Ñ pE2,A2q is a
G-bundle isomorphism Ψ´1 : pE2,A2q Ñ pE1,A1q, and the composition of two G-bundle iso-
morphisms Ψ : pE1,A1q Ñ pE2,A2q and Ψ1 : pE2,A2q Ñ pE3,A3q is a G-bundle isomorphism
Ψ1 ˝Ψ : pE1,A1q Ñ pE3,A3q.

Proof. The statement about the inverse is an easy exercise: one need only define hαβppq :“
hβαppq´1 for pα, βq P I1ˆI2 and check that the required conditions are satisfied. For the statement
about compositions, suppose α P I1, γ P I3 and p P UαXUγ. Since tUβuβPI2 is an open cover ofM ,
we can then find some β P I2 such that a neighborhood of p is contained in Uα X Uβ X Uγ , and on
this neighborhood we define

hγα :“ hγβhβα,

where hγβ and hβα come from morphisms T 2 Ñ T 3 and T 1 Ñ T 2 respectively. We claim that the
function hγα is then independent of the choice of β P I2 with p P Uβ. Indeed, if δ P I2 is another
such choice, we have

hγδhδα “ hγβgβδgδβhβα “ hγβgββhβα “ hγβhβα.

It follows that hγα can be defined in this manner near every point p P UαXUγ so as to give a well-
defined and smooth function hγα : Uα X Uγ Ñ G. It is straightforward to check that the resulting
collection of functions for all pα, γq P I1 ˆ I3 makes Ψ1 ˝Ψ into a G-bundle isomorphism. �

Lemma 42.10 makes the equivalence relation in the next definition well defined.

Definition 42.11. Given a smooth fiber bundle π : E ÑM and Lie group G, a G-structure
on π : E Ñ M is an equivalence class of G-bundle atlases, where A1 and A2 are considered
equivalent if and only if the identity map E Ñ E is a G-bundle isomorphism pE,A1q Ñ pE,A2q.
A fiber bundle endowed with a G-structure is sometimes called a G-bundle, or a “fiber bundle
with structure group G”. When a G-structure is given, we will refer to the bundle atlases in its
equivalence class as the G-compatible bundle atlases, and the trivializations in these bundle
atlases as G-compatible trivializations.

Example 42.12. For any pair of manifolds M,F and any Lie group G, there is a trivial
G-bundle over M with fiber F , defined as the product M ˆF with the obvious projection to M .
The G-structure on this bundle is defined via a single global trivialization, thus requiring only one
transition function, which is a constant function with value e P G.

Definition 42.13. A G-bundle π : E Ñ M with standard fiber F is trivial if it admits a
G-bundle isomorphism to the product bundle in Example 42.12.

Exercise 42.14. Show that a G-bundle π : E Ñ M is trivial if and only if it admits a
G-compatible bundle atlas that contains only one trivialization.

When we introduced smooth structures on vector bundles in Lecture 32, we did not talk about
equivalence classes of bundle atlases, though we could have done, i.e. by defining two bundle atlases
A1 and A2 to be equivalent if and only if every trivialization in A1 is smoothly compatible with
every trivialization in A2. The reason we did not bother to make that definition at the time is
that every equivalence class of smooth vector bundle atlases has a unique maximal representative,
namely the union of all the atlases in the equivalence class, thus it was quicker but equally valid to
say that a smooth structure is the same thing as a maximal smooth bundle atlas. Taking a maximal
union of atlases is straightforward in that situation due to the fact that the action of GLpm,Fq
on Fm is effective, so that transition functions are uniquely determined by trivializations. It is less
straightforward for general G-bundle atlases, but the next exercise shows that it can be done.
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Exercise 42.15. For a smooth fiber bundle π : E Ñ M and Lie group G, one can define
a partial order ă on the set of all G-bundle atlases by inclusion, meaning we write A1 ă A2

if for j “ 1, 2, Aj has the form pΦj , T j , ρq where Φj “  
Φα : E|Uα

Ñ Uα ˆ F j
(
αPIj and T j “

ptUαuαPIj , tgαβupα,βqˆIjˆIj q such that I1 is a subset of I2. This condition implies in particular that
every trivialization and every transition function in A1 is also in A2. Prove:

(a) If A1 ă A2, then A1 and A2 are equivalent.
(b) If A1 and A2 are equivalent, then there exists another G-bundle atlas A3 such that

A1 ă A3 and A1 ă A3.
(c) For any collection of G-bundle atlases tAjujPJ that is totally ordered, meaning either

Aj ă Ak or Ak ă Aj holds for every j, k P J , there exists a G-bundle atlas A such that
Aj ă A for every j P J .

Readers familiar with Zorn’s lemma (see e.g. [Jän05,Kel75]) will recognize that we have just
established its hypotheses. The result is that every equivalence class of G-bundle atlases has a
unique maximal representative.

With the new definitions in hand, we next revisit a few familiar examples and introduce some
new ones. To start with, we observe that in the language of G-bundles, a vector bundle is nothing
other than a fiber bundle whose standard fiber is a vector space and whose structure group acts
on it linearly:

Example 42.16. If π : E Ñ M has a G-bundle atlas with G “ GLpm,Fq acting on standard
fiber Fm via matrix-vector multiplication, then it is a vector bundle of rank m over the field F. The
vector space structure on each fiber can be defined via any choice of local trivialization belonging
to the G-structure, and is independent of this choice due to the fact that transition functions are
linear maps.95

Reducing GLpm,Fq to a smaller Lie subgroup G Ă GLpm,Fq still acting linearly on Fm corre-
sponds to endowing the fibers Ep of our vector bundle with whatever extra structure is preserved
by the group G, and in a way that depends smoothly on the point p PM . The standard examples
were already discussed last semester in Lecture 18, and they include:

‚ GL`pm,Rq: E is a real oriented vector bundle.
‚ Opmq or Upmq: E is endowed with a positive bundle metric, and is thus called a Eu-
clidean vector bundle in the real case, or a Hermitian vector bundle in the complex
case.

‚ SLpm,Fq: the fibers of E are endowed with nontrivial top-dimensional alternating F-
multilinear forms; we sometimes call this structure a (real or complex) volume form on
the bundle E.

‚ SOpmq: E is an oriented Euclidean vector bundle of rank m, or equivalently, a Euclidean
vector bundle endowed with a volume form µ such that orthonormal bases v1, . . . , vm
satisfy µpv1, . . . , vmq “ ˘1. (Here the orientation determines the sign, and vice versa.)

‚ SUpmq: E is a Hermitian vector bundle of rank m endowed with a complex volume form
µ such that orthonormal bases v1, . . . , vm satisfy |µpv1, . . . , vmq| “ 1.

‚ Opk, ℓq: E is a real vector bundle of rank k` ℓ endowed with an indefinite bundle metric
of signature pk, ℓq.

‚ Spp2mq: E is a real vector bundle of rank 2m whose fibers are endowed with nondegener-
ate alternativing 2-forms; we then call it a symplectic vector bundle (cf. Example 25.29
from last semester).

95As you might recall from the first semester, this is exactly how one normally defines the vector space structure
on the tangent spaces of a smooth manifold: write it down in local coordinates and show that the result is independent
of the choice.
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Example 42.17. For any Euclidean vector bundle E ÑM of rank m, the unit sphere bundle
SE ÑM and unit disk bundle DE ÑM of Examples 42.1 and 42.2 are both smooth fiber bundles
with natural Opmq-structures. Indeed, any local trivialization Φα : E|Uα

ˆ Uα ˆ Rm in the Opmq-
structure of E can be restricted to SE and DE, thus identifying their fibers with Sm´1 and Dm

respectively. The Opmq-structures inherited by the two fiber bundles thus have exactly the same
Opmq-valued transition functions as E, but with Opmq acting on Sm´1 and Dm instead of Rm. It
follows for instance that the fibers of SE carry natural Riemannian metrics, defined to match the
standard metric on Sm´1; this does not depend on a choice of trivializations since the Opmq-valued
transition functions act on Sm´1 by isometries.

Example 42.18. For a vector bundle E Ñ M of rank m over F, the Grassmann and Stiefel
bundles GrkpEq and StkpEq of Example 42.3 inherit natural GLpm,Fq-structures whose transition
functions are the same as for E, but acting smoothly on the manifolds GrkpFmq and StkpFmq
respectively instead of Fm. Analogous statements hold for StOk pEq and ĂGrkpEq if E is endowed
with an Opmq-structure or a GL`pm,Rq-structure respectively.

Example 42.19. We defined in Example 42.4 the frame bundle FE “ StmpEq of a vector
bundle E Ñ M : assuming E has rank m over F, this is the special case of Example 42.18 with
k “ m, thus FE inherits from E aGLpm,Fq-structure with the same transition functions, which act
on StmpFmq “ GLpm,Fq by left multiplication. If E has a positive bundle metric, thus endowing
it with an OpFmq-structure, then one also has the orthonormal frame bundle FOpEq “ StOmpEq,
which analogously inherits from E an OpFmq-structure with the same transition functions acting
on StOmpFmq “ OpFmq by left multiplication. (Recall that, by definition, OpRmq “ Opmq and
OpCmq “ Upmq.)

Exercise 42.20. Show thatG-structures are well behaved under the pullback operation defined
in §42.1. Concretely, if π :M Ñ E is a fiber bundle and f : N ÑM a smooth map, then associating
to each local trivialization Φα of E the pullback trivialization f˚Φα and to each transition function
gβα on Uα X Uβ Ă M the function gβα ˝ f on f´1pUαq X f´1pUβq Ă N turns any G-bundle atlas
A on E into a G-bundle atlas f˚A on f˚E. Show moreover that any G-bundle isomorphism
Ψ : pE1,A1q Ñ pE2,A2q similarly determines a G-bundle isomorphism f˚Ψ : pf˚E1, f˚A1q Ñ
pf˚E2, f˚A2q.

42.3. Transition functions determine the bundle. According to our definitions in the
previous section, everyG-bundle atlas includes a system ofG-valued transition functions (satisfying
the cocycle condition) as part of its data, and a G-bundle isomorphism implies the existence of a
morphism of systems of transition functions. We would now like to invert this relationship and show
that, up to isomorphism, everything important about a G-bundle is determined by its transition
functions. This implies for instance that for any given G-bundle, one can find a multitude of other
related G-bundles by changing the standard fiber and/or its G-action but keeping the same system
of transition functions.

Theorem 42.21. Fix a Lie group G, manifolds F,M and a smooth action ρ : G ˆ F Ñ F .
Then for any system of G-valued transition functions T “ ptUαuαPI , tgβαupα,βqPIˆIq on M , there
exists a smooth fiber bundle π : E ÑM with a G-bundle atlas of the form pΦ, T , ρq.

Moreover, if πj : Ej Ñ M for j “ 1, 2 are two G-bundles with G-compatible bundle atlases
of the form Aj “ pΦj , T j , ρq, then any morphism T 1 Ñ T 2 canonically determines a G-bundle
isomorphism Ψ : pE1,A1q Ñ pE2,A2q.
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Proof. Given the system of transition functions T , we define the total space E of our desired
fiber bundle as the quotient

E :“
˜ž
αPI

Uα ˆ F

¸M
„,

where the equivalence relation is defined such that for all α, β P I,
Uα ˆ F Q pp, xq „ pq, yq P Uβ ˆ F ô p “ q and y “ gβαppqx.

The cocycle condition (42.3) guarantees that this is indeed an equivalence relation. The projection
π : E Ñ M : rpp, xqs ÞÑ p is then well defined, and E admits a unique topology and smooth
structure for which π is smooth and the identity map on Uα ˆ F descends to a diffeomorphism
E Ą π´1pUαq Ñ Uα ˆ F for each α P I. Interpreting these maps as trivializations gives a suitable
G-bundle atlas for π : E ÑM .

Next, given two fiber bundles πj : Ej Ñ M for j “ 1, 2, with G-bundle atlases pΦj , T j , ρq
including trivializations Φj “ tΦα : Ej |Uα

Ñ Uα ˆ F uαPIj and systems of G-valued transition
functions T j “ ptUαuαPIj , tgβαupα,βqPIjˆIj q, suppose thβα : UβXUα Ñ Gupα,βqPI1ˆI2 is a morphism
from T 1 to T 2. There is then a unique map Ψ : E1 Ñ E2 determined by the condition

Φβ ˝Ψ ˝ Φ´1
α pp, xq “ pp, hβαppqxq

for all α P I1, β P I2, p P Uα X Uβ and x P F ; here it is an easy exercise to check that Ψ|Ep
does

not depend on the choices of α P I1 and β P I2 with p P Uα X Uβ , due to the condition (42.4). �

Remark 42.22. Theorem 42.21 is the main reason why we explicitly required the cocycle
condition in our definition of a G-structure. If we had a non-effective action and a badly chosen
system of transition functions for which the cocycle condition is not satisfied, then it would not be
possible to alter the fiber and group action arbitrarily while keeping the same transition functions.

43. Principal bundles

One consequence of our discussion of fiber bundles thus far is that a single system of G-valued
transition functions tgβα : Uα X Uβ Ñ Gupα,βqPIˆI can give rise to many different bundles, all
realized via different choices of the standard fiber F and a left G-action on F . We can formalize
this with the following definition.

Definition 43.1. For a smooth manifold M and Lie group G, an abstract G-bundle over
M is an equivalence class of systems of G-valued transition functions onM , where two systems are
considered equivalent if and only if there exists a morphism (see Definition 42.8) between them.

The equivalence relation in this definition makes sense due to the arguments in Lemma 42.10,
just as in our definition of G-structures in the previous lecture. Notice what this definition does not
mention: an abstract G-bundle does not have fibers, or a total space. The idea is rather that thanks
to Theorem 42.21, one can use an abstract G-bundle as the foundation on which to construct a
G-bundle with any desired standard fiber F that has a left G-action, and up to isomorphism, every
G-bundle comes from such a construction. The fiber bundles constructed in this way from a single
abstract bundle are all in some sense equivalent, even though their fibers and total spaces may
be very different manifolds. We will see in particular that the notion of connections and parallel
transport compatible with a G-structure can be defined in a way that only makes reference to the
underlying abstract G-bundle, thus it determines notions of parallel transport simultaneously on
all the associated fiber bundles.

The main message of the present lecture is the observation that every abstract G-bundle has a
canonical realization in the form of a so-called principal fiber bundle, constructed in terms of the
natural left action of G on itself. Of all the fiber bundles associated to a particular abstract bundle,
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the principal bundle is the one with the nicest properties, and it can be used to construct all the
other associated bundles without any explicit reference to triviliazations or transition functions.
For this reason, it is conventional to derive most of the theory of connections on fiber bundles from
the special case of principal bundles, and this is what we will do in the next few lectures.

43.1. Two definitions. The following is the more abstract of the two equivalent definitions
we will give, but it fits neatly into the more general context of the previous lecture.

Definition 43.2 (principal bundles, version 1). For a Lie group G and manifold M , a prin-
cipal G-bundle over M is a G-bundle π : E Ñ M for which the standard fiber is G and the
structure group G acts on it via multiplication from the left.

If we were to define a vector bundle in the same language, we would say it is a GLpm,Fq-bundle
with standard fiber Fm for some m ě 0 and F P tR,Cu, such that the structure group GLpm,Fq
acts on Fm in the canonical way via linear maps. This is of course not the most popular way to
phrase the definition of a vector bundle, as for instance, one still has to work a bit to deduce from
this definition that each fiber has a natural vector space structure. There is an analogous way to
reformulate Definition 43.2 in terms of the intrinsic structure carried by the fibers of a principal
bundle, and this reformulation is by far the more popular (and useful) version of the definition. We
know already that the fibers of a principal G-bundle are diffeomorphic to the structure group G,
though in general they will not have natural group structures, just as the manifold StmpV q for an
m-dimensional vector space V is not a group in any canonical way, even though it is diffeomorphic
to GLpm,Fq. What the fibers of a principal bundle do have, however, is a free and transitive action
of G from the right.

Proposition 43.3. If π : E ÑM is a principal G-bundle in the sense of Definition 43.2, then
it admits a unique smooth right action

E ˆGÑ E

such that for every G-compatible local trivialization Φα : E|Uα
Ñ Uα ˆG,

(43.1) Φ´1
α pp, xqg “ Φ´1

α pp, xgq for all p P Uα, x, g P G.
This G-action on E preserves each of the fibers Ep Ă E and acts on each one freely and transitively.
Conversely, if π : E ÑM is any smooth fiber bundle with a smooth fiber-preserving right action of
a Lie group G that is free and transitive on each fiber, then π : E ÑM admits a unique G-structure
making it into a principal G-bundle such that the right G-action is as described above.

Proof. The G-action on a single fiber Ep defined via the relation in (43.1) is manifestly free
and transitive since the same is true for the natural right action of G on itself. We claim that
this action is also independent of the choice of G-compatible trivialization pUα,Φαq with p P Uα:
indeed, if pUβ ,Φβq is another one, then we have

Φ´1
β pp, xq “ Φ´1

α ˝ pΦα ˝ Φ´1
β qpp, xq “ Φ´1

α pp, gαβppqxq
for all x P G, and thus for g P G,

Φ´1
β pp, xqg “ Φ´1

α pp, gαβppqxgq “ Φ´1
β pp, xgq.

The crucial property we are using here is the associativity of the group law in G, which can
also be expressed as the fact that for any two elements g, h P G, the left and right translation
diffeomorphisms Lg, Rh : G Ñ G always commute with each other. To put it another way, the
natural left and right actions of G on itself commute with each other: this is why describing
π : E Ñ M in local trivializations via a left action of the structure group on the standard fiber
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allows us to define a global right action on E that is independent of any choice of trivialization.
We could also have done it the other way around; this is just a convention.

For the converse, suppose π : E ÑM is a fiber bundle with a smooth right action EˆGÑ E

that restricts to a free and transitive action on each fiber. Using local trivializations of E ÑM , one
can find an open covering tUαuαPI of M such that E admits a smooth local section sα P ΓpE|Uα

q
for each α P I. The fact that G acts freely and transitively on each fiber then implies that the map

Uα ˆGÑ E|Uα
: pp, gq ÞÑ sαppqg

is a diffeomorphism, so we define a local trivialiazation Φα : E|Uα
Ñ Uα ˆ G as its inverse. On

the overlap Uα X Uβ for any pα, βq P I ˆ I, freeness and transitivity also imply that there is a
unique smooth function gαβ : Uα X Uβ Ñ G such that sβ “ sαgαβ, and one easily checks that
the two corresponding trivializations are then related by Φα ˝ Φ´1

β pp, xq “ pp, gαβppqxq. Since the
left action of G on itself is free (and therefore effective), the collection of functions tgαβupα,βqPIˆI
automatically satisfies the cocycle condition, so all of this data together forms a G-bundle atlas
for π : E ÑM with standard fiber G. �

Exercise 43.4. Extend the correspondence in Proposition 43.3 as follows: show that if πj :

Ej Ñ M for j “ 1, 2 are two principal G-bundles in the sense of Definition 43.2, then a smooth
map Ψ : E1 Ñ E2 that is fiber preserving (i.e. it sends E1

p Ñ E2
p for every p P M) is a G-bundle

isomorphism if and only if it is equivariant with respect to the right G-actions on E1 and E2,
meaning

Ψpxgq “ Ψpxqg for all x P E, g P G.
The proposition implies that Definition 43.2 is equivalent to the following:

Definition 43.5 (principal bundles, version 2). For a Lie group G and manifold M , a prin-
cipal G-bundle over M is a smooth fiber bundle π : E Ñ M that is equipped with a smooth
and fiber-preserving right action E ˆGÑ E whose restriction to each fiber is free and transitive.
Given two principal G-bundles E1, E2 Ñ M in this sense, a principal bundle isomorphism is
a smooth map Ψ : E1 Ñ E2 that is fiber preserving and G-equivariant.

The following fact buried in the proof of Proposition 43.3 is worth drawing attention to:

Proposition 43.6. Given a principal G-bundle π : E Ñ M and an open subset U Ă M ,
there is a natural bijection between the space of local sections ΓpE|Uq over U and the set of all
G-compatible trivializations Φ : E|U Ñ U ˆ G over U : concretely, a trivialization Φ gives rise to
the section sppq “ Φ´1pp, eq, and can be recovered from this section via the relation

Φ´1pp, gq “ sppqg for pp, gq P U ˆG.

In particular, a global section s P ΓpEq exists if and only if the bundle is trivial. �

Most interesting principal bundles one can come up with turn out to be nontrivial, so one
of the messages of Proposition 43.6 is that on principal bundles, one should not typically expect
global sections to exist. In fact, many important problems involving the existence of geometric
structures on manifolds can be reduced to the question of whether a particular principal bundle
admits a global section. Algebraic topologists have developed quite powerful methods for solving
the latter problem; the subject is known as obstruction theory (see e.g. [Ste51]).

Example 43.7. For any smooth right action M ˆ G Ñ M that is free and proper, the slice
theorem (Theorem 40.25) associates to a submanifold Σ Ă M satisfying certain properties an
embedding

ΣˆGÑM : pp, gq ÞÑ pg
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that is a diffeomorphism onto the G-orbit of Σ. We can interpret such diffeomorphisms as inverses
of local trivializations that make the quotient projection π : M Ñ M{G into a smooth fiber
bundle, and since G acts freely and transitively on each of its orbits in M , the G-action makes
π : M ÑM{G into a principal G-bundle. The slice Σ ĂM is then equivalent to a local section of
this bundle over U :“ πpΣq ĂM{G, i.e. there exists a unique section s : U ÑM of π :M ÑM{G
whose image is Σ.

Exercise 43.8. Show that for any principal G-bundle π : E ÑM , the right G-action on E is
free and proper, so E{G has a natural smooth structure and is diffeomorphic to M .

Example 43.9. We observed in the previous lecture that for any vector bundle E Ñ M of
rank m over the field F, the frame bundle FE ÑM has a natural GLpm,Fq structure in which the
structure group acts on the standard fiber GLpm,Fq by left multiplication, thus FE is a principal
GLpm,Fq-bundle. The right action of GLpm,Fq on each fiber FEp is easiest to describe if we regard
frames on Ep as vector space isomorphisms φ : Fm Ñ Ep: the action of a matrix A P GLpm,Fq on
φ is then given by composition of linear transformations,

φ ¨A :“ φ ˝A : Fm Ñ Ep.

If the vector bundle E ÑM carries some additional structure reducing its structure group to a Lie
subgroup G Ă GLpm,Fq, then FE ÑM inherits this G-structure, with the structure group G still
acting on the standard fiber GLpm,Fq by left multiplication. The latter action however preserves
the submanifold G Ă GLpm,Fq, thus defining a submanifold

FGE Ă FE

that is naturally a principal G-bundle over M , called the G-frame bundle of E. Its fibers
FGEp consist of all frames pv1, . . . , vmq P FEp that can be identified via some G-compatible
local trivialization with the standard basis of Fm. So for instance, if G “ OpFmq, then FGE is
again the orthonormal frame bundle FOpEq. If G “ SLpm,Rq, meaning that E is a real vector
bundle equipped with a volume form on its fibers, then FGE is the space of all frames that span
parallelepipeds of signed volume 1. The rightG-action on FGE is just the restriction to FGE Ă FE

of the right action of G Ă GLpm,Fq on FE, thus it can also be described as above in terms of
composition of invertible linear maps.

Exercise 43.10. Show that if GˆM ÑM is a smooth and transitive left group action, then
for any p P M , the map G Ñ M : p ÞÑ gp defines a principal Gp-bundle, where the stabilizer Gp
acts on G by multiplication from the right.
Hint: You already know that this map descends to a diffeomorphism G{Gp Ñ M , and Gp acts
freely and properly on G from the right.

43.2. Associated bundles. The main power of principal G-bundles is that all other G-
bundles with the same transition functions can be derived from them. Here is the general con-
struction.

Suppose π : E Ñ M is a principal G-bundle, F is a smooth manifold and ρ : G ˆ F Ñ F :

pg, xq ÞÑ gx is a smooth group action. We can define a smooth left G-action on E ˆ F by

gpφ, xq :“ pφg´1, gxq for g P G, φ P E, x P F ,
and this action is free and proper due to the fact that G acts freely and properly on E (see
Exercise 43.8). The quotient

Eρ :“ E ˆρ F :“ pE ˆ F qLG
is thus a smooth manifold, and comes equipped with a smooth map

πρ : Eρ ÑM : rφ, xs ÞÑ πpφq,
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where rφ, xs denotes the equivalence class in pE ˆ F q{G represented by a pair pφ, xq P E ˆ F .
This object will be called the associated bundle determined by E, F and ρ. We claim indeed
that it is a smooth fiber bundle, and moreover, that it carries a natural G-structure with standard
fiber F . To see this, choose a G-bundle atlas tpUα,ΦαquαPI for E, and recall that each local
trivialization Φα is equivalent to a local section sα P ΓpE|Uα

q given by sαppq “ Φ´1
α pp, eq. These

sections are related to each other by the transition functions determined uniquely by our choice of
trivializations, namely by

sα “ sβgβα on Uα X Uβ .

For p P Uα, every point in the fiber Eρp is then representable as rsαppq, xs for a unique x P F , due
to the fact that G acts freely and transitively on Ep. We can thus define local trivializations of
πρ : Eρ ÑM by

Φρα : Eρ|Uα
Ñ Uα ˆ F such that pΦραq´1pp, xq “ rsαppq, xs.

If p P Uα X Uβ, we then find

pΦραq´1pp, xq “ rsαppq, xs “ rsβppqgβαppq, xs “ rsβppq, gβαppqxs “ pΦρβq´1pp, gβαppqxq,
and thus

Φ
ρ
β ˝ pΦραq´1pp, xq “ pp, gβαppqxq.

We’ve proved:

Theorem 43.11. For any principal G-bundle π : E ÑM and any smooth manifold F with a
smooth left G-action ρ : GˆF Ñ F , the associated bundle πρ : Eρ ÑM is a smooth fiber bundle,
and carries a natural G-structure (with standard fiber F ) such that any G-compatible bundle atlas
on E determines a G-compatible bundle atlas on Eρ with the same transition functions. �

One application of this construction is that it inverts the correspondence sending vector bundles
to their frame bundles. Indeed, if FGE ÑM is the G-frame bundle for some vector bundle E ÑM

with structure group G Ă GLpm,Fq, then for the standard action ρ of G on Fm by linear maps,
applying the associated bundle construction to FGE gives a vector bundle pFGEqρ Ñ M that is
isomorphic (as a G-bundle) to E. We know this abstractly because pFGEqρ and E are two bundles
that have the same standard fiber with the same left G-action and the same transition functions.
However, an explicit isomorphism can also be written down if we regard frames φ P FGEp as
invertible linear maps φ : Fm Ñ Ep: the map

pFGEqρ “ FGE ˆρ Fm Ñ E : rφ,vs ÞÑ φpvq
is then well defined and does the trick.

43.3. Parallel transport. We can now begin the discussion of connections on fiber bundles.
The most natural place to start is with the notion of parallel transport. A connection on a
fiber bundle π : E Ñ M should associate to any smooth path γptq P M a smooth family of
diffeomorphisms

P tγ : Eγp0q Ñ Eγptq, P 0
γ “ Id,

which we refer to as parallel transport on E along γ. If E is endowed with a G-structure, then
we also want these diffeomorphisms to respect that structure. The precise meaning of the latter
condition is a bit cumbersome to define in general, though it seems clear what it should mean
in various concrete examples: on a vector bundle, it means P tγ is linear, if that bundle also has
a bundle metric, then P tγ should be orthogonal, and if E is a principal G-bundle, P tγ should be
equivariant with respect to the right G-action.

We will see below that any connection compatible with a G-structure on a fiber bundle is
determined by a corresponding connection on the associated principal G-bundle. In the concrete
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situation of a vector bundle E Ñ M of rank m over F P tR,Cu, this just means that linear
connections on E Ñ M can always be derived from so-called principal connections on the frame
bundle FE ÑM . If you think in terms of parallel transport, then it is easy to see why this is so:
a section of FE along γ is the same thing as a frame for E along γ (i.e. a frame for the pullback
bundle γ˚E), so if we have a parallel frame, then it is natural to stipulate that a section vptq P Eγptq
of the vector bundle along γ is parallel if and only if it has constant components with respect to
the parallel frame. In symbols, this relationship can be written down most easily by regarding
frames as linear isomorphisms φ : Fm Ñ Ep; the relationship between parallel transport on FE
and E is then

(43.2) P tγpφpvqq :“ P tγpφqpvq for all v P Fm.

One needs to check of course that the parallel transport defined on E in this way does not depend
on the choice of parallel frame, or equivalently, that (43.2) gives the same result if we replace
φ P FEγp0q by a different frame ψ P FEγp0q with ψpvq “ φpvq. This is where equivariance comes
in: since GLpm,Fq acts on the fibers of FE freely and transitively, we can write ψ “ φ ˝A for a
unique A P GLpm,Fq, with Av “ v under the present assumptions, thus

P tγpψpvqq “ P tγpφpAvqq “ pP tγpφq ˝Aqpvq “ P tγpφ ˝Aqpvq “ P tγpψqpvq
as required. Conversely, parallel transport on E determines parallel transport on FE, simply
by regarding frames as m-tuples of vectors in E; a precise formula in terms of isomorphisms
φ : Fm Ñ Ep is

P tγpφq :“ P tγ ˝ φ P FEγptq for φ P FEγp0q,
and it is manifestly GLpm,Fq-equivariant. Moreover, if E has extra structure such as a bundle
metric, giving it structure group OpFmq, then requiring this metric to be preserved under parallel
transport means that the parallel transport maps for FE preserve the orthonormal frame bun-
dle FOpEq, and are of course OpFmq-equivariant in that context. For the same reasons, any choice
of Opmq-equivariant parallel transport maps on FOpEq determines parallel transport maps on E
that preserve the bundle metric.

Let us now reframe the discussion in more general terms.

Definition 43.12. The parallel transport P tγ : Eγp0q Ñ Eγptq on a G-bundle π : E ÑM along
a path γ through γp0q “ p P M is said to respect the G-structure if for some G-compatible
local trivialization Φα : E|Uα

Ñ UαˆM with Uα containing the path γ, there exists a smooth path
Παptq P G with Παp0q “ e such that

P tγ ˝ Φ´1
α pp, xq “ Φ´1

α pγptq,Παptqxq.
Observe that if the condition in this definition holds for some particular choice of the trivial-

ization pUα,Φαq, then it holds for all choices, because if pUβ ,Φβq is another such trivialization, we
have

P tγ ˝ Φ´1
β pp, xq “ P tγ ˝ Φ´1

α pp, gαβppqxq “ Φ´1
α pγptq,Παptqgαβppqxq

“ Φ´1
β pγptq, gβαpγptqqΠαptqgαβppqxq

“ Φ´1
β pγptq,Πβptqxq,

where in the last line we are defining a new path in G through e by

(43.3) Πβptq :“ gβαpγptqqΠαptqgαβppq.
Definition 43.12 has the disadvantage that it only makes sense for parallel transport along paths
that are short enough to be contained in the domain of a local trivialization—in practice, however,
the parallel transport maps we consider will arise from flows of vector fields, and can thus be
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presented as compositions of many flows defined for short times, to which the definition can be
applied.

Exercise 43.13. Check that Definition 43.12 gives the notion you would expect in the case of
vector bundles (with or without bundle metrics).

Let’s check explicitly that Definition 43.12 gives the expected notion of equivariant parallel
transport on principal bundles. Local trivializations Φα : E|Uα

Ñ Uα ˆG in this case correspond
to sections sα : Uα Ñ E via Φ´1

α pq, gq “ sαpqqg, thus Definition 43.12 gives

(43.4) P tγpsαppqgq “ sαpγptqqΠαptqg
for all g P G, implying P tγpxgq “ P tγpxqg for all x P Eγp0q and g P G. Conversely, if an equivariant
parallel transport map P tγ and a local section sα are given, then since G acts freely and transitively
on each fiber, there is a unique function Παptq P G satisfying

P tγpsαppqq “ sαpγptqqΠαptq,
and clearly Παp0q “ e. Equivariance then reproduces the relation (43.4), and thus Definition 43.12.

It is worth noting that the notion of G-compatible parallel transport can be defined without
any actual knowledge of the fibers of a G-bundle: according to the calculation above, if we are given
a system of G-valued transition functions ptUαuαPI , tgβαupα,βqPIˆIq underlying the G-structure on
our bundle, then parallel transport along a path γptq P M is fully determined by a collection of
functions Παptq P G, defined for each α P I such that γp0q P Uα, that satisfy Παp0q “ e and the
transformation formula (43.3). In this sense, the notion of G-compatible parallel transport really
belongs to the world of abstract G-bundles. For a given G-bundle E ÑM , the functions Πα may
or may not be uniquely determined by the actual parallel transport maps P tγ and trivialization
pUα,Φαq; they can be non-unique if the action of G on the standard fiber is not effective. However,
they are certainly unique if E ÑM is a principal bundle, since the action of G on itself is free. This
is a good reason to focus on the case of principal bundles and derive whatever we need to know
about other G-bundles from that special case. Since we now know that every G-bundle over M
is isomorphic to the associated bundle Eρ for some principal G-bundle E ÑM and left G-action
ρ : Gˆ F Ñ F , the following result tells us how to do this:

Proposition 43.14. Suppose π : E Ñ M is a principal G-bundle, ρ : G ˆ F Ñ F is a left
action and P tγ : E

ρ

γp0q Ñ E
ρ

γptq is a G-compatible family of parallel transport maps along a path
γptq P M through p :“ γp0q. Then there exists a (not necessarily unique) family of G-compatible
parallel transport maps P tγ : Eγp0q Ñ Eγptq such that for every rφ, xs P Eρp “ pEp ˆ F q{G,

P tγprφ, xsq “ rP tγpφq, xs.
Proof. Choose a local section sα : Uα Ñ E with p P Uα and let Φα and Φρα denote the

corresponding local trivializations of E and Eρ respectively. By assumption there is a smooth
function Παptq P G with Παp0q “ e such that P tγ ˝ pΦραq´1pp, xq “ pΦραq´1pγptq,Παptqxq for all
x P F , and in terms of the local section sα of E, this means

P tγprsαppq, xsq “ rsαpγptqq,Παptqxs “ rsαpγptqqΠαptq, xs.
The desired parallel transport maps on E are thus the unique family of G-equivariant diffeomor-
phisms Eγp0q Ñ Eγptq such that P tγpsαppqq :“ sαpγptqqΠαptq. �

Remark 43.15. If the G-action on F in Proposition 43.14 is not effective, then it may happen
that the parallel transport on Eρ fails to uniquely determine the parallel transport on the associated
principal bundle E, because the function Παptq P G is not unique. There is, however, a canonical
way to derive parallel transport on Eρ from parallel transport on E, and this is a reason to focus



44. CONNECTIONS ON FIBER BUNDLES 381

on the case of principal bundles and derive whatever results we need for arbitrary G-bundles from
that case. Proposition 43.14 guarantees that this is possible.

44. Connections on fiber bundles

Before coming to the main topic, here is a bit of notation that will be useful moving forward.
For a smooth vector bundle E ÑM and integer k ě 0, we denote

ΩkpM,Eq :“ ΓpΛkT ˚M bEq
and interpret elements ω P ΩkpM,Eq as bundle-valued k-forms, i.e. they associate to each p PM
an antisymmetric k-fold multilinear map ωp : TpM ˆ . . .ˆ TpM Ñ Ep. The case k “ 0 is included
here and means

Ω0pM,Eq “ ΓpEq.
Observe that the natural pullback of an E-valued k-form ω P ΩkpM,Eq via a smooth map f : N Ñ
M is a k-form on N with values in the pullback bundle f˚E,

f˚ω P ΩkpN, f˚Eq, pf˚ωqppX1, . . . , Xkq :“ ωfppqpf˚X1, . . . , f˚Xkq P Efppq “ pf˚Eqp.
If V is a vector space, we can define the space of V -valued k-forms ΩkpM,V q similarly by viewing
V as the trivial vector bundle M ˆ V ÑM .

44.1. Connections and covariant derivatives. In this lecture we dispense withG-structures
(they will return in the next lecture), and consider an arbitrary smooth fiber bundle π : E Ñ M .
The total space E is a smooth manifold, and its tangent bundle has a smooth subbundle

V E :“ kerπ˚ Ă TE,

called the vertical subbundle; in other words, the vertical tangent space VxE for each x P Ep is
TxpEpq, the tangent space to the fiber that x lives in. If we were assuming E ÑM to be a vector
bundle, the next step would be to identify VxE canonically with Ep, but we cannot do this if Ep
is not a vector space, so we will now have to deal with vertical tangent spaces more directly than
we did before.

A connection on π : E Ñ M will associate to every smooth path γptq P M through p :“ γp0q
a smooth family of parallel transport diffeomorphisms P tγ : Eγp0q Ñ Eγptq. As discussed in the
previous lecture, we would now impose more conditions on the maps P tγ if π : E ÑM were endowed
with a G-structure, but without this, we will merely assume that they are diffeomorphisms. For
a section s P Γpγ˚Eq along the path γ, parallel transport turns sptq into a path in the single fiber
Eγp0q and thus produces a covariant derivative

(44.1) ∇tsp0q :“ d

dt
pP tγq´1psptqq

ˇ̌̌̌
t“0

P Vsp0qE.
Here we see another difference compared with the case of vector bundles: if Eγp0q were a vector
space, then the smooth path t ÞÑ pP tγq´1psptqq P Eγp0q could be said to have a derivative in Eγp0q,
but if not, then the best we can do is to define a covariant derivative whose value is a vertical
tangent vector, rather than an element of the fiber.

Nonetheless, (44.1) is a reasonable definition for the covariant derivative of a section along a
path, and we would like to be able to turn it into a definition of a covariant derivative of sections
s P ΓpEq with respect to tangent vectors on M , namely

∇Xs :“ ∇tspγptqq|t“0 P VsppqE for any path γptq PM with γp0q “ p, 9γp0q “ X P TpM.

If this object is really to be interpreted as a derivative, then we especially want it to have the
property that ∇Xs depends on the tangent vectorX P TM but not on a choice of path representing
it, and moreover, we want the map TpM Ñ VsppqE : X ÞÑ ∇Xs to be linear. It turns out that
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these two conditions determine uniquely what the right definition of a connection should be and
how to derive parallel transport from it. We proved this last semester in the case of vector bundles
(see Lecture 19), and that proof requires only minor cosmetic modifications for the general case,
thus we will not repeat it here, but shall go ahead and state the definition.

Definition 44.1. A connection on a smooth fiber bundle π : E Ñ M is a smooth linear
subbundle HE Ă TE whose fibers HxE for x P E are everywhere complementary to the vertical
tangent spaces, i.e.

HxE ‘ VxE “ TxE.

We call HE the horizontal subbundle or horizontal distribution for the connection. We will
refer to the fiberwise-linear projection

K : TE Ñ V E

along HE as the connection map, or sometimes also the (global) connection 1-form, since it
can be interpreted as a bundle-valued 1-form

K P Ω1pE, V Eq.
For each p PM and x P Ep, the unique linear map

Horx : TpM Ñ HxE

such that π˚ ˝Horx “ 1TpM is called the horizontal lift map.

We observe that the connection map K : TE Ñ V E in this definition uniquely determines the
connection by writing

HE “ kerK Ă TE,

and vice versa. Moreover, any bundle-valued 1-form K P Ω1pE, V Eq that satisfies K|VE “ 1V E

has a kernel that is a smooth subbundle complementary to V E in TE, and can thus be regarded
as a connection.

Exercise 44.2. Use partitions of unity and connection 1-forms K P Ω1pE, V Eq to show that
every smooth fiber bundle admits a connection.
Comment: This result is not as useful as one might think, since most fiber bundles arising in nature
come with extra structure, and one needs to consider only connections that respect that structure.
We will deal with this in the next lecture using principal bundles.

Given a connection and all the associated data as described in Definition 44.1, a section
sptq P Eγptq is now called parallel (or also horizontal or covariantly constant) if, as a path in
the total space E, it satisfies

9sptq P HsptqE
for all t. This can be rephrased as the condition that sptq defines a flow line of a certain vector
field on the total space of the pullback bundle γ˚E. Indeed, if I Ă R denotes the domain of the
path γ, recall that we defined γ˚E in §42.1 as the submanifold

γ˚E “  pt, xq P I ˆE
ˇ̌
πpxq “ γptq( Ă I ˆE

and by the implicit function theorem (Exercise 42.7), its tangent space at a point pt, xq P γ˚E is
then the subspace

Tpt,xqpγ˚Eq “
 ps, ξq P Rˆ TxE

ˇ̌
π˚ξ “ s 9γ

( Ă Rˆ TxE “ Tpt,xqpI ˆEq,
where we are using the canonical identification of TtI with R. The expression

ηpt, xq :“ p1,Horxp 9γptqqq
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thus defines a vector field on γ˚E, and the section s : I Ñ γ˚E is parallel if and only if sptq “
ϕtηpsp0qq.

If the flow ϕtη is defined globally on pγ˚Eq0 “ Eγp0q Ă γ˚E for a given t, then it defines a
parallel transport diffeomorphism

P tγ : Eγp0q Ñ Eγptq,
which depends smoothly on t. The caveat here is that at this level of generality, if the fibers are
noncompact, the flow might indeed not exist globally, so that P tγ for each t can be defined only
on some open subset of Eγp0q. This possibility will be excluded when we require our connections
to be compatible with G-structures, thus we shall choose not to worry about it for now, and just
continue under the pretense that P tγ is defined globally for every t in the domain of the path γ.
(No important details will depend on it.)

Having defined parallel transport, (44.1) now gives us a covariant derivative ∇tsptq P VsptqE
for any smooth section sptq P Eγptq along a path γptq PM . (To define it at points t ‰ 0, just regard
t as a constant and replace γ with the path s ÞÑ γpt` sq, which passes through γptq at s “ 0.) One
can also write down a simpler formula for covariant derivatives in terms of the connection map
K : TE Ñ V E: rewriting P tγ via the flow of the vector field η P Xpγ˚Eq described above, we have

∇tsp0q “ d

dt
ϕ´tη psptqq

ˇ̌̌̌
t“0

“ d

dt
ϕ´tη psp0qq

ˇ̌̌̌
t“0

` d

dt
ϕ0
ηpsptqq

ˇ̌̌̌
t“0

“ ´ηpsp0qq ` d

dt
pt, sptqq

ˇ̌̌̌
t“0

“ p´1,´Horsp0qp 9γp0qqq ` p1, 9sp0qq
“ p0, 9sp0q ´Horsp0qp 9γp0qqq P Vp0,sp0qqpγ˚Eq “ t0u ˆ Vsp0qE Ă Tp0,sp0qqpI ˆEq.

Since π˚ 9sp0q “ 9γp0q, the horizontal lift term in this last expression is precisely the horizontal part
of 9sp0q P Tsp0qE with respect to the splitting TE “ HE ‘ V E, thus

(44.2) ∇tsptq “ Kp 9sptqq,
where we have taken the liberty of writing down the formula for general t in the domain of the
path γ, since there is nothing special about the point t “ 0. As a corollary, the covariant derivative
of a section s : M Ñ E with respect to a tangent vector X P TpM at a point p P M can now be
written in terms of the tangent map Ts : TM Ñ TE and connection map K : TE Ñ V E as

(44.3) ∇Xs “ KpTspXqq.
This shows in particular that the map X ÞÑ ∇Xs has the desired property: it is linear and
independent of any choice of path tangent to X .

Exercise 44.3. For a fiber bundle π : E Ñ M and a smooth map f : N Ñ M , the pullback
bundle f˚E comes with a natural smooth map Ψ : f˚E Ñ E that sends each fiber pf˚Eqp
diffeomorphically to the fiber Efppq. Prove:

(a) There is a canonical isomorphism between the vector bundlesΨ˚V E and V pf˚Eq over f˚E.
(b) If a connection on E ÑM with connection 1-form K P Ω1pE, V Eq is given, then Ψ˚K P

Ω1pf˚E,Ψ˚V Eq “ Ω1pf˚E, V pf˚Eqq is a connection 1-form for f˚E Ñ N .
(c) The connection defined on f˚E Ñ N via part (b) is the unique one with the property

that a section sptq P pf˚Eqγptq of f˚E along a path γptq P N is parallel if and only if it is
also parallel when interpreted as a section sptq P Ef˝γptq of E along the path f ˝γptq PM .

We will refer to the connection on f˚E Ñ N defined in this exercise as the pullback connection
determined by a connection on E ÑM .

If a connection on π : E Ñ M is given, then a section s P ΓpE|Uq defined on an open set
U Ă M is called parallel (or horizontal or flat) if its covariant derivative vanishes identically.
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More generally, for a smooth map f : N ÑM , a section s P Γpf˚Eq of E along f is called parallel
if it is parallel as a section of f˚E Ñ N with respect to the pullback connection.

44.2. Flat connections and curvature. We now consider the most fundamental question
about a connection on a fiber bundle: do parallel sections of π : E Ñ M exist over open subset
U Ă M? This question is much less trivial than asking for parallel sections along a path; the
latter always exist because they are flow lines of a vector field, but by the same token, a parallel
section s P ΓpE|Uq needs to have the property that for any two paths α, β : r0, 1s Ñ U connecting
αp0q “ βp0q “ p to αp1q “ βp1q “ q, the parallel transport of sppq along α and β will end up at
the same point spqq. The uniqueness of these parallel transport maps makes this seem unlikely
in general, and indeed, it is impossible for most connections on fiber bundles over manifolds of
dimension at least 2. The obstruction to the local existence of parallel sections on a fiber bundle
is measured by its curvature.

Definition 44.4. A connection on the smooth fiber bundle π : E Ñ M is called flat if for
every p PM and x P Ep, there exists a neighborhood U ĂM of p and a parallel section s P ΓpE|Uq
with sppq “ x.

Exercise 44.5. Assume π : E ÑM is a smooth fiber bundle whose fibers are compact. Prove
that π : E Ñ M admits a flat connection if and only if it admits a G-structure where G is a
0-dimensional Lie group.

Flatness can be reframed in the language of integrable distributions. Recall that on a smooth
manifold M , a smooth k-plane distribution is by definition a smooth subbundle ξ Ă TM of
rank k, and a submanifold Σ ĂM is called an integral submanifold of the distribution ξ if

TpΣ Ă ξp for all p P Σ.

The k-plane distribution ξ Ă TM is called integrable if for every point p P M , there exists a
smooth k-dimensional integral submanifold containing p. Note that the integral submanifold in this
definition is not required to be closed, and it may be contained in an arbitrarily small neighborhood
of p; integrability of a distribution is thus an essentially local condition.

In the language of distributions, the horizontal subbundle HE Ă TE for a connection on a
fiber bundle π : E Ñ M over an n-manifold is a smooth n-plane distribution on E, and a local
section M Ą U

sÑ E defines an n-dimensional submanifold Σ :“ spUq Ă E, which is an integral
submanifold for the distribution HE Ă TE if and only if the section s is parallel. The connection
is thus flat if and only if the distribution HE Ă TE is integrable.

The problem of deciding whether a given distribution is integrable is solved by the Frobenius
integrability theorem. We will state and prove the Frobenius theorem below, as a corollary of the
answer to the question on how to decide whether a given connection is flat. We carried out the
same argument last semester in the context of vector bundles (see Lecture 26), and the general
case is no different—in fact, the argument is somewhat more natural in the fiber bundle context,
as it is not actually helpful at all to have a linear structure on the fibers.

Definition 44.6. Given a connection HE Ă TE on the fiber bundle π : E Ñ M , with
connection 1-form K P Ω1pE, V Eq, the correesponding curvature 2-form FK P Ω2pE, V Eq is
defined via the formula

FKpη, ξq :“ ´K`rHpηq, Hpξqs˘ for η, ξ P XpEq,
where H : TE Ñ HE denotes the fiberwise-linear projection along V E, i.e. the projection com-
plementary to K : TE Ñ V E.
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It is straightforward to check that FKpη, ξq by this definition is C8-linear in both η and ξ, so
it defines a smooth and antisymmetric bilinear bundle map TE ‘ TE Ñ V E, which we therefore
interpret as a V E-valued 2-form. It vanishes identically if and only if for every pair of horizontal
vector fields η, ξ P ΓpHEq Ă XpEq, the vector field rη, ξs P XpEq is also horizontal, i.e. it is also
in ΓpHEq. The minus sign in the definition is unimportant at this juncture; its purpose is only to
make FK consistent with other definitions that we will encounter later.

Here is the main result.

Theorem 44.7. A connection on a fiber bundle is flat if and only if its curvature 2-form
vanishes identically.

The main ingredient we need for the proof is the theorem from last semester that vector fields
have commuting flows if and only if their Lie brackets vanish. Given the bundle π : E ÑM and a
connection HE Ă TE, we can define a linear map

XpMq Ñ XpEq : X ÞÑ Xh

by
Xhpxq :“ HorxpXppqq P HxE Ă TxE for x P Ep, p PM.

As it happens, this map is nearly a Lie algebra homomorphism—that is, it would be one if we were
allowed to simply ignore the vertical part of rXh, Y hs:

Lemma 44.8. For any X,Y P XpMq, rX,Y sh “ H ˝ rXh, Y hs.
Proof. Since rX,Y sh and H ˝ rXh, Y hs are both purely horizontal vector fields on E, it

suffices to check that both define the same derivation when restricted to functions in C8pEq that
are constant in the vertical directions, i.e. functions of the form f ˝ π for f P C8pMq. Moreover,
the difference between rXh, Y hs and H ˝rXh, Y hs is purely vertical and thus vanishes when applied
to any function of this form, and it therefore suffices to prove

LrXh,Y hspf ˝ πq “ LrX,Y shpf ˝ πq
for all f P C8pMq. For this, we can use the fact that for any Z P XpMq, p PM and x P Ep,

LZh pf ˝ πqpxq “ dpf ˝ πqpZhpxqq “ dfpπ˚Zhpxqq “ dfpZppqq “ LZfpπpxqq,
giving the relation

LZh pf ˝ πq “ LZf ˝ π.
The rest is a straightforward calculation from the definition of the Lie bracket:

LrXh,Y hspf ˝ πq “ LXhLY hpf ˝ πq ´ LY hLXhpf ˝ πq
“ LXh ppLY fq ˝ πq ´ LY h ppLXfq ˝ πq “ pLXLY fq ˝ π ´ pLY LXfq ˝ π
“ pLrX,Y sfq ˝ π “ LrX,Y shpf ˝ πq.

�

Proof of Theorem 44.7. Assume FK ” 0. Since the question of flatness is essentially local,
we lose no generality if we replace M with a small neighborhood of some point p PM on which a
chart px1, . . . , xnq can be defined. Denote the resulting coordinate vector fields by Xj :“ Bj P XpMq
for j “ 1, . . . , n; as coordinate vector fields, they satisfy rXi, Xjs “ 0 for all i and j. Now since
FKpXh

i , X
h
j q “ 0, the vector fields rXh

i , X
h
j s are horizontal, thus by Lemma 44.8,

rXh
i , X

h
j s “ H ˝ rXh

i , X
h
j s “ rXi, Xjsh “ 0.
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It follows that for any x P Ep, we can construct an integral submanifold through x via the com-
muting flows of Xh

i : it is parametrized by the map

(44.4) ψpt1, . . . , tnq “ ϕt
1

Xh
1

˝ . . . ˝ ϕtnXh
n
pxq

for real numbers t1, . . . , tn sufficiently close to 0.
Conversely, if HE Ă TE is a flat connection and thus an integrable distribution, then for

every p P M and x P Ep there is a parallel section s : U Ñ E on some neighborhood U Ă M of
p with sppq “ x, and its image Σ :“ spUq Ă E is thus an integral submanifold for the horizontal
distribution. Any two sections η, ξ P ΓpHEq then define vector fields on Σ, and their Lie bracket
therefore restricts to Σ as another vector field on Σ, implying that rη, ξs is horizontal along Σ,
and in particular at x. Since the point x was chosen arbitrarily, it follows that rη, ξs is horizontal
everywhere, and thus FKpη, ξq ” 0. �

As a fringe benefit, Theorem 44.7 provides a good framework to attack the more general
question of whether a k-plane distribution ξ Ă TM on an n-manifold M is integrable. The
situation is not quite the same as the distribution HE Ă TE, because M in this general setting is
not the total space of a fiber bundle, so there is no “vertical” subbundle VM Ă TM complementary
to ξ in the picture. Locally, however, it is always possible to make some choices such that the two
situations look exactly the same: in particular, every point p PM admits a neighborhood U ĂM

that is the total space of a fiber bundle π : U Ñ Σ on which ξ|U Ă TU can be regarded as a
connection. (The idea is simply to choose U inside a small coordinate neighborhood and write
down the fibration π : U Ñ Σ in suitable local coordinates.) As a consequence, every point p PM
has a neighborhood on which Theorem 44.7 can be applied to determine whether ξ is integrable.
The condition FK ” 0 does not make sense globally on M since M is not globally the total space
of a fiber bundle, but that condition is equivalent to the condition

X,Y P Γpξq ñ rX,Y s P Γpξq,
which does make sense globally. This proves:

Theorem 44.9 (Frobenius). A smooth distribution ξ Ă TM on a manifold M is integrable if
and only if the Lie bracket rX,Y s P XpMq of every pair of vector fields X,Y P XpMq everywhere
tangent to ξ is also everywhere tangent to ξ. �

45. Principal connections

For a fiber bundle π : E Ñ M with finite-dimensional structure group G, extra conditions
need to be placed on the definition of a connection so that parallel transport will respect the
G-structure. As indicated in §43.3, the best way to do this is by defining a connection on the
associated principal G-bundle, which will then determine a connection on every other bundle that
has the same transition functions.

Definition 45.1. A connection on a principal G-bundle π : E Ñ M is called a principal
connection if it gives rise to G-equivariant parallel transport maps P tγ : Eγp0q Ñ Eγptq along every
path γptq PM .

This definition is conceptually simple but hard to work with in practice, so we will now derive
some other conditions that are equivalent to it.
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45.1. Equivariant horizontal subbundles. The first step is to determine the implications
of equivariant parallel transport for the horizontal subbundle HE Ă TE of a connection. If
π : E ÑM is a principal G-bundle, then each g P G determines a fiber preserving diffeomorphism

Rg : E Ñ E : φ ÞÑ φg.

Choose a path γptq P M with γp0q “ p, 9γp0q “ X P TpM , and let φ P Ep. Given a principal
connection, the horizontal lift isomorphisms have the property

HorφgpXq “ d

dt
P tγpφgq

ˇ̌̌̌
t“0

“ d

dt
Rg ˝ P tγpφq

ˇ̌̌̌
t“0

“ TRg

ˆ
d

dt
P tγpφq

ˇ̌̌̌
t“0

˙
“ TRg pHorφpXqq .

We concludeHφgE “ TRgpHφEq. Conversely, for any connection on π : E ÑM with this property,
a section sptq P Eγptq of E along γ will be parallel if and only if the section t ÞÑ Rgpsptqq “ sptqg
is also parallel for every g P G, implying that P tγ is G-equivariant.96 We’ve proved:

Proposition 45.2. On a principal G-bundle π : E Ñ M , a connection HE Ă TE is a
principal connection if and only if TRgpHEq “ HE for every g P G. �

45.2. Lie algebra-valued connection 1-forms. Next, we reformulate TRgpHEq “ HE as
a condition on the connection 1-form K P Ω1pE, V Eq.

Recall from §40.2 that the group action EˆGÑ E determines a linear map gÑ XpEq : X ÞÑ
XF , where the fundamental vector field determined by X P g is given by

XF pφq “ d

dt
φ expptXq

ˇ̌̌̌
t“0

.

The fundamental vector field XF vanishes at a point φ P E if and only if X belongs to the Lie
algebra of the stabilizer subgroup Gφ Ă G; since the action in the present setting is free, that
means nontrivial fundamental vector fields on E are nowhere vanishing. Moreover, they all point
in vertical directions since the G-action is fiber preserving, and it follows that for each φ P E, the
map

gÑ VφE : X ÞÑ XF pφq
is an isomorphism, thus defining a vector bundle isomorphism between V E and the trivial bundle
over E with fiber g. This makes it possible to reexpress K P Ω1pE, V Eq as a g-valued 1-form

A P Ω1pE, gq such that Kpξq “ ApξqF pφq for all φ P E, ξ P TφE,
and the condition K|VE “ 1V E then translates into

ApXF pφqq “ X for all X P g and φ P E.
With this understood, we now ask: what additional condition on a Lie algebra-valued 1-form
A P Ω1pE, gq is necessary and sufficient for the corresponding connection on E Ñ M to be a
principal connection? The answer requires a short lemma as preparation.

Lemma 45.3. For g P G and X P g, the pushed-forward vector field pRgq˚XF P XpEq matches
the fundamental vector field of Adg´1pXq P g.

96Recall that on a general fiber bundle with noncompact fibers, the diffeomorphisms P t
γ : Eγp0q Ñ Eγptq might

not even be defined globally for any given t ‰ 0, due to vector fields having flows that blow up in finite time.
However, G-equivariance prevents this from happening: if P t

γpφq is defined for t in some interval I Ă R, then for
every g P G, P t

γpφgq “ P t
γpφqg is also defined for t P I.
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Proof. For each point φ P E, we have `pRgq˚XF
˘pRgpφqq “ TRgpXF pφqq by definition, thus

pRgq˚XF pφgq “ TRgpXF pφqq “ d

dt
Rg

`
φ expptXq˘ˇ̌̌̌

t“0

“ d

dt
φ expptXqg

ˇ̌̌̌
t“0

“ d

dt
φg

`
g´1 expptXqg˘ˇ̌̌̌

t“0

“ d

dt
φg expptAdg´1pXqq

ˇ̌̌̌
t“0

“ pAdg´1pXqqF pφgq.
�

Now, at each point φ P E, the horizontal-vertical splitting allows us to write any tangent
vector ξ P TφE uniquely as ξ “ ξh ` XF pφq for some ξh P HφE and X P g. The g-valued
1-form A P Ω1pE, gq corresponding to our connection 1-form K then satisfies Apξq “ X , so if
HφgE “ TRgpHφEq, Lemma 45.3 implies

Rg̊Apξq “ ApTRgpξhq ` ppRgq˚XF qpφgqq “ Adg´1pXq “ Adg´1 ˝Apξq
due to the fact that TRgpξhq P HφgE Ă kerA. Conversely, if A P Ω1pE, gq satisfies the condition
Rg̊A “ Adg´1 ˝A, it implies via the calculation above that every ξ P HφE satisfies ApTRgpξqq “ 0

and thus TRgpHEq “ HE. This proves:

Proposition 45.4. For a principal G-bundle π : E Ñ M , a Lie algebra-valued 1-form A P
Ω1pE, gq defines a principal connection by HE :“ kerA Ă TE if and only if it satisfies the following
conditions:

(i) ApXF pφqq “ X for all X P g and φ P E;
(ii) Rg̊A “ Adg´1 ˝A for all g P G.

�

In light of Proposition 45.4, one can (and many authors do) define the term “principal con-
nection” to mean a g-valued 1-form A satisfying the two conditions listed above, and one then
obtains the original definition from this by setting HE :“ kerA. There are many advantages to
viewing principal connections as a special class of g-valued 1-forms, one of which is that it gives
some recognizable structure to the set

ApEq :“ tprincipal connections on Eu ,
which can now be regarded as an affine space over the vector space of 1-forms B P Ω1pE, gq
that vanish on V E and satisfy the linear condition Rg̊B “ Adg´1 ˝B. In particular, the space of
connections is naturally a convex set, and local constructions of them can be pieced together via
a partition of unity on M , proving:

Theorem 45.5. Every principal G-bundle admits a principal connection. �

Exercise 45.6. Work out the details of the proof of Theorem 45.5.

45.3. A digression on exterior algebra. Since we will be encountering vector-valued dif-
ferential forms more and more often, it’s worth pausing to clarify certain algebraic questions, such
as: (1) What is the wedge product? (2) What is the exterior derivative? (3) Do they have the
properties we think they should? The short answer to the last question is best given in German:
jein.

For a manifold M and real vector space V , ΩkpM,V q is the space of smooth sections of a
vector bundle whose fiber over each point p PM is ΛkTp̊M bV , where for ω P ΛkTp̊M and v P V ,
we identify

ωv :“ ω b v P ΛkTp̊M b V
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with the V -valued alternating k-form pX1, . . . , Xkq ÞÑ ωpX1, . . . , Xkqv. One cannot define a wedge
product of two forms in Ω˚pM,V q unless V itself is an algebra, i.e. it needs to have a bilinear
product structure of its own, so that products of V -valued functions can be defined, and a natural
product on Ω˚pM,V q can then be derived from this. More generally, one can do the following:
suppose V1, . . . , VN and W are real vector spaces and

µ : V1 ˆ . . .ˆ VN ÑW

is a multilinear map, which we could equivalently regard as a linear map V1 b . . .b VN ÑW . For
any tuple of integers k1, . . . , kN ě 0 there is then an obvious linear map

Λk1Tp̊M b V1 b . . .b ΛkNTp̊M b VN Ñ Λk1`...`kNTP̊M bW

ω1 b v1 b . . .b ωN b vN ÞÑ pω1 ^ . . .^ ωN q b µpv1, . . . , vN q,
which can also be regarded as a multilinear map

pΛk1Tp̊M b V1q ˆ . . .ˆ pΛkNTp̊M b VN q Ñ Λk1`...`kNTp̊M bW.

Applying this at every point p PM , we obtain a multilinear map between the corresponding spaces
of vector-valued forms,

µ : Ωk1pM,V1q ˆ . . .ˆ ΩkN pM,VN q Ñ Ωk1`...`kN pM,W q,
uniquely determined by the property that for any ωj P Ωkj pMq and vj P V for j “ 1, . . . , N ,

µpω1v1, . . . , ωNvN q “ pω1 ^ . . .^ ωNq µpv1, . . . , vN q.
The case N “ 2 is the most important for us in the near term, though the general case will

also arise when we discuss characteristic classes. For N “ 2, a bilinear map µ : V1ˆV2 ÑW gives
rise to a bilinear map

µ : ΩkpM,V1q ˆ ΩℓpM,V2q Ñ Ωk`ℓpM,W q
for each k, ℓ ě 0, and the characterization above can be combined with the explicit formula (9.6)
for the wedge product of real-valued forms to give the formula
(45.1)

µpα, βqpX1, . . . , Xk`ℓq “ 1

k!ℓ!

ÿ
σPSk`ℓ

p´1q|σ|µpαpXσp1q, . . . , Xσpkqq, βpXσpk`1q, . . . , Xσpk`ℓqqq.

Depending on the nature of the bilinear map µ : V1 ˆ V2 Ñ W in this picture, it may or may
not seem appropriate to denote α ^ β :“ µpα, βq. This is somewhat common in situations where
V1 “ V2 “ W “: V , so that V is an algebra with µ as its bilinear product, but here the wedge
product notation needs to be handled with care, because in general there is no guarantee that it
will be either associative or graded commutative. Instead, we have:

Exercise 45.7. Assume V is a real vector space with a bilinear product µpv, wq :“ vw, and
denote α^ β :“ µpα, βq for α, β P Ω˚pM,V q. Prove:

(a) If the product on V is associative, then the wedge product on Ω˚pM,V q is also associative.
(b) If the product on V is commutative, then the wedge product on Ω˚pM,V q is graded

commutative, i.e. α^ β “ p´1q|α|¨|β|β ^ α.
(c) If V is a commutative and associative algebra with an identity element 1 P V , then

1b 1 P Ω0pM,V q is an identity element for the wedge product on Ω˚pM,V q.
Assume now that V is an associative algebra, and we are also given a real vector space W with a
bilinear map ν : V ˆW ÑW makingW a left V -module, and denote α^β :“ νpα, βq P Ω˚pM,W q
for α P Ω˚pM,V q and β P Ω˚pM,W q. Prove:

(d) The pairing Ω˚pM,V q ˆ Ω˚pM,W q Ñ̂ Ω˚pM,W q makes Ω˚pM,W q a left Ω˚pM,V q-
module, and it is unital if V has an identity element.
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Next, suppose g is a Lie algebra with bracket µpv, wq :“ rv, ws, and denote rα, βs :“ µpα, βq for
α, β P Ω˚pM, gq. Prove:

(e) The bracket on Ω˚pM, gq is graded anticommutative

rα, βs ` p´1q|α|¨|β|rβ, αs “ 0

and satisfies a graded Jacobi identity97

rα, rβ, γss ` p´1q|α|¨p|β|`|γ|qrβ, rγ, αss ` p´1q|γ|¨p|α|`|β|qrγ, rα, βss “ 0.

Finally, suppose g is a Lie algebra and V is a vector space with a bilinear map ν : g ˆ V Ñ V

defined by νpX, vq :“ ρpXqv for some Lie algebra representation ρ : gÑ glpV q “ EndpV q. Writing
α^ β :“ νpα, βq P Ω˚pM,V q for α P Ω˚pM, gq and β P Ω˚pM,V q, prove:

(f) The bracket on Ω˚pM, gq and its wedge product with Ω˚pM,V q are related by

rα, βs ^ γ “ α^ pβ ^ γq ´ p´1q|α|¨|β|β ^ pα^ γq
for α, β P Ω˚pM, gq and γ P Ω˚pM,V q.

Hint: It suffices in every case to restrict your attention to forms that are products of real-valued
forms with vectors in V .

Whenever g is a Lie algebra, we will from now on use the prescription in Exercise 45.7 to
define a bilinear bracket r , s on Ω˚pM, gq, and if V is an associative algebra, we similarly define
an associative wedge product on Ω˚pM,V q. A commonly occurring special case is the matrix
algebra g “ V “ Fmˆm with its commutator bracket, in which both definitions are sensible, but
the following caveats should be observed:

‚ α^ β ‰ ´β ^ α in general for α, β P Ω1pM,Fmˆmq since Fmˆm is not commutative. In
particular, α^ α P Ω2pM,Fmˆmq can be nonzero.

‚ rα, βs “ α ^ β ´ p´1q|α|¨|β|β ^ α “ α ^ β ` β ^ α “ rβ, αs for α, β P Ω1pM, gq, without
a minus sign, thus rα, αs P Ω2pM, gq can also be nonzero. Indeed, the formula (45.1) in
this case gives

rα, αspX,Y q “ rαpXq, αpY qs ´ rαpY q, αpXqs “ 2rαpXq, αpY qs.
For any vector space V , the exterior derivative d : Ω˚pM,V q Ñ Ω˚pM,V q has a simple

definition as the unique linear map such that

dpωvq “ pdωqv for all ω P Ω˚pMq, v P V .
It is straightforward to show that this operator satisfies d2 “ 0, as well as the following graded
Leibniz rule: for any multilinear map µ : V1 ˆ . . . ˆ VN Ñ W and forms αj P Ωkj pM,Vjq for
j “ 1, . . . , N ,

d
`
µpα1, . . . , αN q˘ “ µpdα1, α2, . . . , αN q ` p´1qk1µpα1, dα2, . . . , αN q

` . . .` p´1qk1`...`kN´1µpα1, . . . , αN´1, dαN q.
(45.2)

So for instance, the exterior derivative on Ω˚pM, gq for a Lie algebra g satisfies

drα, βs “ rdα, βs ` p´1q|α|rα, dβs.
97You can remember the signs in the graded Jacobi identity if you observe the following rule: take the usual

Jacobi identity, but wherever the order of the elements α, β, γ has been permuted, insert a minus sign for every time
two elements of odd degree have been interchanged. The general theory behind such sign rules can be formulated
nicely in categorical terms; see e.g. [Var04].
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The discussion of products above generalizes easily to bundle-valued forms: if E1, . . . , EN , F Ñ
M are smooth vector bundles, a smooth linear bundle map

µ : E1 b . . .bEN Ñ F

defines multilinear maps on the corresponding fibers, so that one naturally obtains a multilinear
map

µ : Ωk1pM,E1q ˆ . . .ˆ ΩkN pM,EN q Ñ Ωk1`...`kN pM,F q
for each tuple of integers k1, . . . , kN ě 0. An easy special case is to take N “ 2 with the trivial
real line bundle as either E1 or E2, and the map µ : E1 b E2 Ñ F p“ E1 or E2q defined by scalar
multiplication, which gives rise to more-or-less obvious definitions of wedge products ΩkpMq ˆ
ΩℓpM,Eq Ñ Ωk`ℓpM,Eq and ΩkpM,Eq ˆ ΩℓpMq Ñ Ωk`ℓpM,Eq, making Ω˚pM,Eq a left and
right Ω˚pMq-module.

Defining an exterior derivative on Ω˚pM,Eq is less straightforward: the definition given above
on Ω˚pM,V q relies tacitly on our understanding that each vector v P V can be interpreted as a
constant vector-valued function, whereas vector bundles do not come with an intrinsic notion of
constant sections. What’s needed, therefore, is a choice of connection on E, which defines the
covariant derivative operator ∇ : Ω0pM,Eq “ ΓpEq Ñ ΓpHompTM,Eqq “ Ω1pM,Eq. Given this,
the covariant exterior derivative

d∇ : ΩkpM,Eq Ñ Ωk`1pM,Eq
is defined for each k ě 0 as the unique linear map that matches ∇ for k “ 0 and satisfies the
graded Leibniz rule

d∇pα^ βq “ dα^ β ` p´1q|α|α^ d∇β for all α P ΩkpMq, β P ΩℓpM,Eq.
The uniqueness of d∇ satisfying these properties is clear since every bundle-valued form is locally
a linear combination of real-valued forms multiplied by sections. To show that such an operator
exists, one can write down an explicit formula locally using coordinates and a frame for E, then
show that this formula satisfies the required Leibniz rule.

Exercise 45.8. On a vector bundle E Ñ M with connection ∇, prove that the operator
d∇ : ΩkpM,Eq Ñ Ωk`1pM,Eq satisfies

(45.3) d∇ωpX0, . . . , Xkq “
kÿ
i“0

p´1qi∇Xi

´
ωpX0, . . . , pXi, . . . , Xkq

¯
` ÿ

0ďiăjďk
p´1qi`jω`rXi, Xjs, X0, . . . , pXi, . . . , pXj, . . . , Xk

˘
for X0, . . . , Xk P XpMq, where the hats in sequences mean that those terms do not appear.
Hint: We proved the corresponding formula for real-valued forms in §8.2 of last semester’s notes.
You can make use of that if you focus on the special case ω “ αη for some α P ΩkpMq and η P ΓpEq,
which implies the rest via linearity.

Notice what is missing from this discussion: we are not claiming d2
∇
“ 0, and in general, it is

not true. In fact, applying (45.3) to ∇η P Ω1pM,Eq for a section η P ΓpEq reproduces the Riemann
tensor of the connection:

d2∇ηpX,Y q “ d∇p∇ηqpX,Y q “ ∇X p∇ηpY qq ´∇Y p∇ηpXqq ´∇ηprX,Y sq “ RpX,Y qη.
We’ll come back to this observation in the next lecture, where it will be used to show that the
Riemann tensor is essentially equivalent to the curvature 2-form on the associated principal bundle,
and is thus an obstruction to flatness.
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If E1, . . . , EN , F Ñ M are all equipped with connections and µ : E1 b . . . b EN Ñ F is a
smooth linear bundle map, one would hope to see a generalization of the Leibniz rule (45.2) in the
form

d∇
`
µpα1, . . . , αN q˘ “ µpd∇α1, α2, . . . , αN q ` p´1qk1µpα1, d∇α2, . . . , αN q

` . . .` p´1qk1`...`kN´1µpα1, . . . , αN´1, d∇αN q
(45.4)

for αj P Ωkj pM,Ejq, j “ 1, . . . , N . In general this will not hold for arbitrary choices of connections
and bundle map µ, e.g. for k1 “ . . . “ kN “ 0, (45.4) says

∇X

`
µpη1 b . . .b ηN q˘ “ µp∇Xη1 b η2 . . .b ηN q ` . . .` µpη1 b . . .b ηN´1 b∇XηN q

for all X P XpMq and ηj P ΓpEjq, j “ 1, . . . , N , and the latter is true if and only if ∇µ ” 0 for
the connection induced on HompE1 b . . .b EN , F q by the connections on E1, . . . , EN and F (see
§33.2). This does hold in many situations that naturally arise: for instance, if E,F Ñ M are
two bundles with connections, then the induced connection on HompE,F q is defined so that the
canonical bundle map

HompE,F q bE Ñ F : Ab η ÞÑ Aη

is parallel.

Exercise 45.9. Show that the graded Leibniz rule (45.4) holds if and only if the bundle map
µ P ΓpHompE1 b . . . b EN , F qq is parallel with respect to the natural connection induced by the
connections on E1, . . . , EN and F .

Exercise 45.10. On any Lie group G, the Maurer-Cartan form is defined as the unique
g-valued left-invariant 1-form θ P Ω1pG, gq such that θe “ 1g.

(a) Prove that θ satisfies the so-called Maurer-Cartan equation:

dθ ` 1

2
rθ, θs “ 0.

Hint: The expression on the left is a g-valued 2-form on G, and it suffices to evaluate it
on an arbitrary pair of left-invariant vector fields.

(b) Prove that θ transforms under right translations by

Rg̊ θ “ Adg´1 ˝θ for g P G.
45.4. The curvature 2-form. When π : E ÑM is a principal G-bundle, the vector bundle

isomorphism V E – E ˆ g defined via fundamental vector fields allows us to rewrite the curvature
2-form FK P Ω2pE, V Eq from §44.2 as a Lie algebra-valued 2-form

FA P Ω2pE, gq, FApη, ξq :“ ´AprHpηq, Hpξqsq,
whereH : TE Ñ HE again denotes the fiberwise-linear projection along V E. The words “curvature
2-form” will from now on refer to FA P Ω2pE, gq whenever the context is a principal connection.

Since FK P Ω2pE, V Eq and FA P Ω2pE, gq are completely equivalent objects, Theorem 44.7
tells us that a principal connection is flat if and only if FA ” 0. The next theorem,98 tells us that FA
is nearly a closed 2-form and is also nearly the exterior derivative of A, except for correction terms
that vanish if the structure group G is abelian. These relations underlie many important results
in differential geometry, including the Gauss-Bonnet theorem, the characterization of flatness via
the Riemann tensor, and the Chern-Weil theory of characteristic classes.

98The first relation in Theorem 45.11 is taken as a definition of the curvature 2-form in some books. The
calculations in the proof then need to be carried out in order to show that FA also has something to do with an
integrability condition for the horizontal subbundle. We have done things the other way around.
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Theorem 45.11. A principal connection 1-form A P Ω1pE, gq and its curvature 2-form FA P
Ω2pE, gq satisfy the following relations:

(i) FA “ dA` 1
2
rA,As (second structural equation)99

(ii) dFA “ rFA, As (second Bianchi identity)

Proof. In verbose form, the first equation says that for every pair of vector fields η, ξ P XpEq,
dApη, ξq “ FApη, ξq ´ rApηq, Apξqs,

where it should be stressed that the bracket appearing on the right hand side is the Lie bracket
on g, not a bracket of vector fields. We will prove this via the formula (45.3), or rather the special
case of it in which the bundle and connection are trivial (which was essentially the definition of the
exterior derivative given in Lecture 8 last semester). In light of the splitting TE “ HE‘V E, any
vector field η P XpEq has the same value at a given point φ P E as Xh ` Y F for some X P XpMq
and Y P g, where Xh P ΓpHEq is the horizontal lift of X defined by Xhpφq :“ HorφpXpπpφqqq, and
Y F P ΓpV Eq is the fundamental vector field for Y . It suffices now to consider three cases: either
η and ξ are both horizontal, or both vertical, or one of each.

Case 1: Both horizontal. Given X,Y P XpMq, A vanishes on both Xh and Y h, thus the term
involving the Lie bracket on g vanishes, and

dApXh, Y hq “ LXh

`
ApY hq˘´ LY h

`
ApXhq˘´AprXh, Y hsq “ ´AprHpXhq, HpY hqsq

“ FApXh, Y hq.
Case 2: Both vertical. Given X,Y P g, the g-valued functions ApXF q “ X and ApY F q “ Y

are constant, and FApXF , Y F q vanishes, so we find

dApXF , Y F q “ LXF

`
ApY F q˘´ LY F

`
ApXF q˘´AprXF , Y F sq “ ´AprX,Y sF q “ ´rX,Y s

“ ´rApXF q, ApY F qs,
where we are using the fact from Theorem 40.8 and Exercise 40.10 that gÑ XpEq : X ÞÑ XF is a
Lie algebra homomorphism.

Case 3: One horizontal and one vertical. Given X P XpMq and Y P g, we claim first that the
flows of Xh P XpEq and Y F P XpEq commute, implying rXh, Y F s “ 0. To see this, pick p PM and
φ P Ep, and let γptq :“ ϕtXppq, so σptq :“ ϕt

Xhpφq is the unique horizontal lift of γ with σp0q “ φ.
Since parallel transport is G-equivariant, the section t ÞÑ σptqg is also a horizontal lift of γ for each
g P G, and thus satisfies σptqg “ ϕt

Xhpφgq. Now using the obvious analogue of Proposition 40.7 for
right group actions to write down the flow of Y F , we find

ϕsY F ˝ ϕtXhpφq “ σptq exppsY q “ ϕtXhpφ exppsY qq “ ϕtXh ˝ ϕsY F pφq,
thus proving the claim. Plugging Xh and Y F into FA gives 0 since Y F is vertical, and the term
with the Lie bracket on g also vanishes since ApXhq “ 0, so we are left with

dApXh, Y F q “ LXh

`
ApY F q˘´ LY F

`
ApXhq˘´AprXh, Y F sq “ LXhpY q ´ LY F p0q ´Ap0q “ 0.

This completes the proof of the first identity.

99Like the second fundamental form, the term “second structural equation” is a remnant of the way that
concepts in differential geometry were first presented by the authors who developed the subject; in this case, Henri
Cartan. In case you’d wondered, the first structural equation (see Exercise 46.16) is defined in the context of the
frame bundle of a tangent bundle, and is essentially a translation of the definition of the torsion tensor into the
language of connection 1-forms. We will see in the next lecture that the second structural equation encodes the
relationship between the curvature 2-form and the Riemann tensor on any associated vector bundle.



394 SECOND SEMESTER (DIFFERENTIALGEOMETRIE II)

Now that the structural equation is established, the Bianchi identity will follow if we can prove
1

2
drA,As “ rFA, As,

since d2A “ 0. We could prove this by another direct computation as carried out above,100 but
it is much easier to apply the graded Leibniz rule for d with respect to the bracket r , s and then
replace dA with FA ´ 1

2
rA,As: we obtain

1

2
drA,As “ 1

2
rdA,As ´ 1

2
rA, dAs “ rdA,As “ rFA, As ´ 1

2
rrA,As, As “ rFA, As,

where the term rrA,As, As vanishes due to the graded Jacobi identity. �

46. Curvature on associated vector bundles

In this lecture we shall finally wind the discussion back around to vector bundles, but at
a greater level of generality than we have considered before: our vector bundles will now have
arbitrary structure groups G, acting smoothly and linearly but not necessarily effectively on the
model fiber Fm. Following the philosophy outlined in §43.3, every such bundle is isomorphic to
an associated bundle Eρ “ E ˆρ V Ñ M for some principal G-bundle π : E Ñ M and a linear
group representation ρ : GÑ GLpV q on some vector space V , and the connection we consider on
Eρ ÑM will always be determined by a choice of principal connection on E ÑM .

46.1. Connections on associated bundles. Let us first complete the discussion of §43.3
by clarifying how a principal connection HE Ă TE on a principal G-bundle π : E ÑM determines
G-compatible connections on each of its associated bundles. Assume ρ : G ˆ F Ñ F is a smooth
group action and write Eρ “ Eˆρ F as in §43.2. If the parallel transport P tγ : Eγp0q Ñ Eγptq along
a path γptq P M through p :“ γp0q is given, the associated diffeomorphisms P tγ : E

ρ

γp0q Ñ E
ρ

γptq
need to satisfy

P tγprφ, xsq “ rP tγpφq, xs
for all φ P Ep and x P F , which is well defined because P tγ : Eγp0q Ñ Eγptq is G-equivariant. This
dictates defining the horizontal lift maps Horrφ,xs : TpM Ñ Trφ,xsEρ in terms of the corresponding
maps Horφ : TpM Ñ TφE by

Horrφ,xspXq :“ rHorφpXq, 0s P Trφ,xsEρ “ Tpφ,xqpE ˆ F q
N
Tpφ,xq pG ¨ pφ, xqq ,

where we are using Exercise 40.27 to identify tangent spaces of the quotient Eρ “ pE ˆ F q{G
with quotient vector spaces. The tangent space at pφ, xq to its G-orbit is spanned by pairs of
fundamental vector fields p´XF pφq, XF pxqq P TφEˆTxF forX P g, and sinceXF pφq is a nontrivial
vertical vector for every X ‰ 0, it follows that the image of the map TpM Ñ Tpφ,xqpE ˆ F q :

X ÞÑ pHorφpXq, 0q intersects this subspace trivially, and therefore has an injective projection
to the quotient. Moreover, the vertical subspace Vrφ,xsEρ is represented by all tangent vectors in
Tpφ,xqpEˆF q that are equivalent in the quotient to vectors of the form p0, Y q P TφEˆTxF , and these
will always be vertical in the first component, implying that the image of Horrφ,xs : TpM Ñ Trφ,xsEρ
intersects the vertical subspace trivially. In other words, there is a connection on Eρ ÑM defined
by

Hrφ,xsEρ :“ imHorrφ,xs Ă Trφ,xsEρ,
for which the induced parallel transport maps are as described above and are thus compatible with
the G-structure. By construction, the G-compatible connection on Eρ is then flat whenever the

100An earlier version of these notes actually contained that computation, which occupied about a page, but I
later realized that it wasn’t necessary.
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principal connection on E is flat, since parallel local sections of Eρ can be constructed explicitly
out of parallel local sections of E. The converse will also hold if the G-action on F is effective,
since in this case the parallel transport on Eρ also uniquely determines the parallel transport on E.

We will not need it, but just for completeness, here is an explicit formula for the connection
map K : TEρ Ñ V Eρ induced by a principal connection on E Ñ M with connection 1-form
A P Ω1pE, gq: identifying Trφ,xsEρ with a quotient vector space as described above and Vrφ,xsEρ
with TxF ,

Krφ,xsprη, ξsq “ ξ `ApηqF pxq P TxF “ Vrφ,xsEρ.
We leave it as an exercise to verify that this map is well defined and is the fiberwise-linear projection
of TEρ to V Eρ along the horizontal subbundle HEρ defined above.

46.2. The linear case. For the remainder of this lecture, we shall assume the standard fiber
F of our associated bundle is a finite-dimensional (real or complex) vector space V , and G acts on
it linearly via a representation

ρ : GÑ GLpV q,
so that Eρ “ E ˆρ V is a vector bundle. Recall that the derivative of ρ at e P G also gives us a
Lie algebra representation

ρ˚ : gÑ glpV q “ EndpV q,
so elements X P g can also be said to act on V via (not necessarily invertible) linear maps
v ÞÑ ρ˚pXqv, such that ρ˚prX,Y sq “ ρ˚pXqρ˚pY q ´ ρ˚pY qρ˚pXq. The parallel transport maps
defined on Eρ via a principal connection on E are now linear, and additionally preserve whatever
structure on the fibers is dictated by the structure group G. In light of the canonical isomorphisms
VvE

ρ “ TvpEρp q “ Eρp for each v P Eρp , it is appropriate in this setting to regard the covariant
derivative ∇tsptq of a section sptq P Eργptq along a path γptq PM as taking values in the fibers Eρ

γptq,
and one then checks that for any smooth function fptq P R, there is a Leibniz rule:

∇tpfsqp0q “ d

dt
P´1
γ pfptqsptqq

ˇ̌̌̌
t“0

“ d

dt
fptqP´1

γ psptqq
ˇ̌̌̌
t“0

“ 9fp0qsp0q ` fp0q∇tsp0q.
The covariant derivatives of sections thus define a linear operator ∇ : ΓpEρq Ñ ΓpHompTM,Eρqq
satisfying the Leibniz rule ∇pfηq “ dfp¨qη ` f ∇η, and so we are back to the original definition of
connections on a vector bundle given in Lecture 32.

We can relate the covariant derivative operator on Eρ to the principal connection on E in the
following manner. For every section η P ΓpEρq, there is an associated function pη : E Ñ V defined
via the condition

(46.1) ηppq “ rφ, pηpφqs P Eρp for all p PM and φ P Ep.
Not every smooth function pη : E Ñ V corresponds to a section of Eρ in this way; the right hand
side is independent of the choice of φ P Ep if and only if pη satisfies the condition

ρpgq ˝ pηpφgq “ pηpφq or equivalently pη ˝Rg “ ρpg´1q ˝ pη
for all g P G. Interpreting Rg and ρpg´1q as right G-actions on E and V respectively, we will
call a function pη : E Ñ V ρ-equivariant whenever it satisfies the condition pη ˝ Rg “ ρpg´1q ˝ pη
for all g P G; if preferred, one could instead frame it in terms of left G-actions by rewriting the
condition as pη˝Rg´1 “ ρpgq˝pη. In any case, we see that there is a natural bijective correspondence
between sections of Eρ and ρ-equivariant functions E Ñ V . Given p PM , X P TpM and a section
η P ΓpEρq, let us now choose a path γptq P M through γp0q “ p with 9γp0q “ X and a parallel
section φptq P Eγptq of E along γ. By the definition of parallel transport on Eρ, we then have

P tγprφp0q, vsq “ rφptq, vs
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for all v P V , thus
∇Xη “ ∇tηpγptqq|t“0 “

d

dt
pP tγq´1

`
ηpγptqq˘ˇ̌̌̌

t“0

“ d

dt
rφp0q, pηpφptqqsˇ̌̌̌

t“0

.

The derivative of the path pηpφptqq P V at t “ 0 is dpηpHorφp0qpXqq since φptq is a horizontal lift
of γptq, thus we obtain the succinct formula

(46.2) ∇Xη “ rφ, dpηpHorφpXqqs P Eρp for any p PM , X P TpM , φ P Ep.
In particular, a section η P ΓpEρq is parallel if and only if the corresponding function pη : E Ñ V

has vanishing derivatives in all horizontal directions.
Recall from Exercise 45.9 that covariant exterior derivatives satisfy Leibniz rules with respect

to smooth multilinear bundle maps that are parallel. The following result serves as a useful source
of parallel bundle maps.

Proposition 46.1. Assume π : E Ñ M is a principal G-bundle, ρ : G Ñ GLpV q and
τ : G Ñ GLpW q are two linear group representations on finite-dimensional vector spaces V and
W respectively, and ψ : V ÑW is a G-equivariant linear map, i.e. it satisfies ψ ˝ ρpgq “ τpgq ˝ ψ
for all g P G. Then there is a smooth linear bundle map Ψ : Eρ Ñ Eτ defined by

Ψprφ, vsq “ rφ, ψpvqs,
and for any choice of principal connection on E ÑM , Ψ P ΓpHompEρ, Eτ qq is parallel with respect
to the associated connections on Eρ and Eτ .

Proof. The map Ψ : Eρ Ñ Eτ is well defined due to the assumption that ψ : V Ñ W is
equivariant, and it is linear on each fiber because ψ is linear. Given a principal connection on
E Ñ M and the associated linear connections on Eρ and Eτ , it is also clear from the definitions
that Ψ has the following property: if sptq P Eρ

γptq is a parallel section of Eρ along a path γptq PM ,
then Ψ ˝ sptq P Eτγptq is a parallel section of Eτ along γ. This follows because both can be written
in terms of a parallel section of E along γ, paired with constant vectors v P V and ψpvq P W
respectively. Since any section along a path can be expressed pointwise as a linear combination of
parallel sections along that path, this is enough information to deduce ∇Ψ ” 0 from the Leibniz
rule; we leave the details as an exercise. �

Exercise 46.2. Given two representations ρ : GÑ GLpV q and τ : GÑ GLpW q, the natural
representation Hompρ, τq induced on HompV,W q is defined via the linear G-action

gA :“ τpgq ˝A ˝ ρpgq´1 for A P HompV,W q.
Show that for any principal G-bundle E Ñ M , there is a natural vector bundle isomorphism
between the associated bundle EHompρ,τq and HompEρ, Eτ q, and it is parallel for any choice of
principal connection on E. Under this isomorphism, what kind of equivariant function E Ñ
HompV,W q does the parallel bundle map Eρ Ñ Eτ in Proposition 46.1 correspond to?

46.3. Equivariant exterior algebra. Recall that for a principal connection, the connection
1-form A P Ω1pE, gq is G-equivariant in the sense that

Rg̊A “ Adg´1 ˝A for all g P G.
For the curvature 2-form FA P Ω2pE, gq, it is an easy exercise using its definition FApξ, ηq “
´AprHξ,Hηsq to show that FA satisfies the same equivariance property, and additionally, that
FApξ, ηq “ 0 whenever either of ξ or η is vertical. These properties suggest that instead of viewing
FA as a 2-form defined on the total space E, we really ought to let it descend to the quotient
E{G – M , analogously to the way that ρ-equivariant vector-valued functions pη : E Ñ V are
equivalent to sections η :M Ñ Eρ of an associated vector bundle overM . The resulting formalism
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for equivariant differential forms turns out to provide an elegant language for proving results about
connections and curvature without the need for local trivializations.

Assume as usual that ρ : GÑ GLpV q is a linear representation of G on some finite-dimensional
vector space V . If a principal connection on E Ñ M has been chosen, then we can use a mild
generalization of the relation in §46.2 to associate an equivariant V -valued k-form on E to any
bundle-valued form in ΩkpM,Eρq, i.e. given ω P ΩkpM,Eρq, we claim there is a canonical choice
of pω P ΩkpE, V q satisfying the relation

(46.3) ωppX1, . . . , Xkq “ rφ, pωφpHorφpX1q, . . . ,HorφpXkqqs p PM , φ P Ep, X1, . . . , Xk P TpM.

The right hand side determines pω only on k-tuples of horizontal vectors, so we are not claiming
that there is a unique pω P ΩkpE, V q satisfying this relation, but it will indeed become unique if we
impose the additional condition that pω should be a horizontal k-form, meaning

H˚pω “ pω
for the fiberwise-linear projection H : TE Ñ HE along V E. This is equivalent to the condition
that pωpX1, . . . , Xkq must vanish whenever any of the vectors X1, . . . , Xk is vertical, and if we
require this in (46.3), then pω is determined uniquely. Moreover, the fact that φ P Ep does not
appear on the left hand side forces pω to satisfy an equivariance condition, namely

ρpgq ˝Rg̊ pω “ pω or equivalently Rg̊ pω “ ρpg´1q ˝ pω
for all g P G. We shall refer to the k-forms satisfying this condition as ρ-equivariant. Wheneverpω P ΩkpE, V q is ρ-equivariant, there is a unique ω P ΩkpM,Eρq for which (46.3) is satisfied. We’ve
proved:

Theorem 46.3. For any principal G-bundle π : E Ñ M with a principal connection and any
linear representation ρ : G Ñ GLpV q, the relation (46.3) defines a natural isomorphism for each
k ě 0 between the space of ΩkpM,Eρq of smooth Eρ-valued k-forms on M and the space

ΩkρpE, V q Ă ΩkpE, V q
consisting of all smooth V -valued k-forms on E that are horizontal and ρ-equivariant. �

Example 46.4. The curvature 2-form FA P Ω2pE, gq for a principal connection is horizontal
and Ad-equivariant. The connection 1-form A P Ω1pE, gq is also Ad-invariant, though not horizon-
tal; however, the difference between any two connection 1-forms on a principal G-bundle is both
Ad-invariant and horizontal.

The isomorphism Ω˚pM,Eρq – Ωρ̊pE, V q identifies the covariant derivative operator ∇ :

ΓpEρq “ Ω0pM,Eρq Ñ Ω1pM,Eρq with a linear map

Ω0
ρpE, V q dAÝÑ Ω1

ρpE, V q.
It turns out that dA can be expressed via a simple formula in terms of the differential d : Ω0pE, V q Ñ
Ω1pE, V q and the connection 1-form A P Ω1pE, gq. For each p P M , X P TpM , φ P Ep and
η P ΓpEρq, combining (46.3) with (46.2) gives

∇Xη “ rφ, dApηpHorφpXqqs “ rφ, dpηpHorφpXqqs,
so dApη P Ω1

ρpE, V q is the unique horizontal 1-form that matches dpη in horizontal directions. In
other words, dA is the restriction to Ω0

ρpE, V q Ă Ω0pE, V q “ C8pE, V q of the operator
(46.4) dA : Ω0pE, V q Ñ Ω1pE, V q, dAf :“ df ˝H,
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which is also sometimes called the covariant derivative for functions on E. In order to write dA
more explicitly, let us assume again that f : E Ñ V is ρ-equivariant and use the connection 1-form
A P Ω1pE, gq as a vertical projection: then for φ P Ep and ξ P TφE,

dAfpξq “ dfpHξq “ dfpξ ´ApξqF pφqq “ dfpξq ´ dfpApξqF pφqq
“ dfpξq ´ d

dt
f
`
φ expptApξqq˘ˇ̌̌̌

t“0

“ dfpξq ´ d

dt
ρpexpp´tApξqqqfpφq

ˇ̌̌̌
t“0

“ dfpξq ` ρ˚pApξqqfpφq.
The last term in this expression can be interpreted as a wedge product of vector-valued forms in
the spirit of Exercise 45.7(f): the Lie algebra representation ρ˚ : g Ñ glpV q determines a bilinear
map gˆ V Ñ V : pX, vq ÞÑ ρ˚pXqv and thus a wedge product

Ω˚pE, gq ˆ Ω˚pE, V q Ý̂Ñ Ω˚pE, V q,
with which the formula above can be written as

(46.5) dAf “ df `A^ f for f P Ω0
ρpE, V q.

It should be stressed that this is not a valid formula for dAf on arbitrary functions f : E Ñ V ,
but only on those that are ρ-equivariant—which is the case we care about.

Like the covariant derivative on Eρ, the operator dA extends naturally to a covariant exterior
derivative

dA : ΩkρpE, V q Ñ Ωk`1
ρ pE, V q

for each k ě 0 that is equivalent via Theorem 46.3 to the operator d∇ : ΩkpM,Eρq Ñ Ωk`1pM,Eρq.
We can extrapolate from the case k “ 0 above to guess two formulas for dA: the first is

dAωpξ0, . . . , ξkq :“ dωpHξ0, . . . , Hξkq,
which defines more generally a linear operator dA : ΩkpE, V q Ñ Ωk`1pE, V q on all (not just
equivariant) V -valued forms. Using the fact that TRgpHEq “ HE, one verifies easily that dAω is
ρ-equivariant whenever ω is, and since it is manifestly also horizontal, dA preserves the subspace
Ωρ̊ pE, V q. To see that dA : ΩkρpE, V q Ñ Ωk`1

ρ pE, V q really is equivalent to d∇ : ΩkpM,Eρq Ñ
Ωk`1pM,Eρq beyond the case k “ 0, it suffices to establish that dA satisfies a corresponding Leibniz
rule. Recall that the Leibniz rule for d∇ is based on the wedge product of bundle-valued forms on
M with real-valued forms. One can interpret Ω˚pMq as Ω˚pM,Etrivq for the trivial representation
triv : G Ñ GLpRq : g ÞÑ 1 acting on R, as the associated vector bundle for this representation
is just the trivial real line bundle over M . Under the correspondence of Theorem 46.3, Ω˚pMq
is thus identified with Ωt̊rivpE,Rq, the space of real-valued horizontal forms ω P Ω˚pEq that are
G-invariant, meaning they satisfy

Rg̊ω “ ω for all g P G.
Exercise 46.5. For any α P ΩkpMq and β P ΩℓpM,Eρq, using Theorem 46.3 to write pα P

ΩktrivpE,Rq and pβ P ΩℓρpE, V q, prove that {α^ β “ pα^ pβ P Ωk`ℓpE, V q.
Exercise 46.6. Prove that for ω P ΩktrivpE,Rq, dAω “ dω.

Hint: One only really needs to check this for k “ 0, in which case the horizontality of α is a vacuous
condition, though G-invariance is important!

Exercise 46.7. Prove that if α P ΩktrivpE,Rq and β P ΩℓpE, V q is horizontal, then
dApα^ βq “ dα^ β ` p´1q|α|α^ dAβ.

This applies in particular whenever β P ΩℓρpE, V q.
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The second formula we can guess for dA generalizes (46.5): define

DA : ΩkpE, V q Ñ Ωk`1pE, V q : ω ÞÑ dω `A^ ω,

where again the bilinear map gˆV Ñ V arising from the Lie algebra representation ρ˚ : gÑ glpV q
is used for defining the product A ^ ω. The appropriate Leibniz rule for this operator is easy to
prove: it takes the form

DApα^ βq “ dα^ β ` p´1q|α|α^DAβ for α P Ω˚pEq, β P Ω˚pE, V q,
and applies in particular whenever α P Ωt̊rivpE,Rq and β P Ωρ̊ pE, V q. Since DA “ dA on Ω0

ρpE, V q,
it follows that the two operators also match on ΩkρpE, V q for all k ě 0. Here is a summary:

Theorem 46.8. The operator dA “ H˚d : Ω˚pE, V q Ñ Ω˚pE, V q preserves the space Ωρ̊ pE, V q Ă
Ω˚pE, V q of horizontal ρ-equivariant forms, and satisfies

dAω “ dω `A^ ω

on this subspace. Moreover, it is equivalent under the isomorphism of Theorem 46.3 to the covariant
exterior derivative d∇ : Ω˚pM,Eρq Ñ Ω˚pM,Eρq. �

46.4. The Riemann tensor revisited. It is time to get some real mileage out of the second
structural equation FA “ dA ` 1

2
rA,As. We saw in §45.3 that on the associated vector bundle

Eρ ÑM , the Riemann tensor

R : TM ‘ TM ‘Eρ Ñ Eρ : pX,Y, ηq ÞÑ RpX,Y qη
appears if one iterates the covariant exterior derivative on Ω0pM,Eρq, i.e.

d2∇ηpX,Y q “ RpX,Y qη for η P ΓpEρq.
By Theorem 46.8, this operator is equivalent to

d2A : Ω0
ρpE, V q Ñ Ω2

ρpE, V q.
More generally, the formula dAω “ dω`A^ω enables us to compute d2A : ΩkρpE, V q Ñ Ωk`2

ρ pE, V q
in terms of the curvature 2-form: using the second structural equation and Exercise 45.7(f), we
find

d2Aω “ dpdω `A^ ωq `A^ pdω `A^ ωq “ dpA^ ωq `A^ dω `A^ pA^ ωq
“ dA^ ω ´A^ dω `A^ dω ` 1

2
pA^ pA^ ωq ´ p´1q|A|¨|A|A^ pA^ ωqq

“ dA^ ω ` 1

2
rA,As ^ ω “

ˆ
dA` 1

2
rA,As

˙
^ ω.

In light of Theorem 45.11, this proves:

Theorem 46.9. For ω P Ωρ̊ pE, V q, d2Aω “ FA ^ ω. �

To understand what this means about the Riemann tensor, we can translate it into a statement
about bundle-valued forms on M . Since FA P Ω2

AdpE, gq, the curvature form is equivalent via
Theorem 46.3 to a 2-form

ΩA P Ω2pM,AdpEqq
taking values in the so-called adjoint bundle, defined as the associated vector bundle AdpEq “
E ˆAd g whose standard fiber is the Lie algebra g, with G-valued transition functions acting on
it via the adjoint representation. The next exercise shows that the Lie algebra homomorphism
ρ˚ : gÑ glpV q “ EndpV q determines a natural smooth (and parallel) linear bundle map AdpEq Ñ
EndpEρq whose kernel is a linear subbundle of AdpEq; in particular, each element of the fiber
AdpEqp over a point p PM defines a linear map Eρp Ñ Eρp .
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Exercise 46.10. Given the representation ρ : GÑ GLpV q, the induced representation Endpρq
of G on EndpV q “ HompV, V q is defined via the G-action

g ¨ A :“ ρpgq ˝A ˝ ρpg´1q P EndpV q for g P G, A P EndpV q.
(a) Show that the linear map ρ˚ : gÑ glpV q “ EndpV q is G-equivariant with respect to the

representations Ad on g and Endpρq on EndpV q.
(b) Find a natural parallel bundle isomorphism from the associated vector bundle EEndpρq to

EndpEρq “ HompEρ, Eρq.
It follows now from Proposition 46.1 that ρ˚ induces a natural parallel bundle map AdpEq Ñ
EEndpρq, which we can regard as a parallel bundle map AdpEq Ñ EndpEρq due to the isomorphism
in part (b).

(c) Show that the kernel of the natural bundle map AdpEq Ñ EndpEρq is a smooth subbundle
of AdpEq whose fibers are all isomorphic to the kernel of ρ˚ : gÑ EndpV q.

(d) Show that every fiber of AdpEq has a natural Lie algebra structure such that the bundle
map AdpEq Ñ EndpEρq defines a Lie algebra homomorphism on each fiber, where the
bracket on fibers of EndpEρq is the commutator.

In light of the natural bundle map AdpEq Ñ EndpEρq and the obvious fiberwise-bilinear
pairing EndpEρq ‘Eρ Ñ Eρ defined via evaluation, there is now a natural wedge product

ΩkpM,AdpEqq ˆ ΩℓpM,Eρq Ñ̂ Ωk`ℓpM,Eρq,
and Theorem 46.9 translates into the relation

(46.6) d2∇ω “ ΩA ^ ω for ω P Ω˚pM,Eρq.
Applied to a section η P ΓpEρq, this expresses the Riemann tensor as

Rp¨, ¨qη “ ΩA ^ η P Ω2pM,Eρq.
Clearly, R must vanish if the connection on E is flat. It is possible for the converse to be false,
depending on the Lie algebra representation ρ˚ : g Ñ glpV q; indeed, ΩA ^ η can vanish for all
η without ΩA itself being 0, but this happens if and only if the values taken by ΩA all lie in
the subbundle of AdpEq defined as the kernel of the natural bundle map AdpEq Ñ EndpEρq
described in Exercise 46.10. The rank of this subbundle is the dimension of the kernel of the Lie
algebra representation ρ˚ : g Ñ glpV q, so we obtain an especially strong condition if the latter is
injective, which is true in many of the situations we care about, e.g. it is automatic if the original
representation ρ : GÑ GLpV q is faithful, meaning that G acts effectively on V . We conclude:

Theorem 46.11. For the connection ∇ on the associated vector bundle Eρ Ñ M determined
by a principal connection A P Ω1pE, gq on π : E ÑM , the following conditions are equivalent:

(i) The Riemann tensor of ∇ vanishes;
(ii) The equivariant curvature 2-form FA P Ω2pE, gq takes all its values in the kernel of

ρ˚ : gÑ glpV q;
(iii) The bundle-valued curvature 2-form ΩA P Ω2pM,AdpEqq takes all its values in the kernel

of the natural bundle map AdpEq Ñ EndpEρq described in Exercise 46.10.
�

Corollary 46.12. If the principal connection on E ÑM is flat, then the Riemann tensor on
Eρ Ñ M vanishes, and the converse is also true if the Lie algebra representation ρ˚ : g Ñ glpV q
is injective; it holds in particular if the representation ρ : GÑ GLpV q is faithful. �

Corollary 46.13. A connection on a vector bundle is flat if and only if its Riemann tensor
vanishes.
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Proof. The definition of the Riemann tensor does not depend on the structure group of the
vector bundle, so given an m-plane bundle over F, we are free to take GLpm,Fq as the structure
group and thus view our bundle as EId Ñ M for a principal GLpm,Fq-bundle E Ñ M and the
canonical representation Id : GLpm,Fq Ñ GLpm,Fq. Since the latter is faithful, vanishing of the
Riemann tensor implies via Corollary 46.12 that the connection is flat. �

In the setting of pseudo-Riemannian geometry, the vector bundle in question is a tangent
bundle TM of rank n and the structure group is Opk, ℓq Ă GLpn,Rq for some k, ℓ ě 0 with
k`ℓ “ n, acting on the standard fiber Rn via its canonical representation. By Corollary 46.12, the
Levi-Cività connection is then flat if and only if the Riemann tensor vanishes. In this situation, one
can go further and deduce from the symmetry of the connection that any parallel local orthonormal
frame X1, . . . , Xn also satisfies rXi, Xjs “ 0 for all i and j, so that it generates a local coordinate
chart in which the metric has constant components gij “ xXi, Xjy, proving:

Corollary 46.14. A pseudo-Riemannian manifold is locally flat if and only if its Riemann
tensor vanishes. �

Exercise 46.15. In what situation can two distinct principal connections on π : E Ñ M

determine the same connection on the associated vector bundle Eρ? Show in particular that this
is possible if and only if the Lie algebra representation ρ˚ : gÑ glpV q is not injective.

Exercise 46.16. Assume π : E :“ FGpTMq Ñ M is the G-frame bundle of the tangent
bundle of an n-manifold M , where TM Ñ M has been equipped with a G-structure for some
matrix group G Ă GLpn,Rq. Let ρ : GÑ GLpn,Rq denote the inclusion, which defines a linear left
G-action on Rn for which TM is isomorphic to the associated vector bundle Eρ :“ pE ˆ Rnq{G.
There is a tautological 1-form

θ P Ω1pE,Rnq
defined by θφpξq :“ φ´1pπ˚ξq for ξ P TφE, where we regard frames φ P Ep at points p P M as
vector space isomorphisms φ : Rn Ñ TpM . Given a connection ∇ on TM induced by a choice
of principal connection A P Ω1pE, gq on E, the torsion tensor T P ΓpT 1

2Mq can be interpreted
as a bundle-valued 2-form T P Ω2pM,TMq “ Ω2pM,Eρq, thus it is naturally equivalent to some
ρ-equivariant horizontal 2-form τ P Ω2

ρpE,Rnq. The first structural equation of Cartan is the
relation

τ “ dθ `A^ θ,

where the wedge product of A P Ω1pE, gq with θ P Ω1pE,Rnq is defined in terms of the bilinear
map gˆ Rn Ñ Rn : pX, vq ÞÑ ρ˚pXqv. Prove the equation.
Hint: You can use the same approach that we used to prove the second structural equation in
Theorem 45.11, but there is also a much quicker way. Notice that θ is horizontal and ρ-equivariant.
What bundle-valued 1-form on M is it equivalent to?

Exercise 46.17. In many older or more elementary treatments (including the first semester of
this course), connections and curvature on vector bundles are described mainly in terms of locally-
defined objects that depend on choices of trivializations, without ever mentioning a principal
bundle. This exercise is meant to help you translate between the local picture and the more global
perspective that we’ve adopted in the last few lectures.

Assume π : E Ñ M is a principal G-bundle, with a connection 1-form A P Ω1pE, gq and
curvature 2-form F P Ω2pE, gq, and tsα P ΓpE|Uα

quαPI is a collection of local sections on open sets
Uα that cover M . For any vector space V and ω P ΩkpE, V q with k ě 0, we can pull back ω via
the maps sα : Uα Ñ E to define local V -valued k-forms on M ,

ωα :“ sα̊ω P ΩkpUα, V q, α P I
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The 1-forms tAα P Ω1pUα, gquαPI and 2-forms tFα P Ω2pUα, gquαPI are called the local connection
and local curvature forms respectively. Prove:

(a) The connection on π : E ÑM is uniquely determined by the collection of local connection
forms tAα P Ω1pUα, gquαPI , and its curvature 2-form is similarly determined by the local
curvature forms tFα P Ω2pUα, gquαPI . (Are analogous statements true for all forms in
Ω˚pE, gq?)

(b) Fα “ dAα ` 1
2
rAα, Aαs and dFα “ rFα, Aαs for each α P I.

Now suppose ρ : GÑ GLpV q is a representation of G on some finite-dimensional vector space V ,
with induced Lie algebra representation ρ˚ : gÑ glpV q, and let Eρ “ pEˆV q{GÑM denote the
associated vector bundle, which carries a connection ∇ determined by A P Ω1pE, gq. As shown in
§43.2, the local sections tsα P ΓpE|Uα

quαPI determine a G-bundle atlas tΦα : Eρ|Uα
Ñ UαˆV uαPI

for Eρ, where Φ´1
α pp, vq “ rsαppq, vs P Eρp for p P Uα and v P V , and the corresponding system of

transition functions gβα : Uα X Uβ Ñ G is determined by

sα “ sβgβα on Uα X Uβ .

For each ω P ΩkpM,Eρq, k ě 0, let pω P ΩkρpE, V q denote the ρ-equivariant horizontal form that
corresponds to it under the natural isomorphism ΩkpM,Eρq – ΩkρpE, V q, and denote ωα :“ pωα “
sα̊pω P ΩkpUα, V q for each α P I. Given ω P ΩkpM,Eρq and α, β P I, prove:

(c) ωα P ΩkpUα, V q is the local representation of ω with respect to the trivialization Φα,
meaning

ΦαpωpX1, . . . , Xkqq “ pp, ωαpX1, . . . , Xkqq for X1, . . . , Xk P TpM , p P Uα.

(d) ωβ “ ρpgβαq ˝ ωα on Uα X Uβ .
(e) pd∇ωqα “ dωα`Aα^ωα, where the wedge product of Aα P Ω1pUα, gq with ωα P ΩkpUα, V q

is defined in terms of the bilinear map gˆ V Ñ V : pX, vq ÞÑ ρ˚pXqv. In particular, for
a section η P ΓpEρq “ Ω0pM,Eρq and X P XpUαq, one obtains

p∇Xηqα “ dηαpXq ` ρ˚pAαpXqqηα.
Finally, prove the following transformation formulas for the local connection and curvature forms:
given p P Uα X Uβ and X,Y P TpM ,

(f) FβpX,Y q “ Adgβαppq ˝FαpX,Y q
(g) AβpXq “ Adgβαppq ˝AαpXq ` TLgβαppq ˝ TgαβpXq, where Lg : GÑ G denotes left trans-

lation h ÞÑ gh.
In the special case where G Ă GLpm,Fq is a matrix group acting in the obvious way on V “ Fm,
the transformation formulas of parts (f) and (g) can be written in the simplified form

Fβ “ gFαg
´1, Aβ “ gAαg

´1 ` g dg´1,

where we abbreviate g :“ gβα : Uα X Uβ Ñ G. The second formula is known to physicists as a
gauge transformation.

47. Chern-Weil theory

The formalism we’ve developed for connections and curvature on principal bundles has an
interesting application that has nothing directly to do with covariant differentiation or local flatness:
it can be used to define topological invariants of vector bundles. These invariants are called
characteristic classes, and they have been essential tools in topology since at least the middle
of the 20th century. One reason for this is that, in a crude sense, characteristic classes make
the distinction between topological manifolds and smooth manifolds detectable via the standard
methods of algebraic topology; a smooth manifold has a natural vector bundle associated to it,
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namely its tangent bundle, while a topological manifold does not. Milnor’s famous discovery of
exotic smooth structures on the 7-sphere, for example, made crucial use of the Pontryagin classes.

The most powerful invariants in mathematics are typically those which admit at least two
completely different constructions based on different choices of auxiliary data, sometimes even
living in different categories, but which then turn out to be equivalent. The standard characteristic
classes are good examples of this phenomenon, as it is possible to construct them entirely within the
topological category, where notions of smoothness, connections and curvature cannot be defined,
but it is also possible to give a purely smooth construction that depends crucially on those notions.
The topological version of the construction belongs in a course on algebraic topology, but in this
lecture we will outline the smooth version, which is known as Chern-Weil theory.

47.1. A brief review of c1 for line bundles. The simplest case of Chern-Weil theory
appeared in Lecture 30 last semester: it relies on the observation that if E Ñ M is a smooth
complex line bundle, then choosing a bundle metric endows it with the structure group Up1q,
which is abelian. We framed the discussion last semester in terms of the local connection forms
tAα P Ω1pUα, gquαPI and curvature forms tFα P Ω2pUα, gquαPI associated to a G-bundle atlas, as
outlined in Exercise 46.17. Having an abelian structure group simplifies several things: notably,
the bracket and adjoint representation on g are trivial, so the local version of the second structural
equation Fα “ dAα ` 1

2
rAα, Aαs becomes

Fα “ dAα on Uα,

and the transformation formula Fβ “ Adgβα
˝Fα just says

Fβ “ Fα on Uα X Uβ ,

so that the local curvature forms are restrictions to open sets Uα ĂM of a single globally defined
2-form

F P Ω2pM, gq.
This 2-form is closed since it locally matches dAα, but it might not be exact, because it can happen
that none of the individual local connection 1-forms Aα P Ω1pUα, gq can be extended to a global
primitive of F . The issue here is precisely that E might be a nontrivial bundle: if it were trivial,
then a global trivialization would provide a global connection 1-form that is a primitive of F . We
can thus view the failure of F to be exact as an algebraic measurement of the nontriviality of the
bundle.

The distinction between closed and exact k-forms is measured by the de Rham cohomology

Hk
dRpMq “ ker

´
ΩkpMq dÝÑ Ωk`1pMq

¯M
im

´
Ωk´1pMq dÝÑ ΩkpMq

¯
, k ě 0,

whose basic properties were covered in Lecture 13 of last semester’s course. The end result of this
thought process is a definition of the first Chern class

c1pEq :“
„
´ 1

2πi
F


P H2

dRpMq,
where the factor of i has been inserted so that the 2-form F P Ω2pM, up1qq with values in up1q “
iR Ă C1ˆ1 becomes real-valued, and the usefulness of 1

2π
becomes clear as soon as one does some

nontrivial computations (cf. §30.2). From the definition, one might expect c1pEq to depend on the
choice of connection, which was completely arbitrary. But on a Up1q-bundle, the difference ∇1´∇

between two connections can be understood as a global up1q-valued 1-form λ P Ω1pM, up1qq, and
the difference between their curvature 2-forms is dλ, so while the 2-form ´ 1

2πi
F P Ω2pMq can

be changed drastically by changing the connection, its cohomology class remains the same. A
more robust way to make this argument is as follows: since the set of connections forms an affine
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space, we can linearly interpolate between any two connections ∇,∇1 and use this interpolation
to define a connection on the pullback bundle Π˚E Ñ r0, 1s ˆ M via the obvious projection
Π : r0, 1s ˆ M Ñ M , such that the connection matches ∇ on t0u ˆ M and ∇1 on t1u ˆ M .
The curvature of this connection then defines a closed 2-form on r0, 1s ˆM whose restriction to
t0u ˆM gives one version of our definition of c1pEq, while its restriction to t1u ˆM gives the
other—by the homotopy-invariance of de Rham cohomology, these two restrictions must give the
same cohomology class, because the inclusions M ãÑ t0u ˆM and M ãÑ t1u ˆM are smoothly
homotopic in r0, 1s ˆM . Once one knows that c1pEq is independent of the choice of connection,
it is not hard to show that one also has c1pEq “ c1pE1q whenever the two bundles E,E1 ÑM are
isomorphic.

As any topologist will tell you, there are good philosophical reasons to seek out a cohomology
class as a topological invariant of bundles. This has to do with the notion of functoriality : in the
language of category theory, cohomology theoriesH˚p¨q define contravariant functors, meaning that
they associate to suitable spaces X an algebraic object H˚pXq and to suitable maps f : X Ñ Y

between spaces a homomorphism f˚ : H˚pY q Ñ H˚pXq which goes the other direction, and is
compatible with compositions in the sense that pf ˝ gq˚ “ g˚f˚. Conveniently, there is similarly a
pullback operation defined for bundles, so that for each choice of structure group G and space X ,
one can reasonably ask for a correspondence

tG-bundles over Xu
M
isomorphism cÝÑ H˚pXq

that is compatible with pullbacks in the sense that

cpf˚Eq “ f˚cpEq
for G-bundles E Ñ X and suitable maps f : Y Ñ X . This is called the naturality property, and
any map c on a particular class of bundles that satisfies it is called a characteristic class of such
bundles. It is not difficult to see that our definition of c1pEq above satisfies it, because pullback
bundles inherit pullback connections whose connection 1-forms and curvature 2-forms are likewise
pullbacks (see Exercise 48.3 in the next lecture).

47.2. The main idea. While the definition of c1pEq sketched above is elegant, its scope
is quite limited, e.g. it does not work for complex vector bundles of rank m ě 2, since upmq
is then a nonabelian Lie algebra, more complicated than the space of pure imaginary numbers.
The transformation formula Fβ “ Adgβα

˝Fα for local curvature 2-forms with respect to different
trivializations (see Exercise 46.17(f)) gives a hint of one possible way to proceed. In the concrete
case G “ Upmq, we can abbreviate g :“ gβα : Uα X Uβ Ñ Upmq and rewrite this formula as

FβpX,Y q “ gppqFαpX,Y qgppq´1 P upmq, for p P Uα X Uβ , X,Y P TpM,

and it follows for instance that

F pX,Y q :“ i trpFαpX,Y qq P R

defines a real-valued 2-form on M that can be computed at any point p P M by choosing a local
trivialization pUα,Φαq with p P Uα, but does not depend on that choice. It is real-valued because
matrices in upmq are anti-Hermitian and thus have only imaginary numbers on the diagonal,
and it is independent of the choice because the trace map tr : Cmˆm Ñ C is invariant under
conjugation. It is also closed, even if the local curvature forms Fα are not: these satisfy Fα “
dAα ` 1

2
rAα, Aαs by the second structural equation, but values of 1

2
rAα, Aαs P Ω2pUα, upmqq take

the form rAαpXq, AαpY qs “ AαpXqAαpY q ´ AαpY qAαpXq, so they are traceless since trpABq “
trpBAq. Up to a scaling factor to be specified later, the cohomology class represented by this
closed 2-form will serve as a definition of c1pEq P H2

dRpMq for complex vector bundles E Ñ M of
arbitrary rank.
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Remark 47.1. In case the proof above that dF “ 0 struck you as somewhat ad hoc, don’t
worry, we’ll come up with a better one later (cf. Exercise 47.9).

The crucial property of the trace that makes the trick above work is conjugation invariance: in
fancier terms, the trace defines an Ad-invariant linear function upmq Ñ C. It is natural to wonder
whether any other Ad-invariant functions upmq Ñ C we can think of might be put to similar use
in defining characteristic classes. One such function is the determinant,

det : upmq Ñ C,

which is conjugation-invariant but not linear; strictly speaking, it is a homogenous polynomial
of degree m in the entries of the matrices in upmq. As we will review in §47.3 below, being a
polynomial of degree m means that it can be written in the form detpAq “ QpA, . . . ,Aq for a
unique symmetric m-fold multilinear map Q : upmq ˆ . . . ˆ upmq Ñ C, and we recall from §45.3
that such a multilinear map can be used to define product forms QpFα, . . . , Fαq P Ω2mpUα,Cq. This
suggests the idea of turning any Ad-invariant k-fold multilinear map µ : gˆ . . .ˆ g Ñ F P tR,Cu
for k P N into a 2k-form µpFα, . . . , Fαq P Ω2kpUα,Fq, which we would then expect to be closed and
independent of the choice of trivialization, defining a global closed form whose cohomology class
in H2k

dRpM ;Fq should be a characteristic class.
In order to see why this idea works, let’s first translate our presentation of c1pEq into the

more global language of the previous lecture. We assume E ÑM is a Hermitian vector bundle of
rank m P N, so its structure group is Upmq and it can be viewed as an associated bundle for the
principal Upmq-bundle

FOpEq :“ P ÑM,

its orthonormal frame bundle. The curvature forms tFα P Ω2pUα, gquαPI used above are local
manifestations of a global object, namely the bundle-valued curvature 2-form ΩA P Ω2pM,AdpP qq,
or equivalently, the horizontal and Ad-equivariant curvature 2-form FA P Ω2

AdpP, gq on the frame
bundle. In the general case, AdpP q ÑM might be a nontrivial bundle with a nontrivial connection,
but we can ask whether ΩA is covariantly closed, meaning d∇ΩA “ 0. By Theorem 46.8, this will
be true if and only if dAFA “ 0, and we can use the formula dA “ d ` A ^ p¨q to compute this,
where in the present case, the wedge product of A P Ω1pP, gq with FA P Ω2pP, gq will be defined
in terms of the bilinear map gˆ gÑ g : pX,Y q ÞÑ adX Y “ rX,Y s, and is thus actually the same
thing as the bracket rFA, As. From the second Bianchi identity (Theorem 45.11), we conclude

(47.1) dAFA “ dFA `A^ FA “ rFA, As ` rA,FAs “ 0,

as the bracket is still antisymmetric whenever the forms we plug into it do not both have odd
degree. This implies

d∇ΩA “ 0,

thus giving us a new interpretation of the second Bianchi identity: it says that the bundle-valued
curvature 2-form on M is covariantly closed. If G is abelian, then several details now become
simpler: the triviality of the adjoint representation makes the bundle AdpP q Ñ M canonically
isomorphic to the trivial bundle M ˆ g Ñ M with its trivial connection, so ΩA gets interpreted
as a g-valued 2-form and the equation d∇ΩA “ 0 becomes dΩA “ 0. In the case G “ Up1q, one
can now use the fact that up1q “ iR and define c1pEq :“ r´p1{2πiqΩAs P H2

dRpMq as before.
Exercise 46.17(c) implies that this really is the same definition, because the local curvature forms
Fα P Ω2pUα, up1qq are nothing other than the local representatives of ΩA P Ω2pM,AdpP qq with
respect to trivializations, implying ΩA “ F .

In the general nonabelian case, proceeding further requires having a multilinear map

ψ : gˆ . . .ˆ glooooomooooon
k

Ñ F P tR,Cu
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for some k ě 1 that is alsoAd-invariant in the sense that ψpAdgpX1q, . . . ,AdgpXkqq “ ψpX1, . . . , Xkq
for all g P G and X1, . . . , Xk P g. This can be interpreted as a G-equivariant linear map
g b . . . b g Ñ F, where the tensor product inherits the natural tensor product representation
Adbk : G Ñ GLpgbkq, and F carries the trivial representation. Proposition 46.1 then gives a
parallel bundle map

Ψ : AdpP qbk – P pAdbkq Ñ P triv “M ˆ F,

and we can feed ΩA into the resulting multilinear map Ψ : Ωj1pM,AdpP qqˆ . . .ˆΩjkpM,AdpP qq Ñ
Ωj1`...`jkpM,Fq, producing a real or complex-valued 2k-form

ωk :“ ΨpΩA, . . . ,ΩAq P Ω2kpM,Fq.
By Exercise 45.9, we can apply the covariant Leibniz rule to conclude in this case that ωk is also
closed, as a consequence of the second Bianchi identity d∇ΩA “ 0:

dωk “ d pΨpΩA, . . . ,ΩAqq “ Ψpd∇ΩA,ΩA, . . . ,ΩAq `ΨpΩA, d∇ΩA, . . . ,ΩAq ` . . .

`ΨpΩA, . . . ,ΩA, d∇ΩAq “ 0.

It will be straightforward to verify that the cohomology class

rωks P H2k
dRpM ;Fq

is then a characteristic class, and we will work out the details of this in §47.4 below. Let’s pause
briefly to clarify some notation: we are writing

Hd̊RpM ;Rq :“ Hd̊RpMq
for the usual de Rham cohomology as a real vector space, and Hd̊RpM ;Cq for its analogue based
on complex-valued forms, which is algebraically just the complexification of Hd̊RpM ;Rq. It will
turn out that the most important characteristic classes we construct can be viewed as elements of
Hd̊RpM ;Rq, but it is convenient to have the freedom of defining some of them first in Hd̊RpM ;Cq.

Remark 47.2. Most people think of characteristic classes as objects associated to vector
bundles in particular, but the construction of Chern-Weil theory does not actually use the fibers
in any way—what it depends on rather is the underlying system of transition functions, i.e. the
“abstract” G-bundles (see Definition 43.1), on top of which fiber bundles with structure group
G can be built. Since every abstract G-bundle corresponds canonically to a principal G-bundle,
the correct theoretical perspective is therefore to define characteristic classes cpEq P H˚pMq for
principal G-bundles E ÑM and then define

cpEρq :“ cpEq
for all the associated bundles, which includes all vector bundles. We will adopt this perspective in
the following.

47.3. Polynomial functions of differential forms. As outlined above, our goal is to
represent characteristic classes by plugging curvature 2-forms ω into k-fold multilinear functions
µ : gˆ . . .ˆ gÑ F to extract closed 2k-forms µpω, . . . , ωq. Algebraically, functions of the form

Fm Ñ F : v ÞÑ µpv, . . . ,vlooomooon
k

q

for a multilinear function µ : Fmˆ . . .ˆFm Ñ F are homogeneous polynomials of degree k. What
follows is a brief digression to clarify a few algebraic facts about such functions.

Assume throughout that V is a vector space of finite dimension m P N over F P tR,Cu. A
function f : V Ñ F is called a homogeneous polynomial of degree k ě 0 on V if composing
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it with an isomorphism φ : Fm Ñ V makes f ˝ φ : Fm Ñ F a homogeneous polynomial of degree k
in the standard coordinates pz1, . . . , zmq P Fm, i.e.

f ˝ φpz1, . . . , zmq “ ai1...ikz
i1 . . . zik

for some set of coefficients ai1...ik P F. It is easy to check that if f satisfies this condition for some
choice of isomorphism φ : Fm Ñ V , then it satisfies it for every other choice.

Proposition 47.3. A function f : V Ñ F is a homogeneous polynomial of degree k if and
only if it takes the form fpvq “ Qpv, . . . , vq for some k-fold multilinear function Q : V ˆ . . .ˆV Ñ
F. Moreover, for a given f , there is a unique symmetric multilinear function Q satisfying this
condition.

Proof. We can recover the symmetric form Q from the polynomial f by differentiation:
according to Taylor’s formula,

fpvq “ 1

k!
Dkfp0qpv, . . . , vq,

so we define Qpv1, . . . , vkq :“ 1
k!
Dkfp0qpv1, . . . , vkq. �

We will call a function f : V Ñ F a (not necessarily homogeneous) polynomial on V if it is a
finite sum of homogeneous polynomials. More generally, it is sometimes useful to consider formal
power series on V , by which we mean arbitrary infinite sums

f :“
8ÿ
k“0

fk,

such that for each k ě 0, the term fk in the sum is a homogeneous polynomial of degree k. The
word “formal” refers to the fact that we do not require these sums to converge, thus a formal
power series cannot generally be regarded as a function V Ñ F, but is instead a purely algebraic
object. The set of polynomials and the set of formal power series on V both have natural product
structures and thus form algebras over F,

FrV s :“ tpolynomials on V u, FrrV ss :“ tformal power series on V u,
so e.g. for each pair of formal power series f “ ř

k fk and g “ ř
k gk, the homogeneous degree k

part of fg P FrrV ss is řk
j“0 fjgk´j .

We next consider the operation defined by polynomials on V -valued differential forms on a
manifold M . If f : V Ñ F is homogeneous of degree k and Q : V ˆ . . .ˆ V Ñ F is the symmetric
k-fold multilinear map such that Qpv, . . . , vq “ fpvq, then Q determines an operation

Q : Ωj1pM,V q ˆ . . .ˆ ΩjkpM,V q Ñ Ωj1`...`jkpM,Fq,
and for each ω P ΩjpM,V q we define

fpωq :“ Qpω, . . . , ωq P ΩkjpM,Fq.
We can write down an explicit formula for fpωq after choosing a basis e1, . . . , em of V and writing
ω “ ωiei for ω1, . . . , ωm P ΩjpM,Fq: we then have

fpωq “ Qpωi1ei1 , . . . , ωikeikq “ Qpei1 , . . . , eikqωi1 ^ . . .^ ωik .

Notice that if j is odd and k ě 2, then fpωq “ 0 since swapping any two of the indices in this
last sum changes the sign of the wedge product without changing Q, thus proving fpωq “ ´fpωq.
On the other hand if j is even, then the same trick shows that we could freely have dropped the
assumption that Q is symmetric in using it to define fpωq, asQ can be modified by any permutation
of its k variables without changing Qpω, . . . , ωq.
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Having defined fpωq when f is a homogeneous polynomial, we can now also define

fpωq :“ f0pωq ` . . .` fN pωq P Ω˚pM,Fq
for an arbitrary polynomial f “ f0 ` . . .` fN ; if f is not homogeneous and ω has positive degree,
then fpωq will be a finite sum of forms of various degrees. When ω has positive degree, we can
even define

fpωq :“ f0pωq ` f1pωq ` f2pωq ` . . . P Ω˚pM,Fq
for an arbitrary formal power series f “ f0 ` f1 ` f2 ` . . . on V , because only the finitely many
terms fkpωq P Ω˚pM,Fq with degree |fkpωq| “ k|ω| ď dimM are actually nonzero.

Exercise 47.4. Show that for any fixed ω P ΩjpM,V q of degree j ą 0, the map FrrV ss Ñ
Ω˚pM,Fq satisfies

pfgqpωq “ fpωq ^ gpωq for all f, g P FrrV ss,
and the same is true for ω P Ω0pM,V q if we restrict to polynomials f, g P FrV s.

Suppose now that G is a Lie group with a representation ρ : GÑ GLpV q on V . A polynomial
f P FrV s will be called ρ-invariant if it satisfies

fpρpgqvq “ fpvq for all g P G, v P V ,
and a multilinear map Q : V ˆ . . .ˆ V Ñ F is called ρ-invariant if it satisfies

Qpρpgqv1, . . . , ρpgqvkq “ Qpv1, . . . , vkq for all g P G, v1, . . . , vk P V .
A ρ-invariant k-fold multilinear map is thus equivalent to a G-equivariant linear map V bk Ñ F if
we define the G-action on V bk via the k-fold tensor product of the representation ρ, along with
the trivial G-action on F.

Proposition 47.5. A homogeneous polynomial f : V Ñ F of degree k P N is ρ-invariant if
and only if the corresponding symmetric multilinear map Q : V ˆ . . . ˆ V Ñ F is ρ-invariant.
Moreover, a non-homogeneous polynomial is ρ-invariant if and only if its degree k homogeneous
term is ρ-invariant for every k ě 0.

Proof. For any f P FrV s, Taylor’s formula allows us to write

fpvq “
Nÿ
k“0

1

k!
Dkfp0qpv, . . . , vq

for some finite N , and we see that f : V Ñ F is ρ-invariant if and only if all of the derivatives
Dkfp0q : V ˆ . . .ˆ V Ñ F are ρ-invariant. �

The following definition seems reasonable in light of Proposition 47.5: a formal power series
f P FrrV ss is ρ-invariant if for every k ě 0, its degree k homogeneous term is ρ-invariant. Notice
that the product of two ρ-invariant polynomials or formal power series is also ρ-invariant, so the
subspaces

FrV sρ :“  
f P FrV s ˇ̌ f is ρ-invariant

(
, FrrV ssρ :“  

f P FrrV ss ˇ̌ f is ρ-invariant
(

are also algebras.

Exercise 47.6. Suppose ρj : GÑ GLpVjq for j “ 1, . . . , k and τ : GÑ GLpW q are represen-
tations, and µ : V1 ˆ . . . ˆ Vk Ñ W is a multilinear map that is G-equivariant in the sense that
µpρ1pgqv1, . . . , ρkpgqvkq “ τpgqµpv1, . . . , vkq for all g P G and v1, . . . , vk P V . Show that the induced
multilinear map µ : Ω˚pM,V1qˆ . . .ˆΩ˚pM,Vkq Ñ Ω˚pM,W q is also G-equivariant, where G acts
on vector-valued forms ω P Ω˚pM,V1q by g ¨ ω :“ ρ1pgq ˝ ω and so forth.
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Exercise 47.7. Under the assumptions of Exercise 47.6, if π : E ÑM is a principal G-bundle,
show that

ωj P Ωρ̊j pE, Vjq for j “ 1, . . . , k ñ µpω1, . . . , ωkq P Ωτ̊ pE,W q.
Corollary 47.8 (of Exercise 47.7). Given a principal G-bundle π : E ÑM and a represen-

tation ρ : G Ñ GLpV q, if ω P ΩjρpE, V q and f P FrV sρ, then fpωq P Ωt̊rivpE,Fq, meaning fpωq
is horizontal and satisfies Rg̊

`
fpωq˘ “ fpωq for all g P G. The same also holds for formal power

series f P FrrV ssρ if j ą 0. �

47.4. The Chern-Weil homomorphism. We now complete the general construction of
characteristic classes for principal G-bundles π : E ÑM via Chern-Weil theory. The idea sketched
in §47.2 was based on the bundle-valued curvature 2-form ΩA P Ω2pM,AdpEqq, but it is slightly
easier (though equivalent) to work with equivariant vector-valued forms on E, so in this section
we shall do that instead.

Choose a connection 1-form A P Ω1pE, gq on E and let FA P Ω2
AdpE, gq denote its curvature

2-form. For each Ad-invariant formal power series f P FrrgssAd on the Lie algebra, Corollary 47.8
implies that

fpFAq P Ω˚pE,Fq
is horizontal and G-invariant, so under the natural isomorphism Ωt̊rivpE,Fq – Ω˚pM,Etrivq of
Theorem 46.3, it corresponds to a form on M with values in the vector bundle Etriv associated to
the trivial representation triv : GÑ GLp1,Fq, which means an F-valued form

ω
f
A P Ω˚pM,Fq.

In this situation, the relation (46.3) between ωfA and fpFAq translates to
fpFAq “ π˚ωfA.

We claim that ωfA is closed. The claim follows from two observations: first, we saw in (47.1) that
dAFA “ 0, due to the second Bianchi identity. Second, the operator dA :“ H˚d satisfies an obvious
Leibniz rule under wedge products of horizontal forms on E, and it follows that it also satisfies
such a rule under products induced by any multilinear map µ : V1 ˆ . . .ˆ Vk ÑW , i.e.

dA
`
µpω1, . . . , ωkq˘ “ µpdAω1, . . . , ωkq ` . . .` p´1q|ω1|`...`|ωk´1|µpω1, . . . , dAωkq,

so long as the forms ωj P Ω˚pE, Vjq for j “ 1, . . . , k are all horizontal. Since the homogeneous term
in f P FrrgssAd of each degree k P N can be expressed as a multilinear map gbk Ñ F, it follows
that dA

`
fpFAq˘ “ 0. But since fpFAq “ π˚ωfA, d

`
fpFAq˘ “ π˚dωfA is itself horizontal, implying

0 “ dA
`
fpFAq˘ “ d

`
fpFAq˘ “ π˚dωfA, and thus

dω
f
A “ 0.

Exercise 47.9. For a homogeneous Ad-invariant polynomial fpXq “ QpX, . . . , Xq of degree k
on g, the symmetric k-fold multilinear map Q defines a G-equivariant linear map gbk Ñ F, so by
Proposition 46.1, it also determines a parallel bundle mapQ : AdpEqbk Ñ Etriv “MˆF, which can
be used to define a differential form QpΩA, . . . ,ΩAq P Ω2kpM,Fq. Show that QpΩA, . . . ,ΩAq “ ω

f
A,

and deduce from this a second proof that dωfA “ 0 based on d∇ΩA “ 0.

Lemma 47.10. The cohomology class rωfAs P Hd̊RpM ;Fq is independent of the choice of con-
nection A P Ω1pE, gq.
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Proof. Given two connection 1-forms A0, A1 P Ω1pE, gq, the linear interpolation At :“ tA1`
p1´ tqA0 P Ω1pE, gq defines a smooth family of connection 1-forms. Let Π : r0, 1sˆM ÑM denote
the projection pt, pq ÞÑ p. The pullback bundle Π˚E is then a principal G-bundle over r0, 1s ˆM

whose total space is naturally diffeomorphic to r0, 1sˆE, so the 1-form pA P Ω1pr0, 1sˆE, gq defined
by pApt,φqps, ξq :“ Atφpξq
can be regarded as a 1-form on Π˚E, which is then easily seen to be a connection 1-form for the
principal bundle Π˚E Ñ r0, 1s ˆM . Writing

it : E ãÑ r0, 1s ˆE “ Π˚E : φ ÞÑ pt, φq
for each t P r0, 1s, we have i0̊ pA “ A0 and i1̊

pA “ A1, and the corresponding curvature 2-forms
satisfy

i0̊F pA “ FA0 , i1̊F pA “ FA1 .

Plugging all three of these curvature forms into f P FrrgssAd as described above then produces
closed forms ωf

A0 , ω
f

A1 P Ω˚pM,Fq and ω
fpA P Ω˚pr0, 1s ˆM,Fq such that for j “ 0, 1, ωf

Aj is the

pullback of ωfpA via the inclusion M – tju ˆM ãÑ r0, 1s ˆ M . Since these two inclusions are
smoothly homotopic, they induce the same map Hd̊Rpr0, 1s ˆM ;Fq Ñ Hd̊RpM ;Fq. �

Definition 47.11. For any principal G-bundle π : E ÑM and F P tR,Cu, the Chern-Weil
homomorphism is the map

FrrgssAd Ñ Hd̊RpM,Fq : f ÞÑ cf pEq :“ rωfAs
defined by choosing any connection 1-form A P Ω1pE, gq and finding the unique ωfA P Ω˚pM,Fq
such that π˚ωfA “ fpFAq P Ω˚pE,Fq.

Thanks to the graded Leibniz rule, the wedge product of differential forms descends to an
associative and graded commutative product on de Rham cohomology, known as the cup product

Hk
dRpM ;Fq ˆHℓ

dRpM ;Fq Ñ Hk`ℓ
dR pM,Fq : prαs, rβsq ÞÑ rαs Y rβs :“ rα^ βs.

By Exercise 47.4, we then have:

Theorem 47.12. For every principal G-bundle π : E Ñ M , the Chern-Weil homomorphism
FrrgssAd Ñ H˚pM ;Fq : f ÞÑ cf pEq satisfies

cfgpEq “ cf pEq Y cgpEq
for all f, g P FrrgssAd, i.e. it is an algebra homomorphism. �

We will prove in the next lecture that for every fixed f P FrrgssAd, the association of the
class cf pEq P Hd̊RpM ;Fq to each principal G-bundle π : E Ñ M satisfies the required naturality
property and thus defines a characteristic class. Beyond this, the properties of such classes generally
depend on the choice of Ad-invariant polynomial or formal power series f , and we will see in the
next lecture that for the groups which arise in most applications, there is a canonical set of choices
of f to use, giving rise to the standard Chern and Pontryagin classes.
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48. Chern, Pontryagin, and Euler

48.1. The local perspective on the Chern-Weil homomorphism. In the previous lec-
ture we saw two closely related ways to define the Chern-Weil homomorphism

FrrgssAd Ñ Hd̊RpM ;Fq : f ÞÑ cf pEq
for a principal G-bundle π : E Ñ M . Both require an initial choice of connection 1-form A P
Ω1pE, gq, though by Lemma 47.10, the eventual definition of cf pEq P Hd̊RpM ;Fq is independent of
this choice. In the first approach, one plugs the horizontal and Ad-equivariant curvature 2-form
FA P Ω2

AdpE, gq into f P FrrgssAd, giving rise to a scalar-valued horizontal form

fpFAq P Ω˚pE,Fq
that is G-invariant due to the Ad-invariance of f , and is therefore the pullback via π : E ÑM of
some form ω

f
A P Ω˚pM,Fq. From this perspective, ωfA is closed due to the second Bianchi identity

dAFA “ 0: the latter implies via a Leibniz rule that fpFAq is also annihilated by dA, which is
equivalent to being closed since d

`
fpFAq˘ “ π˚dωfA is horizontal.

The second perspective was outlined in Exercise 47.9, and is easiest to explain if we assume
f P FrrgssAd is a homogeneous polynomial of degree k (from which the general case follows just
by summing homogeneous terms). The idea in this case is to write fpXq “ QpX, . . . , Xq for a
symmetric and Ad-invariant k-fold multilinear map Q : gˆ . . .ˆ gÑ F, which by Proposition 46.1
gives rise to a parallel bundle map Q : AdpEqbk Ñ Etriv “ M ˆ F. One then uses the bundle-
valued curvature 2-form ΩA P Ω2pM,AdpEqq, which is equivalent to FA P Ω2

AdpE, gq under the
isomorphism of Theorem 46.3, to define

ω
f
A :“ fpΩAq :“ QpΩA, . . . ,ΩAq P Ω˚pM,Etrivq “ Ω˚pM,Fq,

and dωfA “ 0 follows from another Leibniz rule and the bundle-valued version of the second Bianchi
identity, which is the equation d∇ΩA “ 0. In either case, cf pEq P Hd̊RpM ;Fq is defined as the
cohomology class represented by the closed F-valued form ω

f
A.

Here is a third perspective that is sometimes useful, and generalizes our original presentation
of the first Chern class for line bundles. As explained in Exercise 46.17, we can associate to every
local section sα P ΓpE|Uα

q the local connection and curvature forms

Aα :“ sα̊A P Ω1pUα, gq, Fα :“ sα̊FA P Ω2pUα, gq,
and interpret Fα as the local representation of the bundle-valued curvature form ΩA P Ω2pM,AdpEqq
with respect to the trivialization AdpEq|Uα

Ñ Uαˆg determined by the section sα. If sβ P ΓpE|Uβ
q

is related to sα by sα “ sβgβα for a transition function gβα : UαXUβ Ñ G, then the resulting local
curvature 2-forms are related on Uα X Uβ by

Fβ “ Adgβα
˝Fα.

It follows that for any f P FrrgssAd, the scalar-valued forms fpFαq P Ω˚pUα,Fq and fpFβq P
Ω˚pUβ ,Fq match where they overlap,

fpFαq “ fpFβq on Uα X Uβ,

implying that both are restrictions of a global scalar-valued form on M , and we claim that that
form is again ωfA P Ω˚pM,Fq, i.e.

fpFαq “ ω
f
A|Uα

.

To see this quickly, we can use the first definition of ωfA via the relation fpFAq “ π˚ωfA: after
checking that the operation of pulling back forms commutes with the operation of feeding them
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into polynomials, this gives

fpFαq “ fpsα̊FAq “ sα̊fpFAq “ sα̊π
˚ωfA “ pπ ˝ sαq˚ωfA “ ω

f
A|Uα

since π ˝ sα is the identity map on Uα. It is less easy to see via local curvature forms why ωfA is
closed and its cohomology class independent of choices, but this is one of the big advantages of
having the freedom to switch to the global perspective.

Theorem 48.1. For any f P FrrgssAd, cf pEq “ 0 if the bundle π : E ÑM is trivial.

Proof. On a trivial bundle, we can choose the trivial connection, which is flat, thus FA “ 0

and it follows that fpFAq and ωfA vanish. �

Theorem 48.2. For each f P FrrgssAd, the class cf has the following naturality property: for
every principal G-bundle π : E ÑM and smooth map ϕ : N ÑM , cf pϕ˚Eq “ ϕ˚cf pEq.

Proof. Choose a connection A P Ω1pE, gq on E ÑM and fix the induced pullback connection
on ϕ˚E Ñ N . By Exercise 48.3 below, every local trivialization of E over a set Uα ĂM with local
curvature form Fα P Ω2pUα, gq induces a local trivialization of ϕ˚E over ϕ´1pUαq Ă N for which
the local curvature form of the pullback connection is ϕ˚Fα P Ω2pϕ´1pUαq, gq. Plugging both into
the polynomial f , it follows that ϕ˚ωfA P Ω˚pN,Fq is a representative of cf pϕ˚Eq. �

Exercise 48.3. Suppose E ÑM is a principal G-bundle with connection 1-form A P Ω1pE, gq
and curvature 2-form FA P Ω2pE, gq, ρ : G Ñ GLpV q is a representation, ∇ is the associated
connection on the associated vector bundle Eρ ÑM , and f : N ÑM is a smooth map. Let

Ψ : f˚E Ñ E

denote the canonical fiber-preserving map that sends pf˚Eqp Ă f˚E to Efppq Ă E for each p P N
as the identity map. Prove:

(a) The connection 1-form for the pullback connection (cf. Exercise 44.3) on the principal G-
bundle f˚E Ñ N is Ψ˚A P Ω1pf˚E, gq, and its curvature 2-form is Ψ˚FA P Ω2pf˚E, gq.

(b) The associated bundle pf˚Eqρ Ñ N is naturally isomorphic to the pullback f˚Eρ Ñ
N , and under this identification, the connection on pf˚Eqρ determined by Ψ˚A is the
pullback of ∇.

(c) Under the isomorphism ΩkpM,Eρq Ñ ΩkρpE, V q : ω ÞÑ pω of Theorem 46.3, f˚ω P
ΩkpN, f˚pEρqq “ ΩkpN, pf˚Eqρqq satisfies yf˚ω “ Ψ˚pω P Ωkρpf˚E, V q. In particular, this
identifies the bundle-valued connection 2-form ΩΨ˚A P Ω2pN, pf˚Eqρq for the pullback
connection with f˚ΩA P Ω2pN, f˚Eρq.

(d) For a G-compatible local trivialization Φα : Eρ|Uα
Ñ Uα ˆ V and associated local con-

nection and curvature forms Aα P Ω1pUα, gq and Fα P Ω2pUα, gq as in Exercise 46.17, the
corresponding local connection and curvature forms for the pullback connection on f˚Eρ
with respect to the pullback trivialization f˚Φα : pf˚Eρq|f´1pUαq Ñ f´1pUαq ˆ V are
f˚Aα P Ω1pf´1pUαq, gq and f˚Fα P Ω2pf´1pUαq, gq respectively.

48.2. Chern classes. Concrete examples of characteristic classes arise from examples of Ad-
invariant polynomials on various Lie algebras. For G :“ GLpm,Cq, the function

f : glpm,Cq Ñ C : A ÞÑ det

ˆ
1´ 1

2πi
A

˙
is Ad-invariant and takes the form

fpAq “ f0pAq ` f1pAq ` . . .` fmpAq “ 1´ 1

2πi
trpAq ` . . .`

ˆ
´ 1

2πi

˙m
detpAq.
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The characteristic class of a principal GLpm,Cq-bundle π : E ÑM determined by this polynomial
is called the total Chern class

cpEq :“ cf pEq “ 1` c1pEq ` . . .` cmpEq P Hd̊RpM ;Cq,
and for k P N, the part arising from the degree k homogeneous term in f gives rise to the kth
Chern class

ckpEq P H2k
dRpM ;Cq.

For a complex vector bundle E Ñ M of rank m, the kth Chern class ckpEq for k P N is then
defined as the kth Chern class of its frame bundle, a principal GLpm,Fq-bundle FE Ñ M . Note
that by this definition, ckpEq is automatically 0 whenever k is bigger than the rank m, and cmpEq
is thus sometimes called the top Chern class of E. You should take a moment to convince yourself
that our new definition of c1pEq matches the one we already had for Hermitian line bundles. (The
new definition also makes it obvious that c1pEq does not depend on any choice of bundle metric,
even though such a choice was required for our original definition.)

Since every principal GLpm,Cq-bundle is the frame bundle of a complex vector bundle with
rankm, all important results about the Chern classes for principal bundles can be stated and proved
as results about vector bundles, and this is sometimes more convenient. A useful observation in
this context is the following:

Lemma 48.4. For a vector bundle E Ñ M of rank m over F P tR,Cu, any linear connection
∇ on E uniquely determines a correpsonding principal connection on the frame bundle FE ÑM ,
and thus uniquely determines the local connection 1-forms Aα P Ω1pUα, glpm,Fqq and curvature
2-forms Fα P Ω2pUα, glpm,Fqq associated to that principal connection and choices of local frames
sα P ΓpFE|Uα

q over regions Uα ĂM . �

This statement is obvious if one thinks of the way that parallel transport of frames is uniquely
determined by parallel transport of vectors, but it’s worth drawing specific attention to it anyway
because certain natural generalizations of Lemma 48.4 are false: in general, a principal connection
on a principal G-bundle π : E ÑM is not uniquely determined by the connection it induces on any
given associated vector bundle Eρ Ñ M . We observed this in Remark 43.15 in the more general
context of associated fiber bundles, but the danger only actually arises if G does not act effectively
on the standard fiber, i.e. if the representation ρ : G Ñ GLpV q giving rise to the associated
vector bundle Eρ Ñ M is not faithful. Lemma 48.4 is not susceptible to this danger, because
in order to produce a vector bundle E Ñ M as an associated bundle of its own frame bundle,
the representation required is the identity map Id : GLpm,Fq Ñ GLpm,Fq, and that is indeed a
faithful representation.

Proposition 48.5. The Chern classes take values in real cohomology Hd̊RpM ;Rq, i.e. for
every complex vector bundle E Ñ M and k P N, ckpEq P H2k

dRpM ;Cq can be represented by a
real-valued closed 2k-form on M .

Proof. A quick summary of the proof is as follows: since every vector bundle admits a
positive bundle metric, the structure group can always be reduced from GLpm,Cq to Upmq, whose
Lie algebra has the property that detp1´ p1{2πiqAq P R for all A P upmq.

Here it is with some more details. Using a partition of unity, we can always construct a
Hermitian bundle metric on the vector bundle E Ñ M , and then choose a connection ∇ that is
compatible with it, i.e. a connection that is induced by a principal connection on the corresponding
orthonormal frame bundle. This connection determines a principal connection on the general frame
bundle FE Ñ M with the special property that for any local section sα P ΓpFE|Uα

q that is an
orthonormal frame, the corresponding local connection and curvature forms Aα P Ω1pUα, glpm,Cqq
and Fα P Ω2pUα, glpm,Cqq respectively both take values in the Lie subalgebra upmq Ă glpm,Cq.
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Plugging Fα into the polynomial fpAq “ detp1 ´ p1{2πiqAq then produces a real-valued form
ω
f
A P Ω˚pM,Rq since 1´p1{2πiqA is Hermitian whenever A P upmq, implying that its determinant

is real. �

The best method for computing c1pEq when E Ñ Σ is a complex line bundle over a closed
oriented surface Σ was discussed in Lecture 30 last semester: it uses a theorem that expresses

ş
Σ
ω

for any 2-form ω representing c1pEq as the signed count of zeroes of a generic section of E. Most
interesting computations of Chern classes for higher-rank bundles are based on a combination of
that result with the following theorem.

Theorem 48.6 (Whitney product formula). For any pair of complex vector bundles E,F ÑM ,
the total Chern class satisfies cpE ‘ F q “ cpEq Y cpF q.

In the setting of this theorem, the portion of cpEqYcpF q “ p1`c1pEq`. . .qYp1`c1pF q`. . .q “
1` c1pEq ` c1pF q ` . . . living in H2

dRpMq is c1pEq ` c1pF q, thus:
Corollary 48.7. The first Chern class of complex vector bundles is additive with respect to

direct sums. �

Proof of Theorem 48.6. As in the proof of Proposition 48.5, the main idea is to reduce the
structure group of E‘F and choose a connection that is compatible with this reduction. Assuming
E and F have rank m and n respectively, constructing local frames for E ‘ F out of overlapping
local frames for E and F reduces its structure group from GLpm` n,Cq to the subgroup

G :“ GLpm,Cq ˆGLpn,Cq Ă GLpm` n,Cq
consisting of matrices in block form

ˆ
A 0

0 B

˙
for A P GLpm,Cq and B P GLpn,Cq. Choosing

connections separately on E and F , there is also a natural direct sum connection on E ‘ F that
is compatible with its G-structure, so the resulting local curvature 2-forms Fα take values in

g “ glpm,Cq ˆ glpn,Cq Ă glpm` n,Cq. For M “
ˆ
A 0

0 B

˙
P g, we have

fpMq “ det

ˆ
1´ 1

2πi
A 0

0 1´ 1
2πi

B

˙
“ det

ˆ
1´ 1

2πi
A

˙
¨ det

ˆ
1´ 1

2πi
B

˙
“ fpAqfpBq.

It thus follows from Exercise 47.4 that the resulting representative of cpE ‘F q is a wedge product
of two elements of Ω˚pM,Cq representing cpEq and cpF q respectively. �

Exercise 48.8. For a principal Up1q-bundle π : E Ñ M with connection A P Ω1pE, gq,
we’ve seen that the bundle-valued curvature 2-form ΩA P Ω2pM,AdpEqq can be regarded as a
closed imaginary-valued 2-form ΩA P Ω2pM, up1qq “ Ω2pM, iRq for which c1pEq “ r´p1{2πiqΩAs P
H2

dRpMq. Prove the following converse: For any closed 2-form ω P Ω2pMq, if rωs “ c1pEq, then
the bundle π : E Ñ M admits a principal connection whose curvature 2-form (regarded as an
imaginary-valued 2-form on M) is ´2πiω.

Exercise 48.9. Regarding S2n`1 as the unit sphere in Cn`1, the group Up1q Ă GLp1,Cq “ C˚
acts on S2n`1 via scalar multiplication, thus defining a principal Up1q-bundle

π : S2n`1 Ñ CP
n : pz0, . . . , znq ÞÑ rz0 : . . . : zns

that can also be viewed as the orthonormal frame bundle of the tautological line bundle E Ñ CP
n

with its canonical bundle metric (cf. Exercise 41.13). Writing xz, wy :“ řn
j“0 z̄

jwj for the standard
Hermitian inner product on Cn`1, we can define a 1-form λ P Ω1pCn`1q and 2-form ω P Ω2pCn`1q
by

λzpXq :“ Rexiz,Xy, ωzpX,Y q :“ RexiX, Y y
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for z P Cn`1 and X,Y P TzCn`1 “ Cn`1. Notice that ω satisfies ωpX, iXq ą 0 whenever X ‰ 0.
(a) Show that A :“ iλ|TS2n`1 P Ω1pS2n`1, up1qq is a connection 1-form for the principal

bundle π : S2n`1 Ñ CP
n, and the resulting horizontal subspace HzS

2n`1 Ă TzS
2n`1 for

each z P S2n`1 is a complex subspace of Cn`1.
(b) Show that for the connection in part (a), the curvature 2-form is FA “ 2iω|TS2n`1.
(c) Show that the first Chern class of the bundle π : S2n`1 Ñ CP

n can be represented by a
closed 2-form α P Ω2pCPnq that satisfies ş

Σ
α ‰ 0 for every closed complex 1-dimensional

submanifold Σ Ă CPn (which is also a canonically oriented real 2-dimensional submani-
fold). Conclude that the first Chern class is nonzero.
Hint: The quotient projection Π : Cn`1zt0u Ñ pCn`1zt0uqLC˚ “ CP

n is a holo-
morphic map between complex manifolds, implying in particular that TzΠ : Cn`1 “
TzpCn`1zt0uq Ñ TrzsCPn is complex linear for every z P Cn`1zt0u.

Example 48.10. For integers m ą k ą 0, let Emk Ñ GrkpCmq denote the tautological complex
vector bundle of rank k over the Grassmannian of complex k-planes in Cm (see Exercise 41.13).
The example Em1 Ñ Gr1pCmq “ CP

m´1 was mentioned in Exercise 48.9 above, which shows
that c1pEm1 q ‰ 0 P H2

dRpCPm´1q. The following argument extends this to the conclusion that
c1pEmk q ‰ 0 P H2

dRpGrkpCmqq also for every m ą k ě 2. One can define a natural embedding
ϕ : CP1 “ Gr1pC2q ãÑ GrkpCmq by

ϕpℓq :“ ℓˆ Ck´1 ˆ t0u Ă C2 ˆ Ck´1 ˆ Cm´k´1 “ Cm,

which has the property that ϕ˚Emk Ñ CP
1 is the direct sum of E2

1 Ñ CP
1 with a trivial bundle

whose fiber over every point is the subspace Ck´1 ˆ t0u Ă Cm´2. Since the trivial bundle has
vanishing first Chern class, it follows from the Whitney product formula that

c1pϕ˚Emk q “ c1pE2
1q ‰ 0 P H2

dRpCP2q,
and by naturality, this is the same thing as ϕ˚c1pEmk q, implying c1pEmk q ‰ 0.

Remark 48.11. The computation of cpEmk q P Hd̊RpGrkpCmqq for the tautological bundles
Emk Ñ GrkpCmq is important for the following reason. According to fundamental results in homo-
topy theory, the tautological bundles serve as universal vector bundles, meaning for instance that
every complex vector bundle E ÑM of rank k over a compact manifoldM is isomorphic to a pull-
back ϕ˚Emk for some smooth map ϕ : M Ñ GrkpCmq with m ą k sufficiently large, and similarly,
two bundles ϕ0̊E

m
k and ϕ1̊E

m
k presented in this way are—assuming again that m is sufficiently

large—isomorphic if and only if the maps ϕ0, ϕ1 :M Ñ GrkpCmq are smoothly homotopic. Thanks
to naturality, the Chern classes of all smooth complex k-plane bundles are therefore completely
determined by the Chern classes of Emk Ñ GrkpCmq for m " k, and the main step in showing
that the construction of Chern classes via curvature matches the corresponding construction in
topology is to show that both give the same result for tautological bundles.

A cleaner version of the statement above about pullbacks of Emk Ñ GrkpCmq is obtained if one
lets m Ñ 8: there is a limiting space GrkpC8q, which is unfortunately not a smooth manifold,
but is instead an infinite-dimensional cell complex and also has a natural tautological bundle
E8
k Ñ GrkpC8q, understood in this case as a topological vector bundle. The general statement—

which is even valid when the baseM is noncompact—is that the correspondence ϕ ÞÑ ϕ˚E8
k defines

a bijection from the set rM,GrkpC8qs of homotopy classes of continuous maps M Ñ GrkpC8q to
the set of isomorphism classes of k-plane bundles over M . Equivalently, one can pass to the
frame bundle FE8

k Ñ GrkpC8q and find a similar bijection between rM,GrkpC8qs and the set of
isomorphism classes of principal GLpk,Cq-bundles overM . For this reason, EGLpk,Cq :“ FE8

k Ñ
GrkpC8q is called a universal principal GLpk,Cq-bundle, and its base

BGLpk,Cq :“ GrkpC8q
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is called a classifying space for the group GLpk,Cq. By a fundamental result of Milnor [Mil56],
every topological group G admits a classifying space BG, a topological space which comes with a
universal principal G-bundle EGÑ BG, which puts the set of all isomorphism classes of principal
G-bundles over any given spaceM into bijective correspondence with the set rM,BGs of homotopy
classes of maps M Ñ BG. The existence of classifying spaces makes it possible to place the entire
theory of characteristic classes onto an axiomatic footing: by naturality, every characteristic class
for principal G-bundles corresponds to a choice of cohomology class on the classifying space BG.
The classifying spaces themselves are typically not smooth manifolds, but they usually can be
approximated in some sense by smooth manifolds such as GrkpCmq for m " k, which makes the
methods of Chern-Weil theory applicable even for universal bundles.

48.3. Pontryagin classes. For real vector bundles or principal GLpm,Rq-bundles, a natural
choice of Ad-invariant polynomial is obtained by removing the i from the one we used for defining
the total Chern class:101

f : glpm,Rq Ñ R : A ÞÑ det

ˆ
1´ 1

2π
A

˙
.

The resulting characteristic class for principal GLpm,Rq-bundles π : E Ñ M is called the total
Pontryagin class

ppEq :“ cf pEq P Hd̊RpMq,
and whenever E ÑM is a real vector bundle of rank m, we define ppEq to be the total Pontryagin
class of its frame bundle FE Ñ M , which is a principal GLpm,Rq-bundle. Before breaking ppEq
down into individual Pontryagin classes of specific degrees, it is worth proving the analogue of
Proposition 48.5 in this setting, which says something a bit surprising:

Proposition 48.12. Only the homogeneous terms in f : glpm,Rq Ñ R with even degree can
make nontrivial contributions to the total Pontryagin class, hence ppEq P Hd̊RpMq is represented
by a finite sum of forms whose degrees are all divisible by 4.

Proof. As in Proposition 48.5, the main reason for this is that every vector bundle E Ñ M

admits a bundle metric, which in this case reduces the structure group from GLpm,Rq to Opmq.
After choosing a connection compatible with this Opmq-structure, the result follows from a simple
algebraic observation: the restriction of the polynomial f : glpm,Rq Ñ R to opmq Ă glpm,Rq
contains no nontrivial homogeneous terms of odd degree. This is true because every A P opmq is
antisymmetric, but fpAq “ detp1´p1{2πiqAq does not change whenA is replaced by its transpose,
implying fpAq “ fp´Aq for A P opmq. The latter implies that the derivatives of f at 0 with odd
order all vanish, so f is a sum of homogeneous terms with even degree. �

Instead of proceeding directly in analogy with the Chern classes and defining pkpEq P H2k
dRpMq

as the characteristic class arising from the degree k part of f : glpm,Rq Ñ R, Proposition 48.12
reveals that it is more sensible to define the kth Pontryagin class

pkpEq P H4k
dRpMq

for each k P N as the class arising from the degree 2k part of f .
The similarity of the polynomials used for the Pontryagin and Chern classes suggests that

there should be a close relationship between them. To see this, recall that every real vector bundle
E ÑM of rank m has a complexification

EC ÑM,

101Actually, when I presented this in lecture I kept the i in the formula, but I have since decided to remove it.
The reason why is explained in Remark 48.14.
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which is most easily defined as the real tensor product of E with the trivial complex line bundle
M ˆ C Ñ M , and EC can then be regarded as a complex vector bundle, also of rank m, where
complex scalar multiplication is defined by λpv b zq :“ v b λz for λ P C. It is straightforward to
check that any bundle atlas for E naturally determines a bundle atlas for EC that has the same
GLpm,Rq-valued transition functions, but acting on standard fiber Cm instead of Rm. In more
abstract terms, if we view E as the associated vector bundle pFEqρ for the canonical representation
ρ “ Id : GLpm,Rq Ñ GLpm,Rq, then EC is also an associated bundle, obtained by keeping the
same representation of GLpm,Rq but viewing it as a complex representation on Cm.

Exercise 48.13. Show that for any real vector bundle E ÑM and k P N, ckpECq “ 0 if k is
odd and c2kpECq “ p´1qkpkpEq.

Remark 48.14. There is a lack of universal agreement on sign conventions in the definitions
of certain characteristic classes. I am attempting in these notes to follow what I perceive as the
majority view, but in lecture I inadvertently followed a different one (consistent with [BT82,
Tu17]) before I had become completely aware of the problem. In this alternative convention,
one takes the polynomial in the definition of the total Pontryagin class to be exactly the same
(complex-valued) polynomial as for the total Chern class, just restricted to glpm,Rq Ă glpm,Cq.
Under this definition, Proposition 48.12 still holds, so only the terms of even degree contribute
to ppEq, which is therefore a real cohomology class, but pkpEq gets replaced by ´pkpEq when k
is odd. This change has the benefit of turning Exercise 48.13 into the slightly prettier formula
c2kpECq “ pkpEq. But most authors do not follow that convention, and thus keep the extra sign
in Exercise 48.13.

While we’re talking about signs, it should be noted that in the original classic reference on
characteristic classes [MS74], Milnor and Stasheff appear to use the polynomial fpAq :“ detp1`
p1{2πiqAq for their definition of the total Chern class, which differs from ours by the insertion of a
sign in front of A. If all other things were equal, this would mean that their definition of ckpEq for
k odd differs from ours by a sign, but I suspect there must be another sign discrepancy in [MS74]
that cancels this one out, and I haven’t found it yet. It should be a nonnegotiable principle that
for a complex bundle of rank m, the top Chern class cmpEq matches the Euler class of E as a
canonically oriented real bundle of rank 2m (cf. Exercise 48.20 below). For a line bundle over
a surface, that means in particular that c1pEq computes the signed count of zeroes of a generic
section as explained in §30.2, and this is precisely what the factor of ´ 1

2πi
in our definition achieves.

48.4. The Euler class. In topology, there are two further families of standard characteristic
classes for a real vector bundle E ÑM of rank m: the Stiefel-Whitney classes

wkpEq P HkpM ;Z2q, k “ 1, . . . ,m,

and the Euler class
epEq P HmpMq,

which is only defined if the bundle E Ñ M is orientable and depends on a choice of orientation.
We briefly encountered the first Stiefel-Whitney class w1pEq P H1pM ;Z2q in Remark 32.6, as
it serves as the obstruction to orientability for a real vector bundle, and we will see later that
the second Stiefel-Whitney class plays a similar role for spin structures. Unfortunately, the Stiefel-
Whitney classes can only be defined in cohomology theories with Z2 coefficients, which makes them
inaccessible to de Rham cohomology. Chern-Weil theory does however have a natural construction
for the Euler class, at least for oriented real vector bundles of even rank.102 (We will see in
Remark 48.17 that the case of odd rank is not interesting.)

102The contents of this section were only fleetingly mentioned in lecture, i.e. the definition of the Euler class in
terms of the Pfaffian was stated, but there was no time to discuss any properties of the Euler class, nor the actual
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The construction of epEq P H2m
dR pMq for an oriented vector bundle E ÑM of rank 2m is based

on an Ad-invariant homogeneous polynomial of degree m on sop2mq, called the Pfaffian,

Pf : sop2mq Ñ R.

To write it down, suppose V is a real vector space of dimension 2m, endowed with an inner product
x , y and an orientation, and let

dvol P Λ2mV ˚

denote the canonical volume form, i.e. the one which evaluates to 1 on any positively-oriented
orthonormal basis. Let SOpV q Ă OpV q denote the identity component of the group OpV q of
orthogonal transformations on V , so the Lie algebra sopV q “ opV q is the space of linear maps
A P EndpV q that are skew-symmetric with respect to x , y. It follows that we can associate to any
A P sopV q an alternating 2-form

ωA P Λ2V ˚, ωApv, wq :“ xv,Awy.
The m-fold wedge product of ωA with itself is then a scalar multiple of dvol since dimΛ2mV ˚ “ 1,
so we can define PfpAq P R via the relation

1

m!
ωmA “ PfpAq ¨ dvol.

The 2-form ωA depends linearly on A, thus the left hand side of this relation is a degree m
homogeneous polynomial function of A, and therefore so is PfpAq. The combinatorial factor on
the left has the following justification. Let us choose a positive orthonormal basis e1, . . . , e2m of V
and write the resulting matrix entries of A as Aij :“ xei, Aejy. We now have dvolpe1, . . . , e2mq “ 1

by definition, and writing e1˚, . . . , e2m˚ P V ˚ for the dual basis, we also have

ωA “ 1

2
Aije

i˚ ^ e
j˚.

Applying the usual combinatorial formula (9.3) for wedge products of 1-forms then gives
1

m!
ωmA pe1, . . . , e2mq “ 1

2m ¨m!
Ai1j1 ¨ . . . ¨Aimjm ¨ pei1˚ ^ e

j1˚ ^ . . .^ eim˚ ^ e
jm˚ qpe1, . . . , e2mq

“ 1

2m ¨m!

ÿ
σPS2m

p´1q|σ|Aσp1q,σp2q ¨ . . . ¨Aσp2m´1q,σp2mq.

In this last sum, there is quite a lot of overcounting: each individual term depends on the way
that the permutation σ P S2m partitions the set t1, . . . , 2mu into pairs tσp2j ´ 1q, σp2jqu for
j “ 1, . . . ,m, but any two permutations that define the same partition into pairs make the same
contribution. There are exactly 2m ¨ m! permutations corresponding to each partition, allowing
for the freedom to reorder the pairs and to flip each pair individually. We can therefore choose a
subset pS2m Ă S2m that contains exactly one permutation for every possible partition and write a
formula for PfpAq that is free of combinatorial factors:

PfpAq “ ÿ
σP pS2m

p´1q|σ|Aσp1q,σp2q ¨ . . . ¨ Aσp2m´1q,σp2mq P R.

Setting V “ R2m, we take this as a definition of PfpAq for A P sop2mq. The Pfaffian is thus a
polynomial function of the entires in A with integer coefficients; the fact that the coefficients are
integers will not matter to us in any direct way, but algebraists like it.

The fact that Pf : sopV q Ñ R can be defined without a choice of basis but depends on
the inner product and orientation implies that it is automatically invariant under conjugation by

definition of the Pfaffian. I have filled in some of those details here for your information. Thanks to Gerard Bargalló
for suggesting the particular definition of Pf : sop2mq Ñ R given here.
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transformations that preserve these structures, i.e. SOpV q. More generally, for any B P GLpV q, we
have

B˚ωApv, wq “ ωApBv,Bwq “ xBv,ABwy “ xv,BTABwy “ ωBTABpv, wq,
and B˚dvol “ detpBq ¨ dvol, thus 1

m!
B˚pωmA q “ 1

m!
ωm
BTAB

“ PfpBTABq ¨ dvol “ PfpAq ¨ B˚dvol,
implying

PfpBTABq “ detpBq ¨ PfpAq for all A P sopV q, B P GLpV q.
This shows explicitly that the Pfaffian can be regarded as an Ad-invariant polynomial on sopV q,
but it is not invariant under conjugation by elements in the larger group OpV q, and thus cannot
be considered an Ad-invariant polynomial on opV q. This is good news if the goal is to define a
characteristic class that is sensitive to orientations.

Aside from conjugation invariance, the most important fact to know about the Pfaffian is that
it is a “square root” of the determinant—this property gives a second convincing justification for
the combinatorial factor we put into the definition.

Proposition 48.15. For all A P sopV q, rPfpAqs2 “ detpAq.
Proof. Both Pf2 and det are conjugation-invariant polynomials of degree 2m on sopV q, and

since every A P sopV q is represented in some positively-oriented orthonormal basis by a matrix of
the form

A “

¨̊
˚̊̊̊
˝

0 λ1 ¨ ¨ ¨ 0 0

´λ1 0 ¨ ¨ ¨ 0 0
...

...
. . .

...
...

0 0 ¨ ¨ ¨ 0 λm
0 0 ¨ ¨ ¨ ´λm 0

‹̨‹‹‹‹‚P sop2mq

for some λ1, . . . , λm P R, it suffices to check that the relation holds for linear transformations
on R2m of this form. One then computes from the definition that PfpAq “ λ1 ¨ . . . ¨ λm, while
detpAq “ pλ1 ¨ . . . ¨ λmq2. �

Taking

f : sop2mq Ñ R : A ÞÑ Pf

ˆ
1

2π
A

˙
as an Ad-invariant polynomial of degree m, we define the Euler class of any principal SOp2mq-
bundle π : E ÑM as the associated characteristic class

epEq :“ cf pEq P H2m
dR pMq.

Similarly, we associate to any oriented Euclidean vector bundle E Ñ M of rank 2m a principal
SOp2mq-bundle F SOpEq ÑM , the bundle of oriented orthonormal frames, and define

epEq :“ epF SOpEqq.
While this definition of epEq explicitly requires a choice of bundle metric for E, the following exer-
cise shows that it does not really depend on this choice, though it does depend on the orientation.

Exercise 48.16. Assume E ÑM is an oriented real vector bundle.
(a) Show that for any two choices x , y0 and x , y1 of positive bundle metric on E, there exists

an orientation-preserving vector bundle isomorphism A : E Ñ E satisfying xAv,Awy1 “
xv, wy0 for all pv, wq P E ‘E.
Hint: Define a bundle metric on the pullback of E ÑM via the projection r0, 1sˆM ÑM

that interpolates between x , y0 and x , y1. Then use parallel transport.
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(b) Show that for the same vector bundle sE ÑM with reversed orientation, ep sEq “ ´epEq.
Hint: The fact that Pf : sop2mq Ñ R changes sign under conjugation with elements of
Op2mqz SOp2mq is relevant here.

Remark 48.17. Exercise 48.16(b) reveals the reason why we do not mind the lack of a Chern-
Weil construction of epEq when rankpEq is odd. The topological version of the Euler class also
satisfies ep sEq “ ´epEq, but when the rank is odd, the antipodal map v ÞÑ ´v defines an orientation-
preserving bundle isomorphism E Ñ sE, implying epEq “ ep sEq, hence 2epEq “ 0. This can happen
in cohomology with integer coefficients without epEq being trivial, because H˚pM ;Zq is generally
an abelian group rather than a vector space, but de Rham cohomology Hd̊RpMq is a vector space,
so 2epEq “ 0 in Hd̊RpMq can only mean that epEq “ 0.

We conclude this brief survey by stating (without proof) the most famous result about the
Euler class on smooth manifolds: a generalization of the Gauss-Bonnet theorem (cf. Lecture 29
from last semester) to higher dimensions, which can be interpreted as a computation of the Euler
class of any tangent bundle. The setting for the theorem is a Riemannian manifold pM, gq of even
dimension 2n, with a connection ∇ on TM that need not be symmetric, but is required to be
compatible with the metric. Note that any such connection is automatically also compatible with
the SOp2nq-structure of TM , because parallel transport maps can always be deformed continuously
to the identity and therefore automatically preserve orientations.

Theorem 48.18 (generalized Gauss-Bonnet). Assume pM, gq is an oriented Riemannian man-
ifold of dimension 2n ě 2, ∇ is an affine connection on M compatible with the metric, and

PfpΩ{2πq P Ω2npMq
denotes the 2n-form that locally matches PfpFα{2πq for the local curvature 2-form Fα P Ω2pUα, sop2mqq
associated to any choice of oriented orthonormal frame over an open subset Uα Ă M . Then inte-
grating PfpΩ{2πq gives the Euler characteristic of M ,ż

M

PfpΩ{2πq “ χpMq P Z.

Exercise 48.19. Check that in the n “ 1 case of Theorem 48.18, if ∇ is the Levi-Cività
connection on pM, gq, then PfpΩ{2πq “ 1

2π
KG dvol, where KG :M Ñ R is the Gaussian curvature.

Exercise 48.20. Any complex line bundle E Ñ M can be regarded as a real bundle of rank
2 with a canonical orientation determined by its complex structure, i.e. we orient each fiber Ep
such that for v ‰ 0 P Ep, the real basis pv, ivq is considered positively oriented. Show that for this
choice of orientation, epEq “ c1pEq P H2

dRpMq.
49. Affine transformations and isometries

49.1. Lie transformation groups. It is time to prove a fact that has been mentioned already
on a few occasions: for any pseudo-Riemannian manifold pM, gq, the group of isometries

IsompM, gq :“  
ψ P DiffpMq ˇ̌ ψ˚g “ g

(
is a Lie group. Actually, it is something better: IsompM, gq is a Lie transformation group. In
general, for a given smooth manifold M , we say that a subgroup

G Ă DiffpMq
in the group of diffeomorphisms M Ñ M is a Lie transformation group on M if it admits a
smooth structure compatible with the topology it inherits from DiffpMq (i.e. the C8

loc-topology)
such that it becomes a Lie group and, additionally, the obvious left action

GˆM ÑM : pψ, pq ÞÑ ψppq
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becomes smooth. In this situation, the G-action on M is automatically effective, and it follows
that the Lie algebra antihomomorphism defined via fundamental vector fields (see Theorem 40.8)

gÑ XpMq : X ÞÑ XF

is injective. Indeed, if XF ” 0 for some X P g, then it follows via Proposition 40.7 that
expptXq “ Id P DiffpMq for every t P R, thus X “ 0. As a consequence, the Lie algebra of
any Lie transformation group has a natural identification with a finite-dimensional Lie subalgebra
of the space of vector fields XpMq, namely the space of so-called infinitesimal transformations
defined by G,

g “  
X P XpMq ˇ̌ X has a global flow and ϕtX P G for all t P R

(
.

A set of this kind can be defined for arbitrary subgroups G Ă DiffpMq, but if G is not a Lie trans-
formation group, then g will not always be a vector space, and certainly not a finite-dimensional
one.

Here is an example that is very different from the isometry group.

Example 49.1. Recall (cf. Lecture 14 from last semester) that a symplectic form on a
manifold M of dimension 2n ě 2 is a 2-form ω P Ω2pMq that can be identified in some choice of
coordinates pq1, p1, . . . , qn, pnq near any given point with the local model

ω “
nÿ
j“1

dpj ^ dqj .

A diffeomorphism ψ : M Ñ M is then called a symplectomorphism ψ : pM,ωq Ñ pM,ωq if it
satisfies ψ˚ω “ ω. The symplectomorphisms on a symplectic manifold pM,ωq form a subgroup

SymppM,ωq Ă DiffpMq,
but the following observation shows that it cannot be a Lie transformation group. Every compactly
supported smooth function H P C8pMq gives rise to a Hamiltonian vector field XH P XpMq,
uniquely determined by the condition ωpXH , ¨q “ ´dH . These vector fields all have global flows
since they have compact support, and by Cartan’s magic formula, LXH

ω “ 0, implying that
ϕtXH

P SymppM,ωq for every t P R. The space of infinitesimal symplectomorphisms thus contains
the infinite-dimensional space of all compactly supported Hamiltonian vector fields—one can show
that it is a Lie subalgebra, but it is clearly not finite dimensional.

Our main objective in this lecture is to prove that the isometry group IsompM, gq and various
other closely related objects are Lie transformation groups. One sees a strong hint of this if
one examines the corresponding space of infinitesimal transformations. These are called Killing
vector fields : we will see in §49.3 that they satisfy an overdetermined first-order linear PDE which
guarantees the uniqueness (though not the existence) of solutions having any given value and first
covariant derivative at one point. As a consequence, the space of Killing vector fields is finite
dimensional. This is an encouraging sign, though it does not imply on its own that IsompM, gq
is a Lie transformation group. The horror scenario one could imagine is that IsompM, gq fails to
be a manifold near Id P IsompM, gq because there exist sequences ψk P IsompM, gq with ψk Ñ Id

in the C8
loc-topology such that ψk is not expressible as a flow ϕ1

Xk
for any sequence of Killing

vector fields Xk Ñ 0. This danger is not unlike the scenario that needed to be ruled out when we
proved in Theorem 41.2 that closed subgroups of Lie groups are also smooth submanifolds, and
the strategy by which we will rule it out also has something in common with the argument used in
that theorem. If indeed such sequences can be excluded, then a neighborhood of 0 in the space of
Killing vector fields provides a natural parametrization of IsompM, gq near the identity map, for
which the action on M is manifestly smooth. Composing this parametrization with arbitrary left
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translations then endows the rest of IsompM, gq as well with the structure of a Lie transformation
group.

In reality, we will not make the argument quite so directly, but will instead prove that
IsompM, gq is a closed subgroup of another group that defines a Lie transformation group on
the orthonormal frame bundle FOpTMq. As a closed subgroup, IsompM, gq will then be a Lie
subgroup according to Theorem 41.2, and will therefore also act smoothly on FOpTMq, implying
that its action on M is also smooth.

49.2. Affine transformations. Let us place the group IsompM, gq into a wider context. It
turns out that the main feature causing IsompM, gq to be finite dimensional is not the fact that
isometries ψ P IsompM, gq preserve the metric, but rather that they preserve the geodesic equation.
The set of diffeomorphisms with this property deserves closer examination.

Definition 49.2. Suppose ψ : M Ñ N is a diffeomorphism and ∇ is an affine connection
on N . The affine connection ψ˚∇ on M is then defined via the condition

pψ˚∇qXY :“ ψ˚
`
∇ψ˚Xpψ˚Y q

˘
for every X,Y P XpMq.

Exercise 49.3. Verify that ψ˚∇ as given in the definition above is an affine connection onM .

Remark 49.4. The object ψ˚∇ in Definition 49.2 is not the same thing as what we have
previously called the pullback connection, which would in this case be a connection on the pullback
bundle ψ˚TN Ñ M rather than TM Ñ M . Pullback connections can be defined for any bundle
over N and any smooth map M Ñ N , whereas Definition 49.2 is specific to tangent bundles and
only makes sense when the smooth map ψ :M Ñ N is a diffeomorphism.

Definition 49.5. Given two manifolds M,N equipped with affine connections ∇M and ∇N

respectively, a diffeomorphism ψ : M Ñ N is called an affine transformation and written
ψ : pM,∇M q Ñ pN,∇N q if

ψ˚∇N “ ∇
M .

For a single manifold M with affine connection ∇, the set of affine transformations pM,∇q Ñ
pM,∇q defines a subgroup of DiffpMq which we will denote by

AffpM,∇q :“  
ψ P DiffpMq ˇ̌ ψ˚∇ “ ∇

(
.

Affine transformations pM,∇M q Ñ pN,∇N q have the property that for any path γptq P M
and vector field Xptq P TγptqM along that path, X is parallel along γ if and only if the vector field
TψpXptqq P Tψ˝γptqN along the path ψ ˝ γ in N is parallel. It follows in particular that γ is a
geodesic with respect to ∇M if and only if ψ ˝γ is a geodesic with repsect to ∇N . The terminology
is motivated by the example of Rn with the trivial connection, for which geodesics are straight
lines, thus affine transformations map straight lines to straight lines (cf. Exercise 49.7 below). This
basic observation leads easily to the conclusion that, in general, there cannot be very many affine
transformations:

Theorem 49.6 (Rigidity of affine transformations). For any two connected manifoldsM and N
with affine connections ∇M and ∇N respectively, any two points p PM , q P N and an isomorphism
Φ : TpM Ñ TqN , there exists at most one affine transformation ψ : pM,∇M q Ñ pN,∇N q satisfying

ψppq “ q, and Tpψ “ Φ.

Proof. Given a pair of affine transformations ϕ, ψ : pM,∇M q Ñ pN,∇N q, let U ĂM denote
the set of all points p PM such that ϕppq “ ψppq and Tpϕ “ Tpψ. If p P U , then we can parametrize
neighborhoods of p P M and q :“ ϕppq “ ψppq P N via the geodesics through those points and
observe that since ϕ and ψ both map geodesics to geodesics, they must be identical maps on some
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neighborhood of p. This shows that U Ă M is an open set. Since it obviously is also closed and
M was assumed connected, it follows that U “M , so ϕ ” ψ. �

Exercise 49.7. Show that for the trivial connection ∇ on Rn, AffpRn,∇q is precisely the set
of maps of the form x ÞÑ Ax ` b for A P GLpn,Rq and b P Rn, i.e. it is the group AffpRnq from
Example 37.9.

Exercise 49.8. Show that for the unit sphere Sn Ă Rn`1 with its standard metric and Levi-
Cività connection ∇, AffpSn,∇q “ Opn` 1q, where the action of Opn` 1q on Sn is defined as the
obvious restriction of its natural action on Rn`1.

It is important to understand that Theorem 49.6 is a uniqueness result without existence: it
says that there is at most one affine transformation with a particular value and derivative at one
point, but there may also be none at all. The set of affine transformations pM,∇M q Ñ pN,∇N q
can very well be empty, and the group AffpM,∇M q might contain nothing other than the identity
map.

Exercises 49.7 and 49.8 above demonstrate that for the Levi-Cività connection on a Riemannian
manifold, affine transformations need not preserve the metric in general. However, on any manifold
whose tangent bundle carries extra geometric structure such as a bundle metric, one can restrict to
connections that are compatible with that structure and then consider the group of transformations
that preserve both the geometric structure and the connection. This will turn out to be the most
useful way to understand isometry groups.

Observe first that every diffeomorphism ψ : M Ñ N between two manifolds induces a diffeo-
morphism between the frame bundles of their tangent bundles,

ψ˚ : F pTMq Ñ F pTNq,
sending each frame pX1, . . . , Xnq P F pTpMq to pTψpX1q, . . . , TψpXnqq P F pTψppqNq, or equiva-
lently, sending the isomorphism φ P HompRn, TpMq to

ψ˚φ :“ Tψ ˝ φ P HompRn, TψppqNq.
Expressed in this way, the map ψ˚ is clearly equivariant with respect to the right GLpn,Rq-actions
on the principal bundles F pTMq and F pTNq. If TM is also equipped with a G-structure for some
Lie subgroup G Ă GLpn,Rq, then we can consider the restriction of ψ˚ to the G-frame bundle

FGpTMq Ă F pTMq,
which is a submanifold of F pTMq and also a principal G-bundle. Recall that the fiber FGpTpMq
over a point p consists of all frames for TpM that arise from G-compatible trivializations. The
standard example to keep in mind is G “ Opnq, for which FGpTMq is the bundle of orthonormal
frames. If G “ GLpn,Rq, then FGpTMq is simply the bundle of all frames F pTMq ÑM .

Definition 49.9. SupposeM and N are n-manifolds whose tangent bundles are endowed with
G-structures for some fixed Lie subgroup G Ă GLpn,Rq. We say that a diffeomorphism ψ :M Ñ N

preserves the G-structures and write

ψ P DiffGpMq
if the map ψ˚ : F pTMq Ñ F pTNq sends FGpTMq to FGpTNq.

Example 49.10. ForG “ Opnq, aG-structure on TM ÑM is equivalent to a (positive) bundle
metric g “ x , y and thus makes pM, gq a Riemannian manifold. A diffeomorphism ψ : M Ñ N

between two Riemannian manifolds pM, gq and pN, hq then preserves the Opnq-structures if and
only if it is an isometry, thus

IsompM, gq “ DiffOpnqpMq.
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This observation becomes equally valid for pseudo-Riemannian manifolds of arbitrary signature
pk, ℓq if we replace Opnq with the indefinite orthogonal group Opk, ℓq.

Example 49.11. Every manifold M carries a GLpn,Rq-structure on its tangent bundle by de-
fault, and DiffGLpn,RqpMq is just the usual diffeomorphism group DiffpMq. For G :“ GL`pn,Rq :“ 
A P GLpn,Rq ˇ̌ detpAq ą 0

(
, a G-structure is equivalent to an orientation of M , and DiffGpMq

is then the group of orientation-preserving diffeomorphisms.

Example 49.11 shows that the transformation groups DiffGpMq need not be finite-dimensional
Lie groups in general. Here is a less basic example:

Example 49.12. The linear symplectic group

Spp2nq Ă GLp2n,Rq
consists of all linear transformations A : R2n Ñ R2n that preserve the standard symplectic
form ωstd P Ω2pR2nq, meaning ωstdpAv,Awq “ ωstdpv,wq for all v,w P R2n, where ωstd is
defined in global coordinates pp1, q1, . . . , pn, qnq on R2n by ωstd :“ řn

j“1 dp
j ^ dqj . Recall that if

pM,ωq is a 2n-dimensional symplectic manifold, then M admits an atlas of charts that identify
ω P Ω2pMq with ωstd in local coordinates. The local frames defined via any atlas of this form
endow the tangent bundle TM Ñ M with an Spp2nq-structure, and if pM1, ω1q and pM2, ω2q are
two symplectic manifolds, a diffeomorphism ψ : M1 Ñ M2 then preserves the Spp2nq-structure if
and only if ψ˚ω2 “ ω1, i.e. it is a symplectomorphism, so for any symplectic manifold pM,ωq, we
have

SymppM,ωq “ DiffSpp2nqpMq.
As we saw in Example 49.1, SymppM,ωq is typically a very large group, and certainly not a
finite-dimensional Lie group except in trivial cases, e.g. when M is a single point.

Definition 49.13. Given a manifoldM with a G-structure and a G-compatible connection ∇

on its tangent bundle, we define the group of G-compatible affine transformations

AffGpM,∇q :“ DiffGpMq XAffpM,∇q Ă DiffpMq.
Theorem 49.6 implies that if M is connected, then for any frame φ P FGpTMq, the map

AffGpM,∇q Ñ FGpTMq : ψ ÞÑ ψ˚φ

is injective. The main result of this lecture, Theorem 49.23, will show in fact that the image
of this injection is always a smooth submanifold, whose dimension cannot be predicted by any
general formula, but clearly is no larger than the dimension of the frame bundle FGpTMq. For
groups like GL`pn,Rq and Spp2nq such that DiffGpMq is not finite dimensional, this means that
AffGpM,∇q Ă DiffGpMq is a drastically smaller subgroup. The situation is very different however
for Opnq and Opk, ℓq:

Proposition 49.14. Every isometry ψ : pM, gq Ñ pN, hq between pseudo-Riemannian man-
ifolds is also an affine transformation for the respective Levi-Cività connections. In particular,
for any pseudo-Riemannian metric g of signature pk, ℓq on M with Levi-Cività connection ∇,
IsompM, gq “ AffOpk,ℓqpM,∇q.

Proof. If ψ : M Ñ N satisfies ψ˚h “ g and ∇ is the Levi-Cività connection on pN, hq, one
checks easily that the affine connection ψ˚∇ on M is symmetric and compatible with g, so the
result follows from the uniqueness of the Levi-Cività connection. �
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49.3. Infinitesimal transformations and the Killing equation. Let’s take a closer look
at the spaces of infinitesimal transformations corresponding to the groupsAffpM,∇q and IsompM, gq.
Since the manifoldM may be noncompact, it will be important to distinguish between vector fields
that admit global flows and those that do not.

Definition 49.15. A vector field X P XpMq is called complete if it has a globally-defined
flow ϕtX :M ÑM for all t P R.

Assume M is a smooth manifold with an affine connection ∇. A practical characterization of
the space of infinitesimal affine transformations on pM,∇q requires defining the notion of the Lie
derivative of ∇ with respect to a vector field X P XpMq:

LX∇ P ΓpT 1
2Mq, pLX∇qpY, Zq :“ d

dt

“pϕtXq˚∇‰
Y
Z

ˇ̌̌̌
t“0

.

Notice that since the difference between two connections is always a tensor, the Lie derivative of a
connection is not another connection, but instead a tensor, i.e. the expression pLX∇qpY, Zq defined
above is C8-linear in both Y and Z. One easily verifies from the definition that it satisfies the
Leibniz rule

(49.1) LX p∇Y Zq “ pLX∇qpY, Zq `∇LXY Z `∇Y pLXZq,
which can be used in practice as an alternative definition for LX∇. With this notion in place, we
have:

Proposition 49.16. A complete vector field X P XpMq satisfies ϕtX P AffpM,∇q for all t P R

if and only if LX∇ ” 0. �

If X P XpMq satisfies LX∇ “ 0 but is not complete, then its flow defines an affine transfor-
mation

ϕtX : pOt
X ,∇q Ñ pO´t

X ,∇q
between two open subsets O

˘t
X Ă M for each t P R, where Ot

X Ĺ M for each t ‰ 0 butŤ
tą0 O

t
X “ Ť

tă0 O
t
X “ M . As a mild abuse of terminology and notation, we will dispense

with the completeness condition and define the space of infinitesimal affine transformations

affpM,∇q :“  
X P XpMq ˇ̌ LX∇ “ 0

(
.

Note that if AffpM,∇q is a Lie transformation group and M is noncompact, then affpM,∇q might
be a strictly larger space than the actual Lie algebra of AffpM,∇q, since it might contain vector
fields that are not complete. We will see however in the main theorem that this does not happen
if pM,∇q is geodesically complete.

Exercise 49.17. Derive the following alternative formulas for LX∇:
(a) pLX∇qpY, Zq “ rX,∇Y Zs ´∇rX,Y sZ ´∇Y rX,Zs
(b) pLX∇qpY, Zq “ ∇Y∇ZX`∇Y pT pX,Zqq´∇∇Y ZX ´T pX,∇Y Zq`RpX,Y qZ, where T

and R denote the torsion and Riemann tensor respectively for ∇.

Exercise 49.18. Show that if X P affpM,∇q, then along any geodesic γptq P M , Xptq :“
Xpγptqq satisfies the Jacobi equation

∇2
tX `∇t pT pX, 9γqq `RpX, 9γq 9γ “ 0.

Deduce from this a linearized analogue of Theorem 49.6: if M is connected, then any infinitesimal
affine transformation is determined by its value and first covariant derivative at one point. Derive
from this the bound

dim affpM,∇q ď n` n2 “ npn` 1q,
assuming dimM “ n.
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On a pseudo-Riemannian manifold pM, gq, linearizing the condition ψ˚g “ g similarly produces
the so-called Killing equation

LXg :“ d

dt
pϕtX q˚g

ˇ̌̌̌
t“0

“ d

dt
g

ˇ̌̌̌
t“0

“ 0,

and we define the space of Killing vector fields by

isompM, gq :“  
X P XpMq ˇ̌ LXg “ 0

(
.

Once again, this definition comes with the caveat that isompM, gq may turn out to be strictly
larger than the actual Lie algebra of IsompM, gq, because it may contain vector fields without
global flows. In general, the flow of a Killing vector field X P isompM, gq will define a family of
isometries

ϕtX : pOt
X , gq Ñ pO´t

X , gq
between open subsets O˘t

X ĂM , with Ot
X “M for t ‰ 0 if and only if X is complete.

For the Levi-Cività connection ∇ on pM, gq, Proposition 49.14 implies that isometries are
also affine transformations, and it follows that Killing vector fields are also infinitesimal affine
transformations:

isompM, gq Ă affpM,∇q.
By Exercise 49.18, it follows that isompM, gq is finite dimensional.

Exercise 49.19. Suppose M is a smooth manifold with a symmetric connection ∇, and the
associated tensor bundles T kℓ M Ñ M are equipped with the connections naturally determined
by ∇. Assuming X,Y, Z P XpMq, prove:

(a) For any 1-form λ P Ω1pMq, dλpX,Y q “ p∇XλqpY q ´ p∇Y λqpXq.
(b) For any 1-form λ P Ω1pMq, pLXλqpY q “ p∇XλqpY q ` λp∇YXq.

Hint: Recall Cartan’s magic formula LXω “ dpιXωq ` ιX pdωq for the Lie derivative of a
differential form (see §14.2 from last semester).

(c) For any S P ΓpT 0
2Mq, pLXSqpY, Zq “ p∇XSqpY, Zq ` Sp∇YX,Zq ` SpY,∇ZXq.

Hint: It suffices (why?) to verify this for tensor fields of the form λ b µ P ΓpT 0
2Mq with

λ, µ P Ω1pMq. How does the operator LX to behave under tensor products?
(d) If ∇ is the Levi-Cività connection for a pseudo-Riemannian metric g “ x , y with asso-

ciated musical isomorphisms TM Ñ T ˚M : X ÞÑ X5 and T ˚M Ñ TM : λ ÞÑ λ7, then
for X P XpMq, the type p0, 2q tensor field ∇pX5q P ΓpT 0

2Mq is antisymmetric (i.e. it is a
differential 2-form) if and only if X satisfies the Killing equation.

The punchline of Exercise 49.19 is that the Killing equation LXg “ 0 is equivalent to the
condition

(49.2) x∇YX,Zy ` xY,∇ZXy ” 0 for all Y, Z P XpMq,
which can be expressed more succinctly as the condition that the p0, 2q-tensor ∇X5 is antisymmet-
ric. In local coordinates, writing X “ X iBi and X5 “ Xi dx

i, the latter condition becomes

(49.3) ∇iXj ´∇jXi “ 0.

Exercise 49.20. Give a second proof that (49.2) is equivalent to LXg “ 0 by deriving a
Leibniz rule for LXxY, Zy in terms of the Lie derivatives LXY and LXZ, and using the formula
LXY “ rX,Y s for X,Y P XpMq (see §6.3 from last semester).

The best possible bound on dim isompM, gq is now obtained from the observation that if X
satisfies (49.2), then the linear map ∇X : TpM Ñ TpM is antisymmetric at every point p PM . If
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dimM “ n, the space of antisymmetric maps TpM Ñ TpM has dimension 1` 2` . . .` pn´ 1q “
pn´1qn

2
, and so allowing the additional freedom to specify Xppq, Exercise 49.18 implies

dim isompM, gq ď n` pn´ 1qn
2

“ npn` 1q
2

“ dimOpn` 1q
whenever M is connected. In general the dimension of isompM, gq cannot be predicted any more
precisely than this: the examples of Rn and Sn with their standard metrics show that the inequality
can sometimes be an equality, but for generic metrics without any special symmetry, one typically
expects IsompM, gq to be at most a discrete group, so that isompM, gq is trivial.

The next exercise shows that in addition to being finite-dimensional subspaces, affpM,∇q and
isompM, gq are both Lie subalgebras of XpMq.

Exercise 49.21. Throughout this exercise, fix X,Y P XpMq. The Lie bracket rX,Y s P XpMq
is traditionally defined via the property that the operators LrX,Y s and LXLY ´ LY LX should
match when applied to smooth real-valued functions. The goal of this exercise is to show that they
also match when applied to general tensor fields and connections. One immediate consequence
of this is that for any two vector fields X,Y P XpMq on a pseudo-Riemannian manifold pM, gq
satisfying LXg “ 0 and LY g “ 0, one also has LrX,Y sg “ 0, hence the space of Killing vector fields
is a Lie subalgebra of XpMq.

(a) Deduce from the Jacobi identity and the formulaLXY “ rX,Y s that LrX,Y sZ “ LXLY Z´
LY LXZ for all Z P XpMq.

(b) Show that for λ P Ω1pMq and Z P XpMq, the Leibniz rule LX pλpZqq “ pLXλq pZq `
λ pLXZq holds, and deduce from this and part (a) that LrX,Y sλ “ LXLY λ´ LY LXλ.

(c) Show that for any two tensor fields S, T on M , the Leibniz rule LXpS b T q “ LXS b
T ` S bLXT holds. Deduce from this and parts (a)–(b) via an inductive argument that
LrX,Y sS “ LXLY S ´ LY LXS holds for tensor fields S of arbitrary rank.

(d) Use part (a) and the Leibniz rule (49.1) to prove LrX,Y s∇ “ LXLY∇ ´ LY LX∇ for an
affine connection ∇ on M .

If M is endowed with a G-structure on its tangent bundle TM Ñ M , then the condition
ψ˚pFGpTMqq “ FGpTMq on diffeomorphisms ψ P DiffpMq can also be linearized to produce a
condition on vector fields X P XpMq. This relies on the following lemma.

Lemma 49.22. There exists a linear map XpMq Ñ XpF pTMqq : X ÞÑ F pXq such that for all
X P XpMq, if p PM is in the domain of the flow ϕtX , then every frame φ P F pTpMq at p is in the
domain of ϕt

F pXq and
ϕtF pXqpφq “ pϕtXq˚φ.

Proof. GivenX P XpMq, we will use a symmetric connection∇ onM to write down a formula
for F pXq P XpF pTMqq. We adopt the notational convention of writing elements of F pTMq as pairs
pp, φq, where p P M and φ belongs to the fiber F pTpMq over p. Our connection ∇ determines a
principal connection on F pTMq, and thus a horizontal-vertical splitting of each tangent space
Tpp,φqF pTMq such that the derivative of the projection F pTMq ÑM gives a natural isomorphism
between Hpp,φqF pTMq and TpM . If we regard frames φ P F pTpMq as invertible linear maps
Rn Ñ TpM , then the vertical subspace at pp, φq has a natural identification with the space of all
(not necessarily invertible) linear maps Rn Ñ TpM , and we thus obtain an isomorphism

Tpp,φqF pTMq – TpM ˆHompRn, TpMq,
in which the two factors on the right hand side correspond to the horizontal and vertical subspaces
respectively. With this identification in place, we claim that the desired vector field F pXq on
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F pTMq is given by

F pXqpp, φq “ pXppq,∇Xppq ˝ φq P TpM ˆHompRn, TpMq “ Tpp,φqF pTMq,
meaning F pXqpp, φq “ d

dt
pϕtXq˚φ

ˇ̌
t“0

, where we recall that by definition, pϕtX q˚φ :“ Tpϕ
t
X ˝ φ P

F pTϕt
XppqMq Ă HompRn, Tϕt

XppqMq. Fixing p PM and φ P F pTpMq and defining the path γptq :“
ϕtX ppq in M , the claim is equivalent to the statement that the section TpϕtX ˝ φ P F pTγptqMq of
F pTMq along γ has covariant derivative

∇t

`
Tpϕ

t
X ˝ φq˘ˇ̌

t“0
“ ∇Xppq ˝ φ P HompRn, TpMq “ Vpp,φqF pTMq.

In light of the relationship between the connections on F pTMq ÑM and TM ÑM , this in turn
is equivalent to the relation

∇t

`
Tpϕ

t
XpY q

˘ˇ̌
t“0

“ ∇YX for every Y P TpM.

To prove the latter, choose a smooth path αpsq P M with αp0q “ p and Bsαp0q “ Y ; using the
symmetry of the connection, we then find

∇t

`
Tpϕ

t
X pY q

˘ˇ̌
t“0

“ ∇tBsϕtXpαpsqq
ˇ̌
s“t“0

“ ∇sBtϕtX pαpsqq
ˇ̌
s“t“0

“ ∇s

`
Xpαpsqq˘ˇ̌

s“0
“ ∇YX.

�

Using the linear map F : XpMq Ñ XpF pTMqq from Lemma 49.22, we can now define

diffGpMq :“  
X P XpMq ˇ̌ F pXqpφq P TφpFGpTMqq for all φ P FGpTMq( ,

which is the vector space of all vector fields X for which the induced vector field F pXq on F pTMq
restricts to a vector field on the G-frame bundle FGpTMq. In other words, these vector fields are
distinguished by the property that the maps pϕtX q˚ on F pTMq preserve FGpTMq wherever they
are defined. The usual caveat applies: vector fields in diffGpMq might not be complete in general,
and the same goes for

affGpM,∇q :“ affpM,∇q X diffGpMq Ă XpMq,
which might end up being strictly larger than the Lie algebra of AffGpM,∇q, but we will see that
this does not happen if pM,∇q is geodesically complete.

49.4. The main result. As is standard in the world of Riemannian manifolds, an arbitrary
affine connection ∇ on a manifold M can be called geodesically complete if every solution to
the geodesic equation ∇t 9γ “ 0 exists for all time t P R. Equivalently, this means that the domain
of the exponential map determined by ∇ is TM , rather than a smaller open subset.

Theorem 49.23. Assume G is a Lie subgroup of GLpn,Rq, M is a connected smooth n-
manifold whose tangent bundle TM ÑM is equipped with a G-structure, and ∇ is a G-compatible
affine connection on M that is geodesically complete. Then the group AffGpM,∇q Ă DiffpMq of
affine transformations of M preserving the G-structure admits a Lie group structure for which the
action

AffGpM,∇q ˆ FGpTMq Ñ FGpTMq : pψ, φq ÞÑ ψ˚φ
is free and proper.103 It follows in particular that AffGpM,∇q is a Lie transformation group on M ,
and for any fixed frame φ P FGpTMq, the map

AffGpM,∇q Ñ FGpTMq : ψ ÞÑ ψ˚φ

103The statement and proof that the action on the frame bundle is free and proper were omitted when we
discussed this theorem in the lecture. We did prove that the map from AffGpM,∇q to any of its orbits in the frame
bundle is an injective immersion, though strictly speaking, one needs properness in order to ensure that its image
is also a closed subset and submanifold, thus showing for instance that AffGpM,∇q is compact whenever FGpTMq
is compact.
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is an embedding sending AffGpM,∇q diffeomorphically onto a closed subset and smooth subman-
ifold of FGpTMq. Moreover, every vector field in the space affGpM,∇q of infinitesimal affine
transformations preserving the G-structure is complete, hence affGpM,∇q is naturally isomorphic
to the Lie algebra of AffGpM,∇q.

In light of Proposition 49.14, an immediate consequence of Theorem 49.23 is the following
fundamental result in Riemannian geometry, originally due to Myers and Steenrod [MS39]. It can
also be stated for general pseudo-Riemannian manifolds at the cost of replacing Opnq with Opk, ℓq
for some k ` ℓ “ n. In order to state both results together, let us abbreviate

FOpTMq :“ FOpk,ℓqpTMq
when pM, gq is a pseudo-Riemannian manifold of signature pk, ℓq.

Corollary 49.24 (in light of Proposition 49.14). On any geodesically complete connected
pseudo-Riemannian manifold pM, gq, the group of isometries IsompM, gq is a Lie transformation
group with

dim IsompM, gq ď dimFOpTMq “ npn` 1q
2

,

and its Lie algebra is the space isompM, gq of Killing vector fields, all of which are complete. �

Remark 49.25. Theorem 49.23 and Corollary 49.24 have obvious extensions to disconnected
manifolds, at least if the number of connected components is finite. The caveat about the case
whereM has infinitely-many connected components is that AffGpM,∇q and IsompM, gq may then
have uncountably many connected components, due to the fact that the set of permutations of a
countably-infinite set is uncountable. In this case they will fail to satisfy the second countability
axiom (or equivalently, they will not be separable), and thus cannot be called “manifolds” according
to our definitions, but the cardinality of the set of connected components is really the only issue—
they are still locally Euclidean and have natural smooth structures for which the action on M is
smooth.

For a compact Riemannian manifold pM, gq, one obtains a further corollary from the statement
that IsompM, gq embeds into FOpTMq as a closed subset.104 The key point here is that since Opnq
is a compact group, the frame bundle FOpTMq is also compact; this is false however for indefinite
metrics, since Opk, ℓq is not compact when k, ℓ ě 1.

Corollary 49.26. For any compact Riemannian manifold pM, gq, the group IsompM, gq is
compact. �

Exercise 49.27. The following gives a counterexample to the pseudo-Riemannian analogue
of Corollary 49.26:

(a) Show that for any two linearly-independent vectors v,w P R2, there exists a nontrivial
symmetric bilinear form x , y on R2 with xv,vy “ xw,wy “ 0, and it is unique up to
scaling, and is nondegenerate with signature p1, 1q.

(b) A matrix A P SLp2,Zq with trpAq ą 2 necessarily has two distinct real eigenvalues of the
form λ ą 1 and 1{λ ă 1. Show that for any such matrix, the bilinear form in part (a)
can be chosen so that A preserves it.
Hint: A has two linearly-independent eigenvectors.

104Corollary 49.26 was never mentioned in lecture since it depends on the properness of the action of IsompM, gq
on FOpTMq, which also was not mentioned.
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(c) Use the matrix A and bilinear form x , y from parts (a) and (b) to construct a pseudo-
Riemannian metric g on T2 “ R2{Z2 of signature p1, 1q such that the stabilizer Gp Ă
IsompT2, gq of some point p P T2 is not compact.
Hint: Gp acts on TpT2 by linear transformations—show that this transformation group
contains an unbounded subgroup of SLp2,Zq.

Remark 49.28. We will not prove it here, but the geodesic completeness condition in Theo-
rem 49.23 and Corollary 49.24 is not necessary. We will make use of it in our proof so that we do
not have to worry about the distinction between infinitesimal transformations that do or do not
admit global flows. The original proof of Corollary 49.24 in [MS39] does not require completeness.
One can easily deduce from it the G “ tIdu case of Theorem 49.23, from which the general case
follows, as we will show below.

To set up the proof of Theorem 49.23, we will show that the result follows essentially from the
special case in which G is the trivial group. For G “ t1u Ă GLpn,Rq, a G-structure on the tangent
bundle of an n-manifold M is equivalent to a global trivialization Φ of the tangent bundle, also
known as a parallelization ofM . Such a structure determines a global frame X1, . . . , Xn P XpMq,
and thus a distinguished n-dimensional space

V Ă XpMq
consisting of the linear combinations of X1, . . . , Xn with constant coefficients; equivalently, V is
the space of vector fields that look constant in the trivialization Φ. An affine connection ∇ on M
is compatible with this structure if and only if the vector fields in V are all parallel, and it follows
that there is only one such connection, namely the trivial connection with respect to Φ. As a
consequence, this is another situation in which diffeomorphisms compatible with the G-structure
are automatically also affine transformations: we will refer to these maps as automorphisms of
pM,Φq and denote the group by

AutpM,Φq :“ DifftIdupMq “ AfftIdupM,∇q “  
ψ P DiffpMq ˇ̌ ψ˚V “ V for all V P V

(
.

Differentiating the relation pϕtX q˚V “ V with respect to t, one finds that the corresponding space
of infinitesimal transformations is

autpM,Φq :“ difftIdupMq “ afftIdupM,∇q “  
X P XpMq ˇ̌ rX,V s “ 0 for all V P V

(
.

Proposition 49.29. If TM Ñ M is endowed with a G-structure for some Lie subgroup
G Ă GLpn,Rq and ∇ is a G-compatible affine connection, then the manifold FGpTMq admits
a parallelization Φ such that the image of the injective map

AffGpM,∇q ãÑ DiffpFGpTMqq : ψ ÞÑ ψ˚
is a closed subgroup of AutpFGpTMq,Φq Ă DiffpFGpTMqq. Moreover, if pM,∇q is geodesically
complete, then every vector field in autpFGpTMq,Φq is complete.

The proof of this proposition has three main steps, the first of which is to identify which
diffeomorphisms FGpTMq Ñ FGpTMq take the form ψ˚ for some ψ P DiffGpMq. To simplify
notation, let us write

π : E ÑM

for the G-frame bundle FGpTMq of TM . Regarding frames φ P Ep as linear maps φ : Rn Ñ TpM ,
there is an Rn-valued tautological 1-form (cf. Exercise 46.16)

θ P Ω1pE,Rnq
defined by

θφ :“ φ´1 ˝ π˚ : TφE Ñ Rn, for each φ P Ep Ă HompRn, TpMq, p PM.
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It is straightforward to verify that θ is equivariant with respect to the canonical representation of
G Ă GLpn,Rq on Rn, meaning

(49.4) Rg̊ θ “ g´1 ˝ θ for all g P G.
In fact, θ is the equivariant 1-form corresponding under the isomorphism of Theorem 46.3 to the
bundle-valued form 1 P Ω1pM,TMq, i.e. the identity map TM Ñ TM .

In the following, a diffeomorphism Ψ : E Ñ E, will be called fiber preserving if the image
of every fiber is contained in a (possibly different) fiber.

Lemma 49.30. A fiber-preserving diffeomorphism Ψ : E Ñ E satisfies Ψ˚θ “ θ if and only if
Ψ “ ψ˚ for some ψ P DiffGpMq.

Proof. If Ψ is fiber preserving, we can write ΨpEpq “ Eψppq for each p PM , defining in this
way a diffeomorphism ψ :M ÑM . For p PM and φ P Ep, Ψpφq is an isomorphism Rn Ñ TψppqM ,
and since π ˝Ψ “ ψ ˝ π,

pΨ˚θqφ “ θΨpφq ˝ TΨ “ Ψpφq´1 ˝ π˚ ˝ TΨ “ Ψpφq´1 ˝ T pπ ˝Ψq “ Ψpφq´1 ˝ T pψ ˝ πq
“ `

Ψpφq´1 ˝ Tψ˘ ˝ π˚.
This matches θφ “ φ´1 ˝ π˚ if and only if φ´1 “ Ψpφq´1 ˝ Tψ, or equivalently Ψpφq “ Tψ ˝ φ,
which means Ψ “ ψ˚ and ψ P DiffGpMq. �

Remark 49.31. If the fibers of E are connected, then the assumption in Lemma 49.30 that
Ψ : E Ñ E is fiber preserving is redundant, because any two points in the same fiber can be
connected via a finite sequence of flow lines of vertical vector fields, and Ψ˚θ “ θ guarantees that
Ψ preserves verticality since ker θ “ V E. This could be relevant for instance if M is oriented
and one restricts attention to orientation-preserving isometries, since the fibers of F SOpnqpTMq are
then connected. However, it would be too restrictive to assume that E has connected fibers in
general.

In the second step, we suppose ∇ is a G-compatible affine connection onM , which corresponds
to a principal connection on the G-frame bundle E Ñ M and thus gives rise to a horizontal
subbundle HE Ă TE and connection 1-form A P Ω1pE, gq.

Lemma 49.32. A transformation ψ P DiffGpMq is affine with respect to ∇ if and only if the
induced transformation Ψ :“ ψ˚ : E Ñ E satisfies Ψ˚A “ A.

Proof. Assuming Ψ “ ψ˚ : E Ñ E for some ψ P DiffGpMq, the map Ψ is G-equivariant, thus
writing an arbitrary vertical tangent vector at φ P Ep as the value of a fundamental vector field
ZF pφq “ Bt pφ ¨ expptZqq|t“0 for some Z P g, we have

pΨ˚Aqφ `ZF pφq˘ “ AΨpφq ˝ TΨ pBt pφ ¨ expptZqq|t“0q
“ AΨpφq pBt pΨpφ ¨ expptZqqq|t“0q
“ AΨpφq pBt pΨpφq ¨ expptZqq|t“0q “ AΨpφq

`
ZF pΨpφqq˘ “ Z “ Aφ

`
ZF pφq˘ .

This shows on the one hand that A and Ψ˚A match on the vertical subbundle V E, and since
Ψ˚A is also equivariant due to the equivariance of Ψ and A, it also shows that Ψ˚A is another
connection 1-form on E Ñ M , thus defining another G-compatible connection ∇1 on TM Ñ M .
We claim ∇1 “ ψ˚∇. This will hold if and only if for every path γptq P M and every vector field
Y ptq P TγptqM along γ,

(49.5) Tψp∇1
tY ptqq “ ∇t pTψpY ptqqq P TψpγptqqM
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for all t. To prove (49.5), choose a frame φptq P Eγptq along γ that is parallel with respect to ∇1, and
observe that since TΨ maps kerΨ˚A to kerA, the frame Ψpφptqq P Eψpγptqq along ψ ˝ γ is likewise
parallel with respect to∇. There is then a unique function fptq P Rn such that Y ptq “ φptqfptq, and
φptq being parallel implies ∇1

tY ptq “ φptq 9f ptq. Since Ψ “ ψ˚, we also have TψpY ptqq “ Ψpφptqqfptq,
implying

∇t pTψpY ptqqq “ Ψpφptqq 9fptq “ Tψ
´
φptq 9f ptq

¯
“ Tψ

`
∇
1
tY ptq

˘
,

which proves the claim. We conclude ψ˚∇ “ ∇ if and only if Ψ˚A “ A. �

We can now define the parallelization Φ on E “ FGpTMq promised by Proposition 49.29: it
is determined by the two vector-valued 1-forms θ P Ω1pE,Rnq and A P Ω1pE, gq. Indeed, since θ
takes values in Rn, it can be regarded as a collection of n real-valued 1-forms θ1, . . . , θn P Ω1pEq,
which are linearly independent at every point φ P Ep Ă HompRn, TpMq since for the standard
basis e1, . . . , en P Rn, θipHorφpφpejqq “ δij by definition. Moreover, all of these vanish on the
vertical subspace VφE. Choosing a basis Z1, . . . , Zm of g, we can similarly turn A P Ω1pE, gq into
a collection of real-valued 1-forms Aj P Ω1pEq with A “ AjZj , which are linearly independent at
every point and all vanish on HE. It follows that pθ1, . . . , θn, A1, . . . , Amq defines a global frame
for T ˚E. Its dual frame

η1, . . . , ηn, ξ1, . . . , ξm P XpEq,
defined via the conditions θipηjq “ Aipξjq “ δij and θ

ipξjq “ Aipηjq “ 0 for all i, j, is a collection of
nowhere-vanishing vector fields that form a basis of TE at every point and thus define a paralleliza-
tion Φ of E. A diffeomorphism Ψ : E Ñ E then belongs to AutpE,Φq if and only if it preserves
all of the 1-forms θ1, . . . , θn and A1, . . . , Am, which means it satisfies Ψ˚θ “ θ and Ψ˚A “ A. By
Lemmas 49.30 and Lemma 49.32, the image of AffGpM,∇q under the map ψ ÞÑ ψ˚ P DiffpEq is
thus the closed subgroup 

Ψ P AutpE,Φq ˇ̌ Ψ is fiber preserving
( Ă AutpE,Φq.

To complete the proof of Proposition 49.29, we still need to show that for the parallelization
Φ defined on E via the vector fields η1, . . . , ηn and ξ1, . . . ξm, all vector fields in autpE,Φq are
complete if pM,∇q is geodesically complete. The relation to geodesic completeness comes from the
horizontal vector fields ηi and their linear combinations, whose flow lines turn out to be horizontal
lifts of geodesics:

Lemma 49.33. For any constants c1, . . . , cn P R, every flow line of the vector field V :“ ciηi P
XpEq is of the form

φptq P Eγptq Ă E,

where γptq P M is a geodesic with respect to ∇ and φptq is a parallel frame along γ. Conversely,
every path in E of this form is a flow line of some vector field that is a linear combination of
η1, . . . , ηn with constant coefficients.

Proof. Let V “ ciηi P XpEq for constants c1, . . . , cn P R. Since V always points in horizontal
directions, a flow line of V is a parallel frame φptq “ pX1ptq, . . . , Xnptqq along some path γptq PM ,
and γ itself is then determined by the condition 9γptq “ ciXiptq. It follows that 9γ is also parallel
along γ, so γ is a geodesic. Conversely, if γ is a geodesic and φptq is any parallel frame along γ,
then there exist unique functions ciptq for i “ 1, . . . , n such that 9γptq “ ciptqXiptq, and the geodesic
equation then implies that the functions ciptq are constant, making φptq P E a flow line of ciηi. �

Here is a useful tool for proving that a vector field is complete.

Proposition 49.34. Suppose S Ă XpMq is a set of vector fields on a manifold M with the
following properties:
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(1) Every V P S is complete.
(2) Any two points p, q PM in the same connected component of M are related to each other

by q “ ϕt1V1
˝ . . . ˝ ϕtNVN

ppq for some N P N, V1, . . . , VN P S and t1, . . . , tN P R.

Then any vector field X P XpMq that commutes with every V P S is complete.

Proof. Since the flow of X preserves connected components, we can assume without loss of
generality that M is connected. Pick a point p P M and ǫ ą 0 such that ϕtX ppq is defined for all
t P r´ǫ, ǫs. Then for any V P S, the condition rX,V s “ 0 implies via Theorem 6.9 from the first
semester that for every s P R, ϕtXpϕsV ppqq is also defined for all t P r´ǫ, ǫs and matches ϕsV pϕtX ppqq.
This shows that for every t P r´ǫ, ǫs, ϕtX is defined on every point that lies on a flow line of any
V P S through p. Continuing inductively from these points via flow lines of other vector fields
in S, this leads to the conclusion that ϕtX is defined everywhere on M for all t P r´ǫ, ǫs, and by
iteration, it follows that ϕt :M ÑM is defined for all t P R. �

Conclusion of the proof of Proposition 49.29. We have already deduced from Lem-
mas 49.30 and 49.32 that the map ψ ÞÑ ψ˚ identifies AffGpM,∇q with a closed subgroup of
AutpE,Φq. If ∇ on M is geodesically complete, then it follows from Lemma 49.33 that the linear
combinations of η1, . . . , ηn with constant coefficients are all complete vector fields on E. The fun-
damental vector fields ZF P XpEq for Z P g are also complete, since their flows are obtained by
acting on E with expptZq P G. Now if p, q PM are two sufficiently close points with frames φ P Ep
and φ1 P Eq that are also sufficiently close in E, then q can be reached from p by a geodesic, and
it follows in turn from Lemma 49.33 that

φ1 “ ϕ1
ZF ˝ ϕciηipφq

for some Z P g and c1, . . . , cn P R. It follows that the set S Ă XpEq consisting of all fundamental
vector fields and all linear combinations ciηi satisfies the two hypotheses of Proposition 49.34. Any
ξ P autpE,Φq commutes with all of these vector fields, and is therefore complete. �

The proof of the following will be the main topic of the next section.

Theorem 49.35. Assume M is a smooth connected n-manifold equipped with a paralleliza-
tion Φ such that every infinitesimal automorphism X P autpM,Φq Ă XpMq is complete. Then
AutpM,Φq is a Lie transformation group acting freely and properly on M .

Proof of Theorem 49.23 modulo Theorem 49.35. Using the parallelization Φ of E “
FGpTMq constructed above, the hypothesis that pM,∇q is geodesically complete establishes via
Proposition 49.29 the main hypothesis of Theorem 49.35 that vector fields in autpE,Φq are com-
plete, though we need to be a bit careful about the possibility that E may be disconnected. Let us
ignore this detail for now and just assume E is connected. Theorem 49.35 then gives AutpE,Φq the
structure of a Lie transformation group acting freely and properly on E, and it contains a closed
subgroup that is the image of AffGpM,∇q under the injection AffGpM,∇q ãÑ DiffpEq : ψ ÞÑ ψ˚.
Since closed subgroups are Lie subgroups, this endows AffGpM,∇q with the structure of a Lie
transformation group, which also acts freely and properly on FGpTMq, and it follows from this
that AffGpM,∇q also acts smoothly onM . The completeness of every X P affGpM,∇q now follows
from the fact that the map F : XpMq Ñ XpEq in Lemma 49.22 sends each X P AffGpM,∇q to
something in autpE,Φq. �

Exercise 49.36. Fix the proof of Theorem 49.23 above to work in cases whereM is connected
but E “ FGpTMq is not.
Hint: All that really matters is the structure of the identity component of AffGpM,∇q.
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49.5. Automorphisms of a parallelization. Throughout this section, assume M is a
smooth n-manifold equipped with a parallelization Φ, thus defining a distinguished n-dimensional
subspace

V Ă XpMq
consisting of vector fields that look constant in the trivialization Φ. Let us restate Theorem 49.35,
which still needs to be proved.

Theorem 49.37. If every vector field in autpM,Φq is complete, then AutpM,Φq is a Lie
transformation group acting freely and properly on M , so in particular, for any point p P M , the
map AutpM,Φq Ñ M : ψ ÞÑ ψppq is an embedding that maps AutpM,Φq diffeomorphically to a
closed subset and smooth submanifold of M .105

We already know from the results of §49.3 that dim autpM,Φq ă 8, though we will see an
easier way to prove this below. As outlined in §49.1, the crucial step in the proof is then to show
that every element of AutpM,Φq in some neighborhood of the identity arises from the flow of a
vector field in autpM,Φq.

The proof of this will necessarily seem a bit technical, so we will start with an outline and
postpone the proofs of some lemmas until the next subsection. The argument can be summarized
with three main claims and a few subsequent comments.

Claim 1: Two maps ϕ, ψ P AutpM,Φq are identical if and only if they match at one point.
This will be an easy consequence of the fact that the diffeomorphisms ψ : M Ñ M in AutpM,Φq
preserve all of the vector fields V P V, whose flows can be used to connect any point in M to any
other. This shows that the action of AutpM,Φq on M is free, and the same observation will also
imply that this action is proper.

The next claim is essentially a linearization of claim 1, and the best way to express it is via an
intelligent choice of affine connection onM . The parallelization Φ determines a natural connection
∇, for which the vector fields in V are parallel, implying that their flow lines are the geodesics.
But Φ also determines another distinguished connection ∇Φ on TM , defined by

∇
Φ
YX :“ ∇YX ` T pX,Y q,

where T is the torsion tensor of ∇.
Claim 2: A vector field X P XpMq is in autpM,Φq if and only if ∇ΦX “ 0, and every flow line

of a vector field in autpM,Φq is a geodesic with respect to ∇. We can prove these statements right
away: since ∇V “ 0 for V P V and the set of all V P V spans TM at every point, another vector
field X P XpMq satisfies ∇ΦX “ 0 if and only if ∇Φ

VX “ 0 for all V P V, which then means

0 “ ∇
Φ
VX “ ∇VX ` T pX,V q “ ∇VX `∇XV ´∇VX ´ rX,V s “ ´rX,V s,

and thus X P autpM,Φq. The antisymmetry of the torsion tensor implies moreover that ∇ and ∇Φ

have the same geodesics, which therefore include the flow lines of any vector field that is parallel
with respect to either connection.

An immediate consequence of claim 2 is that nontrivial vector fields in autpM,Φq are nowhere
zero, so they span a smooth subbundle E Ă TM with the property that at every point p P M ,
every Y P Ep is the value of a unique vector field in autpM,Φq. We can choose a complementary
subbundle EK Ă TM and write

TM “ E ‘EK.

105The version of this result proved in lecture did not mention properness, and strictly speaking, it only proved
that the bijection of AutpM,Φq to each of its orbits in M is an injective immersion, not necessarily an embedding.
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Now comes the main event: suppose ψk P AutpM,Φq is a sequence converging in C8
loc to the

identity map with ψk ‰ Id for all k. Using the connection ∇, we can write

ψk “ exp ˝Xk,

for a sequence of nontrivial vector fields Xk P XpMq that converge in C8
loc to 0. A slightly subtle

issue here is that since the convergence of ψk is uniform only on compact subsets, it may only be
possible to write ψk “ exp ˝Xk on a nested sequence of compact subsets Uk Ă Uk`1 Ă . . .M whose
union isM . This detail will need to be handled with some care, but for this outline we shall ignore
it.

Claim 3: After passing to a subsequence, there exists a sequence of positive numbers τk Ñ 0

such that Xk{τk converges in C8
loc to a nontrivial element

X8 P autpM,Φq.
The proof of this statement is the hardest step, but we can give it a quick summary: it is based
on the Arzelà-Ascoli theorem. The main reason it works is that the connection ∇Φ characterizes
the linearization at Id : M Ñ M of the nonlinear condition satisfied by ψk, implying that the
vector fields Xk nearly satisfy ∇ΦXk “ 0. What actually happens is that there exists a sequence
of connections ∇k, which depend on the choice of maps ψk but converge to ∇Φ as a result of the
convergence ψk Ñ Id, such that ∇kXk “ 0 for all k. Since the ∇k are linear operators, we can
then introduce the rescaling constants τk ą 0 and write

∇
k pXk “ 0, where pXk :“ Xk

τk

for all k. If you write down what this equation looks like in local coordinates, you find a convergent
sequence of Christoffel symbols pΓpkqqℓij such that the components pXℓ

k of pXk satisfy

Bi pXℓ
k ` pΓpkqqℓij pXj

k “ 0.

This is the strongest type of first-order PDE one could ever hope to consider: it determines all of
the first partial derivatives of pXk in terms of the values of pXk. (Compare this with e.g. the Cauchy-
Riemann equations, which constrain certain linear combinations of the first partial derivatives, but
do not completely determine them.) In particular, if we now choose the sequence τk ą 0 so thatpXk on some compact subset is C0-bounded but not converging to 0, then it follows that pX is also
C1-bounded, and plugging this new information into the PDE implies that it is also C2-bounded,
and so forth. The conclusion is that pXk will be uniformly Cm-bounded on every compact subset
for every m P N, so by the Arzelà-Ascoli theorem, it has a C8

loc-convergent subsequence. The limit
of this sequence will satisfy ∇ΦX8 “ 0 since ∇k pXk “ 0 and ∇k Ñ ∇Φ.

With claim 3 in place, we can use the splitting TM “ E ‘EK established by claim 2 to write

Xk “ Yk ` Zk,

where Yk and Zk are sections of E and EK respectively, and both converge in C8
loc to 0 as kÑ 8.

Choosing a point p P M , there is a unique sequence pYk P autpM,Φq such that pYkppq “ Yk, and it
converges in C8

loc to 0. Since every vector field in autpM,Φq is assumed complete, we can use its
flow to define another sequence fk P AutpM,Φq converging to the identity by

fk :“ ϕ1pYk
“ exp ˝pYk.

If we assume that ψk cannot similarly be expressed as the time 1 flow of a sequence of vector fields
in autpM,Φq converging to 0, then it follows via claim 1 that

Zkppq ‰ 0 P EK
p for all k.
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This is the step where it is important to know that vector fields in autpM,Φq are complete—if
we did not know this, then the maps fk could only be defined on a nested sequence of domains
Uk Ă Uk`1 Ă M exhausting M , and ψk could potentially match fk on these domains (implying
Zkppq “ 0) without being globally expressible via the flows of vector fields in autpM,Φq.

The final step will be to consider the sequence

f´1
k ˝ ψk P AutpM,Φq,

which also converges to the identity and can be written as exp ˝Vk for a sequence of vector fields
Vk that, by claim 3, will necessarily converge to a nontrivial element V8 P autpM,Φq after suitable
rescaling. But the fact that ψk “ exp ˝pYk ` Zkq and fk “ exp ˝pYk with Ykppq “ pYkppq and
Zkppq ‰ 0 will imply in this situation that V8ppq is a nontrivial vector in EK

p , which contradicts
the definition of the subbundle E.

You may at this point want to go back and reread the proof of the closed subgroup theorem
(Theorem 41.2), as the proof outlined above is similar to it in many respects. The fact that our
maps ψk are not already known to live inside some finite-dimensional Lie group makes some steps
harder, and in particular, the complete proof of claim 3 will require more serious analysis. The
approach taken below is heavily inspired by methods that are standard in the theory of elliptic
PDEs, where one often uses analytical estimates for certain differential operators to establish
compactness results via the Arzelà-Ascoli theorem. The estimates required are much easier in
our situation than in actual elliptic theory, because our PDE is overdetermined to the point that
everything we need to know can be deduced from the theory of ordinary differential equations. It
is possible however to generalize this approach to other situations in which more serious elliptic
estimates (typically in Sobolev spaces) would be required, e.g. in order to prove that the group of
holomorphic diffeomorphisms on a compact complex manifold is a Lie transformation group.

We now proceed with the details of the outline given above.

49.6. The technical part. Here are the remaining details in the proof of Theorem 49.37.
We already observed that the space autpM,Φq of infinitesimal automorphisms can be charac-

terized as the solution set of the first-order linear PDE ∇ΦX “ 0, where ∇Φ is a particular affine
connection determined by the parallelization Φ. Let us write down the corresponding nonlinear
PDE satisfied by maps ψ P AutpM,Φq. We will continue to denote by ∇ the affine connection
on M that is trivial with respect to Φ, though let us add a word of caution about this: being a
“trivial” connection implies that its curvature vanishes, but its torsion can be nonzero, and must
indeed be nonzero outside of the exceptional situation where ∇Φ “ ∇ and thus autpM,Φq “ V. In
any case, the triviality of the connection ∇ implies that its parallel transport map

Ppp,qq :“ P 1
γ : TpM Ñ TqM

is independent of the choice of smooth path γ from γp0q “ p to γp1q “ q. The parallel vector
fields V P V are then characterized by the condition V pqq “ Ppp,qqpV ppqq for every p, q P M , so
writing the condition ψ˚V “ V in the form TpψpV ppqq “ V pψppqq, we find that a diffeomorphism
ψ :M ÑM belongs to AutpM,Φq if and only if it satisfies

(49.6) Tpψ “ Ppp,ψppqq P HompTpM,TψppqMq for all p PM.

In a local chart x “ px1, . . . , xnq, if we write x ˝ψ “ pψ1, . . . , ψnq, (49.6) is equivalent to a system
of n2 first-order nonlinear PDEs of the form

Biψjppq ´ P
j
i pp, ψppqq “ 0, i, j P t1, . . . , nu,

where the parallel transport is now represented by a matrix-valued function with entries P j
i that

depend smoothly on both p and ψppq. As first-order PDEs go, this one is rather unsubtle: it implies
that all the first partial derivatives of ψ at any point are completely determined by the value of ψ at
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that point. This makes it a highly overdetermined PDE: we will see for instance that its solutions
are completely determined by their values at one point, giving a very strong uniqueness result,
though for the same reason, one should not typically expect interesting solutions to exist.106 A
convenient side benefit is that in order to prove what must be proved about this equation, we will
have no need for fancy PDE methods: the theory of ordinary differential equations is completely
sufficient. The essential analytical properties of the equation are of a purely local nature, thus for
much of the discussion, we will consider solutions defined only on an open subset U Ă M , which
could be all of M but could also just be a small neighborhood of a point.

We claim that in some sense to be made precise below, the linear equation ∇ΦX “ 0 is the
linearization of (49.6). To say what this means, let us first rewrite the nonlinear equation by
defining for any open subset U ĂM a map

(49.7) F : C8pU ,Mq Ñ ΓpEndpTUqq, Fpψqppq :“ Ppψppq,pq ˝ Tpψ ´ 1 P EndpTpMq,
so that if we take U :“ M and consider a diffeomorphism ψ P DiffpMq Ă C8pM,Mq, (49.6)
becomes

Fpψq “ 0 P ΓpEndpTMqq.
Heuristically, we can regard C8pU ,Mq as an infinite-dimensional manifold on which F is a smooth
vector-valued function, and in the special case U “ M , there is a distinguished open subset
DiffpMq Ă C8pM,Mq on which the zero-set of F is precisely AutpM,Φq. (It will not be nec-
essary for our present purposes to make these notions precise, and we will not attempt to do
so—infinite-dimensional differential geometry involves a multitude of tricky technical details that
are irrelevant to this heuristic discussion.) From this perspective, we think of XpUq as the tangent
space TIdC8pU ,Mq to this infinite-dimensional manifold at the inclusion map Id P C8pU ,Mq, and
linearizing (49.6) then means computing the directional derivative of F at Id in the direction of an
arbitrary X P XpUq. Suppose indeed that tψs : U ÑMusPp´ǫ,ǫq is a smooth 1-parameter family of
maps with ψ0 “ Id and Bsψs|s“0 “ X P XpUq, and given p P U and Y P TpM , choose a smooth
path γptq P U with γp0q “ p and 9γp0q “ Y . Then

d

ds
FpψsqppqY

ˇ̌̌̌
s“0

“ Bs “Ppψsppq,pq ˝ TpψspY q ´ Y
‰ˇ̌
s“0

“ Bs “Ppψsppq,pq pBt rψspγptqqs|t“0q
‰ˇ̌
s“0

“ ∇sBt rψspγptqqs|s“t“0

“ ∇tBs rψspγptqqs|s“t“0 ` T pBs rψspγptqqs , Bt rψspγptqqsq|s“t“0

“ ∇t rXpγptqqs|t“0 ` T pXppq, Y q “ ∇YX ` T pXppq, Y q “ ∇
Φ
YX.

This calculation leads us to define a linear operator DFpIdq : XpUq Ñ ΓpEndpTUqq, called the
linearization of F at Id P C8pU ,Mq, by

DFpIdqX “ d

ds
Fpψsq

ˇ̌̌̌
s“0

“ ∇ΦX P ΓpEndpTUqq.

Unlike ∇, the connection ∇Φ will not usually be flat, so the space autpM,Φq of ∇Φ-parallel vector
fields may be trivial, or it may have any dimension up to n:

Lemma 49.38. For any point p P M and any connected open subset U ĂM containing p, the
space of vector fields X P XpUq that are parallel with respect to ∇Φ injects into TpM via the map
X ÞÑ Xppq. In particular, dim autpM,Φq ď n.

106The algebraic analogue of an overdetermined system of PDEs is a system of m algebraic equations in n

variables where m ą n. Special examples of such systems may very well have nontrivial solutions, but for a generic
choice of equations, it is much more likely for the solution set to be empty.
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Proof. If ∇ΦX “ 0, then Xppq uniquely determines Xpqq for every q P U via parallel trans-
port with respect to the connection ∇Φ along an arbitrary path in U from p to q. �

We will next prove some analytical results about solutions of the nonlinear PDE (49.6) and its
linearization ∇ΦX “ 0. Given a smooth vector bundle E Ñ M , a sequence of sections sk P ΓpEq
and an integer ℓ ě 0, we will say that the sequence sk is:

‚ uniformly Cℓloc-bounded if for every local trivialization Φα : E|Uα
Ñ Uα ˆ Fm, the se-

quence of functions fk : Uα Ñ Fm determined by Φαpskppqq “ pp, fkppqq has all derivatives
up to order ℓ bounded independently of k on each compact subset of Uα;

‚ Cℓloc-convergent to a section s P ΓpEq if for every local trivialization Φα : E|Uα
Ñ

Uα ˆ Fm, the sequence of functions fk : Uα Ñ Fm determined by Φαpskppqq “ pp, fkppqq
has all derivatives up to order ℓ convergent uniformly on compact subsets of Uα to the
corresponding derivatives of f : Uα Ñ Fm, where Φαpsppqq “ pp, fppqq.

The C8
loc-topology on ΓpEq is thus characterized by the condition that a sequence converges if and

only if it is Cℓloc-convergent for every ℓ P N. Since uniform C1-bounds imply equicontinuity, the
Arzelà-Ascoli theorem implies that uniformly Cℓ`1

loc -bounded sequences always have Cℓloc-convergent
subsequences, so in particular, any sequence that is uniformly Cℓloc-bounded for every ℓ P N has a
C8

loc-convergent subsequence.
The following lemma is an analogue of Theorem 49.6 on the rigidity of affine transformations

for the setting of a manifold with a parallelization; in fact, up to minor details concerning the
connectedness of the frame bundle FGpTMq, it gives us a second proof of the rigidity of affine
transformations in light of Proposition 49.29. It also implies the statement in Theorem 49.37 that
the action of AutpM,Φq on M is free and proper.

Lemma 49.39. Fix a point p P M and a connected open neighborhood U Ă M of p. For
any q P M , there exists at most one map ψ : U Ñ M satisfying Equation (49.6) and ψppq “ q.
Moreover, if pk P U is a sequence of points converging to p and ψk : U ÑM is a sequence of maps
satisfying (49.6) such that qk :“ ψkppkq converges to some point q PM , then ψk is C8

loc-convergent
on U to a map ψ : U ÑM satisfying (49.6) and ψppq “ q.

Proof. For V P V, a map ψ : U Ñ M satisfying (49.6) satisfies TqψpV pqqq “ V pψpqqq for
every q P U , and it follows that for every flow line γ of V with image in U , ψ ˝ γ is also a flow
line of V . Since the vector fields in V span TM at every point, it follows that if ψppq “ q, ψ is
determined on some neighborhood of p by the formula

(49.8) ψ
`
ϕ1
V ppq

˘ “ ϕ1
V pqq

for all V P V in some neighborhood of 0. This proves that if ψ, ψ1 : U Ñ M are any two maps
satisfying (49.6), the set of points at which they match is open. It is clearly also closed, so if it is
nonempty, then it is all of U since U is connected.

A similar argument using smooth dependence of solutions to ODEs on initial conditions proves
the convergence of any sequence ψk : U ÑM satisfying (49.6) with qk “ ψkppkq Ñ q and pk Ñ p.
Indeed, (49.8) in this case becomes

ψk
`
ϕ1
V ppkq

˘ “ ϕ1
V pqkq

for all V P V in some neighborhood of 0, so ψk converges uniformly with all derivatives on some
compact neighborhood of p to the unique map ψ satisfying (49.8) on that neighborhood. Since all
of the ψk also satisfy the stronger condition (49.6) and that condition is closed with respect to the
C8

loc-topology, it follows that ψ also satisfies it. Finally, one argues via the connectedness of U that
the C8

loc-convergence ψk Ñ ψ is valid not just near p but on a nonempty open and closed subset
of U , which is therefore all of U . �
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For the linearized analogue of the previous lemma, we will consider arbitrary connections on
TM ÑM , since any connection could in principle be ∇Φ for some choice of trivialization Φ. Recall
that the set of all connections on TM Ñ M is an affine space over the space of smooth bundle
maps ΓpHompTM,EndpTMqqq, so for a sequence ∇k of connections, we will say that ∇k is:

‚ uniformly Cℓloc-bounded if ∇k “ ∇`Ak for some fixed connection ∇ and a uniformly
Cℓloc-bounded sequence Ak P ΓpHompTM,EndpTMqqq;

‚ Cℓloc-convergent to a connection ∇8 if ∇k “ ∇8 ` Ak for a sequence of bundle maps
Ak P ΓpHompTM,EndpTMqqq that is Cℓloc-convergent to 0.

We will then say that ∇k Ñ ∇8 in C8
loc if it is C

ℓ
loc-convergent for every ℓ P N.

Lemma 49.40. Fix a point p PM and a connected open neighborhood U ĂM of p, suppose ∇k

is a sequence of connections on TU Ñ U and Xk P XpUq is a sequence of vector fields satisfying
∇kXk “ 0.

(1) If the sequence Xkppq P TpM is bounded and the connections ∇k are uniformly Cmloc-
bounded for every m P N, then Xk has a C8

loc-convergent subsequence.
(2) If the sequence Xkppq P TpM converges and the connections ∇k are C8

loc-convergent to
some connection ∇8 on TU Ñ U , then Xk is C8

loc-convergent to a vector field X P XpUq
satisfying ∇8X “ 0.

Proof. We claim first that if Xkppq is bounded and ∇k is uniformly C0
loc-bounded, then Xk

is also uniformly C0
loc-bounded. Indeed, in local coordinates near p, the equation ∇kXk “ 0 takes

the form

(49.9) BiXj
k ` pΓpkqqjiℓXℓ

k “ 0,

where we denote the Christoffel symbols of ∇k by pΓpkqqjiℓ and observe that these are uniformly
C0-bounded on compact subsets by assumption. It follows that for any smooth path γptq in this
coordinate neighborhood, the components Xj

kpγptqq along γ satisfy a linear ODE of the form
d

dt
X
j
kpγptqq “ pAkptqqjiX i

kpγptqq
for a uniformly C0

loc-bounded sequence of matrix-valued functions Akptq with entries pAkptqqji.
A standard argument using e.g. the Grönwall inequality then establishes a bound of the form
|Xj

kpγptqq| ď eC|t| ¨ maxt|X1
kpγp0qq|, . . . , |Xn

k pγp0qq|u for some constant C ą 0 independent of k,
thus a bound on Xkppq implies a uniform C0-bound on the components of Xk in some compact
neighborhood of p. Note that there was nothing special about the point p in this discussion;
the same conclusion would result if p were replaced by any other point in U . Now for q P U , a
bound on Xkppq implies a bound on Xkpqq by choosing a path γ : r0, 1s Ñ U from p to q and
breaking it up into finitely-many small segments rtj, tj`1s such that any bound on Xkptjq implies a
uniform C0-bound on Xk along γprtj , tj`1sq. From this follows a uniform C0-bound for Xk on some
neighborhood of q, and since arbitrary compact subsets of U are finite unions of neighborhoods of
this form, the claim follows.

A similar application of the Grönwall inequality shows that if Xkppq Ñ Y and the connections
∇k are C0

loc-convergent to a connection ∇8, then Xk is C0
loc-convergent to a vector field X P XpUq

satisfying ∇8X “ 0, which is uniquely determined by the condition Xppq “ Y .
Next, we claim that for any m P N, if both Xk and ∇k are uniformly Cm´1

loc -bounded, then
Xk is also uniformly Cmloc-bounded. This follows from the equation ∇kXk “ 0, which in local
coordinates looks like (49.9), with the sequence of Christoffel symbols pΓpkqqjiℓ assumed to satisfy a
uniform Cm´1-bound on compact subsets. Indeed, BiXj

k then also satisfies a uniform Cm´1-bound,
and X

j
k is thus Cm-bounded on compact subsets. If we make the stronger assumption that Xk
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and ∇k are both Cm´1
loc -convergent, then this argument shows that the first derivatives of Xk are

Cm´1
loc -convergent, hence Xk itself is Cmloc-convergent.

Both statements in the lemma now follow by induction on m. �

With this technical preparation out of the way, we can now begin studying the structure of
AutpM,Φq near the identity map. Let

exp : O ÑM

denote the exponential map for the trivial connection ∇. Here O Ă TM is an open neighborhood
of the zero section; we are not assuming the vector fields in V are complete, so geodesics may
escape to infinity in finite time.

Lemma 49.41. Suppose U ĂM is an open subset and Xk P XpUq is a sequence of vector fields
that are C8

loc-convergent to zero and take values in the domain O Ă TM of exp, such that the maps

ϕk :“ exp ˝Xk : U ÑM

satisfy Equation (49.6). Then there exists a sequence of connections ∇k on TU that are C8
loc-

convergent to ∇Φ and satisfy ∇kXk “ 0.

Proof. The idea is to decompose the nonlinear PDE (49.6) into its linear part plus a remainder
term, and then absorb the remainder into the notation as a zeroth-order perturbation of the
connection ∇Φ. The tricky detail is that we need to write down the derivative of ϕk “ exp ˝Xk

in terms of the covariant derivative of Xk, and that requires differentiating the exponential map
exp : O ÑM .

For bookkeeping purposes, let us write elements of TM as pairs pp, Y q where p P M and
Y P TpM . For each pp, Y q P TM , the connection ∇ determines an isomorphism

Tpp,Y qpTMq “ TpM ˆ TpM,

where the first factor corresponds to the horizontal subspace and the second to the vertical sub-
space, so under this identification, a vector field Y ptq P TγptqM along a path γptq PM is viewed as
a path in TM with tangent vector

9Y ptq “ p 9γptq,∇tY ptqq P TγptqM ˆ TγptqM “ Tpγptq,Y ptqqpTMq.
With this identification in place, we associate to each pp, Y q P O the linear map

Gpp, Y q :“ PpexpppY q,pq ˝ Tpp,Y qpexpq : TpM ˆ TpM Ñ TpM.

For each fixed p P M , Y ÞÑ Gpp, Y q is a smooth function on an open subset of TpM with values
in the fixed vector space HompTpM ˆ TpM,TpMq, thus it is subject to the methods of first-year
analysis: in particular, we can write

Gpp, Y q “ Gpp, 0q `D2Gpp, 0qY `Rpp, Y qY,
where D2Gpp, Y q : TpM Ñ HompTpM ˆ TpM,TpMq denotes the derivative of the map Y ÞÑ
Gpp, Y q, and the remainder function R : O Ñ HompTpM,HompTpM ˆ TpM,TpMqq is given by

Rpp, Y q “
ż 1

0

rD2Gpp, τY q ´D2Gpp, 0qs dτ,
so it depends smoothly on pp, Y q P O and satisfies Rpp, 0q “ 0 for all p P M . For a vector field
X P XpUq taking values in the domain of exp, the result of feeding the map

ϕ :“ exp ˝X P C8pU ,Mq
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into the operator F : C8pU ,Mq Ñ ΓpEndpTUqq from (49.7) can now be written as follows: for
each p P U and Y P TpM ,

FpϕqppqY “ Ppϕppq,pq ˝ Tppexp ˝XqpY q ´ Y

“ PpexpppXppqq,pq ˝ Tpp,Xppqqpexpq ˝ TpXpY q ´ Y

“ Gpp,Xppqq pY,∇YXq ´ Y

“ rGpp, 0q `D2Gpp, 0qXppq `Rpp,XppqqXppqs pY,∇YXq ´ Y.

(49.10)

Since Ppp,pq is the identity map on TpM , we have Gpp, 0qpY, Zq “ Y ` Z for any Y, Z P TpM , so
that (49.10) becomes

(49.11) FpϕqppqY “ ∇YX ` rD2Gpp, 0qXppqs pY,∇YXq ` rRpp,XppqqXppqs pY,∇YXq .
In order to understand the second term in this expression, let us consider what it implies about
the linearization ∇ΦX “ DFpIdqX , which can be found by setting ϕsppq :“ expppsXpsqq and
differentiating Fpϕsq with respect to the parameter s: computing this via (49.11) gives

∇
Φ
YX “ d

ds
FpϕsqppqY

ˇ̌̌̌
s“0

“ d

ds
p∇Y psXq ` rD2Gpp, 0qsXppqs pY,∇Y psXqq ` rRpp, sXppqqsXppqs pY,∇Y psXqqq

ˇ̌̌̌
s“0

“ ∇YX ` rD2Gpp, 0qXppqs pY, 0q ,
so that (49.11) can now be rewritten as

(49.12) FpϕqppqY “ ∇Φ
YX ` rD2Gpp, 0qXppqs p0,∇YXq ` rRpp,XppqqXppqs pY,∇YXq .

Now if ϕk “ exp ˝Xk for a sequence Xk P XpUq, we can define a sequence of bundle maps Ak :

TU Ñ EndpTUq by
AkpZqY :“ rD2Gpp, 0qZs p0,∇YXkq ` rRpp,XkppqqZs pY,∇YXkq , for p P U , Y, Z P TpM,

and observe that if Xk is C8
loc-convergent to zero, then Ak is as well. Equation (49.12) then implies

that if ϕk satisfy Fpϕkq “ 0, the vector fields Xk satisfy

p∇Φ `AkqXk “ 0,

and the desired sequence of connections is thus ∇k :“ ∇Φ `Ak. �

Here is the main technical result in the background of Theorem 49.37.

Proposition 49.42. In the setting of Lemma 49.41, assume the open subset U Ă M is con-
nected and ϕk ‰ Id for all k. Then after passing to a subsequence, there exists a sequence τk ą 0

with τk Ñ 0 such that the vector fields 1
τk
Xk P XpUq are C8

loc-convergent to a nontrivial solution
X8 P XpUq of the equation ∇ΦX8 “ 0.

Proof. Fix a point p P U and observe that by Lemma 49.39, ϕkppq ‰ p and thusXkppq ‰ 0 for
all k. Choose any sequence τk ą 0 such that the sequence 1

τk
Xkppq P TpM is bounded and also stays

outside some fixed neighborhood of 0 P TpM for all k; note that this requires τk Ñ 0 since Xk Ñ 0

in C8
loc. The rescaled vector fields

1
τk
Xk also satisfy the linear equations∇k

´
1
τk
Xk

¯
“ 1

τk
∇kXk “ 0

for the C8
loc-convergent sequence of connections ∇k Ñ ∇Φ from Lemma 49.41, so Lemma 49.40

implies that they have a subsequence C8
loc-convergent to some vector field X8 P XpUq satisfying

∇ΦX8 “ 0. We have X8ppq ‰ 0 since 1
τk
Xkppq was bounded away from zero. �



442 SECOND SEMESTER (DIFFERENTIALGEOMETRIE II)

Proof of Theorem 49.37. We need to show that some C8
loc-neighborhood of the identity

map in AutpM,Φq contains only maps of the form ϕ1
X for vector fields X P autpM,Φq that are C8

loc-
close to zero. Assume the contrary, namely that there exists a sequence ψk P AutpM,Φq converging
to the identity that cannot be expressed as ϕ1

Yk
for any sequence Yk P autpM,Φq converging to

zero. For each p PM , we can write ψkppq “ expppXkppqq for all k sufficiently large, which uniquely
defines a sequence of vector fields Xk defined on a nested sequence of open subsets Uk ĂM whose
union is M , such that Xk Ñ 0 in the C8

loc-topology on M . (Note that this notion of convergence
does not require each Xk to be defined globally on M ; it suffices that each individual compact
subset of M is contained in Uk for k large enough.) By Lemma 49.38, there exists a smooth
subbundle E Ă TM such that

Ep “  
Y ppq P TpM

ˇ̌
Y P XpMq with ∇

ΦY ” 0
(
,

and we can then choose a complementary subbundle EK Ă TM , so

TM “ E ‘EK.
This produces a decomposition

Xk “ Yk ` Zk, Yk P ΓpE|Uk
q, Zk P ΓpEK|Uk

q,
where Yk and Zk are both C8

loc-convergent to zero. Fixing a point p PM , definepYk P autpM,Φq
for each k as the unique ∇Φ-parallel vector field satisfying pYkppq “ Ykppq. We have pYk Ñ 0 in
C8

loc since Ykppq Ñ 0, thus we can define another sequence in AutpM,Φq converging in C8
loc to the

identity by
fk :“ ϕ1pYk

P AutpM,Φq.
By assumption ψk and fk cannot be identical for any k, so by Lemma 49.39, ψkppq ‰ fkppq and
thus Zkppq ‰ 0 for all k. The sequence f´1

k ˝ ψk P AutpM,Φq is now also C8
loc-convergent to the

identity, so there exist unique vector fields Vk, defined on another nested sequence of open subsets
exhausting M , such that

f´1
k ˝ ψk “ exp ˝Vk on Uk

and Vk Ñ 0 in C8
loc on M . By Proposition 49.42, we can pass to a subsequence and find a

sequence of positive numbers τk Ñ 0 such that 1
τk
Vk converges in C8

loc to a nontrivial vector field
in autpM,Φq.

Let us now examine the behavior of Vkppq P TpM as k Ñ8 more closely. Consider the smooth
function

F : autpM,Φq ‘EK
p

openĄ V Ñ TpM, such that expp pF pY, Zqq “ ϕ1´Y ˝ expppY ppq ` Zq,
where V Ă autpM,Φq ‘EK

p is a small enough neighborhood of 0 so that pY, Zq ÞÑ expppY ppq ` Zq
sends V diffeomorphically to a neighborhood of p in M . We have,

F pY, 0q “ 0 for all Y , and D2F p0, 0qZ “ Z,

and can therefore write
F pY, Zq “ Z `QpY, ZqZ

for some smooth function Q : V Ñ HompEK
p , TpMq that vanishes at p0, 0q; indeed, computing the

integral
ş1
0
d
dτ
F pY, τZq dτ leads to the formula

QpY, Zq “ D2F pY, 0q ´D2F p0, 0q `
ż 1

0

D2F pY, τZq dτ.
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It follows that the sequence of vector fields Vk defined above satisfies

Vkppq “ F ppYk, Zkppqq “ Zkppq `QppYk, ZkppqqZkppq,
where QppYk, Zkppqq Ñ 0, thus the vector field limkÑ8 1

τk
Vk P autpM,Φq has a nontrivial value

in EK
p at p, and that is a contradiction. �

50. Spin structures

In Lecture 42 we took pains to define the notion of a G-structure on a fiber bundle without
assuming that G acts effectively on the standard fiber, but as yet we’ve seen very few actual
examples where non-effective actions arise. One such example flew under the radar in Lecture 46:
the adjoint bundle AdpEq ÑM of a principal G-bundle has fiber g with G acting via the adjoint
representation, which for instance is trivial if G is abelian, and that is the reason why the connection
that AdpEq inherits from an arbitrary principal connection on E will sometimes be canonically
trivial. We will see some less trivial examples in this lecture, and try also to get a general idea of
what the subject known as gauge theory is about.

50.1. The case of dimension three. Let’s dive right in and define what a spin structure
is on an oriented Euclidean vector bundle of rank 3. The reason to start with this case is that the
Lie group we will end up calling Spinp3q is already familiar to us: it can be identified with SUp2q.
The key fact to recall about SUp2q is that it serves as a double cover of SOp3q, i.e. as we saw in
§39.2, there is a Lie group homomorphism

Φ : SUp2q Ñ SOp3q
that is a covering map of degree 2, defined by taking the adjoint representation Ad : SUp2q Ñ
SOpsup2qq and choosing an orthonormal (with respect to an Ad-invariant inner product) basis
of sup2q so as to identify it with R3.

Definition 50.1. A spin structure on an oriented Euclidean vector bundle E ÑM of rank 3

consists of an equivalence class of SOp3q-bundle atlases with transition functions tgβα : UαXUβ Ñ
SOp3qupα,βqPIˆI , together with a system of SUp2q-valued transition functions thβα : Uα X Uβ Ñ
SUp2qupα,βqPIˆI such that

gβα “ Φ ˝ hβα
for all α, β P I.

Another way of saying this is that a spin structure on E ÑM is an SUp2q-structure for which
the action of SUp2q on the standard fiber R3 is via the homomorphism Φ : SUp2q Ñ SOp3q. Every
vector bundle with an SUp2q-structure in this sense inherits from this an SOp3q-structure, defined
simply by replacing the SUp2q-valued transition functions hβα by Φ ˝hβα and letting SOp3q act on
R3 in ths obvious way; if E is given with an orientation and bundle metric in the first place as in
Definition 50.1, then we require the SOp3q-structures determined by this data and by its SUp2q-
structure to be the same. Note that since the SUp2q-action on R3 is not effective, it is important
in Definition 50.1 that the transition functions hβα : Uα X Uβ Ñ SUp2q be required to satisfy the
cocycle condition

hαα “ 1, and hαβhβγhγα “ 1.

In most examples we’ve considered until now, this condition followed automatically from the fact
that any transition function was uniquely determined by the two corresponding local trivializations—
but that is not true anymore, so the cocycle condition must be required explicitly.



444 SECOND SEMESTER (DIFFERENTIALGEOMETRIE II)

Remark 50.2. The definition of the Čech cohomology groups qHkpM ;Z2q with Z2 coefficients
was outlined in Remark 32.6, where we saw that there is a characteristic class w1pEq P qH1pM ;Z2q
of real vector bundles E Ñ M that vanishes if and only if the bundle is orientable. The second
Stiefel-Whitney class w2pEq P qH2pM ;Z2q similarly vanishes if and only if E admits a spin
structure. To define it for an SOp3q-bundle, suppose tΦα : E|Uα

Ñ Uα ˆ R3uαPI is a bundle
atlas with transition functions tgβα : Uα X Uβ Ñ SOp3qupα,βqPIˆI , and assume the open covering
U :“ tUαuαPI of M has been chosen so that all nonempty intersections of up to three of the sets
Uα are connected. (This can always be achieved for instance by choosing a “good” cover—see
Exercise 34.19.) For each α, β, we can make an arbitrary choice of function hβα : UαXUβ Ñ SUp2q
satisfying Φ˝hβα “ gβα; when α “ β, let’s assume hαα “ 1. The resulting system of SUp2q-valued
functions will not generally satisfy the cocycle condition, and this failure can be measured by a
Čech 2-cocycle: for each α, β, γ P I such that Uα X Uβ X Uγ ‰ H, we define cαβγ P Z2 via the
condition

hαβhβγhγα “ p´1qcαβγ ,

where we are using the fact that the system of transition functions tgβαu does satisfy the cocycle
condition and Uα X Uβ X Uγ is connected, so that

Φphαβhβγhγαq “ gαβgβγgγα “ 1,

implying that hαβhβγhγα is a constant equal to ˘1. The next exercise shows that the function
pα, β, γq ÞÑ cαβγ P Z2 is a cocycle and thus represents an element w2pEq P |H2pM ;Z2q, which
turns out to be independent of the choices, and vanishes if and only if it is possible to choose the
functions hβα so that they define a spin structure.

Exercise 50.3. For the Čech cochain f P qC2pU;Z2q defined by fpα, β, γq :“ cαβγ P Z2 in
Remark 50.2, prove:

(a) For all α, β, γ, δ P I, cβγδ ´ cαγδ ` cαβδ ´ cαβγ “ 0. In other words, δf “ 0 P qC3pU;Z2q.
(b) If f 1 P qC2pU;Z2q is a different cochain f 1pα, β, γq “ c1αβγ defined by making different

choices of SUp2q-valued functions h1βα with Φ ˝h1βα “ gβα and h1αα “ 1, then there exists
a function F pα, βq P Z2 defined whenever Uα X Uβ ‰ H such that F pβ, γq ´ F pα, γq `
F pα, βq “ c1αβγ ´ cαβγ whenever Uα X Uβ X Uγ ‰ H. In other words, F P qC1pU;Z2q
satisfies δF “ f 1 ´ f P qC2pU;Z2q.

(c) If there exists a function F pα, βq P Z2 defined whenever Uα X Uβ ‰ H such that cαβγ “
F pβγq´F pαγq`F pαβq holds whenever UαXUβXUγ ‰ H, then the choice of the functions
hβα : Uα X Uβ Ñ SUp2q can be modified so that they satisfy the cocycle condition.

While Definition 50.1 is quite natural, one does not find it stated very often in the literature.
The reason is that there is an equivalent way to formulate the same notion in terms of a principal
bundle, which does not require talking about local trivializations, transition functions or the cocycle
condition. In the following, we denote the bundle of positively-oriented orthonormal frames for
fibers of E by

F SOpEq :“ F SOp3qE.

Definition 50.4. A spin structure on an oriented Euclidean vector bundle E ÑM of rank 3

consists of a principal SUp2q-bundle P ÑM together with a smooth map

Ψ : P Ñ F SOpEq
that sends each fiber Pp for p P M to the corresponding fiber F SOpEpq and is equivariant in the
sense that

ΨpφAq “ ΨpφqΦpAq for all φ P P, A P SUp2q.
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Since SUp2q and SOp3q act freely and transitively on the fibers of their respective principal
bundles, the equivariance condition in Definition 50.4 implies that the map Ψ : P Ñ F SOpEq
defines for each p P M a two-fold covering map Pp Ñ F SOpEpq, and the map P Ñ F SOpEq itself
is therefore also a covering map of degree 2.

Why are Definitions 50.1 and 50.4 equivalent? To go from the second definition to the first, one
can think of an SOp3q-bundle atlas for E ÑM as a family of local sections tsα P ΓpF SOpEq|Uα

quαPI
of its SOp3q-frame bundle, and observe that after possibly shrinking the domains Uα, all of these
sections can be lifted to local sections tα P ΓpP |Uα

q of the principal SUp2q-bundle with Φ˝ tα “ sα.
These systems of local sections uniquely determine systems of transition functions gβα : UαXUβ Ñ
SOp3q and hβα : Uα X Uβ Ñ SUp2q such that

sα “ sβgβα and tα “ tβhβα,

which automatically satisfy the cocycle condition, and the equivariance of Ψ : P Ñ F SOpEq then
implies Φ ˝ hβα “ gβα.

To go the other direction: recall that every fiber bundle is uniquely determined by its system
of transition functions and the way that the structure group acts on the fiber, so in particular,
F SOpEq is isomorphic to the unique SOp3q-bundle that can be constructed via Theorem 42.21 out
of the transition functions tgβαu with standard fiber SOp3q acted upon via left translation. One can
use the lifts thβαu to construct an SUp2q-bundle P ÑM in the same manner, and then define the
map Ψ : SUp2q Ñ SOp3q so that it takes the form Uα ˆ SUp2q Ñ Uα ˆ SOp3q : pp,Aq ÞÑ pp,ΦpAqq
when expressed in corresponding local trivializations of both bundles. We leave it as an exercise to
check that the map constructed in this way is well defined and satisfies the equivariance condition.

50.2. Motivation from quantum mechanics. Before proceeding to generalize spin struc-
tures beyond dimension three, I’d like to address the question of why anyone might ever think such
a notion is useful. This requires a short digression on quantum mechanics.

Every physical system comes with certain natural symmetries, and it is always important to
make sure that the laws describing the behavior of that system are invariant under those symme-
tries. In classical mechanics, which takes place in R3 with the Euclidean metric gE, the symmetry
group is usually Isom`pR3, gEq Ă IsompR3, gEq, which consists of all orientation-preserving isome-
tries of pR3, gEq, and is generated by the rotation group SOp3q and the translations x ÞÑ x ` v

for v P R3. For simplicity, we will ignore the translations in this discussion and just talk about
rotations. The SOp3q-invariance of Newton’s laws of mechanics means for instance that if a path
R Ñ R3N : t ÞÑ px1ptq, . . . ,xN ptqq satisfies the system of second-order differential equations de-
scribing the possible motion of N objects in space exerting gravitational forces on each other, then
for every R P SOp3q, t ÞÑ pRx1ptq, . . . ,RxN ptqq is also a solution to that system of equations. This
must be true, because the second path can also be interpreted as the same solution but observed
in a different reference frame that has been rotated relative to the first one. If preferred, one can
simultaneously consider the evolution of the momenta p1ptq, . . . ,pN ptq P R3 of the N particles
(which determine their velocities), so that the motion of the path

RÑ R6N : t ÞÑ px1ptq, . . . ,xN ptq,p1ptq, . . . ,pN ptqq
is determined by a first-order differential equation. The “physical state” of the system at a given
time is then described as a point in the so-called phase space R6N , and if that state is known
at some reference time t0, the rest of the path in phase space is determined by it. The rotation
group acts on phase space in a completely straightforward way, as the product of 2N copies of the
canonical linear representation of SOp3q on R3.

Nonrelativistic quantum mechanics also lives in pR3, gEq and thus needs to be invariant under
rotations, but there is now a major difference in the meaning of the term “physical state”, which
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causes a somewhat subtle difference in the way that symmetries can be represented. As any
physicist will tell you, a physical state in quantum mechanics is determined by a vector of norm 1

in a complex Hilbert space H. For the following discussion, I will occasionally pretend that H is
finite dimensional so that some basic principles of linear algebra can be applied—in most situations
H would be infinite dimensional, and this introduces technical complications that have motivated
the development of entire subfields within functional analysis, but these technical complications
are tangential to our discussion, so we will ignore them. The possible outcomes of measurements
of a quantum mechanical system are determined by the absolute values of inner products |xv, wy|
of vectors v, w P H with norm 1. In more detail, if the system is in the state determined by a
normalized vector v P H at time t0, and we wish to measure some physical quantity of the system
at that time, say its energy, then it may or may not be possible to predict a precise answer based
on the state v. In particular, quantum mechanics associates to every observable quantity such as
energy a Hermitian operator on H, and the state v P H will have a definite energy if and only
if it is an eigenvector of that operator, whose eigenvalue is then the value of the energy. If v is
not an eigenvector, but we are given a normalized eigenvector w with eigenvalue E P R, then the
probability of getting E as the answer when we measure the energy of the system in state v is
defined to be

P pEq :“ |xw, vy|2 P r0, 1s.
Everything that can ever be predicted about the results of measurements in quantum mechanics
is therefore determined in this way by absolute values of inner products of H.

Now observe: the normalized vectors v, w P H can each be multiplied by eiθ for any θ P
R without changing the probability P pEq defined above. This means that as far as physical
measurements are concerned, a state of the system does not actually correspond to a normalized
vector in H, but rather to an element of its projectivization

PpHq :“ pHzt0uqLC˚ “  
v P H

ˇ̌ }v} “ 1
(M

S1,

where S1 Ă C˚ is the unit circle and both groups act on H by scalar multiplication. The symmetry
question now becomes: what are the possible ways for SOp3q to act on PpHq so that products |xv, wy|
are invariant?

One obvious answer is that SOp3q could act directly onH via a unitary representation SOp3q Ñ
UpHq, but other scenarios are also possible. For instance, if we are instead given a unitary repre-
sentation of SUp2q,

ρ : SUp2q Ñ UpHq,
then we can use the double cover Φ : SUp2q Ñ SOp3q to define an SOp3q-action on PpHq by

Arvs :“ r˘ρprAqvs, where rA P Φ´1pAq Ă SUp2q.
Each A P SOp3q lifts to two possible choices of rA P SUp2q, hence the ˘ sign, but since we are
working in the projectivization, it does not matter which sign we pick. An SOp3q action on PpHq
in this sense is called a projective representation of SOp3q on H. In general, every unitary
representation of SOp3q naturally gives rise to a non-faithful unitary representation of SUp2q, sim-
ply by composing the map SOp3q Ñ UpHq with the double cover SUp2q Ñ SOp3q, but there also
exist faithful representations of SUp2q, such as its canonical unitary representation on C2, which
do not correspond to any honest representation of SOp3q, but do give rise to projective representa-
tions. The basic principles of quantum mechanics therefore dictate that in order to understand the
symmetries of a physical system, one might sometimes need to consider representations of SUp2q
instead of SOp3q. A fundamental result known as Wigner’s theorem guarantees moreover that this
is the most general thing that can happen: every admissible SOp3q-action on PpHq can be defined
via a unitary representation of SUp2q on H.
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The result can also be expressed in terms of the Lie algebra sop3q. Recall that the derivative
of the covering map Φ : SUp2q Ñ SOp3q at 1 is a Lie algebra isomorphism Φ˚ : sup2q Ñ sop3q.
Any unitary representation ρ : SUp2q Ñ UpHq similarly induces a Lie algebra representation
ρ˚ : sup2q Ñ upHq Ă EndpHq, and in light of the isomorphism Φ˚, this can equally well be
viewed as a representation of sop3q, acting on H by anti-Hermitian transformations. The group
SUp2q is diffeomorphic to S3 and thus simply connected, so by Theorem 39.23, every Lie algebra
representation of sup2q arises from a group representation of SUp2q, and it follows that every Lie
algebra representation of sup2q – sop3q by anti-Hermitian transformations on H could conceivably
occur in a quantum mechanical system. On the other hand, SOp3q – SUp2q{Z2 is diffeomorphic
to RP3, which is not simply connected, so a representation of its Lie algebra sop3q does not always
lift to a representation of SOp3q, but does always lift to a projective representation, obtained by
identifying sop3q with sup2q and then lifting the sup2q-representation to SUp2q.

Experiments with elementary particles revealed in the early 20th century that, in fact, one
must allow certain Lie algebra representations of sop3q that do not lift to representations of SOp3q.
This is where the word “spin” comes into the story. Spin is a form of angular momentum that
elementary particles have, which can be measured in experiments, but was found to have some
properties completely different from anything in the world of classical mechanics: for example,
for each type of particle, the spin about a given axis can take only finitely many possible values.
Perhaps I should back up and clarify more precisely what “angular momentum” means.

There is a basic principle called Noether’s theorem, valid in both classical and quantum me-
chanics, which states that every 1-parameter family of symmetries of a physical system gives rise
to an observable quantity that is conserved as the system evolves. The laws of conservation of
energy, momentum and angular momentum are all examples of this principle, resulting from the
invariance of physical laws under time translations, spatial translations and rotations respectively.
As mentioned above, each observable quantity in quantum mechanics is represented by a Hermit-
ian operator on the Hilbert space H, and the operator in question can be derived from Noether’s
theorem as an infinitesimal generator of the corresponding symmetry. More precisely, if G is a Lie
group acting on H via a unitary representation ρ : GÑ UpHq, then since the Lie algebra of UpHq
consists of anti-Hermitian linear transformations H Ñ H, we can associate to every 1-parameter
group of symmetries expptXq P G generated by a Lie algebra element X P g a unique Hermitian
linear transformation A : HÑ H,107 such that

ρpexpptXqq “ eitA,

or in other words,
ρ˚pXq “ iA.

Up to a factor of the physical constant ~, which can be set equal to 1 in the right units of
measurement, the Hermitian operator A on H is defined to represent the observable quantity
corresponding to the symmetries generated by X P g.

By definition, the angular momentum of a physical system about a particular axis in R3

is the conserved observable quantity that corresponds via Noether’s theorem to the rotational
symmetry about that axis. Concretely, this means that if ρ˚ : sop3q – sup2q Ñ upHq is the Lie
algebra representation by which the generators of rotations act on physical states, and we write
the rotation by angle θ about the xj-axis for j “ 1, 2, 3 as

eθRj P SOp3q, Rj P sop3q,
107This is where the discussion becomes much more complicated if H is infinite dimensional, but even in that

case, one can use a functional-analytical result called Stone’s theorem to derive A from ρpexpptXqq as an unbounded
self-adjoint operator on H; see e.g. [RS80].



448 SECOND SEMESTER (DIFFERENTIALGEOMETRIE II)

then the angular momentum about the xj-axis is represented by the unique Hermitian operator
Lj on H satisfying

ρ˚pRjq “ iLj .

One of the surprising insights revealed by experiments in the early days of quantum mechanics
was that every electron has, aside from its so-called orbital angular momentum that depends on
its motion through R3 and corresponds directly to the classical notion of angular momentum, an
additional intrinsic angular momentum that is independent of its motion in space and can only take
two values when measured about any given axis. This intrinsic angular momentum is what is called
the spin of a particle. If one ignores the orbital angular momentum, e.g. by imagining an electron
that is confined to a fixed position in space, then the existence of spin indicates that sop3q must be
acting on H via a representation in which each of the standard generators of rotations correspond
to anti-Hermitian transformations on H that have only two eigenvalues. This can only be true if
H is C2, with sop3q – sup2q acting on it by something equivalent to the canonical representation of
sup2q on C2, in which the rotation generators Rj P sop3q correspond to ´ i

2
σj P sup2q for the Pauli

matrices σ1,σ2,σ3 mentioned in §39.2. This is the simplest example of a representation of the Lie
algebra sop3q – sup2q that does not lift to a group representation of SOp3q. It does of course lift
to a unitary representation of SUp2q, given by the inclusion

ι : SUp2q ãÑ Up2q.
Let us briefly describe how to relax the fictional assumption that our electron is fixed in place.

In the usual presentation of quantum mechanics for a single particle in R3, ignoring spin, the Hilbert
space H is taken to be the space L2pR3,Cq of square-integrable complex-valued functions on R3,
and the so-called wave function ψ P L2pR3,Cq of a particle is then interpreted as a probability
distribution, where the probability of finding the particle to be located in a particular region
U Ă R3 is defined as

P pUq :“
ż
U

|ψpxq|2 dx1 ^ dx2 ^ dx3.

Rotations R P SOp3q act on L2pR3,Cq in a fairly obvious way, namely

pR ¨ ψqpxq :“ ψpR´1xq,
thus defining a unitary (not just projective) representation ρ : SOp3q Ñ UpHq, which can also be
regarded as a representation SUp2q Ñ UpHq after composing it with the double cover Φ : SUp2q Ñ
SOp3q. The Hermitian operators Lj on L2pR3,Cq defined via ρ˚pRjq “ iLj represent what is
called the orbital angular momentum of the particle. In order to incorporate spin into this picture
and thus describe the electron, one can generalize by replacing L2pR3,Cq with

H :“ L2pR3,C2q “ L2pR3,Cq b C2,

with the SUp2q-action on H defined as the tensor product ρbι of the two representations described
above, so in terms of vector-valued functions ψ : R3 Ñ C2,

pR ¨ ψqpxq :“ RψpΦpR´1qxq, R P SUp2q.
Differentiating the representation ρ b ι at 1 yields a Lie algebra representation pρb ιq˚ : sop3q –
sup2q Ñ upL2pR3,Cq b C2qq that is a sum of two terms,

pρb ιq˚pAq “ ρ˚pAq b 1` 1b ι˚pAq, A P sup2q – sop3q,
and the two corresponding Hermitian operators on L2pR3,Cq bC2 are interpreted as representing
the orbital angular momentum and the spin respectively. The existence of spin thus acquires
a precise mathematical explanation: it results from the fact that wave functions in quantum
mechanics can be vector valued, and the range of possible values of the spin is determined by the
choice of unitary representation with which SUp2q acts on these vector values.
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The transformation of the space L2pR3,C2q of electron wave functions under rotations has the
following peculiar property. If ψ0 P L2pR3,C2q represents the state of an electron in a particular
reference frame, and we define a smooth family of wave functions tψθ P L2pR3,C2quθPR by requiring
ψθ to be the same state but viewed from a reference frame that is rotated by an angle θ about a
fixed axis in R3, then

ψ2π “ ´ψ0.

In other words, after the observer has made one full rotation, the wave function appears to have
changed its sign. This fact has caused intense confusion for generations of physics undergradu-
ates,108 but it’s really just another symptom of the fact that SOp3q does not act directly on the
space of wave functions, but only on its projectivization—the actual group action in the picture
is an action of SUp2q, and under the double cover SUp2q Ñ SOp3q, a single loop of rotations in
SOp3q lifts to a path in SUp2q from 1 to ´1, not a closed loop. This causes no theoretical problem
in quantum mechanics since the wave function itself is not something that can be measured, only
the absolute values of its inner products with other wave functions can be, and these do not see
the difference between ψ0 and ´ψ0.

Since C2-valued wave functions were introduced as a way to represent particles with spin,
physicists refer to the vectors in C2 in this context as spinors. This word is also used more generally
to refer to representations of the special orthogonal Lie algebra that do not lift to representations
of the special orthogonal group.

50.3. The Dirac equation. The motivation for what comes next warrants a second digres-
sion on quantum mechanics.

The quantum theory of Schrödinger and Heisenberg was hugely successful at describing ordi-
nary phenomena at the atomic scale, but it was always known to be incomplete, because it was
not consistent with Einstein’s theory of special relativity. Unlike nonrelativistic mechanics, which
lives on R3 with the Euclidean metric, special relativity lives in R4 with the Minkowski metric

gM “ ηµν dx
µ dxν :“ pdx0q2 ´ pdx1q2 ´ pdx2q2 ´ pdx3q3,

which has signature p1, 3q. In the following we will use the physicists’ notational convention in
which the coordinates on Minkowski space are labelled with a Greek index ranging from 0 to 3,
while Latin indices are reserved for the spatial coordinates, thus xj for j “ 1, 2, 3 are the usual
coordinates of 3-dimensional space, t :“ x0 represents time, and all four can be denoted by xµ

for µ “ 0, . . . , 3. The analogue of the rotation group SOp3q for Minkowski space is the Lorentz
group SOp1, 3q :“  

A P Op1, 3q ˇ̌ detpAq “ 1
(
, which contains a copy of SOp3q as the subgroup

SOp3q –
#ˆ

1 0

0 R

˙
P GLp4,Rq

ˇ̌̌̌
ˇ R P SOp3q

+
Ă SOp1, 3q

acting on ttu ˆ R3 for each constant t by rotations, but also includes transformations known as
Lorentz boosts that mix the time and spatial coordinates.

In the nonrelativistic quantum mechanics of a single particle, the state of the system is de-
scribed by a function ψpt,xq of pt,xq P R ˆ R3, such that |ψpt, ¨q|2 : R3 Ñ r0,8q is interpreted
as a probability distribution for the location of the particle at time t. The evolution of the wave
function over time is governed by the Schrödinger equation, a PDE that is first-order in time, so
that if ψpt0, ¨q for a given t0 is known, then it determines ψ for all t. The Schrödinger equation
is not invariant under the action of SOp1, 3q, thus the first challenge in developing a relativistic

108I know this from personal experience.
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formulation of quantum mechanics was to find an SOp1, 3q-invariant replacement for it. One PDE
that seems natural to consider in this context is the Klein-Gordon equation109˜

B2t ´
3ÿ
j“1

B2j `m2

¸
ψ “ `BµBµ `m2

˘
ψ “ 0,

where m ě 0 is a constant representing the mass of the particle, and we abbreviate

Bµ :“ ηµνBν .
This equation seems natural for a few reasons: to start with, one of the fundamental equations of
classical relativity is a relation between the mass m, kinetic energy E and momentum p of a freely
moving particle that takes the form

E2 ´ |p|2 “ m2,

and if one replaces the observables E and p in this equation with the Hermitian operators on
L2pR3q that represent them in standard nonrelativistic quantum mechanics, the Klein-Gordon
equation is what comes out. Another reason is the experimental observation that freely moving
particles of mass m ě 0 can be described quantum-mechanically in terms of wave-like functions of
the form

ψpt,xq “ eipωt´xk,xyq,
where the frequency ω P R and wave vector k P R3 are related to each other by ω2´|k|2 “ m2. The
Klein-Gordon equation is the natural SOp1, 3q-invariant wave equation that has these particular
traveling waves as solutions.

The problem with the Klein-Gordon equation is that it is second-order in time, thus knowledge
of the solution at a given time t0 does not determine the rest of the solution, and for this reason,
this equation was not considered suitable for a formulation of relativistic quantum mechanics. This
definciency motivates the question: can we find an SOp1, 3q-invariant PDE that is first-order in
time and admits the same wave-like solutions as the Klein-Gordon equation?

The second-order differential operator BµBµ is essentially a variation on the standard Laplace
operator—if we were using the Euclidean metric on R4 instead of the Minkowski metric, it would
be (up to a sign) precisely the Laplace operator. Dirac’s original idea for relativistic quantum
mechanics was to look for a first-order differential operator that would be a square root of this
generalized Laplacian. He proposed as an ansatz to write such an operator in the form

{B :“ γµBµ,
and to choose the symbols γ0, γ1, γ2, γ3 to have algebraic properties such that {B2 “ BµBµ, so that
solutions to the equation

(50.1) pi{B ´mqψ “ 0

would then automatically also satisfy the Klein-Gordon equation,

´pi{B `mqpi{B ´mqψ “ p{B2 `m2qψ “ pBµBµ `m2qψ “ 0.

Using the commutativity of the operators Bµ and Bν , we find
{B2 “ γµγνBµBν “ 1

2
pγµγν ` γνγµqBµBν ,

and Dirac’s idea works if and only if this operator matches ηµνBµBν “ BµBµ, which is true if

(50.2) γµγν ` γνγµ “ 2ηµν .

109We are formulating this discussion in what particle physicists refer to as “natural units”, chosen so that both
Planck’s constant ~ and the speed of light c are equal to 1. If the speed of light were not 1, then factors of c2 would
need to appear in the Klein-Gordon equation and several other relations.
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This identity obviously cannot be satisfied if the γµ are assumed to be mere scalars, but one can
find sets of matrices that satisfy it if the right hand side is interpreted as the product of the
scalar 2ηµν with the identity matrix, e.g. Dirac came up with the particular set of complex 4-by-4
matrices

(50.3) γ0 :“
ˆ
12ˆ2 0

0 ´12ˆ2

˙
, γj :“

ˆ
0 σj

´σj 0

˙
for j “ 1, 2, 3,

where σj denote the 2-by-2 Pauli matrices introduced in §39.2. This is not the only possible choice:
another popular convention is to keep γ1, γ2, γ3 as defined above but set

(50.4) γ0 :“
ˆ

0 12ˆ2

12ˆ2 0

˙
With any such choice of matrices in place, the Dirac equation (50.1) can be viewed as a PDE for
C4-valued functions on R4, which is indeed first-order and implies the Klein-Gordon equation. The
invariance of the Dirac equation under SOp1, 3q is a slightly tricky business, because here it once
again turns out that the right symmetry group to consider is not SOp1, 3q itself, but instead the
universal cover of SOp1, 3q, which happens to be a double cover. We will not get into the details
here, as they can be derived from the more general discussion in §50.5 below, but suffice it to say
that the functions ψ : R4 Ñ C4 satisfying the Dirac equation are known as Dirac spinors, and
the vector space C4 in which they take their values is acted upon via a Lie algebra representation
of sop1, 3q that does not lift to a representation of SOp1, 3q, but does determine a projective
representation.

Remark 50.5. The fact that both the domain and the target of the functions fed into Dirac’s
equation (50.1) are 4-dimensional (real and complex respectively) is a coincidence, nothing more.
The use of C4 results from having chosen a particular representation of the algebraic relation
(50.2) via 4-by-4 matrices. One can also find other representations with N -by-N matrices for some
N ą 4, and the Dirac equation then becomes an equation for functions ψ : R4 Ñ CN . It is not
even strictly necessary for the target vector space to be complex, but this is traditional in quantum
mechanics.

50.4. Clifford algebras and spin groups. Our goal for the remainder of this lecture will
be to write down a coordinate-invariant version of the Dirac equation that makes sense on any
pseudo-Riemannian manifold endowed with certain extra structure. The extra structure required
turns out to be a spin structure.

The general definition of the spin groups requires a short excursion into the world of Clifford
algebras, which can be thought of as a formalization of Dirac’s matrix relation (50.2), though they
also were known to mathematicians before Dirac. Throughout the following, V denotes a real
n-dimensional vector space that is equipped with a symmetric nondegenerate bilinear form x , y.
We denote by OpV q Ă GLpV q the group of linear transformations that preserve x , y, define the
subgroup consisting of orientation-preserving transformations,

SOpV q :“  
R P OpV q ˇ̌ detpRq “ 1

(
and let sopV q denote their common Lie algebra. Note that SOpV q is the identity component of
OpV q if x , y is a positive inner product, but in the indefinite case, SOpV q is generally a union of
multiple connected components of OpV q.

Definition 50.6. Let T pV q :“ À8
k“0 V

bk denote the tensor algebra of V , which is an asso-
ciative unital algebra with respect to the product b. The Clifford algebra of V is

ClpV q :“ T pV qLI,
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where I Ă T pV q is the two-sided ideal generated by all elements of the form vbv`xv, vy for v P V .
The product of two elements x “ rvs and y “ rws in ClpV q will be written simply as

xy :“ rv b ws P ClpV q.
We identify V itself with the subspace of ClpV q consisting of all elements of the form rvs P ClpV q
for v P V “ V b1 Ă T pV q, and R with the subspace consisting of elements of the form rts P ClpV q
for t P R “ V b0 Ă T pV q.

Exercise 50.7. Check that the natural maps R Ñ ClpV q : t ÞÑ rts and V Ñ ClpV q : v ÞÑ rvs
are injective.
Hint: If you get stuck, see [LM89, page 8].

By definition, every v P V Ă ClpV q satisfies the algebraic relation v2 “ ´xv, vy, so plugging
v ` w into this relation for arbitrary v, w P V and expoiting bilinearity gives

vw ` wv “ ´2xv, wy.
Up to a sign, this generalizes the relation (50.2) satisfied by Dirac’s γ-matrices if one imagines
them as forming an orthonormal basis of the 4-dimensional vector space that they span. The extra
sign is a convention, and is not universal—some treatments define the ideal I in ClpV q “ T pV q{I
as generated by elements of the form v b v ´ xv, vy, which is more consistent with Dirac’s choice
of matrices, but our convention translates easily into Dirac’s by introducing factors of i where
appropriate. For mathematical reasons, some things (such as Examples 50.9 and 50.10 below)
work out a bit prettier if one assumes vw ` wv is ´2xv, wy instead of 2xv, wy, so that is what we
will do, but there is no deep significance to this choice.

Exercise 50.8. Show that ClpV q has the same dimension as the exterior algebra Λ˚V “Àn
k“0 Λ

kV , namely 2n “ řn
k“0

`
n
k

˘
, and for any choice of orthonormal basis e1, . . . , en of V , the

elements of the form ei1 . . . eik for k ě 0 and 1 ď i1 ă . . . ă ik ď n form a basis of ClpV q.
(Note that the case k “ 0 is included here: the product ei1 . . . eik is in this case understood to be
1 P ClpV q.)

When V is taken to be Rn with its standard inner product of signature pk, ℓq, we will denote
Clpk, ℓq :“ ClpRnq, and in particular Clpnq :“ Clpn, 0q.

Example 50.9. For R with its Euclidean inner product, we can pick a basis e P R with |e| “ 1,
and the elements 1, e P Clp1q then form a basis of Clp1q. Since e2 “ ´xe, ey “ ´1, the algebra
Clp1q is isomorphic to the complex numbers.

Example 50.10. For R2 with its Euclidean inner product, a choice of orthonormal basis
e1, e2 P R2 gives rise to a basis of Clp2q in the form 1, e1, e2, e3 :“ e1e2. The Clifford algebra
relations then imply

e23 “ pe1e2q2 “ e1e2e1e2 “ ´e21e22 “ ´1,
and one can similarly show that e2e3 “ e1 and e3e1 “ e2. It follows that the algebra Clp2q is
isomorphic to the quaternions.

Remark 50.11. The pattern seen in Examples 50.9 and 50.10 clearly cannot be continued
further since we have already exhausted the available associative division algebras. Most Clifford
algebras indeed do not have the property that all nonzero elements admit multiplicative inverses.
The reader might enjoy working out the case Clp1, 1q to see what I mean.

Every Clifford algebra contains an open subset

ClˆpV q :“  
x P ClpV q ˇ̌ there exists y P ClpV q such that xy “ yx “ 1

(
.
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To see that it is open, there is a trick that works for any finite-dimensional algebra: choose a norm
} ¨ } on ClpV q and scale it so that }xy} ď }x} ¨ }y} for all x, y P ClpV q, making ClpV q into a so-called
Banach algebra. The series 1´ x` x2´ x3` . . . is then guaranteed to converge whenever }x} ă 1,
and it defines a multiplicative inverse for 1` x. One can use this to derive a series formula for the
inverse of x`y whenever x is invertible and }y} is sufficiently small. This series formula can also be
used to show that the inversion map ClˆpV q Ñ ClˆpV q : x ÞÑ x´1 is smooth, and multiplication
on ClpV q is clearly also smooth, thus ClˆpV q is a Lie group with respect to multiplication. It
contains, for instance, every v P V Ă ClpV q with xv, vy ‰ 0, since ´ v

xv,vy is then a multiplicative
inverse for v. The subgroup SpinpV q Ă ClˆpV q is defined as the group consisting of all products
of evenly many elements v P V with xv, vy “ ˘1, that is,

SpinpV q :“  
v1 . . . v2N P ClpV q ˇ̌ N ě 1, vj P V such that xvj , vjy “ ˘1 for j “ 1, . . . , 2N

(
.

It is far from obvious from this definition whether SpinpV q is a submanifold of ClˆpV q, but we will
address this issue in Theorem 50.15 below. There is a natural representation of SpinpV q on ClpV q,
called the adjoint representation

Ad : SpinpV q Ñ GLpClpV qq : x ÞÑ Adx, Adxpyq :“ xyx´1.

Observe that the transformations Adx : ClpV q Ñ ClpV q are not just linear, they are also algebra
homomorphisms, so Ad sends SpinpV q to the group AutpClpV qq of automorphisms of the Clifford
algebra.

Exercise 50.12. For any codimension 1 subspace H Ă V on which the restriction of x , y
is nondegenerate, one can define the reflection about H as the unique linear map V Ñ V that
fixes every point in H but sends v ÞÑ ´v for all v P HK. (Note that this definition does not make
sense if x , y|H is degenerate, because HK is then contained in H ; see Lemma 24.7 from the first
semester.)

(a) For x P V with xx, xy “ ˘1, show that the reflection V Ñ V about xK is given by
v ÞÑ ´xvx´1.

(b) Deduce that for each x P SpinpV q, the transformation Adx : ClpV q Ñ ClpV q preserves the
subspace V Ă ClpV q and acts on it by orientation-preserving orthogonal transformations.

The upshot of the preceding exercise is that the adjoint representation of SpinpV q on ClpV q
gives rise to a natural group homomorphism

Φ : SpinpV q Ñ SOpV q : x ÞÑ Adx |V .
We will see below that SpinpV q is naturally a Lie group and Φ is a smooth double cover, thus
generalizing the cover SUp2q Ñ SOp3q. Proving this will require computing the kernel of Φ, for
which the following exercise serves as preparation.

Exercise 50.13. An anti-homomorphism A Ñ B between two associative algebras is by
definition a linear map ψ : AÑ B such that ψpxyq “ ψpyqψpxq for all x, y P A. Prove:

(a) Every linear map V Ñ V has a unique extension to an anti-homomorphism T pV q Ñ T pV q,
and the extension is bijective if and only if the given map V Ñ V is an isomorphism.

(b) For the identity map V Ñ V , the unique extension to an anti-homomorphism T pV q Ñ
T pV q descends to the quotient ClpV q “ T pV q{I, thus defining an anti-homomorphism

ψ : ClpV q Ñ ClpV q
that is the identity map on V .

(c) For x P SpinpV q, the anti-homomorphism ψ : ClpV q Ñ ClpV q satisfies ψpxq “ x´1.



454 SECOND SEMESTER (DIFFERENTIALGEOMETRIE II)

The next exercise gives further evidence for a close relationship between SpinpV q and SOpV q
by showing that the algebraic properties of the product on ClpV q secretly contain the Lie algebra
structure of sopV q.

Exercise 50.14. Given an orthonormal basis e1, . . . , en P V , let spinpV q Ă ClpV q denote the
vector space spanned by all products of the form eiej for i ‰ j. Prove:

(a) spinpV q Ă ClpV q does not depend on the choice of orthonormal basis e1, . . . , en P V .
(b) spinpV q is a Lie algebra with respect to the commutator bracket rx, ys :“ xy ´ yx.
(c) For any v, w P V satisfying xv, vy “ ˘1, xw,wy “ ˘1 and xv, wy “ 0, we have vw P

spinpV q and e 1

2
tvw P SpinpV q for all t P R, where for x P ClpV q, we define ex :“ ř8

k“0
xk

k!
P

ClpV q.
(d) Under the assumptions of part (c), can you give a geometric interpretation to the family

of transformations Φpe 1

2
tvwq P SOpV q?

Hint: Evaluate Φpe 1

2
vwq on v and w and on an arbitrary vector orthogonal to both.

(e) Construct a smooth map ϕ : spinpV q Ñ ClpV q whose derivative at 0 P spinpV q is the
inclusion spinpV q ãÑ ClpV q, such that the image of ϕ is in SpinpV q and the derivative of
Φ ˝ ϕ : spinpV q Ñ SOpV q at 0 is a Lie algebra isomorphism spinpV q Ñ sopV q.
Hint: Using the orthonormal basis e1, . . . , en P V , first define ϕpteiejq for each t P R and
i ‰ j, then extend it to the rest of spinpV q in whatever way is convenient.

Theorem 50.15. The group SpinpV q is a smooth submanifold of ClpV q and is thus a Lie
group. Moreover, the group homomorphism Φ : SpinpV q Ñ SOpV q defined by restricting the
adjoint representation to V Ă ClpV q is a covering map of degree 2.

Sketch of the proof. By Exercise 50.12, the image of the map Φ : SpinpV q Ñ SOpV q
consists of all products of evenly many reflections. By a classical result known as the Cartan-
Dieudonné theorem (see e.g. [Gar11, §4.8]), all of OpV q is generated by reflections, and since each
individual reflection is orientation reversing, it follows that the image of Φ is SOpV q. We claim that
the kernel of Φ contains only the two elements ˘1. Indeed, if x P SpinpV q satisfies xvx´1 “ v for
all v P V , then x commutes with all of ClpV q, which implies x P R Ă ClpV q, so the claim reduces
to showing that ˘1 are the only two scalars in SpinpV q. One sees this from Exercise 50.13: the
unique anti-homomorphism ψ : ClpV q Ñ ClpV q that satisfies ψpvq “ v for all v P V also satisfies
ψpxq “ x´1 for all x P SpinpV q, and if x P SpinpV q XR, it follows that x “ x´1, and thus x “ ˘1.

Having established that Φ : SpinpV q Ñ SOpV q is a surjective group homomorphism with
kernel t˘1u, the smoothness of SpinpV q follows easily in light of Exercise 50.14: in particular, the
inverse function theorem provides a neighborhood U of 0 in the vector space spinpV q Ă ClpV q such
that the map U Ñ SOpV q : X ÞÑ ΦpϕpXqq is a diffeomorphism onto a neighborhood of 1 in SOpV q.
This is enough information to conclude that U Ñ SpinpV q : X ÞÑ ϕpXq gives a parametrization of
SpinpV q on a neighborhood of 1, from which one deduces that SpinpV q is a Lie group. �

From now on we will use the following notation: for V “ Rn with the standard indefinite inner
product of signature pk, ℓq, we write

Spinpk, ℓq :“ SpinpV q Ă Clpk, ℓq,
and for positive inner products in particular,

Spinpnq :“ Spinpn, 0q Ă Clpnq.
By definition, every spin group comes equipped with a two-to-one Lie group homomorphism to the
corresponding special orthogonal group,

Φ : Spinpk, ℓq Ñ SOpk, ℓq.
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Example 50.16. Since SOp3q – RP
3 has a double cover as its universal cover, standard

covering space theory implies that every nontrivial covering space of SOp3q is simply connected,
hence Spinp3q is also the universal cover of SOp3q. It then follows via the uniqueness of the universal
cover (cf. Corollary 39.24) that Spinp3q is isomorphic to SUp2q.

Exercise 50.17. What is Spinp2q?
Hint: This is a rare example of a spin group that is not simply connected.

50.5. Dirac operators on manifolds. Now that the groups Spinpk, ℓq are in place, you
could presumably write down the general definition of a spin structure yourself.

Definition 50.18. Suppose E ÑM is an oriented real vector bundle of rank m with a bundle
metric x , y of signature pk, ℓq. A spin structure on E is an equivalence class of SOpk, ℓq-bundle
atlases on E Ñ M with transition functions gβα : Uα X Uβ Ñ SOpk, ℓq, together with a system of
Spinpk, ℓq-valued transition functions hβα : Uα X Uβ Ñ Spinpk, ℓq such that gβα “ Φ ˝ hβα for the
double cover Φ : Spinpk, ℓq Ñ SOpk, ℓq. Equivalently, a spin structure on E is a principal Spinpk, ℓq-
bundle P Ñ M together with a fiber-preserving smooth map Ψ : P Ñ F SOpEq :“ F SOpk,ℓqpEq
that sends Pp to F SOpEpq for each p P M and satisfies Ψpφgq “ ΨpφqΦpgq for each φ P P and
g P Spinpk, ℓq.

The case most frequently of interest is where E Ñ M is the tangent bundle of an oriented
pseudo-Riemannian manifold pM, gq, and a spin structure on TM is then called a spin structure
on pM, gq. While physicists are primarily interested in manifolds with Lorentzian signature, the
theory of spin structures on Riemannian manifolds has nicer properties and has had a far greater
impact on pure mathematics. One simple reason for this is that, just like the corresponding special
orthogonal groups, Spinpnq is compact and connected, while Spinpk, ℓq for k, ℓ ě 1 is neither (prove
it!). A spin structure on pM, gq also makes it possible to define a coordinate-invariant generalization
of the Dirac equation for sections of certain vector bundles over M , and we will see that from an
analytical perspective, this equation likewise has nicer properties in the Riemannian than in the
indefinite case.

50.5.1. Clifford and spinor bundles. The definition of a Dirac operator requires two funda-
mental ingredients: one is a pseudo-Riemannian manifold with a spin structure, and the other is
a representation of the corresponding Clifford algebra. Let’s start with the latter. Let

ηij “ ηij :“ ˘δij
denote the components of the standard flat metric on Rn with signature pk, ℓq, and choose a set of
matrices γ1, . . . , γn P CNˆN that satisfy the relations

(50.5) γiγj ` γjγi “ ´2ηij1 P CNˆN

for all i, j P t1, . . . , nu. Any such choice determines a unique representation of Clpk, ℓq via linear
maps on CN , i.e. it makes CN into a module over Clpk, ℓq, with the standard basis e1, . . . , en P
Rn Ă Clpk, ℓq acting on CN by

ejv :“ γjv, v P CN , j “ 1, . . . , n.

For certain formulas it will be useful to pretend that the matrices γ1, . . . , γn are the local coordinate
components of a 1-form that can be fed into a musical isomorphism to raise its index, thus defining
new matrices γ1, . . . , γn by

γi :“ ηijγj P CNˆN .
These also satisfy the relations in (50.5), since γi “ xei, eiyγi “ ˘γi for each i. The representations
of Clpk, ℓq can be classified using standard methods of representation theory, and a full account
of it can be found in most books on spin geometry. We will skip that detail here, other than to
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observe that we’ve already seen a couple of examples: up to factors of i, the Dirac matrices in
(50.3) or (50.4) define representations of Clp1, 3q, and a representation of Clp3q can be defined by
putting factors of i in front of the Pauli matrices in §39.2.

Now suppose pM, gq is an oriented pseudo-Riemannian manifold of signature pk, ℓq with a spin
structure, represented by a principal Spinpk, ℓq-bundle P ÑM that doubly covers F SOpTMq. The
representation we’ve chosen for the algebra Clpk, ℓq restricts to Spinpk, ℓq Ă Clpk, ℓq as a group
representation

σ : Spinpk, ℓq Ñ GLpN,Cq,
and thus enables us to build an associated vector bundle, the spinor bundle

E :“ P σ “ pP ˆ CN qL Spinpk, ℓq ÑM.

This is a complex vector bundle over M that has the same Spinpk, ℓq-valued transition functions
as the spin structure on TM .

We next define another vector bundle, the so-called Clifford bundle

ClpTMq :“ ď
pPM

ClpTpMq,

whose fiber over each point p is the Clifford algebra of the tangent space TpM with its inner product
gp of signature pk, ℓq. To see that this set really is a smooth vector bundle in a natural way, we can
define it as another associated bundle. Observe that the canonical action of SOpk, ℓq on Rn extends
uniquely to an SOpk, ℓq-action on Clpk, ℓq via algebra homomorphisms; this action is well defined
since SOpk, ℓq preserves the scalar product on Rn appearing in the Clifford algebra relation, so that
the obvious action of SOpk, ℓq by algebra homomorphisms on the tensor algebra T pRnq preserves
the ideal I Ă T pRnq generated by elements v2 ` xv,vy for v P Rn. Composing the representation
SOpk, ℓq Ñ GLpClpk, ℓqq with the double cover Spinpk, ℓq Ñ SOpk, ℓq then gives a representation of
Spinpk, ℓq on Clpk, ℓq, and it is one that we’ve seen before: it is the adjoint representation, since the
restriction of the latter to Rn was used to define the action of Spinpk, ℓq on Rn. The Clifford bundle
can now be defined as the unique SOpk, ℓq-bundle with the same transition functions as TM and
standard fiber Clpk, ℓq; equivalently, it is the unique Spinpk, ℓq-bundle with standard fiber Clpk, ℓq
such that the transition functions come from the spin structure of TM . In terms of principal
bundles, we obtain two equivalent definitions of ClpTMq as an associated bundle,

ClpTMq “ `
F SOpTMq ˆ Clpk, ℓq˘ L SOpk, ℓq “ pP ˆ Clpk, ℓqq LSpinpk, ℓq.

Since SOpk, ℓq and Spinpk, ℓq act on Clpk, ℓq by algebra isomorphisms, each fiber of ClpTMq now
naturally inherits the structure of a Clifford algebra isomorphic to Clpk, ℓq.

We claim that there is a natural smooth linear bundle map

(50.6) Cl : ClpTMq bE Ñ E : X b η ÞÑ Xη,

which can be interpreted as a bilinear bundle map ClpTMq ‘ E Ñ E and makes each fiber Ep
into a module over the Clifford algebra ClpTpMq. One sees this by viewing both E and ClpTMq
as associated bundles for the principal Spinpk, ℓq-bundle P ÑM , because the linear map

Clpk, ℓq b CN Ñ CN

defined via the chosen representation of Clpk, ℓq on CN is Spinpk, ℓq-equivariant. This follows easily
from the fact that Spinpk, ℓq acts on Clpk, ℓq via conjugation. The resulting map (50.6) is called
Clifford multiplication on E.

Only one more ingredient is needed before we can write down a Dirac equation: if we want to
differentiate sections of the spinor bundle E, we need a connection on E. As it turns out, there is a
canonical choice: TM ÑM already has a canonical connection, the Levi-Cività connection, which
determines a principal connection on F SOpTMq. Since Ψ : P Ñ F SOpTMq is a covering map of
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degree 2, every parallel section of F SOpTMq along a path in M has exactly two lifts to sections of
P along the same path, and it follows that there is a uniquely determined parallel transport map
on P that commutes with the covering map. The resulting principal connection on P Ñ M and
its associated connection on E ÑM are both called the spin connection.

Exercise 50.19. Show that the spin connection on E Ñ M is compatible with the Clifford
multiplication map (50.6) and the Levi-Cività connection on TM ÑM in the following sense: for
all X,Y P XpMq and η P ΓpEq,

∇XpY ηq “ p∇XY qη ` Y∇Xη.

Another way of putting this is that Clifford multiplication defines a bundle map TM Ñ EndpEq
which is parallel with respect to these two connections on TM and E.

With this data in place, we can finally define the Dirac operator

D : ΓpEq Ñ ΓpEq
as follows. The covariant derivative ∇ takes a section η P ΓpEq to a section ∇η of HompTM,Eq,
which is naturally isomorphic to T ˚M b E. The bundle metric on TM determines a musical
isomorphism 7 : T ˚M Ñ TM that is inverse to 5 : TM Ñ T ˚M : X ÞÑ xX, ¨y, thus giving a linear
bundle map 7b1 : T ˚M bE Ñ TM bE sending products λb η P Tp̊M bEp at each point p PM
to λ7bη P TpM bEp. Any section of TMbE can then be plugged into the Clifford multiplication
Cl : TM b E Ñ E, producing a section in E. In total, D is the composition of the covariant
derivative operator ∇ with two smooth linear bundle maps:

ΓpEq ΓpT ˚M bEq ΓpTM bEq ΓpEq.∇

D

7b1 Cl

To see that the result of this rather abstract construction is actually something familiar, choose a
local frame X1, . . . , Xn for TM over some region U ĂM that is orthonormal, meaning xXi, Xjy “
ηij . Any vector field Y over U can then be written as Y “ Y iXi for suitable component functions
Y i : U Ñ R, which satisfy

xXi, Y y “ xXi, Y
jXjy “ ηijY

j “: Yi, thus Y i “ ηijYj “ ηijxXj , Y y.
For any η P ΓpE|Uq, we thus have

∇η “ ∇p¨qη “ ∇ηijxXj ,¨yXi
η “ ηijxXj, ¨y b∇Xi

η,

and applying 7 b 1 turns this into ηijXj b ∇Xi
η. Feeding this into Clifford multiplication thus

gives the local formula
Dη “ ηijXj∇Xi

η “: X i
∇Xi

η,

where as a matter of notational convenience, we are defining the Clifford multiplication of X i (with
raised index) on E to be the Clifford multiplication of the linear combination ηijXj “ xXi, XiyXi “
˘Xi.

Example 50.20. In the special case whereM is Rn with a flat metric having components ηij “
xBi, Bjy, the bundle TM and its connection are both trivial, so the frame bundle F SOpTMq and
principal Spinpk, ℓq-bundle P are also trivial, and therefore so is the spinor bundle, implying that we
can describe sections η P ΓpEq as functions η : Rn Ñ CN . We can also take the orthonormal frame
in the calculation above to be B1, . . . , Bn, and the action of these tangent vectors on E “ Rn ˆCN
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by Clifford multiplication is then given by the matrices γ1, . . . , γn that were chosen in (50.5) for
defining the representation of Clpk, ℓq on CN . The Dirac operator in this case thus becomes

D : C8pRn,CN q Ñ C8pRn,CN q : η ÞÑ γjBjη,
exactly as in the classical Dirac equation.

50.5.2. Self-adjointness. 110

One of the fundamental properties of Dirac operators on Riemannian manifolds is that they
are formally self-adjoint, meaning that for a natural choice of Hermitian bundle metric x , y on
the spinor bundle E ÑM , they satisfyż

M

xξ,Dηy dvol “
ż
M

xDξ, ηy dvol
for all smooth compactly supported sections ξ, η P ΓpEq. This is one detail on which it makes a
difference whether the metric on M is positive or indefinite.

To see why it works, we first need to be slightly more specific about our choice of representation
for Clpk, ℓq on a complex vector space CN . We claim that without changing the value of N , the
matrices γ1, . . . , γn satisfying (50.5) can be chosen to be unitary. Indeed, the standard orthonormal
basis e1, . . . , en P Rn generates a finite multiplicative subgroup

G :“  ˘ei1 . . . eim P Clˆpk, ℓq ˇ̌ m ě 0, 1 ď i1 ă . . . ă im ď n
( Ă Clˆpk, ℓq,

and any representation of Clpk, ℓq on CN restricts to G as a group representation GÑ GLpN,Cq.
(Conversely, it is not hard to show that any representation ρ : G Ñ GLpN,Cq satisfying ρp´1q “
´1 extends uniquely to a representation of Clpk, ℓq.) Now since G is finite, the usual averaging
trick (cf. Theorem 38.13) can be used to construct a Hermitian inner product on CN that is
invariant under the action of G. If we now conjugate our chosen representation of Clpk, ℓq by
a transformation of CN changing the standard basis to one that is orthonormal for the newly
constructed inner product, the matrices representing e1, . . . , en and all their products become
unitary.

Unitarity has a useful consequence when g is positive that does not hold more generally:

Lemma 50.21. For any choice of matrices γ1, . . . , γn P CNˆN satisfying (50.5), the induced rep-
resentation σ : Spinpk, ℓq Ñ GLpN,Cq has image in SL˘pN,Cq :“  

A P CNˆN
ˇ̌
detA P t1,´1u(,

so in particular, in the Euclidean signature case ηij “ δij , we conclude σpSpinpnqq Ă SLpN,Cq.
If we additionally require the matrices γi to be unitary, then the action of Clpnq on CN has the
following properties:

(1) Rn Ă Clpnq acts on CN by anti-Hermitian transformations.
(2) The representation σ of Spinpnq on CN is unitary.

Proof. For i ‰ j, we have γiγj “ ´γjγi and thus trpγiγjq “ trpγjγiq “ ´ trpγjγiq, implying
that γiγj belongs to the space of traceless matrices slpN,Cq. By Exercise 50.14, these products gen-
erate the image of the induced Lie algebra representation σ˚ : spinpk, ℓq Ñ glpN,Cq, and it follows
that σ maps the identity component of Spinpk, ℓq into SLpN,Cq. If k and ℓ are both positive, then
SOpk, ℓq has exactly two connected components. (The second one contains transformations that
simultaneously reverse the orientations of spacelike and timelike subspaces, e.g. ´1 P SOp1, 3q).)
It follows that Spinpk, ℓq in this case also has two components, and since det ˝σ ” 1 on the iden-
tity component, we conclude that ´1 is the only other possible value, and is excluded in the case

110The actual lecture ended with the definition of the Dirac operator and an extremely vague statement of the
Atiyah-Singer index theorem, so everything else from this point onward in Lecture 50 is included purely for the sake
of interest.
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pk, ℓq “ pn, 0q where SOpnq and Spinpnq are connected. Continuing in the Euclidean signature case
with γi P UpNq for all i, the relation γiγj ` γjγi “ ´2δij implies γ´1

i “ ´γi and thus

γ
:
i “ γ´1

i “ ´γi,
so that every vector in Rn acts on CN by a linear combination of anti-Hermitian matrices, which
is therefore also anti-Hermitian. Similarly, for i ‰ j, we now find

pγiγjq: “ γ
:
jγ

:
i “ γjγi “ ´γiγj ,

implying γiγj P upNq, and the image of σ˚ : spinpnq Ñ glpN,Cq is therefore also contained in upNq.
Since Spinpnq is connected, this implies σpSpinpnqq Ă UpNq. �

Exercise 50.22. Find an explicit representation of Clp1, 1q on C2 for which the induced
representation Spinp1, 1q Ñ SL˘p2,Cq does not have image contained in SLp2,Cq.

Lemma 50.21 implies that if pM, gq is a Riemannian manifold with a spin structure, we are
free to assume the associated spinor bundle E Ñ M of rank N has its structure group contained
in UpNq, thus it has a natural Hermitian bundle metric x , y that is compatible with the spin
connection. Moreover, the map TM Ñ EndpEq defined via Clifford multiplication has its image
in the linear subbundle

upEq Ă E,

whose fiber over each point p PM is the space of anti-Hermitian transformations Ep Ñ Ep. This
plus the fact from Exercise 50.19 that Clifford multiplication is parallel with respect to the spin
connection will be enough to conclude that the Dirac operator is formally self-adjoint.

Proofs of such statements are always based in some fashion on the combination of a Leibniz
rule with the fact that

ş
M
dλ “ 0 for every compactly supported exact pn ´ 1q-form λ. In the

present context, the latter is most conveniently rephrased as the identity

(50.7)
ż
M

divpXq dvol “ 0 for all X P XpMq with compact support,

where dvol P ΩnpMq denotes the Riemannian volume form and the divergence of a vector field is
defined as the unique function divpXq :M Ñ R satisfying

LXdvol “ divpXq ¨ dvol.
The vanishing of the integral in (50.7) is an easy consequence of Stokes’ theorem since, by Cartan’s
magic formula, LXdvol “ dpιXdvolq, implying

ş
M

divpXq dvol “ ş
M
dpιXdvolq. We computed

a local coordinate formula for divpXq in Exercise 12.16 last semester: writing X “ XjBj and
dvol “ f dx1 ^ . . .^ dxn for a function f defined on the domain of the coordinates, one finds

divpXq “ 1

f
BjpfXjq.

In the pseudo-Riemannian context, the Levi-Cività connection can be used to write down a
more useful coordinate-invariant formula for divpXq. Assume in particular that the coordinates
px1, . . . , xnq are Riemann normal coordinates about a point p PM , so that the Christoffel symbols
of ∇ vanish at p, and by Proposition 36.13, the function f satisfies fppq “ 1 and B1fppq “ . . . “
Bnfppq “ 0. At this one point, we therefore have

divpXqppq “ BjXjppq “ p∇jXqjppq “ trp∇Xppqq.
Since the same calculation can be carried out in Riemann normal coordinates about any point, and
neither of the real-valued functions divpXq and trp∇Xq actually depends on a choice of coordinates,
this proves the general formula

(50.8) divpXq “ trp∇Xq,
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which is valid for the Levi-Cività connection on any pseudo-Riemannian manifold pM, gq, assuming
the volume form dvol used in the definition of divpXq is the canonical one. If the metric is positive,
one can express the trace in terms of any local orthonormal frame e1, . . . , en for TM as

(50.9) divpXq “
nÿ
j“1

xej,∇ejXy.

Theorem 50.23. Assume pM, gq is a Riemannian manifold with a spin structure, and E ÑM

is an associated spinor bundle with a Hermitian bundle metric x , y such that the spin connection
∇ is compatible with x , y and the map TM Ñ EndpEq defined via Clifford multiplication takes
values in upEq Ă EndpEq. Then the Dirac operator D : ΓpEq Ñ ΓpEq is formally self-adjoint.

Proof. By (50.7), it will suffice to prove that for any smooth compactly supported sections
ξ, η P ΓpEq, the complex-valued function xξ,Dηy ´ xDξ, ηy is the divergence of a compactly-
supported vector field. The vector field X P XpMq in question is uniquely determined by the
condition that for every Y P XpMq,

gpY,Xq “ xξ, Y ηy,
with Y on the right hand side acting on η via Clifford multiplication. Indeed, picking another
vector field Z P XpMq and applying the operator ∇Z to both sides of this relation gives

gp∇ZY,Xq ` gpY,∇ZXq “ x∇Zξ, Y ηy ` xξ, Y∇Zηy ` xξ, p∇ZY qηy,
in which we have used the compatibility of ∇ with the bundle metrics on both TM and E and
also with Clifford multiplication. Since xξ, p∇ZY qηy “ gp∇ZY,Xq and the action of Y on E is
anti-Hermitian, this simplifies to

gpY,∇ZXq “ x∇Zξ, Y ηy ` xξ, Y∇Zηy “ ´xY∇Zξ, ηy ` xξ, Y∇Zηy.
Choosing a local orthonormal frame e1, . . . , en, plugging in Y “ Z “ ej and summing over j “
1, . . . , n now gives

divpXq “ ´xDξ, ηy ` xξ,Dηy
as claimed. �

The perspective taken in this lecture has been that certain geometric objects arise naturally
out of a desire to formulate coordinate-invariant versions of notions that originate in theoretical
physics. This is a true statement, but it also severely understates the impact that Dirac operators
have subsequently had on pure mathematics. The most prominent example is probably the Atiyah-
Singer index theorem, which gives a deep relationship between topology and analysis. This theorem
makes crucial use of the fact that on any Riemannian manifold, Dirac operators are elliptic—as we
will see when we study Hodge theory, ellipticity is a useful property of linear differential operators,
guaranteeing in particular that if the underlying manifold M is compact, then the dimension of
the solution space kerD Ă ΓpEq and of the cokernel cokerD :“ ΓpEq{ impDq are both finite. The
index of an operator with this property is defined as the integer

indpDq :“ dim kerpDq ´ codim impDq “ dimkerpDq ´ dim cokerpDq P Z,

and the Atiyah-Singer theorem created a thriving industry of extracting topological invariants from
the indices of elliptic operators on manifolds. For a Dirac operator on its own, the index is not
very interesting because self-adjointness implies codim impDq “ dimkerpDq, so that the index is
automatically 0. More can be said however if the underlying representation of Clpnq is chosen to
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have a special property: it can typically be arranged that the matrices γ1, . . . , γn P CNˆN defining
this representation all admit splittings into off-diagonal block form

γj “
ˆ
0 αj
βj 0

˙
with blocks αj , βj of equal size. (This is for instance not true of the original set of Dirac matrices
in (50.3), but becomes true if we replace γ0 with the alternative in (50.4).) The geometric meaning
of this condition is that CN splits into two subspaces of equal dimension that are interchanged by
the action of Rn Ă Clpnq, but therefore also preserved by the action of Spinpnq. As a result, the
spinor bundle E Ñ M likewise splits into two subbundles E “ E` ‘ E´ of equal rank such that
the Dirac operator sends ΓpE˘q Ñ ΓpE¯q, producing a similar off-diagonal splitting

D “
ˆ

0 D`
D´ 0.

˙
We call D an odd Dirac operator if it admits a splitting of this form. The formal self-adjointness
of D can now be used to show that cokerpD`q – kerpD´q and kerpD`q – cokerpD´q, hence
indpDq “ indpD`q ` indpD´q “ 0, but indpD˘q P Z need not be zero.

Theorem 50.24 (Atiyah-Singer index theorem, vague version). For any odd Dirac operator
on a spinor bundle E Ñ M over a compact Riemannian manifold pM, gq, the index indpD`q P Z

can be expressed precisely in terms of topological invariants of M and E.

This statement should remind you a little of the Gauss-Bonnet theorem, and indeed, Gauss-
Bonnet can be derived from it as a special case via a clever choice of spinor bundle, as can
many important topological results about smooth manifolds, such as the Hirzebruch signature
theorem. For detailed accounts of the Atiyah-Singer theorem, see for instance [Roe98,BB85,
Boo77,LM89].

Incidentally, none of this works when pM, gq has indefinite signature: Dirac operators in the
indefinite case are not elliptic, including the notable example of Dirac’s original version of the
Dirac equation, which admits wave-like solutions (a property one does not typically expect from
elliptic equations). The implications of the indefinite Dirac equation for pure mathematics are
correspondingly mild in comparison with the version that was later adapted by mathematicians.

Remark 50.25. If pM, gq has Lorentz signature p1, nq for some n ě 1, then the spinor bundle
E ÑM is determined by a spin structure and a representation of Clp1, nq, where the latter means
a set of matrices γµ P CNˆN for µ “ 0, . . . , n that anticommute with each other and satisfy
γ20 “ ´1 and γ2j “ 1 for j “ 1, . . . , n. We can easily arrange for these matrices to be unitary,
but Lemma 50.21 fails for two reasons to produce from this an honest unitary representation
of Spinp1, nq. The first is that while γ0 is still anti-Hermitian, the negativity of the norm squared in
dimensions 1, . . . , n makes γ1, . . . , γn Hermitian, and the products γ0γi corresponding to generators
of spinp1, nq are similarly Hermitian, and thus not in upNq. The second problem is that Spinp1, nq is
not connected, so proving something about the Lie algebra representation σ˚ : spinp1, nq Ñ slpN,Cq
does not automatically imply a corresponding statement about σ : Spinp1, nq Ñ SL˘pN,Cq. For
the latter issue there is an easy fix that only requires imposing an extremely reasonable extra
condition on pM, gq: we require namely that the set of time-like vectors

 
X P TM ˇ̌ xX,Xy ą 0

(
should have two separate connected components, labelled “forward” and “backward”. This is a
type of orientation condition that makes it possible to distinguish the past from the future if
pM, gq is interpreted as a spacetime manifold. If M is also oriented in the usual sense, so that
its structure group is SOp1, nq, then labelling the two directions of time makes it possible to
reduce the structure group to its identity component SO`p1, nq Ă SOp1, nq, the so-called proper
orthochronous Lorentz group, consisting of all orientation-preserving Lorentz transformations
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that also preserve the orientation of time. With this reduction in place, a spin structure on pM, gq
lifts its structure group from SO`p1, nq to the identity component Spin`p1, nq of Spinp1, nq, so
that the spinor bundle E ÑM now has a connected structure group.

To deal with the fact that γ1, . . . , γn are not anti-Hermitian, physicists have a favorite trick:
the matrix iγ0 is invertible and Hermitian, so we can endow CN with a nondegenerate sesquilinear
form given by

pξ, ηq :“ xξ, iγ0ηy.
This is not a Hermitian inner product: indeed, the relations γ20 “ ´1 and γ0γj “ ´γjγ0 imply
that the spectrum of iγ0 must always contain a mixture of 1 and ´1; for both of the concrete
examples introduced in (50.3) and (50.4) with N “ 4, the eigenvalues include two of each. But if
we interpret p , q as an indefinite complex inner product on CN , then it is easy to check that all
of the γµ and γµγν for µ ‰ ν satisfy the relations

pξ, γµηq ` pγµξ, ηq “ 0, and pξ, γµγνηq ` pγµγνξ, ηq “ 0

for ξ, η P CN , and it follows that the action of the connected group Spin`p1, nq on CN preserves
this indefinite inner product, thus giving rise to an indefinite complex bundle metric on E Ñ M

that is compatible with the spin connection. For this bundle metric, the Lorentzian analogue of
Theorem 50.23 is true, making the Dirac operator formally self-adjoint with respect to an indefinite
analogue of the usual L2-pairing on ΓpEq. In physics, the indefinite bundle metric can be used for
giving coordinate-invariant definitions of various measurable quantities associated to Dirac spinors,
notably a notion of probability density. Physicists prefer to write the indefinite pairing on CN in
terms of row and column vectors as

pξ, ηq “ ξ:iγ0η “: sξη,
where the row vector sξ :“ ξ:iγ0 is called the Dirac adjoint of ξ P CN . (The factor of i does not
appear in physics textbooks, but we need to include it because physicists’ version of the standard
Clifford algebra relation sets γµγν ` γνγµ equal to 2ηµν instead of ´2ηµν .)

50.6. A taste of gauge theory. Some content that was not covered in the lecture will
appear here someday.

51. Manifolds with constant curvature

For the next two lectures we’ll be studying Riemannian manifolds that have more uniformity
or symmetry than in the generic case. Two motivations for this come to mind: one is that examples
of such manifolds arise naturally in various contexts and are interesting in their own right. The
other concerns the hardest question that one can ask about Riemannian manifolds: can we classify
them up to isometry? This is possible in dimension 1, where there is no notion of curvature and
thus all Riemannian manifolds are locally isometric, but from dimension two upwards, it would be
virtually hopeless to achieve a complete classification. What one can reasonably try instead is to
classify all Riemannian manifolds with some special property up to isometry, e.g. the connected
and complete Riemannian manifolds with constant sectional curvature. We will see that for this
very special class, the classification problem is tractable.

51.1. A criterion for local isometries. Recall that as a corollary of the fundamental the-
orem that a connection on a vector bundle is flat if and only if its Riemann tensor vanishes (see
§46.4), a Riemannian manifold is locally isometric to Euclidean space if and only if its sectional
curvature along all 2-dimensional subspaces vanishes. Our first aim is to generalize this to a result
about manifolds with constant but possibly nonzero sectional curvature. The question can be
posed as follows: given two Riemannian n-manifolds pM, gq, pM 1, g1q, points p P M , p1 P M 1 and
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an orthogonal linear transformation Φ : TpM Ñ Tp1M 1, do there exist neighborhoods p P U Ă M

and p1 P U 1 ĂM admitting an isometry ϕ : pU , gq Ñ pU 1, g1q such that ϕppq “ p1 and Tpϕ “ Φ?
The answer is clearly no in general, but we’d like to find a minimal extra condition that makes

it yes. Observe that since isometries map geodesics to geodesics, an explicit formula for ϕ can
easily be written down if it exists: it must take the form

(51.1) ϕpexpppXqq “ expp1pΦpXqq
for all X in some neighborhood O Ă TpM of the origin. Let us fix such a neighborhood O that is

small enough for O
exppÝÑM to be an embedding onto an open set

U :“ expppOq ĂM,

and also such that expp1 is well defined on

O1 :“ ΦpOq Ă Tp1M
1.

Note that we are not assuming expp1 is an embedding on O1, and there will be situations in which
we prefer to do without that assumption, though it is certainly satisfied if O Ă TpM is chosen
small enough. Under these assumptions, the map ϕ : U Ñ M is uniquely defined by (51.1), but
it might not be an isometry, nor even a local isometry. In order to state a sufficient condition for
this, observe that the orthogonal transformation Φ : TpM Ñ Tp1M 1 extends to a smooth family of
orthogonal transformations

Φq : TqM Ñ TϕpqqM 1, q P U ,

defined for each q P U by
Φq :“ P 1

γ1 ˝ Φ ˝ pP 1
γ q´1,

where γ : r0, 1s Ñ M is the geodesic segment γptq :“ exppptXq with X P O such that γp1q “ q,
γ1ptq :“ expp1ptΦpXqq is its image under ϕ, and P 1

γ : TpM Ñ TqM and P 11
γ : Tp1M

1 Ñ TϕpqqM 1
are the parallel transport maps along these geodesics using the Levi-Cività connections of pM, gq
and pM 1, g1q. That Φq is orthogonal follows from the fact that Φ is, together with the compatibility
of both Levi-Cività connections with their respective metrics.

Theorem 51.1 (Cartan criterion). Suppose the covariant Riemann tensors of pM, gq and
pM 1, g1q are related by

RiemqpV,X, Y, Zq “ RiemϕpqqpΦqpV q,ΦqpXq,ΦqpY q,ΦqpZqq
for all q P U and V,X, Y, Z P TqM . Then the map ϕ : pU , gq Ñ pM 1, g1q defined via (51.1) is a
local isometry.

Remark 51.2. Recall that a map ψ : pM, gq Ñ pM 1, g1q is called a local isometry if for every
point p PM , there are neighborhoods Up ĂM of p and Uψppq ĂM 1 of ψppq such that ψ maps Up
diffeomorphically onto Uψppq with ψ˚g1 “ g. By the inverse function theorem, this is equivalent
to the condition that Tpψ : TpM Ñ TψppqM 1 is an orthogonal transformation for all p P M . In
Theorem 51.1, it is not claimed that the map ϕ : U Ñ M 1 is a diffeomorphism; it might in fact
be non-injective, depending on the behavior of expp1 : O1 ÑM 1, which was not assumed to be an
embedding.

Proof of Theorem 51.1. We need to show that for every q P U , the linear map Tqϕ :

TqM Ñ TϕpqqM 1 is orthogonal. We claim that, in fact, this map is Φq, which is orthogonal by
construction. Let us denote q “ expppXq for X P O, and q1 :“ ϕpqq “ expp1pΦpXqq, and present
both of these as the end points of the geodesic segments

γptq :“ exppptXq, γ1ptq :“ ϕ ˝ γptq “ expp1ptΦpXqq, t P r0, 1s.
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By definition, ϕ satisfies the relation

ϕ ˝ expp “ expp1 ˝Φ : O ÑM 1,

so for Z P TXO “ TpM , the chain rule implies

Tqϕ ˝ TXpexppqZ “ TΦpXqpexpp1q ˝ ΦpZq P Tq1M 1.

The derivative of exp in vertical directions was computed in Proposition 36.10: TXpexppqZ “ ηp1q,
where η P Γpγ˚TMq is the unique Jacobi vector field along γ satisfying ηp0q “ 0 and ∇tηp0q “ Z.
Since expp was assumed to be an embedding on O, the points p and q cannot be conjugate along γ,
and it therefore follows from Exercise 36.21 that for any given Y P TqM , there exists a unique
Jacobi vector field η along γ satisfying ηp0q “ 0 and ηp1q “ Y . Setting Z :“ ∇tηp0q, we then have
TXpexppqZ “ Y and can thus write

TqϕpY q “ η1p1q,
where η1 is the unique Jacobi vector field along γ1 with η1p0q “ 0 and ∇tη

1p0q “ ΦpZq.
Now comes the crucial step: we claim that the two Jacobi vector fields η and η1 along γ and

γ1 respectively are related by

η1ptq “ Φγptqηptq,
in which case the computation above implies TqϕpY q “ ΦqpY q and thus finishes the proof. To
establish the claim, choose a parallel orthonormal frame e1ptq, . . . , enptq P TγptqM along γ, and
observe that

e1jptq :“ Φγptqejptq P Tγ1ptqM 1, j “ 1, . . . , n

then likewise defines a parallel orthonormal frame for TM 1 along γ1. We can now write ηptq “
ηiptqeiptq for unique component functions ηi : r0, 1s Ñ R, and since the ei are parallel, taking the
inner product of the Jacobi equation ∇2

t ηptq ` Rpηptq, 9γptqq 9γptq “ 0 with eiptq turns it into the
system of n equations

:ηiptq `Riemγptqpeiptq, ηptq, 9γptq, 9γptqq “ 0, i “ 1, . . . , n.

Along γ1, we likewise have ξptq :“ Φγptqηptq “ ηiptqe1iptq, and this satisfies the Jacobi equation if
and only if

:ηiptq `Riemγ1ptqpe1iptq, ξptq, 9γ1ptq, 9γ1ptqq “ 0, i “ 1, . . . , n.

But by definition γ1ptq “ ϕpγptqq, e1iptq “ Φγptqeiptq and ξptq “ Φγptqηptq, and since the velocity
of each geodesic is parallel, 9γ1ptq “ Φγptq 9γptq. The stated assumptions on the Riemann tensors
thus imply that ξ also satisfies the Jacobi equation, and since ξp0q “ 0 and ∇tξp0q “ 9ηip0qe1ip0q “
Φp∇tηp0qq “ ΦpZq, we conclude ξ “ η1. �

We will see several applications of Cartan’s criterion. The first gives a complete solution to
the local isometry problem for manifolds with constant sectional curvature.

Theorem 51.3. If pM, gq and pM 1, g1q are two Riemannian manifolds with the same constant
sectional curvature, then for every p P M and p1 P M 1 and every orthogonal transformation Φ :

TpM Ñ Tp1M 1, there exist neighborhoods p P U Ă M and p1 P U 1 Ă M 1 such that the map ϕ in
Theorem 51.1 is an isometry

pU , gq ϕÝÑ pU 1, g1q
with ϕppq “ p1 and Tpϕ “ Φ.
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Proof. The result will follow if we can establish the hypothesis on the Riemann tensor in
Theorem 51.1. The latter follows in this situation from the fact that the sectional curvature deter-
mines the Riemann tensor (Theorem 35.13). Indeed, using the family of orthogonal transformations
Φq : TqM Ñ TϕpqqM 1 in the setting of Theorem 51.1, define the tensor Φ˚Riem P ΓpT 0

4 Uq by
pΦ˚RiemqqpV,X, Y, Zq :“ RiemϕpqqpΦqpV q,ΦqpXq,ΦqpY q,ΦqpZqq

for q P U and V,X, Y, Z P TqM . Given any two linearly-independent vectors X,Y P TqM , let
P Ă TqM be the plane spanned by X,Y and P 1 :“ ΦqpP q Ă Tq1M 1, where q1 :“ ϕpqq. We then
have

RiemqpX,X, Y, Y q “ KSpP q ¨ `xX,XyxY, Y y ´ xX,Y y2˘
and

pΦ˚RiemqqpX,X, Y, Y q “ KSpP 1q ¨ `xΦqpXq,ΦqpXqyxΦqpY q,ΦqpY qy ´ xΦqpXq,ΦqpY qy2˘
“ RiemqpX,X, Y, Y q,

due to the orthogonality of Φq and the assumption KSpP q “ KSpP 1q. Since both Riem and
Φ˚Riem satisfy the symmetry relations listed in Theorem 35.7, it now follows from the proof of
Theorem 35.13 that they are identical on U , so the hypothesis of Theorem 51.1 is satisfied. �

51.2. Locally symmetric spaces. We’ll have more to say about constant curvature, but
first, here is another local uniformity condition that is less restrictive.

Definition 51.4. A Riemannian manifold pM, gq is locally symmetric if every point p PM
has a neighborhood p P U Ă M admitting an isometry pU , gq Ñ pU , gq of the form expppXq ÞÑ
exppp´Xq.

In other words, pM, gq is locally symmetric if the natural “antipodal map” about every point
is an isometry, at least on a small neighborhood of that point. As usual, the local isometry
ϕ : U Ñ U fixing p P U is unique if it exists, since its first derivative at p is required to be
the antipodal map Tpϕ “ ´1. One can extend Definition 51.4 to a global condition and call
pM, gq a Riemannian symmetric space if for every p P M , there exists a global isometry
ϕ P IsompM, gq satisfying ϕppq “ p and Tpϕ “ ´1. This is a much more restrictive condition, and
there is a correspondingly large literature on the classification of Riemannian symmetric spaces
up to isometry (see e.g. [Ber03]). We will not get into that subject here, but merely note one
advantage of the less restrictive local condition: it admits an easy characterization in terms of
curvature.

Theorem 51.5. A Riemannian manifold is locally symmetric if and only if its Riemann tensor
is parallel.

Proof. We first assume pM, gq is locally symmetric and try to prove ∇R ” 0, which is
equivalent to the condition ∇Riem ” 0. The covariant derivative of Riem is a tensor field of type
p0, 5q and satisfies ∇Riem “ ϕ˚p∇Riemq whenever ϕ is an isometry. Given p P M , the existence
of an isometry ϕ on a neighborhood of p with ϕppq “ p and Tpϕ “ ´1 thus implies

∇RiempV,W,X, Y, Zq “ ∇Riemp´V,´W,´X,´Y,´Zq “ ´∇RiempV,W,X, Y, Zq
for all V,W,X, Y, Z P TpM , and thus ∇Riem “ ´∇Riem “ 0.

Conversely, suppose ∇Riem “ 0. Given p PM , we apply Theorem 51.1 in the case pM 1, g1q :“
pM, gq, p1 :“ p and Φ :“ ´1 : TpM Ñ TpM , so that the geodesic segments γ : r0, 1s Ñ M

and γ1 “ ϕ ˝ γ : r0, 1s Ñ M form two halves of the same geodesic from q “ γp1q “ expppXq
through p to q1 :“ ϕpqq “ γ1p1q “ exppp´Xq. The orthogonal transformation Φq : TqM Ñ Tq1M
is then formed by composing the parallel transport along γ from q to p with the antipodal map
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on TpM followed by another parallel transport along γ1 from p to q1, and in total, this is the same
thing as inserting a minus sign in front of the parallel transport map along the geodesic from q

to q1. Since Riem is parallel and takes evenly many arguments, it follows that RiemqpV,X, Y, Zq “
Riemq1pΦqpV q,ΦqpXq,ΦqpY q,ΦqpZqq for all V,X, Y, Z P TqM , so Theorem 51.1 implies that ϕ is
a local isometry. �

51.3. Constant sectional curvature. We are now in a position to attack a global classifi-
cation question: what are all the isometry classes of complete Riemannian manifolds with constant
sectional curvature?

Let us briefly review the three standard examples, which were introduced in §24.4 of last
semester’s notes.

Example 51.6. For R ą 0, let SnR Ă Rn`1 denote the sphere of radius R in Rn`1 with the
standard Euclidean metric. Its sectional curvature is

KS ” 1

R2
ą 0.

To prove this, observe first that KS must be constant because SnR has many isometries: the
canonical action of Opn ` 1q on Euclidean pn` 1q-space restricts to an action on SnR that can be
used to send any 2-dimensional subspace P Ă TSnR to any other one. It thus suffices to compute
KSpP q for a particular subspace at a particular point, and this is easy because the geodesics on
SnR are quite simple: we can find a point p P SnR and 2-dimensional subspace P Ă TpS

n
R such that

the submanifold formed by following geodesics from p in directions tangent to P is the intersection
of SnR with a 3-dimensional subspace of Rn`1. That intersection is a copy of S2

R, whose Gaussian
curvature can be computed via an explicit computation of the Gauss map (see §27.3), and the
answer is 1{R2.

Example 51.7. Euclidean space pRn, gEq has constant sectional curvature KS ” 0. I think
you can carry out this computation without hints.

Example 51.8. The hyperbolic n-space is defined analogously to the sphere, but lives
in Minkowski space pRn`1, gM :“ ´pdx0q2 ` pdx1q2 ` . . . ` pdxnq2q instead of Euclidean space.
Concretely, for R ą 0, we consider the Riemannian submanifold Hn

R Ă pRn`1, gM q defined by

Hn
R :“  

x “ px0, . . . , xnq P Rn`1
ˇ̌
gM px,xq “ ´R2 and x0 ą 0

(
.

Writing x “ pt,vq P Rˆ Rn, the condition gM px,xq “ ´R2 cuts out the two-sheeted hyperboloid
t2 ´ |v|2 “ R2, and the condition x0 “ t ą 0 is then imposed in order to single out a connected
component, so that Hn

R is diffeomorphic to Rn. The action on pRn`1, gM q by the orthochronous
Lorentz group O`p1, nq then preserves Hn

R and can be used to identify any 2-dimensional subspace
P Ă Hn

R with any other, implying that the sectional curvature is constant. As with the sphere, one
can then make convenient choices of p P Hn

R and P Ă TpH
n
R in order to reduce the computation of

KSpP q to the 2-dimensional case, which follows again by computing a version of the Gauss map
for a Riemannian 2-manifold in Minkowski R3; the answer is

KS ” ´ 1

R2
ă 0.

Theorem 51.9. Every complete and simply connected Riemannian n-manifold pM, gq with
constant sectional curvature is isometric to one of the examples SnR, pRn, gEq or Hn

R discussed
above.

Proof. Let pN, hq denote the unique one of the examples SnR, pRn, gEq or Hn
R whose sec-

tional curvature matches that of pM, gq. Pick two points p P N and p1 P M , and an orthogonal
transformation Φ : TpN Ñ Tp1M .



52. MANIFOLDS WITH MANY ISOMETRIES 467

The caseKS ď 0 is slightly easier, because by the Cartan-Hadamard theorem (Theorem 36.17),
we know that expp : TpN Ñ N and expp1 : Tp1M Ñ M are both covering maps, which implies
since N and M are both simply connected that both are diffeomorphisms. We therefore obtain a
diffeomorphism ϕ : N ÑM in the form

ϕ “ expp1 ˝Φ ˝ pexppq´1 : N ÑM,

and applying the Cartan criterion as in Theorem 51.3 shows that ϕ is an isometry pN, hq Ñ pM, gq.
In the caseKS ą 0 and pN, hq “ SnR, an extra argument is required since expp : TpN Ñ N is not

a diffeomorphism to the sphere. We know however precisely why expp fails to be a diffeomorphism,
since we know the geodesics on SnR: they all are periodic with length 2πR, thus expp is an embedding
on the open ball BπRp0q Ă TpN of radius πR about the origin, in fact it defines a diffeomorphism

TpN Ą O :“ BπRp0q exppÝÑ U :“ SnRzt´pu.
Since pM, gq is complete, we also know that expp1 is well defined on O1 :“ ΦpOq, though we do not
know as yet whether it’s an embedding. The Cartan criterion and the argument of Theorem 51.3
using constant sectional curvature in any case give a local isometry

ϕ “ expp1 ˝Φ ˝ pexppq´1 : SnRzt´pu ÑM.

In order to extend this map over ´p, we can pick a point q P SnRztp,´pu and perform the same
trick to construct a local isometry

ϕ1 : SnRzt´qu ÑM,

which can be chosen to have any desired value and orthogonal first derivative at one point, thus
we can arrange it to satisfy ϕ1pqq “ ϕpqq and Tqϕ1 “ Tqϕ, implying that ϕ and ϕ1 are identically
equal on their common domain SnRzt´p,´qu. The union of their two domains covers SnR, so we
conclude that both are restrictions of a globally-defined local isometry

ψ : SnR ÑM.

By Lemma 36.19, ψ is a covering map, and since M is simply connected, it follows that ψ is a
diffeomorphism, and therefore an isometry. �

Recall that by standard covering space theory, every manifold M can be presented as the
quotient of its own universal cover ĂM by the group of deck transformations, a discrete group Γ

isomorphic to the fundamental group of M that acts on ĂM freely and properly discontinuously
(cf. Exercise 40.24). When pM, gq is a complete Riemannian manifold, the cover ĂM inherits from
this a complete metric rg for which the covering projection ĂM Ñ M is a local isometry, and Γ

therefore acts on ĂM by isometries.

Corollary 51.10. Every complete Riemannian manifold with constant sectional curvature is
isometric to pN, hq{Γ, where pN, hq is one of the examples SnR, pRn, gEq or Hn

R, and Γ is a countable
discrete group that acts on pN, hq freely and properly discontinuously by isometries. �

In this way, the classification of complete Riemannian manifolds with constant sectional cur-
vature has been reduced to the study of discrete subgroups of the three possible isometry groups
IsompSnRq “ Opn` 1q, IsompRn, gEq and IsompHn

Rq “ O`pn` 1q.
52. Manifolds with many isometries

52.1. A hierarchy of symmetry conditions. Instead of imposing conditions directly on
curvature, in this lecture we consider Riemannian manifolds whose isometry groups are assumed
to be larger than in the generic case. Recall from Lecture 49 that IsompM, gq is in general a Lie
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group that acts smoothly not just on M , but also on the orthonormal frame bundle FOpTMq, and
picking any reference frame φ P FOpTMq determines an embedding

IsompM, gq ãÑ FOpTMq : ψ ãÑ ψ˚φ
that identifies it with a closed subset and smooth submanifold of FOpTMq. It follows that

dim IsompM, gq ď dimFOpTMq “ npn` 1q
2

, assuming dimM “ n,

and if M is compact, then IsompM, gq is also compact. (Note that the latter is false in general
if pM, gq has a metric of indefinite signature, since the orthonormal frame bundle in that case is
never compact—Exercise 49.27 exhibits an actual counterexample.)

One can also consider the action of IsompM, gq on individual tangent vectors of unit length,
defined by

IsompM, gq ˆ STM Ñ STM : pψ,Xq ÞÑ TψpXq,
where STM Ă TM denotes the unit sphere bundle in TM , also known as the unit tangent
bundle. All of these actions can be turned into symmetry conditions on a Riemannian manifold
pM, gq. Let us arrange them in order of increasing strictness.

Definition 52.1. A connected Riemannian n-manifold pM, gq is called
(1) homogeneous if the action of IsompM, gq on M is transitive;
(2) homogeneous and isotropic if the action of IsompM, gq on STM is transitive;
(3) weakly frame homogeneous or maximally symmetric if every orbit of the action

of IsompM, gq on FOpTMq is a union of connected components;
(4) frame homogeneous if the action of IsompM, gq on FOpTMq is transitive.
What follows is a sequence of observations about the various conditions in Definition 52.1

and the relations between them, leading up to a complete classification of manifolds that satisfy
conditions (3) or (4).

Remark 52.2. Every manifold pM, gq satisfying any of the conditions in Definition 52.1 is
complete. In particular, homogeneity implies that the injectivity radius is a constant function
on M , and since this function is also positive, it follows that there is a constant ǫ ą 0 such that
every geodesic with unit initial velocity is guaranteed to exist for at least time ǫ. If that is true
everywhere, then no geodesic can ever cease to exist in finite time.

Remark 52.3. The results of §41.2 determine the possible diffeomorphism classes of a homo-
geneous Riemannian manifold: since IsompM, gq is a Lie group, transitivity of its action on M

implies that there is a diffeomorphism

IsompM, gqLGp –ÝÑM : rψs ÞÑ ψppq
for any point p PM , where Gp Ă IsompM, gq is the stabilizer of p. Every homogeneous Riemannian
manifold pM, gq is thus diffeomorphic to a quotient of a Lie group G by a closed subgroup—what
we have previously called a homogeneous space—and M is compact if and only if G is compact.

Exercise 52.4. Show that connected Riemannian symmetric spaces (see the discussion fol-
lowing Definition 51.4) are homogeneous, though locally symmetric spaces need not be.

Exercise 52.5. Given a point p P M , one calls pM, gq isotropic at p if the stabilizer Gp Ă
IsompM, gq of p under its action onM acts transitively on the unit sphere in TpM . In other words,
this means that any tangent vector at p can be mapped to any other tangent vector of the same
length at p by an isometry. Show that if pM, gq is connected and isotropic at every point p, then
it is homogeneous and isotropic. (The converse is also trivially true.)
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Remark 52.6. Motivated in part by Exercise 52.5, some authors refer to the condition we are
calling “homogeneous and isotropic” simply as “isotropic”.

Remark 52.7. Since M in Definition 52.1 was assumed connected, its orthonormal frame
bundle FOpTMq has either one or two connected components, the latter if and only if M is
orientable. Conditions (3) and (4) in the definition are thus equivalent if M is not orientable, and
if M is orientable, then it is frame homogeneous if and only if it is weakly frame homogeneous and
also admits an orientation-reversing isometry. We will see below that this distinction is not actually
meaningful in practice, because the list of possible Riemannian manifolds satisfying condition (3)
is so short that all of them also satisfy the stronger condition (4).

Exercise 52.8. Show that an n-dimensional connected Riemannian manifold pM, gq is weakly
frame homogeneous if and only if it is complete and dim isompM, gq “ npn`1q

2
.

Remark 52.9. The term “weakly frame homogeneous” is not standard, and has been intro-
duced here only for convenience; we will dispense with it after proving that there are no actual
examples satisfying this condition that are not also frame homogeneous (without the “weakly”).
The term “maximally symmetric” is used mostly by physicists, and is usually understood to mean
that the dimension of the space of Killing vector fields takes its maximum possible value npn`1q

2
; re-

call from Corollary 49.24 that if pM, gq is complete, then every Killing vector field has a global flow,
so this assumption means that dim IsompM, gq also takes its largest possible value, and it is equiva-
lent by Exercise 52.8 to what we have called weak frame homogeneity. Beware: you will sometimes
also hear physicists claiming that conditions (2) and (3) are equivalent, but Exercise 52.11 and
Remark 52.12 below show that this is false.

Proposition 52.10. If pM, gq is weakly frame homogeneous then it has constant sectional
curvature.

Proof. Given p, q PM and 2-dimensional subspaces P Ă TpM and Q Ă TqM , one can choose
orthonormal bases X1, . . . , Xn P TpM and Y1, . . . , Yn P TqM such that P is spanned by X1, X2

and Q is spanned by Y1, Y2. After adjusting the orientations of these bases if necessary, weak
frame homogeneity guarantees in light of Remark 52.7 the existence of an isometry ψ P IsompM, gq
satisfying TψpXjq “ Yj for j “ 1, . . . , n, thus TψpP q “ Q and therefore KSpP q “ KSpQq. �

Exercise 52.11. Show that for every n P N, CPn admits a Riemannian metric that is homo-
geneous and isotropic.
Hint: Arrange it so that the natural action of Upn` 1q on the unit sphere in Cn`1 descends to the
quotient S2n`1{S1 “ CPn as an action by isometries.

Remark 52.12. You may recall from the atlas constructed for CPn in Exercise 32.11 that CPn

contains submanifolds diffeomorphic to CP
n´1 such that CnzCPn´1 is diffeomorphic to Cn. One

can use this decomposition of CPn to prove via the Seifert-van Kampen theorem that it is simply
connected for all n P N; alternatively, general perturbation and transversality results in differential
topology (cf. [Hir94]) imply that any continuous loop in CP

n admits a small perturbation that
does not intersect the submanifold CPn´1 Ă CPn and is thus contained in Cn, implying that it
is contractible. It follows via Theorem 51.9 that if CPn admits a complete metric with constant
sectional curvature, then it must be diffeomorphic to either S2n or R2n. For n “ 1 this is true, but
not for n ě 2, which shows that from dimension four upwards, there exist Riemannian manifolds
that are homogeneous and isotropic but not weakly frame homogeneous. For CPn there is a clearly
discernible reason why this can happen: isotropy means that the tangent spaces of CPn do not
have any preferred directions, but they do have preferred 2-dimensional subspaces, because CP

n

is naturally a complex manifold, and the isometries of the metric constructed in Exercise 52.11
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are holomorphic. This means in particular that the actions of these isometries on tangent spaces
always send complex subspaces to complex subspaces, and one finds if one computes the sectional
curvature of CPn with such a metric that it has different values along complex lines than it does
along other real 2-dimensional subspaces.

Example 52.13. The examples pRn, gEq, SnR and Hn
R for R ą 0, which are complete and

simply connected with constant sectional curvature, are all frame homogeneous. This is easy to
check because their isometry groups can be described explicitly: IsompRn, gEq is the semidirect
product of Opnq and Rn, consisting of all affine transformations of the form x ÞÑ Ax ` b with
A P Opnq and b P Rn, while

IsompSnRq – Opn` 1q, Hn
R – O`p1, nq,

acting by isometries on Euclidean and Minkowski Rn`1 respectively.

The conditions in Definition 52.1 come up often in cosmology, which attempts to identify the
global structure of the universe throughout time, understood (at least in classical general relativity
without quantum mechanics) as a pseudo-Riemannian 4-manifold with Lorentz signature. One
step in this effort is to produce global models of the 3-dimensional universe at a “fixed” time, which
would appear as Riemannian hypersurfaces in the 4-dimensional spacetime manifold. Following
observational evidence that, on the cosmological scale, there do not appear to be any preferred
locations, preferred directions or preferred reference frames in the universe, cosmologists typically
postulate that the global structure of 3-dimensional space should be described by a Riemannian
manifold that is either homogeneous and isotropic or maximally symmetric (the physicists’ term
for weakly frame homogeneous). Unfortunately, physicists have a tendency to learn differential
geometry from other physicists, who do not always realize that they have not thought through
all the details: as a result, certain false claims get repeated frequently without question, and one
of them—especially common on internet forums frequented by physics graduate students—is that
every homogeneous and isotropic Riemannian manifold is also maximally symmetric. We saw above
that CPn for n ě 2 provides a counterexample to this claim, but I can conjecture an explanation for
physicists’ failure to notice that it is false: the case cosmologists actually care about is dimension
three, and in that case it’s true!

Theorem 52.14. A connected Riemannian manifold of dimension n ď 3 is homogeneous and
isotropic if and only if it is weakly frame homogeneous.

Proof. The case n “ 1 is trivial, and the proof for n “ 2 is just an easier variation on the case
n “ 3, so let’s assume n “ 3. The main idea is to exploit the fact from Exercise 41.8 that the only
Lie subgroup of SOp3q acting transitively on S2 is SOp3q itself. This extends easily to the statement
that if H Ă Op3q is a closed subgroup acting transitively on S2, then H is either SOp3q or Op3q.
The easiest way to prove both of these statements is by looking at the Lie algebra sop3q, whose
nontrivial Lie subalgebras other than sop3q itself are all 1-dimensional. The connected subgroups
generated by these Lie subalgebras are all families of rotations about a fixed axis, and are thus
isomorphic to SOp2q – S1. If H Ă Op3q is a closed subgroup other than SOp3q or Op3q, it follows
that H is either discrete or is diffeomorphic to a countable disjoint union of circles. Since Op3q is
compact, H is therefore either finite or a finite disjoint union of circles, and in either case, the map
H Ñ S2 : h ÞÑ hp defined by choosing any point p P S2 certainly cannot be surjective.

Now, if pM, gq is 3-dimensional and isotropic at some point p P M , consider the stabilizer
subgroup Gp Ă IsompM, gq for p. As a closed subgroup of IsompM, gq, Gp is a Lie group, and
it is also compact since for any fixed frame φ P FOpTpMq, the map Gp Ñ FOpTpMq : ψ ÞÑ
ψ˚φ identifies it with a closed subset of the compact manifold FOpTpMq – Op3q. If we pick an
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orthonormal basis so as to identify TpM with R3, the action of Gp on TpM – R3 defines a Lie
group homomorphism

Φ : Gp Ñ Op3q,
which is injective since any isometry that fixes both p and the directions of all tangent vectors at
p must be the identity. It follows that Φ identifies Gp with a Lie subgroup of Op3q, which we shall
continue to denote by Gp. Isotropy at p implies that this subgroup acts on the unit sphere S2 Ă R3

transitively, so it follows that Gp is either Op3q or SOp3q, and in particular, it acts transitively
either on FOpTpMq or on each of its two connected components.

Finally, if pM, gq is both homogeneous and isotropic, it now follows that the orbit of any
given frame φ P FOpTpMq under IsompM, gq contains either one or both connected components of
FOpTqMq for every point q PM , which proves that pM, gq is weakly frame homogeneous. �

Next, we show that the list of weakly frame homogeneous manifolds in Example 52.13 is almost
already complete.

Theorem 52.15. Every weakly frame homogeneous Riemannian n-manifold is isometric to
either pRn, gEq, the sphere SnR, hyperbolic space Hn

R or real projective space

RPnR :“ SnR
L
Z2

for some R ą 0, where RPnR carries the metric it inherits as a quotient of SnR by a group of
isometries.

Proof. If pM, gq is weakly frame homogeneous, then it is complete by Remark 52.2 and has
constant sectional curvature by Proposition 52.10, so by Corollary 51.10, it is isometric to

pĂM, rgqLΓ
where pĂM, rgq is either pRn, gEq, SnR or Hn

R for some R ą 0, and Γ Ă IsompĂM, rgq is a discrete
subgroup acting freely and properly on ĂM . By Exercise 52.8, dim isompM, gq “ npn`1q

2
, and we

observe: if π : ĂM Ñ M denotes the quotient projection, then every nontrivial Killing vector field
X P isompM, gq gives rise to a nontrivial vector fieldrX :“ X ˝ π P XpĂMq
that also satisfies the Killing equation since π : pĂM, rgq Ñ pM, gq is a local isometry, thus defining
an injective map π˚ : isompM, gq ãÑ isompĂM, rgq. Since dim isompĂM, rgq is also npn`1q

2
and, in

particular, cannot be larger, this proves that every Killing vector field on pĂM, rgq is of the form
X ˝π for some X P isompM, gq, and is therefore invariant under the action of the discrete group Γ.
It follows that the flows generated by these vector fields likewise commute with the isometries in Γ,
and since these flows generate the identity component Isom0pĂM, rgq Ă IsompĂM, rgq of the isometry
group, we conclude

ψ ˝ ϕ “ ϕ ˝ ψ for all ψ ˝ Γ and ϕ P Isom0pĂM, rgq.
Now consider the three cases separately:

‚ If pM, gq has positive curvature, then pĂM, rgq is SnR for some R ą 0, and Isom0pĂM, rgq
is therefore SOpn ` 1q. The only nontrivial subgroup of IsompĂM, rgq “ Opn ` 1q that
commutes with everything in SOpn` 1q is Z2 – t1,´1u Ă Opn` 1q, so Γ is either that
or the trivial group, giving rise to the two possibilities RPnR or SnR for pM, gq.
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‚ If pM, gq has zero curvature, then pĂM, rgq is pRn, gEq and Isom0pĂM, rgq is thus generated
by the rotations SOpnq and translations of Rn, while IsompĂM, rgq is generated by the
translations and Opnq. In this case, no nontrivial element of IsompĂM, rgq commutes with
all of Isom0pĂM, rgq, so Γ must be the trivial group and thus pM, gq – pRn, gEq.

‚ If pM, gq has negative curvature, then pĂM, rgq is Hn
R for some R ą 0, IsompĂM, rgq is the

orthochronous Lorentz group O`p1, nq and Isom0pĂM, rgq “ SO`p1, nq. The requirement
that elements of O`p1, nq preserve the direction of time (and thus preserve Hn

R as a
component of a two-sheeted hyperboloid) prevents it from containing ´1, so in this case
again, O`p1, nq contains no nontrivial elements that commute with all of SO`p1, nq,
leading to the conclusion Γ “ t1u and pM, gq – Hn

R.

�

52.2. Einstein metrics. In the effort to impose conditions that make classification up to
isometry a tractable problem, it is natural to ask: of all the metrics one could define on a given
manifold, does there exist one that is the “best”? Clearly the exact meaning of the word “best” is
open to debate, but for instance, in dimension two, a reasonable goal is to look for metrics that
have constant Gaussian curvature, and it turns out that they always exist, and are even unique if
one fixes the conformal class of the metric in advance. The obvious generalization of this condition
to higher dimensions would be constant sectional curvature, but we have already seen that that
condition is too strong: most higher-dimensional manifolds have universal covers that are not
diffeomorphic to Sn or Rn, and thus do not have any metrics of constant sectional curvature. The
following is a more reasonable condition to impose in higher dimensions.

Definition 52.16. A Riemannian metric g on an n-manifoldM is called an Einstein metric
if its Ricci tensor Ric P ΓpT 0

2Mq is a scalar multiple of g at every point, i.e. Ric “ f ¨ g for some
function f :M Ñ R.

One of the motivations for studying Einstein metrics comes from general relativity, because in
the Lorentzian setting, the condition in Definition 52.16 is closely related to the Einstein equation,
which determines the time-evolution of the Lorentzian metric (interpreted as a gravitational field)
on a spacetime manifold containing matter. A purely Riemannian motivation to study Einstein
metrics comes from the question of finding a “best” metric. One way to approach this question
is by maximizing or minimizing certain real-valued functionals that can be defined on the set of
Riemannian metrics, and one of the simplest is the so-called Einstein-Hilbert action, defined as
an integral of the scalar curvature. If we assume M is compact and write the scalar curvature and
Riemannian volume form as Scalg and dvolg respectively in order to emphasize their dependence
on the metric g, the Einstein-Hilbert action is given by

F pgq :“
ż
M

Scalg dvolg P R.

To define an interesting variational problem for this functional, we fix a constant C ą 0 and take
the domain of F to be the set of all metrics that have volume C,

G :“
"
Riemannian metrics g

ˇ̌̌ ż
M

dvolg “ C

*
.

The proof of the following proposition is a somewhat messy but standard computation in the
calculus of variations; we are only including the statement here for the sake of context, so we will
omit the proof.
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Proposition 52.17. A Riemannian metric g P G of volume C on a compact manifold M is
an Einstein metric if and only if it is a critical point of the Einstein-Hilbert action on G, i.e. for
every smooth 1-parameter family tgt P GutPp´ǫ,ǫq with g0 “ g,

d

dt
F pgtq

ˇ̌̌̌
t“0

“ 0.

�

Here are a few easy observations about Einstein metrics.

Remark 52.18. Recall from Lecture 36 that the scalar curvature Scal : M Ñ R is defined at
each point as the trace of the mixed version Ric7 P ΓpT 1

1Mq of the Ricci tensor, defined via the
condition

RicpX,Y q “ gpX,Ric7pY qq
for all X,Y P XpMq. The Einstein condition Ric “ f ¨ g is equivalent to

Ric7 “ f ¨ 1 P ΓpT 1
1Mq,

so taking the trace of both sides at each point gives a formula for f :M Ñ R in terms of the scalar
curvature, namely f “ Scal

n
. The condition for g to be an Einstein metric can thus be rephrased as

Ric “ Scal

n
g.

Exercise 52.19. Show that if pM, gq is homogeneous and isotropic, then g is an Einstein
metric.
Hint: At each point p P M , the linear map R7

p : TpM Ñ TpM is symmetric with respect to the
inner product gp. What can you say about the eigenspaces of R7

p and the action of the stabilizer
Gp :“  

ψ P IsompM, gq ˇ̌ ϕppq “ p
(
on TpM?

Remark 52.20. In the case dimM “ 2, Exercise 36.8 gives the relation Ric “ KG ¨g, implying
that every Riemannian metric in dimension 2 is Einstein. You can see an explanation for this
if you look again at the Einstein-Hilbert action and remember the Gauss-Bonnet formula, which
implies in light of the relation Scal “ 2KG that

F pgq “
ż
M

Scalg dvolg “ 2

ż
M

KG dvol “ 4πχpMq
for every closed oriented Riemannian 2-manifold pM, gq. In other words, the Einstein-Hilbert
action is independent of the metric in dimension 2, implying that every metric is a critical point,
and therefore an Einstein metric.

In dimensions three and upward, the study of Einstein metrics is a major industry within
Riemannian geometry. We do not have space to say anything about it here beyond the most
fundamental observation that, in contrast to the 2-dimensional case, most metrics on higher-
dimensional manifolds are indeed not Einstein metrics, because most of them do not have constant
scalar curvature:

Theorem 52.21. If dimM ě 3, then every Einstein metric on M has constant scalar curva-
ture.

The main tool we need for the proof of this theorem is a “contracted” version of the second
Bianchi identity. Recall from Lecture 45: the second Bianchi identity is the relation

dFA “ rFA, As
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for the equivariant curvature 2-form FA P Ω2pE, gq of a principal connection 1-form A P Ω1pE, gq
on a principal G-bundle E Ñ M . It is equivalent to the statement dAFA “ 0 for the operator
dA :“ d`A^p¨q on the space of Ad-equivariant forms ΩÅdpE, gq, so under the natural isomorphism
between ΩÅdpE, gq and Ω˚pM,AdpEqq, it translates into the identity

d∇ΩA “ 0

for the bundle-valued curvature 2-form ΩA P Ω2pM,AdpEqq, where d∇ is the covariant exterior
derivative operator on Ω˚pM,AdpEqq induced by the principal connection on E. To bring this into
the context of Riemannian geometry, we recall from §46.4 that if E is the frame bundle F pTMq
and A defines the principal connection on F pTMq corresponding to some chosen affine connection
∇ on M , then the Riemann tensor R P ΓpT 1

3Mq of ∇ can be derived from the bundle-valued
curvature 2-form ΩA P Ω2pM,AdpEqq by writing

(52.1) Rp¨, ¨qV “ ΩA ^ V P Ω2pM,TMq
for any V P XpMq. Here E is a principal GLpn,Rq-bundle and TM is identified with the associated
bundle pE ˆ Rnq{GLpn,Rq; the adjoint bundle AdpEq meanwhile has standard fiber glpn,Rq “
Rnˆn, whose natural action on Rn is used to define a parallel bundle map AdpEq b TM Ñ TM

and thus a wedge product pairing of Ω˚pM,AdpEqq with Ω˚pM,TMq. Applying d∇ to the right
hand side of (52.1) produces ΩA^∇V P Ω3pM,TMq as a result of the Leibniz rule and the second
Bianchi identity. If one now assumes ∇ is symmetric and uses (45.3) to compute the covariant
exterior derivative of the left hand side, one ends up with the relation

(52.2) p∇XRqpY, Zq ` p∇Y RqpZ,Xq ` p∇ZRqpX,Y q “ 0 for all X,Y, Z P XpMq,
which is known as the Riemannian variant of the second Bianchi identity, also sometimes
called the differential Bianchi identity. To clarify the notation: for X P XpMq we are viewing
∇XR P ΓpT 1

3Rq as a multilinear bundle map TM‘TM‘TM Ñ TM : pY, Z, V q ÞÑ p∇XRqpY, ZqV ,
just as we do with the Riemann tensor itself. Notice that the differential Bianchi identity is not just
a result about Riemannian or pseudo-Riemannian manifolds—the formula is valid for the Riemann
tensor of any symmetric affine connection.

Exercise 52.22. Work out the details of the proof of the differential Bianchi identity (52.2).
Advice: When ω is a bundle-valued 2-form, the formula (45.3) for d∇ω can be written in the form

d∇ωpX,Y, Zq “ ∇X

`
ωpY, Zq˘´ ω

`rX,Y s, Z˘` cyclic,

where the word “cyclic” means that additional (in this case four) terms appear, obtained from the
written terms via all possible cyclic permutations of the triple pX,Y, Zq. Similarly, for a bilinear
bundle map µ : E1 ‘ E2 Ñ F and forms ω P Ω2pM,E1q, λ P Ω1pM,E2q, the formula (45.1) for
µpω, λq P Ω3pM,F q becomes

µpω, λqpX,Y, Zq “ µpωpX,Y q, λpZqq ` cyclic.

One last piece of advice: when Lie brackets appear, use the torsion tensor to get rid of them.

Theorem 52.23 (twice contracted Bianchi identity). On any pseudo-Riemannian manifold
pM, gq with Levi-Cività connection ∇, the mixed Ricci tensor Ric7 P ΓpT 1

1Mq and scalar curvature
Scal :M Ñ R are related by the formula

dpScalqpXq “ 2 tr
`
Y ÞÑ ∇Y Ric

7pXq˘,
or in abbreviated form,

dpScalq “ 2 trpRic7q.
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Proof. In local coordinates, the stated relation says

(52.3) BjScal “ 2∇iR
i
j ,

where the components of the tensors R P ΓpT 1
3Mq, Ric P ΓpT 0

2Mq, Ric7 P ΓpT 1
1Mq and ∇Ric7 P

ΓpT 1
2Mq are written as

Rijkℓ :“ dxi
`
RpBj , BkqBℓ˘, Rij :“ RicpBi, Bjq,

Rij :“ dxi
`
Ric7pBjq˘, ∇iR

j
k :“ dxj

`p∇BiRic7qpBkq
˘
,

and by definition,

Rij “ Rkkij , Rij “ gikRkj , Rij “ gikR
k
j , and Scal “ Rii.

Since dpScalq and trpRic7q are both well-defined tensor fields, it will suffice to prove that (52.3)
holds in some particular choice of local coordinates, which we may as well take to be Riemann
normal coordinates about some point p PM . At that one point, the Christoffel symbols vanish, so
the operator ∇i matches the ordinary partial derivative operator Bi and (52.3) thus becomes

(52.4) BjRii “ 2BiRij .
We will perform the entire calculation at this one point, and also use the fact that for this choice of
coordinates, the first partial derivatives of gij and gij all vanish. The differential Bianchi identity
in these coordinates says

BiRℓjkm ` BjRℓkim ` BkRℓijm “ 0

at p, so unpacking BjRii at this point in terms of the Riemann tensor gives

(52.5) BjRii “ Bj `gikRℓℓik˘ “ gikBjRℓℓik “ ´gikBℓRℓijk ´ gikBiRℓjℓk .
The last expression can be simplified using the symmetries of the Riemann tensor if we first
rewrite it in terms of the covariant Riemann tensor with components Rijkℓ “ RiempBi, Bj , Bk, Bℓq “
gimR

m
jkℓ, hence R

i
jkℓ “ gimRmjkℓ. Since the derivatives of gim vanish, (52.5) becomes

BjRii “ ´gikgℓmBℓRmijk ´ gikgℓmBiRmjℓk
“ gikgℓmBℓRkijm ` gikgℓmBiRmℓjk
“ gℓmBℓRiijm ` gikBiRℓℓjk “ Bℓ`gℓmRjm˘` Bi`gikRjk˘
“ BℓRℓj ` BiRij “ 2BiRij ,

(52.6)

where in the second line we’ve used the relations Rijkℓ “ ´Rℓjki “ ´Rikjℓ, and in the last line we
also used the symmetry of the Ricci tensor Rij “ Rji. �

Proof of Theorem 52.21. Abbreviate S :“ Scal. If g is an Einstein metric, then by Re-
mark 52.18, Ric7 “ 1

n
S ¨ 1 for n :“ dimM . You will find it easy to check that the tensor field

1 P ΓpT 1
1Mq is parallel, so applying the covariant derivative to both sides of this relation and

applying the Leibniz rule on the right hand side gives

∇Ric7 “ 1

n
dS ¨ 1 P ΓpT 1

2Mq,
which in local coordinates says

∇kR
i
j “ 1

n
BkS ¨ δij .

Contracting the indices k and i in this expression gives

∇iR
i
j “ 1

n
BiS ¨ δij “ 1

n
BjS,
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but according to the contracted Bianchi identity (52.3), the latter is also 2
n
∇iR

i
j , giving

∇iR
i
j “ 2

n
∇iR

i
j .

If n ě 3, the only way for this equality to hold is if ∇iR
i
j vanishes identically, which implies the

same for BjS. �

Exercise 52.24. Suppose pM, gq is a connected Riemannian manifold of dimension n ě 3 and
f : M Ñ R is a smooth function such that the sectional curvature satisfies KSpP q “ fppq for all
P Ă TpM , p PM . Prove that KS is then constant. (Is this true for n “ 2?)
Hint: Prove that g is an Einstein metric. You might find Equation 36.1 helpful.

53. Introduction to Hodge theory

Our goal for the last four lectures in this course is to prove the Hodge decomposition the-
orem, which identifies the de Rham cohomology Hd̊RpMq of a closed n-manifold with a special
finite-dimensional subspace of Ω˚pMq, the space of so-called harmonic forms. Applications of this
theorem include the Poincaré duality isomorphism Hk

dRpMq – Hn´k
dR pMq for closed oriented man-

ifolds, plus a multitude of results in which—much like the Gauss-Bonnet formula—the properties
of a chosen Riemannian on M and its curvature constrain the topology of M , or vice versa.

For real-valued functions f of n variables, the word “harmonic” refers to solutions of the
Laplace equation

(53.1)
nÿ
j“1

B2j f “ 0,

which is usually regarded as the simplest interesting partial differential equation. You have likely
seen it before, either in complex analysis (because the real and imaginary parts of holomorphic
functions on C “ R2 are harmonic), or in physics (the electrostatic potential in a vacuum is
harmonic, and the Laplace operator also shows up naturally as a component in standard wave
equations, including the Schrödinger equation of quantum mechanics). In the context of a smooth
manifold, we will have to work a bit before deciding how to define harmonic functions f :M Ñ R;
a first guess might be to require the equation (53.1) to be satisfied in local coordinates, but this
definition would then depend on the choice of coordinates, so we need something better. Once a
coordinate-invariant version of the Laplace equation for differential forms has been defined, we will
see that the deep results of Hodge theory arise mainly from a particular property that this equation
has: it is elliptic. Linear PDEs of the form Df “ 0 for an elliptic operator D have a number of
wondrous properties when considered specifically on closed manifolds: in particular, their solution
spaces are finite dimensional, and the corresponding inhomogeneous equation Df “ g can also
be solved for all g on a space of finite codimension. The most difficult part of the proof of the
Hodge decomposition theorem will follow from these general properties of elliptic operators, so for
most of the next few lectures, we will consider arbitrary elliptic operators rather than the Laplace
operator specifically. We will need to use some tools from functional analysis: notably the Fourier
transform and the basic properties of Sobolev spaces, some of which we will state as black boxes
since the proofs would require too much of a digression. Similarly, giving complete proofs of the
fundamental results on elliptic regularity would require at least a few extra lectures dominated by
long and intricate strings of inequalities, which would change this geometry course into something
of an altogether different character, so I will skip some of those details. Wherever possible, I will
endeavor at least to make each stated result seem believable and communicate the basic principles
behind it.
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More comprehensive proofs of the Hodge decomposition theorem can be found in various
standard textbooks such as [War83, dR84, Jos17]. Some of those treatments make the task
slightly simpler by focusing specifically on the Laplace operator instead of general elliptic operators.
In my opinion, however, sacrificing generality in this way does not make things that much easier,
and at the same time, it obscures the interesting role played by more general phenomena that are
relevant both here and in other subbranches of differential geometry where elliptic operators arise.
I prefer where possible to state each result at its natural level of generality, especially when doing
so helps elucidate the essential reasons why it is true. A good source for more detailed proofs of
the results we will need on general elliptic operators is [Ebe].

53.1. Harmonic functions on a Riemannian manifold. Our first task is to write down
a meaningful version of the Laplace equation (53.1) for functions f : M Ñ R on an n-manifold
M so that the equation does not depend on any choice of coordinates. We dealt with a similar
challenge when we discussed the Dirac equation in Lecture 50, and the solution here is similar: we
must first endowM with more structure. For the Dirac equation, the structure we needed included
an orientation, a pseudo-Riemannian metric and a spin structure on top of these, plus a choice
of representation for the relevant Clifford algebra in order to define the spinor bundle on which
the Dirac operator acts. For the Laplacian, a metric will suffice: we assume pM, g “ x , yq is a
pseudo-Riemannian manifold, and we will later want to insist that g is also positive, but let’s hold
off on that assumption until it’s really needed. For convenience we shall also usually assume that
M is orientable, though this assumption is not essential. The metric and a choice of orientation
determine a volume form dvol P ΩnpMq and a Levi-Cività connection ∇, and the divergence of
a vector field X P XpMq is then the unique function divpXq : M Ñ R satisfying

LX pdvolq “ divpXq ¨ dvol, or equivalently divpXq “ trp∇Xq.
The equivalence of these two ways of defining divpXq was proved in §50.5.2. Recall that the
gradient of a function f : M Ñ R is obtained by plugging the differential df P Ω1pMq into the
musical isomorphism 7 : T ˚M Ñ TM that inverts 5 : TM Ñ T ˚M : X ÞÑ X5 :“ xX, ¨y, so

∇f :“ pdfq7 P XpMq, meaning df “ x∇f, ¨y.
The following now defines a natural generalization of the coordinate-based Laplace operator to
pseudo-Riemannian manifolds:

∆f :“ ´ divp∇fq “ ´ trp∇2fq,
where we write ∇2f :“ ∇p∇fq P Ω1pM,TMq “ ΓpEndpTMqq.111 Indeed, one checks easily that if
M “ Rn is endowed with a flat metric g “ gij dx

i dxj with constant components so that ∇ is the
trivial connection, then ∆ is given by

(53.2) ∆f “ ´gijBiBjf,
which in the case of the standard Euclidean metric gij “ δij is just ´řn

j“1 B2j . Not every author
includes the minus sign, but there are good reasons to do so and they will be clarified below (see
Remark 53.3). We call a function f :M Ñ R harmonic if it satisfies ∆f “ 0.

Exercise 53.1. Show that the divergence operator div : XpMq Ñ C8pMq satisfies the Leibniz
rule

divpϕXq “ ϕ ¨ divpXq ` dϕpXq for all ϕ P C8pMq, X P XpMq.
111The reader should be aware that the symbol “∇2” is also the standard physicists’ notation for the Laplace

operator, but mathematicians typically use it with a different meaning.
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Exercise 53.1 gives rise to an integration-by-parts formula if we combine it with the observation
via Cartan’s magic formula that divpXq ¨dvol “ LX pdvolq “ dpιXdvolq is an exact n-form for every
X P XpMq. Indeed, we have
(53.3)

ż
M

ϕ ¨ divpXq dvol “ ´
ż
M

dϕpXq dvol
for all ϕ P C8pMq and X P XpMq with compact support in MzBM . This follows because the dif-
ference between the two sides of the equation is

ş
M

divpϕXq dvol “ ş
M
dpιϕXdvolq, which vanishes

by Stokes’ theorem if ιϕXdvol has compact support inMzBM . For the Laplace operator, this gives
rise to the relation

(53.4)
ż
M

ϕ∆f dvol “ ´
ż
M

ϕ divp∇fq dvol “
ż
M

dϕp∇fq dvol “
ż
M

x∇ϕ,∇fy dvol
for any two smooth functions ϕ, f :M Ñ R with compact support in MzBM .

Proposition 53.2. On any connected and oriented Riemannian manifold pM, gq, all solutions
f P C8pMq to the equation ∆f “ 0 with compact support in MzBM are constant. In particular,
all solutions are constant if M is closed.

Proof. Assuming ∆f “ 0 and supppfq ĂMzBM is compact, (53.4) gives

0 “
ż
M

f ∆f dvol “
ż
M

x∇f,∇fy dvol,
which is only possible if ∇f ” 0. �

Remark 53.3. The main property of ∆ we used in the proof of Proposition 53.2 is that for a
closed Riemannian manifold pM, gq, the quadratic form defined on C8pMq by

Qpfq :“
ż
M

f ∆f dvol

is nonnegative, and vanishes only on constant functions. This is a reason to include the minus
sign in the definition of ∆ “ ´ trp∇2q; maybe it’s discriminatory, but most people prefer quadratic
forms to be nonnegative rather than nonpositive.

Let us take note of which hypotheses in Proposition 53.2 can or cannot be relaxed.

Remark 53.4. If f : M Ñ R does not have compact support or is allowed to be nonzero
on BM , then the use of (53.4) becomes invalid, because either

ş
M
dpιϕXdvolq “ ş

BM ιϕXdvol can
be nonzero or Stokes’ theorem cannot be applied due to noncompact supports. It is easy to find
examples of open Riemannian manifolds that admit infinite-dimensional spaces of nonconstant
harmonic functions that either have noncompact support or are nonzero on the boundary, e.g. on
the compact 2-disk D Ă C or the complex plane C “ R2 with the standard Euclidean metric, the
real part of every holomorphic function is harmonic.

Remark 53.5. If pM, gq is a pseudo-Riemannian manifold with indefinite signature, then the
computation in the proof of Proposition 53.2 is valid, but the conclusion is not: the relationş
M
x∇f,∇fy dvol “ 0 does not imply that ∇f vanishes, since x∇f,∇fy can take any sign at each

point. For example, on Tn`1 with periodic coordinates pt,xq :“ px0, x1, . . . , xnq P S1ˆTn and the
Minkowski metric g “ dt2 ´ pdx1q2 ´ . . .´ pdxnq2, (53.2) becomes the wave operator

∆f “ ´B2t f `
nÿ
j“1

B2jf.
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Physicists prefer to the equation ∆f “ 0 in this case as lf “ 0 in order to emphasize that it has a
quite different character from the usual Laplace equation, e.g. it has an infinite-dimensional space
of nonconstant solutions f : Tn`1 Ñ R, containing the traveling waves

fpt,xq “ cos
`
2πpωt´ xk,xyq˘, for every k P Zn and ω :“ ˘|k|.

Remark 53.6. Our proof of Proposition 53.2 used the orientation of M since it involved
a global integral and a volume form dvol, but the result is true without assuming orientability.
Indeed, the operator ∆ “ ´ trp∇2q depends on the metric g but not on the orientation; even
the defining relation LXpdvolq “ divpXq ¨ dvol for the divergence does not really depend on the
orientation since replacing dvol with ´dvol inserts a sign on both sides and thus leaves divpXq
unchanged. One way to prove Proposition 53.2 for M non-orientable is to use the fact that M
then has an orientable connected 2-fold covering space π : ĂM Ñ M ; indeed, ĂM in this situation
can be defined as the subset of ΛnT ˚M consisting of all alternating n-forms that evaluate to ˘1 on
orthonormal bases. Pulling back g defines a metric rg such that the covering map pĂM, rgq Ñ pM, gq
is a local isometry, and it follows that f : M Ñ R is harmonic if and only if f ˝ π : ĂM Ñ R is
harmonic. The oriented case of Proposition 53.2 then implies that f ˝π is constant, and therefore so
is f . Alternatively, the proof of Proposition 53.2 still works as written in the non-orientable case if
one interprets dvol as the canonical volume element determined by g instead of a volume form (see
§11.4 in last semester’s notes). The crucial ingredient needed is the formula

ş
M

divpXq dvol “ 0

for all X P XpMq with compact support, and this can be derived from the oriented case using the
covering trick described above.

To summarize: if we want the space of solutions to the equation ∆f “ 0 to be finite dimen-
sional, then we need to work on a manifold that is both closed and Riemannian, i.e. no pseudo.112

For convenience we will continue to assume that M is also oriented, because it will often be useful
to have globally-defined volume forms, but in fact, it is also possible to develop all of Hodge theory
without this assumption; the details are carried out in [dR84].

The following consequence of Proposition 53.2 hints at the right direction in which it should
be generalized:

Corollary 53.7. For any closed oriented Riemannian manifold pM, gq, the kernel of the
operator ∆ : C8pMq Ñ C8pMq is identical to the kernel of the operator d : C8pMq Ñ Ω1pMq,
and there is thus a natural isomorphism ker∆Ñ H0

dRpMq : f ÞÑ rf s. �

53.2. Harmonic differential forms. In order to write down a Laplace-type operator on
differential forms, we need a few algebraic preliminaries.

Suppose V is a real n-dimensional vector space equipped with a nondegenerate symmetric
bilinear form x , y. In the cases we mainly care about, x , y will be a positive inner product, but we
will not assume positivity until it is really needed. As usual with scalar products that are allowed
to be indefinite, a basis e1, . . . , en P V is called orthonormal if xei, ejy “ ˘δij .

Lemma 53.8. The pairing x , y on V determines a unique nondegenerate symmetric bilinear
form x , y on the exterior algebra Λ˚V with the following properties:

(1) xa, by “ ab for a, b P Λ0V “ R;
(2) x , y matches the given bilinear form on V Ă Λ1V ;
(3) ΛkV and ΛℓV are orthogonal subspaces of Λ˚V whenever k ‰ ℓ;

112This is not to say that there exists no reasonable theory for the Laplace equation on compact manifolds with
boundary, or noncompact manifolds—such theories exist, but they require imposing suitable boundary or asymptotic
conditions on the solutions. We will not consider such generalizations here, but you will find some discussion of
them e.g. in [dR84].
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(4) For any orthonormal basis e1, . . . , en P V and any two sets 1 ď i1 ă . . . ă ik ď n and
1 ď j1 ă . . . ă jk ď n,

xei1 ^ . . .^ eik , ej1 ^ . . .^ ejky “ xei1 , ej1y ¨ . . . ¨ xeik , ejky.
In particular, the set 

ei1 ^ . . .^ eik P Λ˚V
ˇ̌
k ě 0, 1 ď i1 ă . . . ă ik ď n

(
(including 1 P R “ Λ0V for the case k “ 0) is then an orthonormal basis of Λ˚V , and
x , y is a positive inner product on Λ˚V if its restriction to V is positive.

Proof. Once x , y has been chosen on V , the stated conditions clearly determine its extension
to Λ˚V uniquely since it is determined on all elements of a basis. To prove that such an extension
exists independently of the choice of basis, it will suffice to define it on ΛkV for each k “ 0, . . . , n

and then require ΛkV K ΛℓV whenever k ‰ ℓ. To define it on ΛkV , we start by defining the pairing
x , yb on V bk by

xv1 b . . .b vk, w1 b . . .b wkyb :“ xv1, w1y ¨ . . . ¨ xvk, wky.
You can see that this is well defined if you regard it as a 2k-fold multilinear map V ˆ . . .ˆV Ñ R,
which therefore corresponds to a unique linear map V b2k “ V bk b V bk Ñ R and thus a bilinear
form V bk ˆ V bk Ñ R; it is manifestly also symmetric. The restriction of this bilinear form to
ΛkV Ă V bk is not quite what we are looking for, but almost: we claim that the desired bilinear
form on ΛkV is given by

x , y :“ 1

k!
x , yb on ΛkV .

To see this, one can choose an orthonormal basis e1, . . . , en P V and use the formula

v1 ^ . . .^ vk “
ÿ
σPSk

p´1q|σ|vσp1q b . . .b vσpkq

to compute xei1 ^ . . .^ eik , ej1 ^ . . .^ ejky for any 1 ď i1 ă . . . ă ik ď n and 1 ď j1 ă . . . ă jk ď n.
The product

xei1 ^ . . .^ eik , ej1 ^ . . .^ ejkyb “
ÿ

σ,σ1PSk

p´1q|σ|`|σ1|xeiσp1q b . . .b eiσpkq , ejσ1p1q b . . .b ejσ1pkqyb

“ ÿ
σ,σ1PSk

p´1q|σ|`|σ1|xeiσp1q , ejσ1p1qy ¨ . . . ¨ xeiσpkq , ejσ1pkqy

will vanish unless ti1, . . . , iku and tj1, . . . , jku are the same set, and in the latter case, nontrivial
contributions only come from summands in which the two permutations σ, σ1 are the same. The
sign p´1q|σ|`|σ1| is then 1 and the order of factors in the product does not matter, so the result is
k!xei1 , ei1y ¨ . . . ¨ xeik , eiky. �

The lemma allows us to assign to every pseudo-Riemannian manifold pM, gq a canonical choice
of bundle metric x , y on Λ˚T ˚M whose restriction to T ˚M corresponds to g under the musical
isomorphism T ˚M – TM . This bundle metric on Λ˚T ˚M will then be positive if and only if g is
positive, and at each point, the two possible choices of volume form dvol that evaluate to ˘1 on
orthonormal bases are then determined by the condition

xdvol, dvoly “ ˘1.
Here the sign is negative if pM, gq has signature pk, ℓq with ℓ odd, and is otherwise positive.
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Lemma 53.9. Given a pairing x , y on Λ˚V as in Lemma 53.8 and a choice of top-dimensional
form µ P ΛnV with xµ, µy “ ˘1, there exists a unique linear isomorphism ˚ : Λ˚V Ñ Λ˚V such
that

xα, βyµ “ α^ ˚β for all α, β P Λ˚V .
Moreover, for each k “ 0, . . . , n, ˚ maps ΛkV to Λn´kV as an orthogonal transformation

pΛkV, x , yq Ñ̊ pΛn´kV,˘x , yq,
where the sign ˘ on the right hand side is xµ, µy.

Proof. Fix an orthonormal basis e1, . . . , en P V such that µ “ e1 ^ . . . ^ en. For each
1 ď i1 ă . . . ă ik ď n, writing β :“ ei1 ^ . . .^ eik , there is now a unique way to define ˚β P Λn´kV
such that the condition xα, βy e1^ . . .^en “ α^˚β is satisfied for all α P ΛkV . Indeed, considering
α of the form ej1 ^ . . .^ ejk for 1 ď j1 ă . . . ă jk ď n reveals that ˚β must be

˚pei1 ^ . . .^ eikq “ p´1q|σ|ej1 ^ . . .^ ejn´k
where σ : p1, . . . , nq ÞÑ pi1, . . . , ik, j1, . . . , jn´kq,

i.e. the indices j1, . . . , jn´k are chosen to include all elements of t1, . . . , nu that are not in ti1, . . . , iku,
and the permutation σ P Sn is then uniquely determined. This establishes the relation xα, βyµ “
α^˚β whenever α and β are wedge products of basis elements, and by multilinearity, it is therefore
always satisfied. Since this condition uniquely determines ˚, we conclude that the definition is in-
dependent of the choice of basis. The orthogonality of ˚ follows from the fact that it evidently maps
an orthonormal basis to an orthonormal basis, with the following caveat: for β “ ei1 ^ . . . ^ eik ,
the signs of xβ, βy and x˚β, ˚βy will match if and only if both ti1, . . . , iku and its complement in
t1, . . . , nu contain either an even or an odd number of indices j such that xej , ejy “ ´1. This
holds if and only if the total number of indices in t1, . . . , nu with this property is even, which is
equivalent to xµ, µy being `1 instead of ´1. �

For the rest of this section, assume pM, gq is a pseudo-Riemannian manifold with

dimM “ n.

Definition 53.10. If pM, gq has an orientation and dvol P ΩnpMq denotes the resulting volume
form, the Hodge star operator is the smooth linear bundle isomorphism ˚ : Λ˚T ˚M Ñ Λ˚T ˚M
that is (in light of Lemma 53.9) uniquely determined by the relation

xα, βy dvol “ α^ ˚β,
where x , y is the bundle metric on Λ˚T ˚M determined by g via Lemma 53.8.

The Hodge star operator defines for each k “ 0, . . . , n a bundle isomorphism ΛkT ˚M Ñ
Λn´kT ˚M , and therefore also an isomorphism ΩkpMq Ñ Ωn´kpMq. Formally, there is no problem
in saying this also for k ă 0 or k ą n, since in these cases both ΛkT ˚M and Λn´kT ˚M are
trivial—the former by definition, the latter because all alternating m-forms on a vector space of
dimension less than m vanish.

Exercise 53.11. Show that for each k P Z, the Hodge star ˚ : ΛkT ˚M Ñ Λn´kT ˚M satisfies
˚2 “ p´1qkpn´kq, and thus ˚´1 “ p´1qkpn´kq˚.

Definition 53.12. For each k P Z, the operator d˚ : ΩkpMq Ñ Ωk´1pMq is defined by

d˚ω “ p´1qk ˚´1
`
dp˚ωq˘.

Remark 53.13. Exercise 53.11 gives rise to the more direct (but harder to remember) formula

d˚ “ p´1qk`pk´1qpn´k`1q ˚ d˚ “ p´1qnpk`1q´1 ˚ d˚ : ΩkpMq Ñ Ωk´1pMq.
For k ď 0 or k ą n, d˚ should be understood as the trivial operator.
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Proposition 53.14. On any pseudo-Riemannian manifold pM, gq, the operator d˚ : Ω˚pMq Ñ
Ω˚pMq and the exterior derivative d : Ω˚pMq Ñ Ω˚pMq are dual to each other in the sense thatż

M

xβ, dαy dvol “
ż
M

xd˚β, αy dvol
for all forms α, β P Ω˚pMq with compact support in MzBM .

Proof. Both sides of the stated relation are trivial unless α P Ωk´1pMq and β P ΩkpMq for
some k P t1, . . . , nu, so assume this. By Stokes’ theorem and the graded Leibniz rule for the wedge
product, we have

0 “
ż
M

dpα^ ˚βq “
ż
M

dα^ ˚β ` p´1qk´1

ż
M

α^ dp˚βq

“
ż
M

dα^ ˚β ´ p´1qk
ż
M

α^ ˚` ˚´1 dp˚βq˘ “ ż
M

dα^ ˚β ´
ż
M

α^ ˚pd˚βq

“
ż
M

xdα, βy dvol´
ż
M

xα, d˚βy dvol.
�

Remark 53.15. We did not include the assumption that M is orientable in the statement
of Proposition 53.14, though the proof used that assumption in several essential ways, e.g. by
using Stokes’ theorem, and by referring to a globally defined volume form dvol P ΩnpMq. Our
definition of the Hodge star operator also requires a volume form and thus an orientation. However,
reversing the volume form changes ˚ by a sign, and since the star appears twice in the definition
of d˚ : ΩkpMq Ñ Ωk´1pMq, the latter also makes sense without an orientation. With this in
mind, Proposition 53.14 also becomes true if dvol is understood as the canonical volume element
on pM, gq instead of an n-form. One can deduce it from the oriented case using the double covering
trick described in Remark 53.6. It is also possible to define the Hodge star operator in a more
general way that works when M is not orientable, though in that case, it does not define a map
ΩkpMq Ñ Ωn´kpMq, but something a bit more abstract instead. This approach is taken in [dR84].

Motivated by Proposition 53.14, we refer to d˚ : Ω˚pMq Ñ Ω˚pMq as the formal adjoint of
the exterior derivative operator d. We can now define the operator that is the central object of
study in Hodge theory.

Definition 53.16. On a pseudo-Riemannian manifold pM, gq, the Laplace-Beltrami oper-
ator (also sometimes called the Hodge Laplacian or Hodge-de Rham operator) is defined
by

∆ :“ dd˚ ` d˚d : Ω˚pMq Ñ Ω˚pMq.
Differential k-forms ω P ΩkpMq satisfying ∆ω “ 0 are called harmonic k-forms.

Note that since d and d˚ increase and decrease respectively the degrees of the forms that they
act on, ∆ sends ΩkpMq to itself for each k P Z. The next exercise is an easy calculation from the
definitions; you just have to get the signs right.

Exercise 53.17. Show that on any oriented pseudo-Riemannian manifold pM, gq, the Laplace-
Beltrami and Hodge star operators commute:

∆p˚ωq “ ˚p∆ωq for all ω P Ω˚pMq.
Let us try to clarify why ∆ is regarded as a type of Laplace operator on forms. One reason

is that in the case k “ 0, it agrees with the operator we considered in §53.1. To see this, suppose
ϕ, f P C8pMq are arbitrary functions with compact support in MzBM , and note that ∆ “ d˚d
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on Ω0pMq “ C8pMq since d˚ vanishes on 0-forms by definition. Using Proposition 53.14, we then
find ż

M

ϕ∆f dvol “
ż
M

xϕ, d˚dfy dvol “
ż
M

xdϕ, dfy dvol “
ż
M

x∇ϕ,∇fy dvol,
the same relation that was established for the operator ∆f :“ ´ divp∇fq in (53.4). Since the
function ϕ in this calculation was arbitrary, it follows that these two definitions of the operator
∆ : C8pMq Ñ C8pMq are the same.

On k-forms with k ě 1, some justification for applying the word “Laplacian” to ∆ comes from
writing it down in local coordinates px1, . . . , xnq: if ω P ΩkpMq is written locally in terms of its
components ωi1...ikpBi1 , . . . , Bikq, one finds that the corresponding components of ∆ω P ΩkpMq are
given by

(53.5) p∆ωqi1...ik “ ´gjℓBjBℓωi1...ik ` terms of order ă 2,

where to clarify, the extra terms not appearing in this formula depend only on the values and first
derivatives of the components of ω, but not on their second derivatives. The proof of this local
formula will be an easy exercise once we have learned how to compute the principal symbol of ∆,
which will do in the next lecture.

As a preview of what is to come, here is a statement of one of the main corollaries of the Hodge
decomposition theorem, whose proof will occupy the next few lectures.

Theorem 53.18. On any closed Riemannian manifold pM, gq, the space ker∆ Ă Ω˚pMq of
harmonic forms is finite dimensional, all harmonic forms are closed, and the resulting map

ker∆Ñ Hd̊RpMq : ω ÞÑ rωs
is an isomorphism.

If you are not already aware of de Rham’s theorem (identifying Hd̊RpMq with the singular
cohomology of M with real coefficients), or otherwise have no little or no knowledge of algebraic
topology, you can now nonetheless deduce at least two results of fundamental importance about
the topology of smooth manifolds:

Corollary 53.19. For any closed manifold M , the de Rham cohomology Hd̊RpMq is finite
dimensional. �

Corollary 53.20 (Poincaré duality). For any closed and oriented n-manifold M and each
k “ 0, . . . , n, the map

Hn´k
dR pMq PDÝÑ `

Hk
dRpMq˘˚, PDprαsqrβs :“

ż
M

α^ β

is an isomorphism, so in particular, dimHk
dRpMq “ dimHn´k

dR pMq.
Proof. Observe first that the map in question is well defined as a consequence of Stokes’

theorem: if α and β are both closed, then by the graded Leibniz rule, α^β will be exact whenever
either α or β is exact, implying that the integral depends only on the cohomology classes of both.
In other words, there is a well-defined bilinear pairing

Hk
dRpMq ˆHn´k

dR pMq Ñ R : prαs, rβsq ÞÑ
ż
M

α^ β,

which is antisymmetric if k and n´ k are both odd, and is otherwise symmetric. The main thing
to prove is that this pairing is nondegenerate, i.e. for every rαs ‰ 0 P Hk

dRpMq, one can find some
rβs P Hn´k

dR pMq such that
ş
M
α ^ β ‰ 0. This will imply for the following reasons that PD is

an isomorphism: first, it is clearly injective, since for any rαs ‰ 0 P Hn´k
dR pMq, nondegeneracy
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provides a rβs P Hk
dRpMq such that PDprαsqrβs ‰ 0. This implies dimHn´k

dR pMq ď dimHk
dRpMq,

but one can make the same argument with the roles of k and n ´ k reversed in order to prove
dimHk

dRpMq ď dimHn´k
dR pMq, so their dimensions match, and PD is therefore an isomorphism.

The proof of nondegeneracy is where we can make use of Theorem 53.18. First choose a
Riemannian metric g on M , which always exists by the usual partition of unity argument. This
determines a positive bundle metric x , y on Λ˚T ˚M , along with a volume form dvol P ΩnpMq,
Hodge star operator ˚ : ΛkT ˚M Ñ Λn´kT ˚M and Laplace-Beltrami operator ∆ : Ω˚pMq Ñ
Ω˚pMq. Given rαs ‰ 0 P Hk

dRpMq, we can now choose the representative α P ΩkpMq to be
harmonic, and it is necessarily nonzero. By Exercise 53.17, ˚α P Ωn´kpMq is then also harmonic
and therefore closed, and we have

ş
M
α ^ ˚α “ ş

M
xα, αy dvol ą 0 since α ‰ 0 and the bundle

metric on Λ˚T ˚M is positive. �

Exercise 53.21. Deduce from Corollary 53.20 that on any closed, connected and oriented
n-manifold M , an n-form ω P ΩnpMq is exact if and only if

ş
M
ω “ 0.

Remark 53.22. It is true for many of the results in our discussion of Hodge theory that
our proofs make use of orientations for the sake of convenience, even though the results are true
without orientability—Poincarè duality, however, is emphatically not an example of this. Our proof
of Corollary 53.20 required the use of the Hodge star operator as an isomorphism from ΩkpMq to
Ωn´kpMq, as well as the ability to define a pairing of Hk

dRpMq with Hn´k
dR pMq by integrating n-

forms overM , neither of which makes sense if M is not endowed with an orientation. And indeed,
Corollary 53.20 is false for non-orientable manifolds; for example, ifM is closed and connected but
non-orientable, then Hn

dRpMq “ 0 fl H0
dRpMq “ R. This is a standard fact from algebraic topology

if you are willing to follow the de Rham isomorphism from Hd̊RpMq to singular cohomology, but
one can also deduce it from Exercise 53.21 using the double covering trick of Remark 53.6. Let
π : ĂM ÑM denote a double cover such that ĂM is closed, connected and orientable, in which case
the non-orientability of M implies that the unique nontrivial deck transformation ψ : ĂM Ñ ĂM
for this cover is orientation reversing. Given ω P ΩnpMq, the relation π ˝ ψ “ π then implies
ψ˚π˚ω “ π˚ω and thusż

ĂM π˚ω “
ż
ĂM ψ˚π˚ω “ ´

ż
ψpĂMq

π˚ω “ ´
ż
ĂM π˚ω,

so that
şĂM π˚ω necessarily vanishes. (One can also see this by considering an arbitrary evenly

covered subset U ĂM : the preimage π´1pUq Ă ĂM is then a disjoint union of two regions on which
π˚ω looks identical but ĂM carries opposite orientations, so they cancel each other in the integral.)
It now follows from Exercise 53.21 that π˚ω “ drλ for some rλ P Ωn´1pĂMq, and acting on both sides
of this relation with ψ˚ implies also

ψ˚π˚ω “ π˚ω “ ψ˚drλ “ dpψ˚rλq,
so ψ˚rλ is another primitive for π˚ω, and therefore so is the average

rα :“ 1

2
prλ` ψ˚rλq.

The latter satisfies ψ˚rα “ rα, implying that it is a pullback π˚α of some α P Ωn´1pMq, which then
satisfies π˚pdαq “ dpπ˚αq “ π˚ω, and therefore dα “ ω.

In algebraic topology, there does exist a version of Poincarè duality for non-orientable man-
ifolds, but it requires homology and cohomology with Z2 coefficients, so it cannot be seen in a
straightforward way via de Rham’s theory.
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53.3. Differential operators on manifolds. We now begin setting up the analysis required
for the proof of Theorem 53.18. For the remainder of this lecture, we dispense with the pseudo-
Riemannian metric g and assume only thatM is a smooth n-manifold with a pair of smooth vector
bundles

E,F ÑM

of ranks k and ℓ respectively over F P tR,Cu. We will need to make frequent use of multi-index
notation: a multi-index is a tuple α “ pα1, . . . , αnq of nonnegative integers, which gives rise to
the differential operator

Bα :“ Bα1

1 . . . Bαn
n

for functions of n real variables, as well as the polynomial

zα :“ zα1

1 . . . zαn
n P C for z “ pz1, . . . , znq P Cn.

The nonnegative integer |α| :“ α1 ` . . .` αm is called the order of the multi-index, and is equal
to the order of the differential operator Bα and the degree of the polynomial zα. For each integer
m ě 0 there exist only finitely many multi-indices α with |α| ď m, and summations of the formÿ

|α|ďm
expression dependent on α,

should thus be understood to mean the sum over the finite set of all multi-indices with order at
most m; the expression

ř
|α|“m has a similar interpretation, involving all multi-indices of order

equal to m.

Definition 53.23. Given the vector bundles E,F Ñ M of ranks k and ℓ respectively over
F, a linear map D : ΓpEq Ñ ΓpF q is called a (linear) differential operator from E to F if for
every open subset U Ă M and section η P ΓpEq, Dη|U depends only on η|U , and for every choice
of chart px1, . . . , xnq forM and local trivializations of E and F over U , the resulting isomorphisms
ΓpE|Uq – C8pU ,Fkq and ΓpF |Uq – C8pU ,Fℓq identify ΓpE|Uq DÑ ΓpF |Uq with a map of the form

C8pU ,Fkq Ñ C8pU ,Fℓq : f ÞÑ ÿ
|α|ďm

cαBαf

for some integer m ě 0 and smooth matrix-valued functions cα : U Ñ HompFk,Fℓq “ Fℓˆk, called
the coefficients of the operator for these choices of coordinates and trivializations. We say that
D has order m if m is the largest integer for which the coefficients cα for some multi-index α of
order m on some region with an associated chart and trivializations are not identically zero.

In these notes, we will usually omit the word “linear” when referring to differential operators,
since we have no plans to discuss nonlinear operators (much as that is an interesting topic). The
word “partial” is occasionally also inserted before “differential operator” if the underlying manifold
M has dimension greater than 1, to contrast with the 1-dimensional situation in which there is
only one direction of differentiation, and the theory of ordinary differential equations therefore
applies. The 1-dimensional setting can be viewed as an interesting test case in which the theory
of elliptic operators becomes tractable without as much need for functional-analytic tools, and we
will refer to this in a few exercises, but our main objective is to prove results that are interesting
in dimensions two and higher.

Example 53.24. The case m “ 0 is allowed in Definition 53.23, but is not very interesting
since requiring |α| ď 0 allows only for the trivial multi-index α “ p0, . . . , 0q: a differential operator
of order zero is equivalent in local trivializations to an operator of the form

C8pU ,Fkq Ñ C8pU ,Fℓq : f ÞÑ cf
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for some smooth function c : U Ñ HompFk,Fℓq, and is thus the same thing as a smooth linear
bundle map E Ñ F . Bundle maps are therefore sometimes called zeroth-order operators. Equiv-
alently, we say that a linear map D : ΓpEq Ñ ΓpF q is tensorial if it is a zeroth-order operator,
and this is true if and only if it is C8-linear.

Example 53.25. For each k “ 0, . . . , n´1, the exterior derivative d : ΩkpMq “ ΓpΛkT ˚Mq Ñ
ΓpΛk`1T ˚Mq “ Ωk`1pMq is a differential operator of order 1 from ΛkT ˚M to Λk`1T ˚M . One
sees this from the local coordinate formula proved in §8.2 of last semester’s notes: choosing a
chart px1, . . . , xnq on some region U Ă M and using the coordinate forms dxi1 ^ . . . ^ dxiℓ for
1 ď i1 ă . . . ă . . . ă . . . iℓ ď n to trivialize Λ˚T ˚M over U , each k-form ω is identified on U with
a vector-valued function whose components are the real-valued functions ωi1...ik “ ωpBi1 , . . . , Bikq.
Proposition 8.7 then gives

pdωqi1...ik`1
“ pk ` 1qBri1ωi2...ik`1s :“ 1

k!

ÿ
σPSk`1

p´1q|σ|Biσp1qωiσp2q ...iσpk`1q ,

which is a linear combination (with nonzero constant coefficients) of expressions of the form
Bℓωj1...jk .

Example 53.26. On a pseudo-Riemannian manifold, the operator d˚ : ΩkpMq “ ΓpΛkT ˚Mq Ñ
ΓpΛk´1T ˚Mq “ Ωk´1pMq for k “ 1, . . . , n is the composition of the first-order operator d :

ΓpΛn´kT ˚Mq Ñ ΓpΛn´k`1T ˚Mq with two zeroth-order operators (two copies of the Hodge star
operator, multiplied by a sign), and is thus also a first-order differential operator.

Example 53.27. For any vector bundle E Ñ M with a connection, the covariant derivative
defines a first-order differential operator∇ : ΓpEq Ñ ΓpHompTM,Eqq “ Ω1pM,Eq, whose local ex-
pression in an arbitrary choice of chart and trivialization generally involves first partial derivatives
in every direction and some zeroth-order terms (the Christoffel symbols).

Example 53.28. On an oriented pseudo-Riemannian manifold pM, gq with a spin structure
and spinor bundle E Ñ M , the Dirac operator D : ΓpEq Ñ ΓpEq can be expressed locally as a
linear combination of zeroth-order operators (defined via Clifford multiplication) composed with
covariant derivatives, and is thus a first-order differential operator from E to itself.

Example 53.29. On any pseudo-Riemannian n-manifold pM, gq, the Laplace-Beltrami op-
erator ∆ is a second-order differential operator from ΛkT ˚M to itself for any k “ 0, . . . , n. The
formula (53.5) shows indeed that there are always nonzero coefficients in front of second derivatives
in any local expression for ∆, but no derivatives of higher order.

Definition 53.23 is very general, and knowing that arbitrary differential operators can be written
locally in the form

ř
|α|ďm cαBα will be useful for analytical purposes, but it is not a very practical

way of describing most of the geometrically meaningful operators that arise on manifolds. As
we will see starting in the next lecture, the important analytical properties of many differential
operators are determined by their terms of highest order, i.e. the terms

ř
|α|“m cαBα in local

coordinates. The following result gives a useful way of extracting the information contained in
these terms without needing to choose coordinates and trivializations.

Lemma 53.30. For every differential operator D : ΓpEq Ñ ΓpF q of order m ě 0, there exists
a unique smooth and fiber-preserving (but not necessarily linear) map

σD : T ˚M Ñ HompE,F q
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that is characterized by the following property: for any p P M , λ P Tp̊M , v P Ep, η P ΓpEq with
ηppq “ v and f P C8pMq with fppq “ 0 and dpf “ λ,

σDpλqv “ 1

m!
Dpfmηqppq P Fp.

Moreover, for two operators D,D1 : ΓpEq Ñ ΓpF q of order m ě 1, we have σD “ σD1 if and only
if D ´D1 : ΓpEq Ñ ΓpF q is a differential operator of order strictly less than m.

The map σD : T ˚M Ñ HompE,F q in Lemma 53.30 is called the principal symbol of the
operator D : ΓpEq Ñ ΓpF q.

Proof of Lemma 53.30. The map σD is clearly unique if it is well defined; in order to prove
the latter, we need to show that for any point p P M , any section η P ΓpEq and any function
f : M Ñ R with fppq “ 0, the value of the section Dpfmηq P ΓpF q at p P M depends on
dpf P Tp̊M and ηppq P Ep but not any further on the function f or section η. We can prove this
by a direct computation in local coordinates, thus after choosing a chart and trivializations over
some region U ĂM , let us consider an operator of the form

D “ ÿ
|α|ďm

cαBα : C8pU ,Fkq Ñ C8pU ,Fℓq

defined via smooth matrix-valued functions cα : U Ñ HompFk,Fℓq. Applying anymth-order partial
derivative operator Bj1 . . . Bjm to the function fm : U Ñ R, we have

Bj1 . . . Bjmpfmq “ mBj1 . . . Bjm´1

`
fm´1Bjmf

˘ “ mpm´1qBj1 . . . Bjm´2

`
fm´2 ¨ Bjm´1

f ¨ Bjmf ` . . .
˘
,

where “ . . .” in the last expression is an abbreviation for terms that contain f to the power of at
least m´ 1 and will therefore vanish if we differentiate them m´ 2 more times and evaluate at p,
since fppq “ 0. Continuing in this way and discarding all terms that do not decrease the exponent
on f fast enough to make a nontrivial contribution at p, we find

Bj1 . . . Bjmpfmqppq “ m!Bj1fppq ¨ . . . ¨ Bjmfppq,
which translates into the language of multi-indices as the formula

Bαpfmqppq “ m! ¨∇fppqα P R for |α| “ m,

with ∇f in this setting denoting the classical gradient vector

∇fppq :“ pB1fppq, . . . , Bnfppqq P Rn.

A similar computation gives Bαpfmqppq “ 0 whenever |α| ă m. It follows that for η : U Ñ Fk,
Bαpfmηqppq can only be nonzero if |α| “ m, and the only nontrivial contributions resulting from
the Leibniz rule in this case come from differentiating fm but not η, so

Dpfmηqppq “ ÿ
|α|ďm

cαppqBαpfmηqppq “
ÿ

|α|“m
cαppqBαpfmqppq ¨ ηppq “ m! ¨ ÿ

|α|“m
cαppq∇fppqαηppq.

This proves the claim that Dpfmηqppq depends only on dpf and ηppq, and the resulting local
formula for Tp̊M

σDÝÑ HompEp, Fpq after using the chosen trivializations to identify Ep – Fk and
Fp – Fℓ is

(53.6) σDpλi dxiq “
ÿ

|α|“m
pλ1, . . . , λnqαcαppq P HompFk,Fℓq – HompEp, Fpq.

In particular, σD is an mth-degree polynomial function of λ P Tp̊M whose coefficients are the
mth-order coefficients of the operator D at p. This proves that for two operators D and D1 of
order m, σD “ σD1 at p if and only if their mth-order coefficients at p are identical, which is true
at all points p PM if and only if D ´D1 is an operator of order strictly less than m. �
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The significance of the next definition is unlikely to seem obvious at this stage, but we will
spend considerable effort unpacking it in the next lecture.

Definition 53.31. A differential operator D : ΓpEq Ñ ΓpF q is called elliptic if its principal
symbol σD : T ˚M Ñ HompE,F q has the following property: for every p PM ,

λ ‰ 0 P Tp̊M ùñ σDpλq : Ep Ñ Fp is invertible.

The main justification for the condition in Definition 53.31 is that operators that satisfy it have
amazing properties, and we will see in the next lecture that several operators that arise naturally in
various geometric situations actually satisfy it. The bulk of the work behind the proof of the Hodge
decomposition theorem will consist in using tools from functional analysis to prove the following
result, which implies that the space of harmonic forms on a closed Riemannian manifold is finite
dimensional.

Theorem 53.32. If D : ΓpEq Ñ ΓpF q is an elliptic differential operator between vector bundles
over a closed manifold M , then the vector spaces

kerpDq :“  
η P ΓpEq ˇ̌ Dη ” 0

(
and cokerpDq :“ ΓpF q

M 
Dη

ˇ̌
η P ΓpEq(

are both finite dimensional.

Exercise 53.33. Suppose E ÑM is a vector bundle equipped with a connection ∇ : ΓpEq Ñ
ΓpF q, where F :“ HompTM,Eq.

(a) Compute the principal symbol σ∇ : T ˚M Ñ HompE,F q, and show that ∇ is an elliptic
operator if and only if dimM “ 1.

(b) Give a direct proof of Theorem 53.32 for D “ ∇ when M “ S1 “ R{Z.
Hint 1: The image imp∇q Ă ΓpF q has the same codimension as imp∇qˆEp Ă ΓpF qˆEp for
any point p P S1. Show that imp∇q ˆEp is the kernel of a linear map ΓpF q ˆEp Ñ Ep.
Hint 2: Given ξ P ΓpF q, t0 P R and v P Ert0s, the ODE ∇ηptq “ ξprtsq has a unique
solution ηptq P Erts defined for t P R with initial condition ηpt0q “ v, but this solution
might not be periodic.

(c) Prove that kerp∇q is also finite dimensional when M is a compact manifold of dimension
greater than 1, but show by example that cokerp∇q need not be.

(d) Part (a) has a converse of sorts: if dimM “ 1 and D : ΓpEq Ñ ΓpF q is any first-order
elliptic operator between two bundles E,F ÑM , then there exists a bundle isomorphism
Φ : F Ñ HompTM,Eq such that Φ ˝ D : ΓpEq Ñ ΓpHompTM,Eqq “ Ω1pM,Eq is a
connection on E. Prove this.
Hint: For first-order operators, (53.6) shows that the symbol σD : T ˚M Ñ HompE,F q
is a fiberwise linear map, so you could also regard it as a smooth linear bundle map
T ˚M bE Ñ F . Show that it’s an isomorphism if D is elliptic and dimM “ 1.

54. Ellipticity

Having defined what it means for a differential operator to be elliptic, there are two immediate
questions we should try to answer in this lecture: (1) Why is ellipticity a helpful condition? (2) Does
any of the operators we already know satisfy it? We’ll attack these two questions in reverse order.

54.1. The Hodge Laplacian is elliptic. To see whether the operator ∆ “ dd˚ ` d˚d :

ΓpΛkT ˚Mq Ñ ΓpΛkT ˚Mq is elliptic, we need to compute its principal symbol

σ∆ : T ˚M Ñ EndpΛkT ˚Mq.
We will break the computation down into manageable pieces, starting with the principal symbol
of d : ΓpΛkT ˚Mq Ñ ΓpΛk`1T ˚Mq. This is a first-order operator, and the answer follows directly
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from the Leibniz rule: given ω P ΩkpMq and f : M Ñ R with fppq “ 0 at some point p P M , we
have

dpfωqp “ dpf ^ ωp ` fppqdωp “ dpf ^ ωp,

thus σd : T ˚M Ñ HompΛkT ˚M,Λk`1T ˚Mq takes the form
σdpλqω “ λ^ ω.

We observe that for λ ‰ 0 P Tp̊M , the map ΛkTp̊M Ñ Λk`1Tp̊M : ω ÞÑ λ ^ ω is typically not
invertible; indeed, it is never injective for k ě 1 since one can then take ω to be a wedge product of
λ with something else, forcing λ^ω to vanish. The only exception is k “ 0, where ω P Λ0Tp̊M “ R

is just a real number c P R and λ ^ ω “ cλ P Λ1Tp̊M , so in this case the map is injective, and it
is then surjective if and only if dimΛ1Tp̊M “ 1, which holds only when dimM “ 1. We conclude
from Definition 53.31: the differential

d : C8pMq “ ΓpΛ0T ˚Mq Ñ ΓpΛ1T ˚Mq “ Ω1pMq
is an elliptic operator whenever M is a 1-manifold, but all other cases of the exterior derivative
d : ΩkpMq Ñ Ωk`1pMq are not elliptic. This is consistent with Theorem 53.32, since in most cases,
the space ker d Ă ΩkpMq of closed k-forms is not a finite-dimensional space, the major exception
being the case k “ 0, since 0-forms are closed if and only if they are locally constant.

Exercise 54.1. Without assuming Theorem 53.32, show explicitly that the kernel and coker-
nel of d : C8pS1q Ñ Ω1pS1q are both finite dimensional, but the cokernel of d : C8pMq Ñ Ω1pMq
is infinite dimensional whenever dimM ě 2.
Hint: The caseM “ S1 follows from Exercise 53.33, but there is also an easier proof using the char-
acterization of exact 1-forms in Lecture 13 from the first semester (see especially Exercise 13.16).
For dimM ě 2, find an infinite-dimensional space of 1-forms supported in a small coordinate
neighborhood that are not closed.

The next step is to compute the symbol of d˚ : ΩkpMq Ñ Ωk´1pMq, and in this context, it
will be useful to discuss the concept of formal adjoints in more general terms.

Definition 54.2. Suppose E,F ÑM are smooth vector bundles equipped with bundle met-
rics, both denoted by x , y, and M is equipped with a volume form dvol P ΩnpMq.113 Two
differential operators D : ΓpEq Ñ ΓpF q and D˚ : ΓpF q Ñ ΓpEq are said to be each other’s formal
adjoints if the relation ż

M

xξ,Dηy dvol “
ż
M

xD˚ξ, ηy dvol
holds for all smooth sections η P ΓpEq and ξ P ΓpF q with compact support in MzBM .

We saw two examples of formal adjoints in the previous lecture: on a pseudo-Riemannian
manifold pM, gq, the operator d˚ : Ωk`1pMq Ñ ΩkpMq is the formal adjoint of d : ΩkpMq Ñ
Ωk`1pMq with respect to the bundle metrics on Λ˚T ˚M and volume element on M determined
by g. It follows easily from this that the Laplace-Beltrami operator ∆ “ dd˚ ` d˚d is its own
formal adjoint, so it is formally self-adjoint, meaningż

M

xα,∆βy dvol “
ż
M

x∆α, βy dvol
holds for all α, β P Ω˚pMq with compact support in MzBM .

113The use of a volume form tacitly assumes M is oriented, but the definition as stated also makes sense for a
non-orientable manifold if dvol is taken to be a volume element as in §11.4.
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Remark 54.3. Here is a frequently asked question: why do we include the word “formal”
and not just call D˚ the “adjoint” of D? If we were talking about linear operators between
finite-dimensional spaces, this would be perfectly fine, but the issue is that in infinite dimensions,
functional analysis gives the words “adjoint” and “self-adjoint” much more precise and technical
definitions than we are using here—they require regarding D as an unbounded linear operator
between two Hilbert spaces and specifying a dense subspace as its domain, such that the notion of
the adjoint operator depends in an essential way on this choice of dense subspace (see e.g. [RS80]).
Adding the word “formal” gives us permission to avoid worrying about any of these functional-
analytic details unless and until we actually need them, which in our exposition, we won’t.

Finding global coordinate-invariant formulas for formal adjoints is typically a tricky business,
but one can always use local coordinates and a partition of unity to show that they exist:

Proposition 54.4. Fix vector bundles E,F Ñ M with bundle metrics, along with a volume
form or volume element on M and a differential operator D : ΓpEq Ñ ΓpF q of order m ě 0. Then
D has a unique formal adjoint D˚ : ΓpF q Ñ ΓpEq, which is also a differential operator of order m,
and depends in general on the bundle metrics and volume element in addition to D. However, the
principal symbol of D˚ is independent of the choice of volume form, and is given by

σD˚pλq “ p´1qm pσDpλqq˚ for all p PM , λ P Tp̊M ,

where for a linear map A : Ep Ñ Fp we denote by A˚ : Fp Ñ Ep its adjoint with respect to the
bundle metrics, satisfying xw,Avy “ xA˚w, vy for all v P Ep and w P Fp.

Proof. The uniqueness of D˚ is easy to see: if there were two operators D1̊ and D2̊ both
satisfying the conditions of a formal adjoint for D, then they would satisfyż

M

xD1̊ ξ ´D2̊ ξ, ηy dvol “ 0

for all ξ P ΓpF q and η P ΓpEq with compact support in MzBM , and by the nondegeneracy of the
bundle metric on E, this is only possible for all η if D1̊ ξ ´D2̊ ξ ” 0.

It remains to prove existence. Let us say that an operator D : ΓpEq Ñ ΓpF q has support in a
subset U ĂM if Dη vanishes for all sections η P ΓpEq that are trivial in U . Consider first the case
where D has compact support in an open subset U ĂM on which there exists a chart px1, . . . , xnq
and trivializations identifying E|U with U ˆ Fk and F |U with U ˆ Fℓ so that the bundle metrics
become constant scalar products on Fk and Fℓ. The operator D is then completely determined by
its action on sections restricted to U , which is given by a formula of the form D “ ř

|α|ďm cαBα
for a set of smooth compactly supported coefficient functions cα : U Ñ HompFk,Fℓq. The measure
defined on U by the volume element dvol is the product of some smooth function f : U Ñ p0,8q
with the Lebesgue measure, which we will denote by dx1 . . . dxn. Writing η P ΓpEq and ξ P ΓpF q
over U as functions U Ñ Fk and U Ñ Fℓ respectively, we can apply classical integration by parts
and exploit the compact support of cα to avoid boundary terms, givingż

M

xξ,Dηy dvol “ ÿ
|α|ďm

ż
U

xξ, cαBαηy f dx1 . . . dxn “
ÿ

|α|ďm

ż
U

xfcα̊ξ, Bαηy dx1 . . . dxn

“ ÿ
|α|ďm

p´1q|α|
ż
U

xBαpfcα̊ξq, ηy dx1 . . . dxn

“
ż
U

C ÿ
|α|ďm

p´1q|α| 1
f
Bαpfcα̊ξq, η

G
f dx1 . . . dxn “:

ż
M

xD˚ξ, ηy dvol,
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where we have defined an operator D˚ : ΓpF q Ñ ΓpEq of order m with compact support in U by
the formula

(54.1) D˚ξ :“ ÿ
|α|ďm

p´1q|α| 1
f
Bαpfcα̊ξq

for sections ξ P ΓpF |Uq, and extended it trivially to the rest of M . By construction, this operator
satisfies

ş
M
xξ,Dηy dvol “ ş

M
xD˚ξ, ηy dvol for all η P ΓpEq and ξ P ΓpF q, not just sections of

compact support. Observe moreover that any compact subset K Ă U containing the support of
D also contains the support of D˚. Its highest-order term Dm̊ consists of all summands in (54.1)
in which ξ is differentiated m times, which means that f and cα̊ cannot be differentiated at all,
giving

Dm̊ξ “ p´1qm ÿ
|α|“m

cα̊Bαξ.

This implies the stated formula for the principal symbol of D˚, and also that it does not depend
on the choice of volume element, since the function f does not appear.

Now suppose D : ΓpEq Ñ ΓpF q is an arbitrary differential operator with no assumptions about
its support. Choose an open covering tUβuβPI of M by subsets Uβ with compact closure on which
charts and trivializations as in the previous paragraph can be defined, choose a partition of unity
tϕβ : M Ñ r0, 1suβPI subordinate to this covering, and define Dβ :“ βD for each β P I. The
construction in the previous paragraph then furnishes each of the compactly supported operators
Dβ with a formal adjoint Dβ̊ , and we define

D˚ :“ ÿ
βPI

Dβ̊ : ΓpF q Ñ ΓpEq,

an expression that makes sense because the support of each operatorDβ̊ is contained in the support
of the function ϕβ , thus forming a locally finite covering. If η P ΓpEq and ξ P ΓpF q both have
support inside some compact set K ĂM , then local finiteness also implies the existence of a finite
subset J Ă I such that D “ ř

βPJ Dβ and D˚ “ ř
βPJ Dβ̊ on K, thusż

M

xξ,Dηy dvol “ ÿ
βPJ

ż
M

xξ,Dβηy dvol “
ÿ
βPJ

ż
M

xDβ̊ξ, ηy dvol “
ż
M

xD˚ξ, ηy dvol.

This proves that D˚ is indeed a formal adjoint for D, and the previous calculation in local coor-
dinates can be reused in a neighborhood of any point to prove the stated formula for σD˚ . �

Since a linear map between finite-dimensional spaces is invertible if and only if its adjoint is,
Proposition 54.4 implies:

Corollary 54.5. A differential operator D is elliptic if and only if its formal adjoint D˚ is
elliptic. �

The next exercise is quite easy if you remember the local coordinate formula (53.6) for the
principal symbol.

Exercise 54.6. Suppose E,F,G Ñ M are vector bundles and we are given two differential
operators D1 : ΓpEq Ñ ΓpF q and D2 : ΓpF q Ñ ΓpGq of orders m1,m2 ě 0 respectively. Show that
D2 ˝D1 : ΓpEq Ñ ΓpGq is then a differential operator of order at most m1 `m2, and its order is
exactly m1 `m2 if and only if the map T ˚M Ñ HompE,Gq given by

λ ÞÑ σD2
pλq ˝ σD1

pλq
is nontrivial, in which case this is the principal symbol σD2˝D1

.
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The way to compute σ∆ should now be clear; we just need a bit more algebra in order to
identify the adjoint of the map σdpλqω “ λ ^ ω and compute the resulting compositions. For the
next two lemmas, fix an n-dimensional vector space V with a nondegenerate symmetric bilinear
form x , y, transferred to V ˚ via the musical isomorphisms V Ñ V ˚ : v ÞÑ v5 :“ xv, ¨y and
7 “ 5´1 : V ˚ Ñ V , and then extended to Λ˚V ˚ via Lemma 53.8.

Lemma 54.7. For any λ P Λ1V ˚ and α, β P Λ˚V ˚, xα, λ^ βy “ xιλ7α, βy.
Proof. The set of elements λ P V ˚ “ Λ1V ˚ with xλ, λy ‰ 0 is dense in V ˚, so if we can prove

the stated relation for all λ in this set, the general case will follow by continuity. Let us therefore
assume xλ, λy ‰ 0, and since both sides of the relation scale the same way under multiplication
by positive numbers, rescale λ so that xλ, λy “ ˘1 without loss of generality. In this case there
exists an orthonormal basis e1, . . . , en of V giving rise to dual vectors ei5 :“ xei, ¨y that form an
orthonormal basis of V ˚ with e15 “ λ. By bilinearity, it then suffices to verify that the relation holds
whenever α and β are both products of the form ei15 ^. . .^eik5 with k ě 0 and 1 ď ii ă . . . ă ik ď n.
The crucial ingredients are now the formulas

ιe1 pe15 ^ ei25 ^ . . .^ eik5 q “ e15 pe1q ei25 ^ . . .^ eik5 “ xe1, e1y ei25 ^ . . .^ eik5 ,
ιe1pei15 ^ . . .^ eik5 q “ 0 if i1 ą 1.

If the product forming β begins with e15 “ λ, then λ ^ β “ 0 forces the left hand side to vanish,
and the right hand side will also vanish because ιe1α cannot contain a factor of e15 . Similarly, the
left hand side vanishes if α does not contain a factor of e15 , and so does the right hand side since
ιe1α is then zero. The only way to get something nontrivial on either side is thus when β takes
the form ei25 ^ . . .^ eik5 for some i2 ą 1 and α “ e15 ^ ei25 ^ . . .^ eik5 , in which case the relation says

xα, λ^ βy “ xe15 ^ ei25 ^ . . .^ eik5 , e
15 ^ ei25 ^ . . .^ eik5 y

“ xe1, e1y ¨ xei25 ^ . . .^ eik5 , e
i25 ^ . . .^ eik5 y

“ @xe1, e1y ei25 ^ . . .^ eik5 , e
i25 ^ . . .^ eik5

D “ xιλ7α, βy.
�

Lemma 54.8. For any λ P Λ1V ˚ and ω P Λ˚V ˚, ιλ7 pλ^ ωq ` λ^ ιλ7ω “ xλ, λyω.
Proof. This follows easily from the graded Leibniz rule for the interior product (cf. Exer-

cise 14.7 from last semester), which in this situation gives

ιλ7pλ^ ωq “ pιλ7λq ^ ω ´ λ^ ιλ7ω “ xλ, λyω ´ λ^ ιλ7ω.

�

By Proposition 54.4 and Exercise 54.7, the operator d˚ : Ω˚pMq Ñ Ω˚pMq has principal
symbol σd˚ : T ˚M Ñ EndpΛ˚T ˚Mq given by

σd˚pλqω “ ´ιλ7ω.
Applying Exercise 54.6 and Lemma 54.8 to the formula ∆ “ dd˚ ` d˚d now gives:

Theorem 54.9. On a pseudo-Riemannian manifold pM, gq, the Laplace-Beltrami operator
∆ : ΩkpMq Ñ ΩkpMq for each k P Z has principal symbol σ∆ : T ˚M Ñ EndpΛkT ˚Mq given
by

σ∆pλqω “ ´xλ, λyω.
�
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Corollary 54.10. The operator ∆ on pM, gq is elliptic if and only if the metric g is (positive
or negative) definite. �

With Corollary 54.10 understood, we will not consider indefinite metrics any further in our
discussion of Hodge theory. All metrics from now on will be Riemannian.

Exercise 54.11. Deduce from Theorem 54.9 the local coordinate formula for ∆ advertised in
(53.5), namely

p∆ωqi1...ik “ ´gjℓBjBℓωi1...ik ` terms of order ă 2.

Exercise 54.12. Write down the principal symbol of the Dirac operator D : ΓpEq Ñ ΓpEq on
a spinor bundle E ÑM over a pseudo-Riemannian manifold pM, gq with a spin structure. Under
what conditions is D elliptic?

Exercise 54.13. AssumeM is a complex n-manifold, so its tangent spaces are naturally com-
plex vector spaces. We can associate to any complex vector bundle E ÑM another complex vector
bundle F :“ HompTM,Eq whose fiber over a point p PM is the space of complex-antilinear maps
TpM Ñ Ep. A Cauchy-Riemann type operator on E Ñ M is a first-order linear differential
operator D : ΓpEq Ñ ΓpF q that satisfies the Leibniz rule

Dpfηq “ f Dη ` B̄fp¨qη for all η P ΓpEq, f P C8pM,Cq,
where we define B̄f P Ω1pM,Cq by B̄fpXq :“ dfpXq ` i dfpiXq. Show that all Cauchy-Riemann
type operators on E Ñ M have the same principal symbol. What is it? In what situation are
these operators elliptic?

54.2. Fourier transforms. For the rest of this lecture and most of the next one, this dif-
ferential geometry course will feel more like an analysis course, so maybe I should first try to
convey why this is unavoidable. As we saw in Lecture 53, one of the most important statements
contained in the Hodge decomposition theorem is that the space of harmonic forms on a closed
Riemannian manifold is finite dimensional, which then implies that Hd̊RpMq is finite dimensional
for any closed manifoldM . It is fairly easy to prove that all harmonic forms are also closed, and in
fact we will see that kerp∆q is in general the intersection of the space of closed forms kerpdq with
the space of so-called co-closed forms kerpd˚q. But in most situations, kerpdq and kerpd˚q are both
infinite-dimensional spaces, so it is quite surprising and non-obvious that their intersection should
be finite dimensional.

Now, what methods do we have at our disposal for proving that a certain linear subspace

X Ă Y

of a manifestly infinite-dimensional vector space Y is finite dimensional? One example you have
probably seen before is the space of solutions to a linear ODE, e.g. if Aptq P Rnˆn is a smooth
family of matrices defined for t P R, then the subspace

X :“  
x P C8pR,Rnq ˇ̌ 9xptq “ Aptqxptq for all t P R

(
is finite dimensional because, by the uniqueness statement in the Picard-Lindelöf theorem, the map
X Ñ Rn : x ÞÑ xp0q is injective. This trick works for solutions of ODEs because they satisfy a
very strong uniqueness result, but more general PDEs almost never have the property that their
solutions are determined by their values at one point, nor even by the values of finitely many of
their derivatives. So for more general PDEs, cleverer ideas are needed.

One such idea is to distinguish between finite and infinite dimensionality via the notion of
compactness, as measured via the existence of convergent subsequences. Indeed, as you learned
in first-year analysis, finite-dimensional vector spaces have the pleasant property that bounded
sequences always have convergent subsequences, whereas arbitrary metric spaces do not have this
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property. In particular, a bounded sequence in an infinite-dimensional Hilbert space need not have
a convergent subsequence, as shown by the example of a countably infinite orthonormal basis.
So if we can arrange for the infinite-dimensional space Y to have a Hilbert space structure, then
one way of proving that X Ă Y is finite dimensional would be to prove that every sequence in
X that is bounded with respect to the Hilbert space norm also has a convergent subsequence in
that norm. This is the method we will use for proving that ker∆ Ă ΩkpMq is finite dimensional,
but doing so will require replacing ΩkpMq with an actual Hilbert space, because the space of
smooth k-forms is not complete with respect to any inner product that one can reasonably write
down. The simplest and most useful Hilbert spaces are not spaces of smooth functions—they are
typically spaces like L2pRnq, whose elements are not always continuous, and are strictly speaking
not even functions, but rather equivalence classes of functions defined almost everywhere. Having
to consider such functions seems a bit strange in the context of differential geometry, where up
until now we have assumed wherever possible that all maps are smooth—but in Hodge theory there
is an enormous payoff for allowing non-smooth functions and forms, because doing so provides us
with some analytical tools that are quite powerful.

One of those tools is the Fourier transform, of which we shall now give a brief overview
without detailed proofs. Expositions of the main results with complete proofs can be found in
various sources, for instance [Wen20,LL01,RS80].

For the rest of this lecture, we will be considering functions defined on Rn with values in a
finite-dimensional complex inner product space pV, x , yq. I should clarify perhaps that x , y is a
positive Hermitian inner product—we do not want to allow indefinite products here because we
want it to define an actual norm. Let us denote the Euclidean scalar product on Rn by

x ¨ y “
nÿ
j“1

xjyj

for vectors x “ px1, . . . , xnq, y “ py1, . . . , ynq P Rn. For integrable functions f : Rn Ñ V of the
variables x “ px1, . . . , xnq P Rn, we will denote integration with respect to the Lebesgue measure
by ż

Rn

fpxq dx :“
ż
Rn

fpx1, . . . , xnq dx1 . . . dxn P V,
and the L2-inner product of two functions f, g : Rn Ñ V will be written as

xf, gyL2 :“
ż
Rn

xfpxq, gpxqy dx P C.

In addition to the usual Banach spaces LppRnq with the norms

}f}Lp :“
ˆż

Rn

|fpxq|p dx
˙1{p

for 1 ď p ă 8, we will have occasion to consider the Banach spaces CkpRnq for integers k ě 0,
consisting of Ck-functions f : Rn Ñ V whose derivatives up to order k are all bounded, with the
norm given by

}f}Ck :“ ÿ
|α|ďk

sup
xPRn

|Bαfpxq|.

Integration is also used to define the convolution, an operation that produces out of a scalar-
valued function f : Rn Ñ C and a vector-valued function g : Rn Ñ V another vector-valued
function f ˚ g : Rn Ñ V given by

pf ˚ gqpxq :“
ż
Rn

fpx´ yqgpyq dy.
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The Fourier transform is an operation F that, for a suitable class of functions f : Rn Ñ V ,
changes f into a new function F pfq “ pf : Rn Ñ V given by

(54.2) F pfqppq “ pfppq :“ ż
Rn

e´2πip¨xfpxq dx.
A similar operator F˚ is defined by changing the sign on the complex exponential: for g : Rn Ñ V ,

(54.3) F
˚pgqpxq “ qgpxq :“ ż

Rn

e2πip¨xgppq dp.
These formulas do not actually give the most general possible definition of F and F˚, as these
operators can also be defined on certain classes of functions for which the integrals above are not
defined, but the integrals are considered a starting point for the theory of Fourier transforms. In
order to say something more precise, it is helpful to introduce the so-called Schwartz space, a
space of smooth functions on Rn whose derivatives of all orders decay at infinity faster than any
polynomial:

S pRnq :“
"
f P C8pRn, V q

ˇ̌̌̌
lim|x|Ñ8

ˇ̌
xαBβfpxqˇ̌ “ 0 for all multi-indices α, β

*
.

While the conditions defining S pRnq are quite strict, it is clearly not a small space since it contains

C8
0 pRnq :“

 
f P C8pRn, V q ˇ̌ f has compact support

(
.

It also contains Gaussians such as fpxq “ e´|x|2 , and therefore also all their derivatives or products
of their derivatives with polynomials. In particular, S pRnq is a large enough space to be dense
in all of the spaces LppRnq for 1 ď p ă 8, while also being small enough to be contained in all
of those spaces, and sufficiently well-behaved so that all calculations one would like to perform
involving integration by parts or differentiation under the integral sign actually work.

Here are the main facts about the Fourier transform that we will need to make use of.

Theorem 54.14. The operators F and F˚ have the following properties:
(1) They define bijective linear maps S pRnq Ñ S pRnq with F´1 “ F˚.
(2) They have unique extensions to unitary isomorphisms L2pRnq Ñ L2pRnq.
(3) They define continuous linear operators L1pRnq Ñ C0pRnq.
(4) On S pRnq, they convert differential operators into multiplication by polynomials: specif-

ically, yBαfppq “ p2πipqα pfppq, }Bαgpxq “ p´2πixqαqgpxq,
Bαqgpxq “ p2πiq|α||gαpxq, Bα pfppq “ p´2πiq|α|xfαppq,(54.4)

for every multi-index α, where we denote fαpxq :“ xαfpxq, gαppq :“ pαgppq.
(5) It converts the convolution operation into multiplication: specifically, if f P L1pRnq and

g P L2pRnq and at least one of the two functions is scalar-valued, one has

F pf ˚ gq “ pfpg.
�

While we will not prove Theorem 54.14 here, it is worth making a few comments.
Point (2) in this theorem is what we meant when we said above that F and F˚ cannot always

be defined via the integrals (54.2) and (54.3), as these integrals are not well defined as Lebesgue
integrals unless f, g P L1pRnq, which is not always true for L2-functions on Rn. The key word
however is unitary, meaning that the Fourier transform satisfies the relation

xf, gyL2 “ x pf, pgyL2 ,
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a result known as Plancherel’s theorem. For f, g P S pRnq, this relation can be proved directly
from the integral formulas for F and F˚, and it implies that the maps F ,F˚ : S pRnq Ñ
S pRnq are not only bijective but also continuous with respect to the L2-norm. Since S pRnq is
dense in L2pRnq, it follows that both operators have unique extensions to continuous linear maps
L2pRnq Ñ L2pRnq such that Plancherel’s theorem is also valid for all f, g P L2pRnq. The general
definition of pf P L2pRnq for f P L2pRnq is therefore a bit cumbersome: instead of using (54.2) to
compute it, one must in principle find a sequence fk P S pRnq that converges in L2 to f , computepfk P S pRnq from the integral, and then define pf as the L2-limit of pfk (which is guaranteed to exist
due to Plancherel’s theorem).

On the other hand, one can plug any f P L1pRnq into (54.2) and have a well-defined integral,
and the result obviously satisfies

} pf}L8 ď }f}L1.

If we apply this observation to a function f P S pRnq, then we also know from point (1) that pf is
in S pRnq and therefore continuous, so it is sensible to write

(54.5) } pf}C0 ď }f}L1.

But now density comes through for us again: S pRnq is a dense subspace of L1pRnq, so it follows
that F extends uniquely to a continuous linear operator from L1pRnq to the L8-closure of S pRnq,
which happens to be C0pRnq, so (54.5) is valid for all f P L1pRnq, and this proves point (3).

The relations in point (4) are easy to prove for Schwartz functions using a combination of
differentiation under the integral sign and integration by parts. For any individual multi-index α,
they are also valid more generally: in the case |α| “ 1 in particular, the proofs of the formulas foryBjf and }Bjf work for any f P L1pRnq that has a continuous partial derivative Bjf also in L1pRnq
and that decays at infinity in the sense that

lim
RÑ8 sup

xPRnzBn
R
p0q
|fpxq| “ 0;

the latter condition eliminates the boundary term when integrating by parts. Similarly, the for-
mulas for Bj pf and Bj qf can be proved via differentiation under the integral sign whenever both f
and the function x ÞÑ xjfpxq belong to L1pRnq, and it follows from point (3) in this situation that
Bj pf and Bj qf are both continuous and bounded. With these calculations as a foundation, one can
also show that all four of the formulas in (54.4) are valid when f and g are taken to be tempered
distributions instead of functions, which means in particular that they are valid for some general-
ized interpretation of the symbol “Bα” acting on much larger classes of functions than just S pRnq.
This has to do with the notion of weak derivatives and weak solutions, which we’ll get into a bit
later; for now, the main message you should take from (54.4) is that the Fourier transform should
certainly be a useful tool in the study of PDEs, because in sufficiently nice cases, it converts a PDE
into an algebraic equation involving multiplication by a polynomial, which sounds much easier to
solve than a PDE.

Exercise 54.15. Use the integral definition of F to prove the formula in Theorem 54.14(5)
for the Fourier transform of a convolution. Assume whatever you want to assume about f and g
in order to make the calculation work.

54.3. Sobolev spaces on Rn. We can now introduce a class of Hilbert spaces that serves
as the natural functional-analytic setting for many PDEs. Since our definition uses the Fourier
transform, we will continue under the assumption that the functions we consider take values in a
complex inner product space V . If one wishes instead to assume V is a real vector space, then the
definitions can easily be adapted by regarding V as a subspace of its complexification.
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The spaces we will define are motivated by two considerations that seem at first to conflict
with each other:

(1) If we want to study differential operators of order m ě 1, we need a space of functions
that can be differentiated m times.

(2) The simplest Hilbert space we know of is L2pRnq, so we want to define a space that is in
some sense modelled on that one.

The naive definition one might at first produce from these considerations is

HmpRnq :“  
f P L2pRnq ˇ̌ Bαf P L2pRnq for all |α| ď m

(
,

with inner product and norm

xf, gyHm :“ ÿ
|α|ďm

xBαf, BαgyL2, }f}Hm :“axf, fyHm ,

which one might sometimes prefer to replace with the equivalent norm

(54.6) }f}Hm :“ ÿ
|α|ďm

}Bαf}L2 .

These definitions should for now by taken with a grain of salt, because there is a big technical
problem: functions in L2pRnq are not typically continuous, much less m times differentiable, so
expressions like Bαf cannot generally be defined, which would be a prerequisite for testing whether
they belong to L2pRnq. One could imagine perhaps considering only functions f P L2pRnq that are
also of class CmpRnq, so that Bαf is a well-defined continuous function and we can require it to
belong to L2pRnq. But this does not produce a complete space in general, as one can see from the
case m “ 0: H0pRnq would by this definition be L2pRnqXC0pRnq with the L2-norm, but it is easy
to find L2-Cauchy sequences in that intersection that do not converge to continuous functions. In
order to define an actual Hilbert space, we need a cleverer way of defining the expression Bαf for
f P L2pRnq.

The Fourier transform provides the simplest of a few possible solutions to this problem, because
for f P S pRnq, items (2) and (4) in Theorem 54.14 make it possible to rewrite the norm in (54.6)
as

(54.7) }f}Hm “ ÿ
|α|ďm

}p2πipqα pf}L2 ,

i.e. for each multi-index α of order at most m, one needs to multiply the L2-function pfppq on Rn

by the polynomial p2πipqα and compute the L2-norm of the product. The result might be finite or
infinite, but it can be defined for every f P L2pRnq, with no need to talk about derivatives, using
only the knowledge that every L2-function has a Fourier transform. One then obtains a reasonable
Hilbert space by taking the set of all f P L2pRnq with }f}Hm ă 8. It is conventional in practice
to replace (54.7) with a different but equivalent norm that is easier to compute with: our official
definition of the Hm-inner product and norm will thus be

xf, gyHm :“
ż
Rn

p1` |p|2qmx pfppq, pgppqy dp,
}f}Hm :“axf, fyHm “

ˆż
Rn

p1` |p|2qm| pfppq|2 dp˙1{2
“ }p1` |p|2qm{2 pf}L2 .

(54.8)

You should take a moment to convince yourself that the norm defined in this way is equivalent to
the one in (54.7), meaning each can be bounded by a constant times the other, so they define the
same topology on the appropriate space of functions. This space is called a Sobolev space

HmpRnq :“  
f P L2pRnq ˇ̌ }f}Hm ă 8(

,



498 SECOND SEMESTER (DIFFERENTIALGEOMETRIE II)

and the direct relationship between the Hm-norm in (54.8) and the L2-norm makes it quite easy
to show that HmpRnq is a Hilbert space, with the transformation

HmpRnq Ñ L2pRnq : f ÞÑ F
˚
´
p1` |p|2qm{2 pf¯

defining a unitary isomorphism. You should think of HmpRnq intuitively as the space of L2-
functions whose derivatives up to order m are also in L2, even though this is not strictly true in
the classical sense of differentiability. It is true for some weaker notion of differentiability, which for
now you can understand to be defined in terms of multiplying polynomials by Fourier transforms.

Our standing assumption so far has been that m ě 0 is an integer, but it is interesting to
note that the norm defined in (54.8) makes sense for any nonnegative real number m ě 0, thus
defining a notion of “fractional differentiability”. That notion has actual applications for PDEs in
certain settings, though we will not make direct use of it in our exposition. One can also define
HmpRnq for m ă 0, but that would require a longer explanation, because that case of HmpRnq
cannot be considered a subspace of L2pRnq, and its elements are generally not even functions, nor
equivalence classes of functions—they are tempered distributions. We will come back to this in
Lecture 56 when it is needed for regularity results, but until then, you can always assume m ě 0.

As mentioned above, the functions in HmpRnq are not generally m times differentiable in the
classical sense, but it turns out that they are at least somewhat differentiable, to a degree that can
be quantified based on the values of m and n. It will be important to be precise about this since,
at the end of the day, after all necessary technical lemmas have been proved, the functions we are
always most interested in are the smooth ones.

Theorem 54.16 (Sobolev embedding theorem for HspRnq). For any real number s ą n{2 and
every integer k ě 0, there exists a continuous linear inclusion

Hs`kpRnq ãÑ CkpRnq.
A word about the meaning of the statement in Theorem 54.16: the elements of CkpRnq are

functions f : Rn Ñ V , while elements of Hs`kpRnq Ă L2pRnq strictly speaking are not functions,
but equivalence classes of functions defined almost everywhere. It would therefore not be strictly
correct to call Hs`kpRnq a subset of CkpRnq, but the words “there exists a continuous linear
inclusion” should be taken to mean that for each of the equivalence classes rf s P Hs`kpRnq, there
is a (necessarily unique) representative f that is a function Rn Ñ V of class Ck, and the map
Hs`kpRnq Ñ CkpRnq : rf s ÞÑ f defined in this way is linear, injective, and continuous. Recall that
for a linear map A : X Ñ Y between two vector spaces with norms } ¨ }X and } ¨ }Y respectively,
continuity is equivalent to being bounded, meaning that A satisfies the estimate }Ax}Y ď c}x}X
for some constant c ą 0 independent of x P X . The continuous inclusions Hs`kpRnq ãÑ CkpRnq
thus come with estimates of the form

}f}Ck ď c}f}Hs`k ,

and proving such an estimate is equivalent to proving that the inclusion is continuous.

Proof of Theorem 54.16. We first consider functions f P HspRnq with 2s ą n. The main
step is to establish a bound on } pf}L1, as f “ F˚p pfq is then equal almost everywhere to a function in
C0pRnq since the integral formula in (54.3) defines a continuous linear mapF˚ : L1pRnq Ñ C0pRnq.
We use the Cauchy-Schwarz inequality:

} pf}L1 “
ż
Rn

1

p1` |p|2qs{2 ¨
ˇ̌̌
p1` |p|2qs{2 pfppqˇ̌̌ dp ď ›››› 1

p1` |p|2qs{2
››››
L2

¨
›››p1` |p|2qs{2 pf›››

L2

“
ˆż

Rn

1

p1` |p|2qs dp
˙1{2

¨ }f}Hs
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Using n-dimensional polar coordinates, we see that the integral in the second line converges if and
only if

ş8
1

rn´1

p1`r2qs dr ă 8. For large r ą 0, the latter integrand behaves like rn´1{r2s “ rn´2s´1,
so the integral converges if and only if n ´ 2s ă 0, which is exactly the condition 2s ą n. This
proves the continuous inclusion of HspRnq into C0pRnq.

If f P Hs`kpRnq with k P N, then the same argument bounds the L1-norm of the function
p ÞÑ pα pfppq for each multi-index α with |α| ď k in terms of }f}Hs`k . The same calculation that is
behind the relations (54.4) implies in this situation that the partial derivatives Bαf up to order k
exist and are continuous. Moreover, their C0-norms are bounded in terms of the L1-norm of pα pf ,
which gives a bound for }f}Ck in terms of }f}Hs`k . �

Corollary 54.17. Any function belonging to HspRnq for every s ě 0 is smooth. In fact, a
compactly supported function is smooth if and only if it belongs to HspRnq for every s ě 0. �

Remark 54.18. Elsewhere in the literature, you will sometimes find the spaces HspRnq de-
noted by W s,2pRnq, Ls,2pRnq, L2

spRnq or other variations. The use of the letter H (which stands
for “Hilbert”) is perhaps slightly unfortunate in our context, due to the danger of confusing it with
a cohomology group (I have seen that particular misunderstanding arise among experts at confer-
ences), but we will be able to avoid ever using both meanings of this symbol in the same context.
As you might guess from the notation W s,2pRnq, there also exist Sobolev spaces called W k,ppRnq,
as well as W k,ppUq for an open subset U Ă Rn, and for p ‰ 2 these are all Banach spaces, but
not Hilbert spaces. For k ě 0 an integer and 1 ď p ă 8, W k,ppUq is most easily defined as the
completion with respect to the norm

}f}Wk,ppUq :“
ÿ
|α|ďk

}Bαf}LppUq

of the space of smooth functions f on U with }f}Wk,ppUq ă 8. This completion forms a linear
subspace of LppUq, and its elements are not generally k-times differentiable in the classical sense,
but admit a notion of weak derivatives up to order k which are also Lp-functions. In this section
we used the Fourier transform to define the required notion of weak differentiability, but that trick
does not work well for Lp-functions with p ‰ 2 or functions defined on a subset U Ă Rn instead
of the entirety of Rn. The more generally applicable notion of weak differentiability is defined
in terms of integration by parts—we will come back to this in Lecture 56 when we discuss weak
regularity results for elliptic equations.

54.4. Regularity with constant coefficients. We are now in a position to demonstrate
what the ellipticity condition is good for. We consider the following scenario: D : ΓpEq Ñ ΓpF q
is a differential operator of order m ě 1 between two trivial vector bundles over Rn with constant
coefficients, meaning D can be written in the form

(54.9) D “ ÿ
|α|ďm

cαBα : C8pRn,Fkq Ñ C8pRn,Fℓq

for a set of constant matrices cα P HompFk,Fℓq. If we assume nothing further about D, then there
is no reason to expect solutions of the equation Dη “ 0 to be smooth. The equation itself makes
sense for any function η : Rn Ñ Fk of class Cm, and there are simple examples of operators that
admit solutions having m derivatives but no more, e.g. for n “ 2, the wave equation

pB21 ´ B22qη “ 0

has solutions of the form ηpx1, x2q “ fpx1 ˘ x2q for arbitrary C2-functions f : RÑ R. For elliptic
operators, however, this cannot happen:
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Theorem 54.19. If the operator in (54.9) is elliptic and ξ : Rn Ñ Fℓ is a smooth function
with compact support, then every solution η P CmpRnqXL2pRnq to the equation Dη “ ξ is smooth.

Remark 54.20. The assumption that D is elliptic implies k “ ℓ, since otherwise no linear
transformation Fk Ñ Fℓ can be invertible, but we will see that the proof of Theorem 54.19 works
under slightly more general assumptions that also permit k ă ℓ.

The phenemenon in Theorem 54.19 is known as elliptic regularity: solutions to elliptic
PDEs are generally at least as “regular” as the functions that define the equation. A similar result
in the more general context of an elliptic operator with nonconstant coefficients over a compact
manifold will play an important role in the proof that such operators have finite-dimensional kernels
and cokernels (Theorem 53.32), and it is also the reason why that result can be stated without
mentioning any non-smooth objects.

Before proving Theorem 54.19, it is instructive to take a quick look at the one case in which
the proof is easy: suppose n “ 1. Our solutions in this case are functions ηptq of a single variable,
so the linear partial differential equation Dη “ ξ with constant coefficients is actually an ordinary
differential equation of the form

cmBmt η ` cm´1Bm´1
t η ` . . .` c1Btη ` c0η “ ξ

for constant matrices c0, . . . , cm P HompFk,Fℓq. The operator D is then elliptic if and only if the
matrix cm is invertible, in which case the equation Dη “ ξ is equivalent to

(54.10) Bmt η “ c´1
m

`
ξ ´ cm´1Bm´1

t η ´ . . .´ c1Btη ´ c0η
˘
.

If we now assume ξ is smooth and η is of class Cm, then the right hand side of (54.10) is of class C1,
implying the same for Bmt η, which means η is actually of class Cm`1. Now it follows that the right
hand side is of class C2, thus so is Bmt η, implying that η is in fact of class Cm`2. This process can
be repeated indefinitely as long as ξ has more derivatives—if we did not assume ξ to be smooth,
we would still deduce from this argument that η has at least m more continuous derivatives than
ξ does.

The argument above will not generally work for n ě 2, because partial differential operators
typically do not give the kind of complete information about the highest-order derivatives that
we see in (54.10). The inhomogeneous Laplace equation ´řn

j“1 B2jη “ ξ, for example, does not
provide a way to write any individual second partial derivative of η purely in terms of its lower-
order derivatives. The remarkable fact about elliptic operators is that while the information they
give about the highest-order derivatives of a solution is generally incomplete, it is still enough
information to conclude results like Theorem 54.19.

The easiest way to see this is by performing a Fourier transform on both sides of the equation
Dη “ ξ, and for this purpose, we will assume in much of the following discussion that

F :“ C,

so that all functions can be multiplied by complex scalars and Fourier transforms are well de-
fined. This is not actually a loss of generality: if D is given as a real-linear differential operator
C8pRn,Rkq Ñ C8pRn,Rℓq with constant coefficients cα P HompRk,Rℓq, then it can always be
extended to a complex-linear operator C8pRn,Ckq Ñ C8pRn,Cℓq by regarding the real matrices
cα as linear transformations Ck Ñ Cℓ. It will be clear that all results proved for this complexified
operator hold for the original real-linear operator as well.

Since the matrices cα are constant, (54.4) givesxDηppq “ ÿ
|α|ďm

cαyBαηppq “ ÿ
|α|ďm

cαp2πipqαpηppq “: Qppqpηppq,
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where Q : Rn Ñ HompCk,Cℓq is a matrix-valued polynomial whose top-degree term is

Qmppq :“ p2πiqm ÿ
|α|“m

pαcα.

Up to a constant, this is also a coordinate formula for the principal symbol of D at every point
in Rn; the symbol is the same at every point since the coefficients are constant. Ellipticity is
thus equivalent to the assumption that Qmppq is invertible for all p P Rnzt0u. As mentioned in
Remark 54.20 above, we will be able to get away with a slightly weaker assumption than this: let
us suppose

Qmppq : Ck Ñ Cℓ is injective for all p P Rnzt0u.
This assumption gives rise to certain estimates for Qppq that can be translated into estimates of
Sobolev norms for the functions η and ξ. To start with, any injective linear operator A : Ck Ñ Cℓ

satisfies |Av| ě C|v| for some constant C ą 0 independent of v P Ck, so Qmppq will satisfy such an
estimate for every p P Rn in the unit sphere, and we can take the same constant C ą 0 at every
point in the sphere since the sphere is compact. Moreover, Qmppq is a homogeneous polynomial
function of p with degree m, so if we now extend the estimate to allow p in the rest of Rn instead
of just the unit sphere, the constant will scale with |p|m, giving an estimate of the form

|Qmppqv| ě C|p|m|v| for all p P Rn, v P Ck,

with a constant C ą 0 independent of p and v. Putting back the terms of degree less than m,
Qppq will not satisfy such an estimate for all p P Rn, but (after increasing the constant C ą 0

if necessary) it will when |p| is sufficiently large, because the lower-degree terms then become
negligible in comparison with Qm. We therefore have constants C,R ą 0 such that

|Qppqv| ě C|p|m|v| for all p P RnzBnRp0q, v P Ck.

After adjusting the constants further, we can also replace the polynomial on the right hand side
with the one that appears in the definition of the Sobolev norms, and thus write

(54.11) |Qppqv|2 ě Cp1` |p|2qm|v|2 for all p P RnzBnRp0q, v P Ck.

Now suppose η P L2pRnq, ξ P HspRnq for some s ě 0, and that the Fourier transform of the
equation Dη “ ξ is satisfied almost everywhere, i.e.

Qppqpηppq “ pξppq for almost all p P Rn.

Using (54.11), we now find

}η}2Hs`m “
ż
Rn

p1` |p|2qs`m|pηppq|2 dp
“
ż
Bn

R
p0q
p1` |p|2qs`m|pηppq|2 dp` ż

RnzBn
R
p0q
p1` |p|2qsp1` |p|2qm|pηppq|2 dp

ď p1`R2qs`m
ż
Bn

Rp0q
|pηppq|2 dp` C1

ż
RnzBn

Rp0q
p1` |p|2qs|Qppqpηppq|2

ď C2}η}2L2 ` C2}ξ}2Hs ,

where the values of the constants C1, C2 are positive and unimportant. Since the norms |px, yq| :“
|x| ` |y| and }px, yq} :“ a

x2 ` y2 on R2 are equivalent, we can find a new constant C ą 0 such
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that the estimate obtained above gets rewritten as114

(54.12) }η}Hs`m ď C}Dη}Hs ` C}η}L2 ,

which is sometimes called a fundamental elliptic estimate for the operator D. It is a surprising
result if you think about the meanings of the various norms involved: on the left hand side, the
Hs`m-norm measures the L2-norms of all partial derivatives of η up to order s ` m. Some of
these derivatives also appear on the right hand side, as the operator Dη involves derivatives up to
order m, thus }Dη}Hs measures the L2-norms of certain linear combinations of partial derivatives
up to order s`m, but for a typical operatorD, it does not actually measure any of those derivatives
individually. The magic of ellipticity is that the particular linear combinations measured by }Dη}Hs

nonetheless give complete control over }η}Hs`m . As we will see, most of the important properties
of elliptic operators follow from estimates of this type.

The estimate (54.12) is valid for any η P L2pRnq, so long as the expression }Dη}Hs is suitably
interpreted: let us say for this purpose that η P L2pRnq is a weak solution to the equation Dη “ ξ

for some ξ P L2pRnq if Qppqpηppq “ pξppq for almost every p P Rn. If no function ξ with this property
exists, e.g. because Qpη R L2pRnq, then the norm

}Dη}Hs :“ }p1` |p|2qs{2Qpη}L2

will be infinite and the estimate (54.12) is thus free of content. But if Dη in this generalized sense
happens to belong to one of the Sobolev spaces HspRnq, we obtain a more technical variant of
Theorem 54.19:

Proposition 54.21. For an elliptic operator D : C8pRn,Fkq Ñ C8pRn,Fℓq of order m ě 1

with constant coefficients, if η P L2pRnq is a weak solution to the equation Dη “ ξ with ξ P HspRnq
for some s ě 0, then η P Hs`mpRnq. �

Proof of Theorem 54.19. The assumption that ξ is smooth with compact support implies
that it belongs to HspRnq for every s ě 0, so if η P L2pRnq is a weak solution to Dη “ ξ, we can
choose s ą 0 arbitrarily large and conclude from Proposition 54.21 that η P Hs`mpRnq, proving
that η also belongs to HspRnq for all s ě 0. By the Sobolev embedding theorem (Theorem 54.16),
η is therefore smooth. This conclusion applies in particular if η is also assumed in the first place
to be of class Cm and a solution to Dη “ ξ in the classical sense. �

Remark 54.22. Instead of ellipticity, the hypothesis we actually used in the proofs of Propo-
sition 54.21 and Theorem 54.19 was that

(54.13) σDpλq : Ep Ñ Fp is injective for all λ ‰ 0 P Tp̊M , p PM,

which is implied by ellipticity but is a weaker condition in general. It is also satisfied for instance
by covariant derivatives ∇ : ΓpEq Ñ Ω1pM,Eq and Cauchy-Riemann type operators D : ΓpEq Ñ
ΓpHomCpTM,Eqq on bundles E Ñ M over a real or complex manifold of arbitrary dimension n,
whereas these operators are only elliptic for n “ 1 (see Exercises 53.33 and 54.13). These operators
therefore satisfy corresponding regularity results: parallel sections of class C1 of a vector bundle
E Ñ M with a connection are always smooth, and so are holomorphic sections of a holomorphic
vector bundle E ÑM over a complex manifold, which can always be characterized as solutions to
Dη “ 0 for a Cauchy-Riemann type operator D. One can also show that over closed manifolds,
operators satisfying (54.13) have finite-dimensional kernels. What we lose if we only assume (54.13)
instead of ellipticity is the second half of Theorem 53.32, the fact that cokerpDq is also finite

114In lecture and in the first version of these notes I stated a weaker version of the estimate (54.12) in which
}η}Hs appeared on the right hand side instead of }η}L2 . The stronger estimate follows however from more-or-less
the same proof, and is easier to apply.
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dimensional, which guarantees that the inhomogeneous equation Dη “ ξ can also be solved for
sections ξ satisfying a finite set of conditions. Without this, one must generically expect the
equation Dη “ ξ to have no solutions; equations with this property are called overdetermined.
On a technical level, what one gains by assuming σDpλq is not only injective but also surjective
is that the symbol of the formal adjoint then satisfies the same condition: ellipticity is equivalent
to the condition that both D and D˚ satisfy (54.13). This fact will be used in the proof that
dim cokerpDq ă 8 for elliptic operators.

55. Proving finite dimensionality

Our goal in this lecture is to prove the first half of Theorem 53.32, the statement that the space
of solutions to Dη “ 0 for an elliptic operatorD over a closed manifold is always finite dimensional.
In the process we will also prove a more technical result about the image of D that is an important
prerequisite for showing dim cokerpDq ă 8. The proof of the latter will be completed in the next
lecture, where we shall also use it to derive the Hodge decomposition theorem.

55.1. Fredholm and compact operators. Throughout this section, X,Y, Z are Banach
spaces, whose norms will be denoted either by } ¨ } or by } ¨ }X , } ¨ }Y etc. when we want to be extra
clear about which is which. We denote by

L pX,Y q
the Banach space of continuous linear operators T : X Ñ Y , which carries the operator norm

}T } :“ sup
xPXzt0u

}Tx}Y
}x}X .

For readers not accustomed to functional analysis, the following should be pointed out explicitly:
every finite-dimensional vector space has a canonical topology for which linear subspaces are au-
tomatically closed subsets, but in infinite dimensions, subspaces need not be closed. For example,
the space of compactly-supported smooth functions C8

0 pRnq is dense in L2pRnq, and thus forms a
proper linear subspace whose closure is the whole space. The quotient of a Banach space X by a
subspace V Ă X has a natural Banach space structure if and only if V is closed in X .

Definition 55.1. An operator T P L pX,Y q is Fredholm if there exist splittings of X and
Y into direct sums of closed linear subspaces

X “ V ‘ kerpT q, Y “ impT q ‘W

such that kerpT q and W – cokerpT q “ Y { impT q are both finite dimensional. The Fredholm
index of T in this case is the integer

indpT q :“ dim kerpT q ´ dim cokerpT q.
Remark 55.2. One can show that T P L pX,Y q is Fredholm if and only if dimkerpT q and

dim cokerpT q are both finite, i.e. the existence of the splittings in Definition 55.1 follows from
these conditions automatically. The least obvious detail in this statement is that impT q is a closed
subspace, but in practice, most proofs that an operator T is Fredholm (including the one we will
give for elliptic operators) involve at some step an explicit proof that impT q is closed. For this
reason, there is no need to worry about the distinction between Definition 55.1 and the seemingly
weaker (but actually equivalent) definition found in some books.

The technical version of Theorem 53.32 on elliptic operators D : ΓpEq Ñ ΓpF q over a closed
manifold M is that for suitable Hilbert space completions Hk`mpEq of ΓpEq and HkpF q of ΓpF q,
D defines a Fredholm operator from Hk`mpEq to HkpF q. The spaces HkpEq will be defined in
§55.4, later in this lecture. The first step in the proof that D : Hk`mpEq Ñ HkpF q is Fredholm
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will then be to prove that its kernel is finite dimensional. The argument for this uses the following
characterization of finite dimensionality:

Lemma 55.3. A Banach space X is finite dimensional if and only if closed and bounded subsets
of X are compact, or equivalently, every bounded sequence in X has a convergent subsequence. �

One direction of Lemma 55.3 is a basic result that you hopefully learned in first-year analysis,
often called the Bolzano-Weierstrass theorem. The other direction is fairly obvious in the setting of
Hilbert spaces, which is the case we will use: in an infinite-dimensional Hilbert space, any countably
infinite orthonormal set forms a bounded sequence that can have no convergent subsequence, thus
there exist closed and bounded sets that are not compact.

Definition 55.4. An operator T P L pX,Y q is compact if for every bounded sequence xk P X ,
the sequence Txk P Y has a convergent subsequence, or equivalently, T maps every closed and
bounded subset of X to a compact subset of Y .

In finite dimensions every linear map is compact, but Lemma 55.3 shows that for instance the
identity map on an infinite-dimensional Banach space is not compact. The compact operators that
we will be most interested in are natural inclusions of one Banach space into another.

Example 55.5. For a bounded open subset U Ă Rn, the space CkpUq of Ck-functions on U

with bounded derivatives up to order k admits a natural inclusion

CkpUq ãÑ Ck´1pUq
for each k ě 1, and this inclusion is compact. Indeed, for k “ 1, any bounded sequence in
C1pUq is both uniformly bounded and equicontinuous due to the bound on its first derivatives,
so the Arzelà-Ascoli theorem guarantees the existence of a C0-convergent subsequence. Applying
the same argument to the partial derivatives up to order k ´ 1 proves that any uniformly Ck-
bounded sequence has a Ck´1-convergent subsequence. Note that the boundedness of the domain
U Ă Rn is crucial for the applicability of the Arzelà-Ascoli theorem, and the result is indeed false
on unbounded domains: on Rn for instance, one can easily cook up C1-bounded sequences without
C0-convergent subsequences just be composing a single function with a sequence of translations
on Rn moving outward toward infinity.

Here is a useful functional-analytic tool for the first step in proving that an operator is Fred-
holm.

Proposition 55.6. Suppose T : X Ñ Y and K : X Ñ Z are continuous linear operators, K
is compact, and there is an estimate of the form

(55.1) }x}X ď c}Tx}Y ` c}Kx}Z
for some constant c ą 0 independent of x P X. Then kerpT q Ă X is finite dimensional and
impT q Ă Y is closed.

Remark 55.7. Lest the hypothesis (55.1) should strike you as coming out of nowhere, I remind
you that in the previous lecture we proved an estimate for elliptic operators D of order m P N on
Rn with constant coefficients that said

}η}Hs`m ď c}Dη}Hs ` c}η}L2 .

This has almost the same form as (55.1), with D : Hs`mpRnq Ñ HspRnq in the role of T : X Ñ Y

and the inclusion Hs`mpRnq ãÑ L2pRnq for K : X Ñ Z. That inclusion is defined by taking
functions that have a certain number of derivatives (in a generalized sense) and forgetting some of
them, just as with the inclusion CkpUq ãÑ Ck´1pUq in Example 55.5, which was compact if U Ă Rn

is bounded, due to the Arzelà-Ascoli theorem. The only trouble is that since Rn is not bounded, the
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inclusion Hs`mpRnq ãÑ L2pRnq fails to be compact for the same reason that CkpRnq ãÑ Ck´1pRnq
does; we will rectify this in §55.2 below.

Proof of Proposition 55.6. To show that dimkerpT q ă 8, we apply Lemma 55.3 by prov-
ing that every sequence xk P kerpT q with }xk}X bounded has a convergent subsequence. Indeed,
since K : X Ñ Z is compact, any sequence can be replaced with a subsequence (still denoted by
xk) so that the sequence Kxk P Z converges, meaning in particular that Kxk is a Cauchy sequence.
The hypothesis (55.1) then gives

}xj ´ xk}X ď c}Kxj ´Kxk}Z ,
implying that xk P X is also a Cauchy sequence, so it converges.

To study impT q Ă Y , we observe that the image of T does not change if we replace T with
the map X{ kerpT q Ñ Y : rxs ÞÑ Tx, which is also a continuous linear map between Banach spaces
since the subspace kerpT q is in the mean time known to be closed (because it’s finite dimensional).
We can therefore assume without loss of generality that T : X Ñ Y is injective, and consider a
sequence xk P X such that Txk P Y converges to some element y P Y . There are two cases to
consider.

Case 1: }xk} has a bounded subsequence.
By the compactness ofK, we can then replace xk with a subsequence such thatKxk P Z converges,
so both Kxk and Txk are Cauchy sequences, and the estimate

}xj ´ xk}X ď c}Txj ´ Txk}Y ` c}Kxj ´Kxk}Z ,
from (55.1) then implies that xk is as well. It follows that xk converges to some element x P X ,
and since T is continuous, Tx “ y, proving that impT q Ă Y is closed.

Case 2: }xk} Ñ 8.
Consider the bounded sequence x1k :“ xk{}xk} P X , which satisfies Tx1k “ 1

}xk}Txk Ñ 0 since
Txk Ñ y and }xk} Ñ 8. By the compactness of K, we can replace this with a subsequence such
that Kx1k converges, and (55.1) then implies as in the previous case that x1k also converges to some
element x1 P X , which necessarily has }x1} “ 1. But the continuity of T then implies Tx1 “ 0, so
x1 is a nontrivial element of kerpT q, which is a contradiction. �

55.2. The Rellich-Kondrashov compactness theorem for Hs
0pUq. The strategy we’ve

mapped out for proving dim kerpDq ă 8 requires a compact operator, and a candidate for such an
operator that is relevant to our setting was mentioned in Remark 55.7: it is the inclusion Hs`m ãÑ
L2. Bounded sequences in Hs`mpRnq, however, need not have L2-convergent subsequences, as
shown by the example of a sequence of the form fkpxq :“ fpx` vkq for a fixed nontrivial function
f P Hs`mpRnq and translations vk P Rn tending to infinity. The compact inclusion CkpUq ãÑ
Ck´1pUq of Example 55.5, in which compactness follows from the Arzelà-Ascoli theorem, suggests
that one might have more success considering functions defined only on a bounded domain U Ă Rn.

Definition 55.8. For an open subset U Ă Rn and s ě 0, the Hilbert space

Hs
0pUq Ă HspRnq

is defined as the closure in HspRnq of the space C8
0 pUq of C8-functions with compact support

in U . In light of the injective map

Hs
0pUq ãÑ L2pUq : f ÞÑ f |U ,

we shall often regard elements of Hs
0pUq as functions defined on U that admit trivial extensions of

class Hs over Rn.
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Note that since C8
0 pUq is dense in L2pUq,

H0
0 pUq “ L2pUq,

and there are obvious inclusions

Hs
0pUq ãÑ Ht

0pUq whenever s ą t.

The main result about Sobolev inclusions of this type is known as the Rellich-Kondrashov compact-
ness theorem, often abbreviated simply as Rellich’s theorem. You should think of it as a Sobolev
analogue of what the Arzelà-Ascoli theorem gives us for the inclusion CkpUq ãÑ Ck´1pUq: if we
bound derivatives up to a certain order over a bounded domain but then forget the highest-order
derivatives, boundedness becomes compactness.

Theorem 55.9 (Rellich-Kondrashov for HspUq). If U Ă Rn is a bounded open subset, then
the inclusion Hs

0pUq ãÑ Ht
0pUq is a compact operator for every s ą t ě 0.

We shall prove Theorem 55.9 in three steps. The first is the observation that the set of compact
operators from X to Y is a closed subset of L pX,Y q:

Exercise 55.10. Prove that if Ak P L pX,Y q is a sequence of compact operators with }Ak ´
A} Ñ 0 for some A P L pX,Y q, then A is also compact.
Hint: Prove that if xj P X is a sequence for which Akxj P Y is a convergent sequence for every
fixed k, then Axj is a Cauchy sequence in Y .

The second step is to define a family of compact operators jR : Hs
0 pUq Ñ HtpRnq for R ą 0

that can be shown in the third step to converge as R Ñ 8 to the inclusion Hs
0pUq ãÑ HtpRnq.

The compactness of the operators jR will depend on the assumption that U Ă Rn is bounded, but
it will not require s ą t. Given R ą 0, define a map L2pRnq Ñ L2pRnq : f ÞÑ fR such that the
Fourier transform of fR is xfRppq :“ #pfppq if |p| ď R,

0 otherwise.

The new function fR belongs to HtpRnq for every t ě 0, and f ÞÑ fR is a continuous linear
operator L2pRnq Ñ HtpRnq since

}fR}2Ht “
ż
Rn

p1` |p|2qt|xfRppq|2 dp “ ż
Bn

R
p0q
p1` |p|2qt| pfppq|2 dp

ď p1`R2qt
ż
Bn

R
p0q
| pfppq|2 dp ď p1`R2qt} pf}2L2 “ p1`R2qt}f}2L2.

Composing it with the inclusion HspRnq ãÑ L2pRnq for any s ě 0 allows us also to view f ÞÑ fR as
a continuous operator HspRnq Ñ HtpRnq, which can then be restricted to the subspace Hs

0pUq Ă
HspRnq for any open set U Ă Rn, though there is no reason to expect the image of this restriction
to lie in Ht

0pUq.
Lemma 55.11. For any bounded open subset U Ă Rn and any s, t ě 0 and R ą 0, the operator

Hs
0pUq Ñ HtpRnq : f ÞÑ fR is compact.

Our proof of this lemma will require a standard result in the theory of Lp-spaces, the Banach-
Alaoglu theorem. For L2-functions in particular on a measurable subset U Ă Rn, a sequence
fk P L2pUq is called weakly convergent to a function f P L2pUq, written

fk
L2á f,
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if for every fixed g P L2pUq, xg, fkyL2 Ñ xg, fyL2. Another way of saying this is that fk á f means
φpfkq Ñ φpfq for every continuous linear functional φ : L2pUq Ñ C. The analogous condition
for a sequence xk in Rn would imply that the individual coordinates of xk each converge, since
coordinate functions are examples of continuous linear functionals on Rn, so weak convergence in
finite dimensions just means convergence in the usual topology. In L2pUq, however, it is a strictly
weaker condition, and thus more easily satisfied:

Theorem 55.12 (Banach-Alaoglu for L2). Every bounded sequence in L2pUq has a weakly
convergent subsequence.

Proof sketch. Given a bounded sequence fk P L2pUq, the sequence xg, fkyL2 P R is bounded
for each g P L2pUq and thus has a convergent subsequence. For any countable set X Ă L2pUq, the
Cantor diagonal trick can then be used to replace fk with a subsequence so that xg, fkyL2 converges
for every g P X , and it follows from this that xg, fkyL2 also converges for all g in the L2-closure
of X . The result then follows from the fact that L2pUq admits a countable dense subset, i.e. it
is separable. To construct such a subset over Rn, one can for instance consider all finite sums of
functions that take constant values in some fixed countable dense subset of V on sets of the form
ra1, b1s ˆ . . . ˆ ran, bns Ă Rn for aj , bj P Q and vanish everywhere else. The restrictions of such
functions to U form a countable dense subset of L2pUq. �

Proof of Lemma 55.11. A bounded sequence fk in Hs
0pUq is also bounded in L2pUq, so

by the Banach-Alaoglu theorem, we can replace it with a subsequence such that fk is weakly
convergent in L2pUq to some f8 P L2pUq. This has the following consequence: since U is bounded,
the complex exponential x ÞÑ e2πip¨x is an L2-function on U for each p P Rn, and it follows that
the Fourier transforms of fk converge pointwise:

pfkppq “ ż
Rn

e´2πip¨xfkpxq dx “
ż
U

e´2πip¨xfkpxq dxÑ
ż
U

e´2πip¨xf8pxq dx “ pf8ppq.
Here we are also implicitly using the fact that, again since U is bounded, the L2-functions fk and
f8 are also in L1, so their Fourier transforms can be computed from the usual integral formula
and are continuous functions of p P Rn. They also satisfy a uniform C0-bound, because by the
Cauchy-Schwarz inequality,

}fk}L1 ď }1}L2pUq ¨ }fk}L2

is bounded, and | pfkppq| ď }fk}L1 for all k and p P Rn.
Having reduced fk P Hs

0pUq to a weakly L2-convergent subsequence, we claim that for each
R ą 0 and t ě 0, the corresponding Fourier truncations fRk form a Cauchy sequence in HtpRnq.
Indeed, taking j, k large, we have

}fRj ´ fRk }2Ht “
ż
Rn

p1` |p|2qt|xfRj ppq ´ xfRk ppq|2 dp “ ż
Bn

R
p0q
p1` |p|2qt| pfjppq ´ pfkppq|2 dp

ď p1`R2qt
ż
Bn

Rp0q
| pfjppq ´ pfkppq|2 dp.

For any sequence of values for j and k tending to 8, the integrands in this last expression are
uniformly bounded and converge pointwise to 0, so by the dominated convergence theorem, the
integrals also converge to 0. �

The third step does not require working on a bounded domain, but here is where it becomes
essential to assume s ą t.
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Lemma 55.13. For s, t ě 0 and R ą 0, let jR : HspRnq Ñ HtpRnq denote the map f ÞÑ fR. If
s ą t, then jR converges in the operator norm on L pHspRnq, HtpRnqq to the inclusion HspRnq ãÑ
HtpRnq as RÑ8.

Proof. Let j : HspRnq ãÑ HtpRnq denote the inclusion. Given f P HspRnq, we have
}jf ´ jRf}2Ht “ }f ´ fR}2Ht “

ż
Rn

p1` |p|2qt| pfppq ´ xfRppq|2 dp
“
ż
RnzBn

Rp0q
p1` |p|2qt| pfppq|2 dp “ ż

RnzBn
Rp0q

p1` |p|2qs
p1` |p|2qs´t | pfppq|2 dp

ď 1

p1`R2qs´t
ż
RnzBn

R
p0q
p1` |p|2qs| pfppq|2 dp ď 1

p1`R2qs´t }f}
2
Hs ,

thus }j ´ jR} ď 1

p1`R2q s´t
2

Ñ 0 as RÑ8. �

Proof of Theorem 55.9. The map iR : Hs
0 pUq Ñ HtpRnq : f ÞÑ fR is compact by

Lemma 55.11, and it is also the composition of the inclusion Hs
0 pUq ãÑ HspRnq with the map

jR : HspRnq Ñ HtpRnq from Lemma 55.13, and therefore converges as R Ñ 8 to the inclusion
Hs

0pUq ãÑ HtpRnq, whose image is in Ht
0pUq. Exercise 55.10 then implies that this limiting map is

compact. �

Remark 55.14. If you remember the result in Theorem 54.14 about Fourier transforms of
convolutions, you may notice that for R ą 0, the function fR : Rn Ñ V could also have been
defined as fR “ ρR ˚ f , where ρR : Rn Ñ C is the function whose Fourier transform is the
characteristic function of BnRp0q, i.e.

ρRpxq :“
ż
Bn

R
p0q
e2πip¨x dp.

This family of functions forms an approximate identity, thus fR can be viewed as a family of
smoothings of f that converge to f as RÑ8. A very similar argument gives the compactness of
the inclusion HspTnq ãÑ HtpTnq for Sobolev spaces on the torus defined in terms of Fourier series.
The smoothing operator f ÞÑ fR in that case can be defined analogously by truncating the Fourier
series, and its compactness is then easier to prove because truncated Fourier series are finite, and
operators of finite rank are always compact.

55.3. Elliptic estimates with nonconstant coefficients. The main task in proving that
elliptic operators on closed manifolds have finite-dimensional kernel will now be to generalize the
estimate }η}Hs`m ď C}Dη}Hs ` C}η}L2 , which was established in §54.4 for elliptic operators on
trivial bundles over Rn with constant coefficients. The idea will be to formulate such an estimate in
a context where the second term on the right hand side can be understood as a compact inclusion,
thus establishing the hypothesis of Proposition 55.6. We must first relax the condition that D has
constant coefficients.

The Fourier transform is not a convenient tool to use for functions defined on domains other
than Rn, so it will be useful to adjust our perspective on the Sobolev norms. Recall that for k ě 0

an integer and f P S pRnq, our usual definition of }f}Hk is equivalent to a norm that measures the
L2-norms of all partial derivatives of f up to order k. The latter can also be defined for arbitrary
smooth functions defined only on an open subset U Ă Rn, and we will thus set

(55.2) }f}HkpUq :“
ÿ
|α|ďk

}Bαf}L2pUq :“
ÿ
|α|ďk

ˆż
U

|Bαfpxq|2 dx
˙1{2
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in this situation. If f belongs to Hk
0 pUq, then this definition of the Hk-norm of f is different from

but equivalent (in the sense of defining the same topology) to our usual definition, and it has the
advantage that for any open subset V Ă U , we can also define }f}HkpVq for functions that are not
compactly supported in V , and write }f}HkpVq ď }f}HkpUq. One can also define a Hilbert space
HkpUq on which (55.2) is the natural norm: the quickest way is to take the subspace of L2pUq
obtained as the closure in the Hk-norm of the space of smooth functions f on U with }f}HkpUq ă 8.
This space is typically larger than Hk

0 pUq, but the latter space will suffice for our purposes, and
we will only refer to }f}HkpUq in cases where f is smooth, so that the meaning of Bαf is clear.

Lemma 55.15. Suppose U Ă Rn is an open subset and D “ ř
|α|ďm cαBα : C8pU ,Fkq Ñ

C8pU ,Fℓq is an elliptic differential operator of order m P N between trivial vector bundles over U .
Then for each integer s ě 0, every point p P U has a neighborhood p P V Ă U such that for any
smooth function ϕ : U Ñ R with compact support in V, an estimate of the form

}ϕη}Hs`mpVq ď C}Dpϕηq}HspVq ` C}η}Hs`m´1pVq

holds for all smooth functions η : U Ñ Fk and a constant C ą 0 independent of η.

Proof. The idea is to deduce the result from the case of constant coefficients by choosing the
neighborhood V Ă U of p small enough so that D is only a small perturbation of the operator

D0 :“ ÿ
|α|ďm

cαppqBα : C8pV ,Fkq Ñ C8pV ,Fℓq,

which has constant coefficients and matches D at p. Indeed, let us assume that the bound

|cαpqq ´ cαppq| ă ǫ for all q P V and |α| “ m

holds for some constant ǫ ą 0, which we will be free to make arbitrarily small by shrinking V .
Since ϕη and D0pϕηq can each be regarded as smooth functions on Rn with compact support in V ,
the existing estimate for the case with constant coefficients gives

}ϕη}Hs`mpVq “ }ϕη}Hs`mpRnq ď C1}D0pϕηq}HspRnq ` C1}ϕη}L2pRnq
“ C1}D0pϕηq}HspVq ` C1}ϕη}L2pVq,

(55.3)

in which the constant C1 ą 0 comes directly from the estimate (54.12), so it depends on the choice
of point p (which determines the operator D0) but not in any way on the choice of neighborhood
V or function ϕ. This is important to note, because we will later want to adjust V and ϕ in a way
that depends on the value of C1. The term C1}ϕη}L2pVq is clearly bounded by C2}η}Hs`m´1pVq for
some constant C2 ą 0, and we shall not worry about it any further.

By the triangle inequality,

}D0pϕηq}HspVq ď }Dpϕηq}HspVq ` }pD0 ´Dqpϕηq}HspVq.

For the first term, we can write

Dpϕηq “ ÿ
|α|ďm

cαBαpϕηq “ ϕDη `D1η,

where D1 : C8pU ,Fkq Ñ C8pU ,Fℓq is a differential operator defined by collecting all the terms in
cαBαpϕηq that involve derivatives of ϕ, meaning that η is differentiated fewer than m times, and
D1 thus has order at most m´ 1. It follows that we can write

}D1η}HspVq ď C2}η}Hs`m´1pVq
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after possibly increasing the constant C2 ą 0. For pD0 ´Dqpϕηq, we can similarly write

pD0 ´Dqpϕηq “ ÿ
|α|“m

pcαppq ´ cαqBαpϕηq `D2η

for an operator D2 : C8pU ,Fkq Ñ C8pU ,Fℓq of order at most m´ 1 whose coefficients depend on
cα and derivatives of ϕ, so after increasing C2 ą 0 again, we have }D2η}HspVq ď C2}η}Hs`m´1pVq
and thus

}pD0 ´Dqpϕηq}HspVq ď
››› ÿ
|α|“m

pcαppq ´ cαqBαpϕηq
›››
HspVq ` C2}η}Hs`m´1pVq.

The Hs-norm on the right hand side is a sum of L2-norms of derivatives up to order s, most of
which can also be absorbed into the term C2}η}Hs`m´1pVq at the cost of increasing C2 ą 0 further;
the only terms that cannot be dealt with in this way are those in which Bαpϕηq (but not cαppq´cα)
is differentiated s times, and we thus obtain

}pD0 ´Dqpϕηq}HspVq ď
ÿ
|β|“s

ÿ
|α|“m

››pcαppq ´ cαqBβBαpϕηq
››
L2pVq ` C2}η}Hs`m´1pVq

ď ǫC3}ϕη}Hs`mpVq ` C2}η}Hs`m´1pVq,
where C3 ą 0 is a combinatorial constant depending only on s, m and n. After increasing C2 ą 0

one more time, the entire computation that began with (55.3) can now be summarized as

}ϕη}Hs`mpVq ď C1}Dpϕηq}HspVq ` ǫC1C3}ϕη}Hs`mpVq ` C2}η}Hs`m´1pVq.
While the constant C2 ą 0 has been increased several times and depends on ϕ (though not on η),
C1 ą 0 still depends only on the choice of point p P U and the integers s,m, n, while C3 ą 0

depends only the latter. We are thus free to shrink V and change ϕ accordingly without altering
C1 or C3, and can arrange by doing so that

ǫC1C3 ď 1

2
.

This makes it possible to subtract ǫC1C2}ϕη}Hs`mpVq from both sides so that the Hs`m-norm
appears only on the left hand side, and the stated estimate is thus established. �

55.4. Sobolev spaces on compact manifolds. It is now time to define Sobolev spaces of
sections of vector bundles over a compact manifold.

If U Ă Rn is an open subset, let us say that a function f : U Ñ Fk is of class Hs
loc on U and

write
f P Hs

locpUq
if its product with arbitrary smooth functions compactly supported in U is in Hs

0pUq, i.e.
ϕf P Hs

0pUq for every ϕ P C8
0 pUq.

We can endow Hs
locpUq with a natural topology such that a sequence fk P Hs

locpUq converges to
f P Hs

locpUq if and only if

ϕfk Ñ ϕf in Hs
0pUq for every ϕ P C8

0 pUq.
The functions ϕ that you should imagine in this definition are cutoff functions that equal 1 on
some open subset but vanish near the boundary of U , so convergence in Hs

loc controls the H
s-norm

on arbitrary compact subsets of U , but without worrying about what happens at the boundary.
In general, the space Hs

locpUq is larger than Hs
0 pUq, in fact too large to be a Hilbert space in any

obvious way, since e.g. it contains all smooth functions on U , including unbounded functions that
admit no smooth extensions over the rest of Rn.
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Now if E Ñ M is a smooth vector bundle over an n-manifold, any open subset Uα Ă M

admitting a chart xα : Uα Ñ xαpUαq :“ Oα Ă Rn and local trivialization Φα : E|Uα
Ñ Uα ˆ Fk

associates to each section η :M Ñ E a local representative

ηα :“ pr2 ˝Φα ˝ η ˝ x´1
α : Oα Ñ Fk,

where pr2 : Uα ˆ Fk Ñ Fk denotes the obvious projection. We define

Hs
locpEq :“

 
sections η :M Ñ E

ˇ̌
all local representatives ηα are of class Hs

loc

(
,

and call this the space of Hs
loc-sections of E. It is a vector space, and can also be endowed with

a natural topology for which a sequence ηk P Hs
locpEq converges to η P Hs

locpEq if and only if each
of its local representatives converges in Hs

loc to the corresponding local representative of η. This
makes Hs

locpEq into a topological vector space, but it is not naturally a Hilbert space for arbitrary
bundles E ÑM . It turns out however that if M is compact, then Hs

locpEq can be endowed with a
Hilbert space norm that depends on some choices but is canonical up to equivalence. The choices
required are as follows:

(1) A finite open covering tUα ĂMuαPI of M ;
(2) A partition of unity tϕα : M Ñ r0, 1suαPI subordinate to the open covering tUαuαPI ;
(3) For each α P I, a chart xα : Uα Ñ Rn whose image Oα :“ xαpUαq is a bounded subset

of Rn;
(4) For each α P I, a local trivialization Φα : E|Uα

Ñ Uα ˆ Fk.
Note that if M is compact, then each of the open sets Uα ĂM automatically has compact closure,
and the functions ϕα therefore have compact support in Uα. The condition that everyOα “ xαpUαq
is bounded can then always be achieved after replacing tUαuαPI with another open covering tU 1αuαPI
consisting of slightly smaller subsets U 1α with closure in Uα. Conversely, if we require tUαuαPI to be
a finite open covering by sets with compact closure, then this is only possible if M is compact. We
can now associate to each section η : M Ñ E and each α P I a local representative ηα : Oα Ñ Fk

determined by the chart xα and trivialization Φα, and writing

ψα :“ ϕα ˝ x´1
α : Oα Ñ r0, 1s,

every η P Hs
locpEq is finite in the norm

}η}HspMq :“
ÿ
αPI

}ψαηα}HspOαq,

where the norms on the right hand side can be defined via the usual Fourier transform prescription
after extending ψαη

α : Oα Ñ Fk to a function on Rn that is trivial outside the compact set
supppψαq Ă Oα. We will usually abbreviate }η}Hs :“ }η}HspMq when the domain we’re working
on is clear from context. One can similarly use the Hs-inner products for compactly supported
functions on the domains Oα Ă Rn to define an inner product on Hs

locpEq that induces a norm
equivalent to } ¨ }HspMq; we will have no need to make direct use of this inner product, and thus
leave the details as an exercise.

Proposition 55.16. For a vector bundle E ÑM over a compact manifold M , the equivalence
class of the norm } ¨ }HspMq on Hs

locpEq is independent of choices, and a sequence of sections is
convergent in this norm if and only if it is Hs

loc-convergent. Moreover, Hs
locpEq with the norm

} ¨ }HspMq is complete.

Proof sketch. We outline the proof assuming s ě 0 is an integer, which is the case we’ll
need in practice. The main step is to prove that there are continuous linear maps on Hs defined by
composing with smooth coordinate transformations and multiplication by smooth functions. More
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precisely, if Oα,Oβ Ă Rn are two bounded open subsets and ψ : Oα Ñ Oβ is a diffeomorphism
whose derivatives of all orders are bounded, then there is a continuous linear map

Hs
0 pOβq Ñ Hs

0pOαq : f ÞÑ f ˝ ψ,
and similarly, there is a continuous linear map

Hs
0pOαq Ñ Hs

0 pOαq : f ÞÑ gf

for any smooth function g : Oα Ñ R whose derivatives of all orders are bounded. Both statements
can be proved first under the assumption that f is smooth with compact support by using the chain
rule and product rule to write out the derivatives up to order s of f ˝ψ and gf , and bounding their
L2-norms. They then extend via density to statements about the spaces Hs

0pOαq and Hs
0pOβq.

With this understood, if tUα, ϕα, xα,ΦαuαPI and tUβ , ϕβ , xβ ,ΦβuβPJ are two choices of the data
required for defining the norm on Hs

locpEq, then since any η P Hs
locpEq can be written as a finite

sum
ř
pα,βqPIˆJ ϕαϕβη of sections with compact support in intersections of the form Uα X Uβ for

α P I and β P J , it suffices to take a function with support in UαXUβ and compare the Hs-norms
of its local representatives with respect to the choices α P I and β P J . The continuity of the two
transformations described above makes it possible to bound each in terms of the other.

The completeness of Hs
locpEq with either of these norms now follows from the completeness of

Hs
0pOq for each open set O Ă Rn, since any Cauchy sequence in Hs

locpEq will have local represen-
tatives that are also Cauchy sequences. �

In light of Proposition 55.16, we shall from now on denote

HspEq :“ Hs
locpEq whenever M is compact,

and refer to this as the space of Hs-sections of E ÑM .

Remark 55.17. There is obviously no problem in defining the space Hs
locpEq when M is

noncompact, but the prescription described above for defining a norm on this space will not work
since M cannot be covered by finitely many open subsets with compact closure. This does not
mean that Hilbert spaces HspEq of sections of E ÑM cannot be defined when M is noncompact,
but doing so generally requires some extra choices, the exact nature of which depends on the
intended application, and the condition }η}Hs ă 8 then typically imposes asymptotic conditions
on η, so that not every η P Hs

locpEq satisfies it, and HspEq is therefore a smaller space. Such
issues need to be considered quite carefully in any application of Sobolev spaces on noncompact
manifolds, but fortunately they are irrelevant for our presentation of Hodge theory.

Every property of the Sobolev spacesHspRnq andHs
0 pUq we have studied so far can be extended

to the setting of a vector bundle over a compact manifold, usually by converting local coordinate
computations into global results via a partition of unity. Without getting into the details, here is a
summary of general properties, followed by a translation of the local estimate from Lemma 55.15
into the present setting.

Theorem 55.18. For a smooth vector bundle E Ñ M over a compact manifold, the Sobolev
spaces HspEq for s ě 0 have the following properties:

(1) The space ΓpEq of smooth sections is a dense subspace of HspEq.
(2) (Sobolev embedding theorem) If 2s ą n :“ dimM , then there is a continuous inclusion

Hs`kpEq ãÑ CkpEq
for each integer k ě 0, where CkpEq is the space of Ck-sections of E ÑM .
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(3) (Rellich-Kondrashov compactness theorem) For s ą t ě 0, the inclusion

HspEq ãÑ HtpEq
is compact.

�

Theorem 55.19 (global elliptic estimate). For any elliptic operator D : ΓpEq Ñ ΓpF q of order
m P N between vector bundles E,F over a closed manifold M , and every integer s ě 0, the estimate

}η}Hs`m ď C}Dη}Hs ` C}η}Hs`m´1

is satisfied for all η P Hs`mpEq, with a constant C ą 0 independent of η.

Proof. We can coverM with finitely many neighborhoods Uα ĂM that are small enough for
the local estimate of Lemma 55.15 to be valid on smooth sections of the form ϕαη with η P ΓpEq
and supppϕαq Ă Uα, and use this open covering in the definition of the Hs`m-norm. The terms
that appear on the right hand side of the local estimate are then easy to bound in terms of the
global norms }Dη}HspMq and }η}Hs`m´1pMq for sections of F and E respectively, and this estalishes
the stated estimate for all smooth sections η P ΓpEq. It is then also true for all η P Hs`mpEq since
ΓpEq is dense in the latter, and for any sequence of smooth sections ηj converging in Hs`mpEq
to η, one has Dηj Ñ Dη in HspF q and ηj Ñ η in Hs`m´1pEq. �

Together with the compactness of the inclusion Hs`mpEq ãÑ Hs`m´1pEq, Theorem 55.19
establishes the main hypothesis of Proposition 55.6 and thus proves:

Corollary 55.20. For every elliptic operator D : ΓpEq Ñ ΓpF q of order m P N between
vector bundles E,F over a closed manifold M , and every integer s ě 0, the unique extension of
D to a continuous linear operator Hs`mpEq Ñ HspF q has finite-dimensional kernel and closed
image. �

Remark 55.21. One sometimes also sees the estimate in Theorem 55.19 stated with a different
norm in place of Hs`m´1 on the right hand side, e.g. [War83,Ebe] both put }η}Hs in place
of }η}Hs`m´1 . Actually, one can use a tool called the “Peter-Paul inequality” to deduce from
Theorem 55.19 a seemingly stronger estimate of the form

}η}Hs`m ď C}Dη}Hs ` C}η}L2 ,

also valid for all η P Hs`mpEq. Indeed, the Peter-Paul inequality implies that for smooth sections
η P ΓpEq, }η}Hs`m´1 can be bounded by ǫ}η}Hs`m `C 1}η}L2 , where ǫ ą 0 can be made arbitrarily
small at the cost of allowing C 1 ą 0 to be large. Replacing }η}Hs`m´1 in Theorem 55.19 with this
expression and assuming ǫ ą 0 sufficiently small makes it possible to pull the Hs`m-norm to the
left hand side, leaving only the L2-norm behind. For our purposes, however, this stronger estimate
does not offer any advantages that are not already present in Theorem 55.19, since the inclusion
Hs`mpEq ãÑ Hs`m´1pEq is already compact.

56. The Hodge decomposition theorem

In this lecture we fill in the remaining bits of analysis needed for proving that elliptic operators
on closed manifolds are Fredholm operators, and then use this in §56.3 to prove the Hodge decom-
position theorem. We will conclude in §56.4 with an application of Hodge theory that constrains
the topology of Riemannian manifolds under an assumption about their curvature.
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56.1. Elliptic regularity. In §54.4 we proved a regularity result saying that for an elliptic
operator D of order m P N on Rn with constant coefficients, weak solutions η P L2pRnq to the
equation Dη “ ξ with ξ P HspRnq are in η P Hs`mpRnq; informally, the solution is “m steps more
regular” than the right hand side of the equation. We will need a version of this result for elliptic
operators on manifolds before the main theorem about the Fredholm property can be proved. In
this context, we will also need a new interpretation of the term “weak solutions”; our previous
definition of this notion required the Fourier transform, and thus made sense for functions on Rn,
but not for sections of a bundle over a manifold. This issue will be clarified in §56.1.1 below, but
first, here is a statement of the result we are aiming for:

Theorem 56.1. Suppose E,F ÑM are vector bundles over a smooth manifold without bound-
ary, and D : ΓpEq Ñ ΓpF q is an elliptic operator of order m P N. For any ξ P Hs

locpF q for an
integer s ě 0, every weak solution η P L2

locpEq to the equation Dη “ ξ is in Hs`m
loc pEq. In

particular, if ξ is smooth, then so is η.

The conclusion about the case when ξ is smooth follows from the Sobolev embedding theorem:
any section that is of class Hs`k for some s ą n{2 and every integer k ě 0 is also of class Ck

for every k, and therefore smooth. Note that Theorem 56.1 is of a purely local nature, so it does
not require M to be compact, and by choosing coordinates and trivializations, we will be able
to assume without loss of generality that M is an open domain U Ă Rn on which both bundles
are trivial, so D takes the form

ř
|α|ďm cαBα for some smooth matrix-valued coefficient functions

cα : U Ñ HompFk,Fℓq. The novel features in comparison with §54.4 are that the coefficients cα
can now be nonconstant, and we are dealing with functions on an open subset U Ă Rn rather than
all of Rn.

The global elliptic estimate }η}Hs`m ď C}Dη}Hs`C}η}Hs`m´1 obtained in the previous lecture
makes Theorem 56.1 look plausible, but we still need to work a bit before reaching such a conclusion,
because as it stands, our proof of the estimate requires first knowing that η is of class Hs`m. In the
constant coefficients case, the Fourier transform provided a convenient shortcut that made such
hypotheses unnecessary, but when nonconstant coefficients are present, they force extra terms
depending on derivatives of η to appear, and for this reason we stated and proved Lemma 55.15
only for smooth sections. A density argument extends its validity to functions of class Hs`m, but
some new ideas will be required before we can relax this regularity assumption further.

Realistically, it would require more than one full lecture to give a complete proof of Theo-
rem 56.1, so we will explain the main ideas but leave some of the details as nontrivial exercises.
If you prefer to concentrate on geometric rather than analytical issues, you may want to treat
elliptic regularity as a black box provided by analysts and skip ahead to the proof of the Fredholm
property in §56.2, though you should first read §56.1.1 so that you know what the term “weak
solution” actually means.

Here is a quick sketch of the proof of Theorem 56.1. One of the main tools we will use is the
notion of difference quotients, which are functions of the form

dhj fpxq :“ fpx` hejq ´ fpxq
h

defined from a function f on some open domain in Rn, where h P Rzt0u is usually assumed
small and e1, . . . , en P Rn denotes the standard basis. The classical notion of differentiability of
f amounts to the condition that the functions dhj f are well behaved in the limit as h Ñ 0, and
we will see in §56.1.4 that a similar property holds in the context of Sobolev spaces: a function
of class Hs

loc is also of class Hs`1
loc if and only if its difference quotients are uniformly Hs-bounded

on compact subsets as h Ñ 0. For weak solutions of the equation Dη “ ξ, the way to obtain
uniform bounds on }dhj η}Hs will then be via the local elliptic estimate of Lemma 55.15, in which
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the regularity assumption for ξ allows us to derive a similar uniform bound on Sobolev norms of
dhj ξ “ dhj pDηq, an object that is not identical but closely related to Dpdhj ηq. In order to apply
this strategy toward improving a weak solution η of class L2

loc “ H0
loc, we will need a version of

Lemma 55.15 that has }ϕη}H0 on the left hand side, which means the right hand side needs to
involve Sobolev Hs-norms with s ă 0, a notion that we have avoided considering thus far. We will
give a proper definition for these spaces in §56.1.2.

Remark 56.2. The proof sketched here is somewhat different from the one that I sketched
(even more briefly) in the lecture, and on closer examination, that proof probably cannot be made
to work in quite the way I had in mind. The essential idea was to take the equation Dη “ ξ with
η, ξ P L2

loc and use mollifiers (i.e. approximate identities) to smoothen both η and ξ so that the
local elliptic estimate can be applied. This is a standard technique, and the details can be found
e.g. in [Ebe], but doing it properly requires a rather technical lemma due to Friedrichs about the
commutator of a mollifier with a differential operator, the proof of which seems disproportionately
tedious for the problem at hand. Working with difference quotients is easier, so that is the approach
I’ve settled on for these notes.

56.1.1. Distributions and weak derivatives. Suppose U Ă Rn is an open subset and f : U Ñ V is
a function. How do we say that f satisfies a differential equation without explicitly mentioning any
derivatives of f? The possible answers to this question all involve integration: e.g. in the existence-
uniqueness theory for ODEs, one transforms a differential equation into an integral equation in
order to apply the Banach fixed point theorem. The Fourier transform gave rise to another nice
approach in Lecture 54, but it only makes sense when U “ Rn, and otherwise the Fourier transform
is not defined. A different idea is to use integration by parts. To formulate the appropriate
definition, we only need to assume that f is locally integrable, i.e. it is of class L1 on all
compact subsets of U , written f P L1

locpUq. Every such function determines a continuous linear
map

(56.1) Λf : C8
0 pUq Ñ V : ϕ ÞÑ

ż
U

ϕpxqfpxq dx,

where C8
0 pUq is the space of smooth real-valued functions with compact support in U , equipped

with a very strong topology in which convergence ϕk Ñ ϕ means C8
loc-convergence with the ad-

ditional constraint that all of the ϕk have support inside the same compact subset. Linear maps
Λ : C8

0 pUq Ñ V that are continuous with respect to this topology are called (V -valued) distri-
butions on U . The space of distributions is regarded as an enlargement of the space of locally
integrable functions, and its elements are thus also sometimes called generalized functions. A
popular example of a distribution that is not representable as a function is the so-called Dirac
δ-function, which physicists are fond of describing as a “function” δ : R Ñ R that vanishes on
Rzt0u and is normalized to satisfy

ş
R
δpxq dx “ 1, so that

ş
R
δpxqϕpxq dx “ ϕp0q for any ϕ P C8

0 pRq.
No such function actually exists, but δ can be described mathematically as the distribution

δ : C8
0 pRq Ñ R : ϕ ÞÑ ϕp0q.

The partial derivatives of a distribution Λ are distributions BjΛ defined by

pBjΛqpϕq :“ ´ΛpBjϕq.
The motivation for this definition comes from the example of Λf , defined as in (56.1): if f is a
C1-function, then integration by parts implies

BjΛf “ ΛBjf .
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For f, g P L1
locpUq, we call g a weak partial derivative of f in the jth direction and write Bjf “ g

if the distributions Λf ,Λg satisfy BjΛf “ Λg. Concretely, this condition means

(56.2)
ż
U

ϕpxqgpxq dx “ ´
ż
U

Bjϕpxq fpxq dx for all ϕ P C8
0 pUq,

and one also says in this situation that the equation Bjf “ g is satisfied in the sense of distri-
butions. In general, the distribution Λf defined by a locally integrable function f determines f
almost everywhere, so if a weak derivative Bjf exists, then it can also be considered unique so long
as we regard weak derivatives as equivalence classes of functions defined almost everywhere, rather
than specific functions. Weak differentiation thus produces well-defined elements Bjf P L1

locpUq,
but in general it does not make sense to speak of the value Bjfpxq at any specific point x P U . On
the other hand, if f is of class C1, then integration by parts implies that its weak partial deriva-
tives can be identified naturally with its classical partial derivatives, which are specific continuous
functions. Weak derivatives can also exist for functions that are not classically differentiable: the
standard example is fpxq “ |x| on R, whose weak derivative f 1 P L1

locpRq is exactly what you think
it should be—it only needs to be defined almost everywhere on R, so there is no need to worry
about the value of f 1p0q. Note that in this example, f 1 itself does not have a weak derivative (see
Exercise 56.3 below); the distribution Λf 1 does of course have a derivative that is another distribu-
tion, but as the example of the Dirac δ-function shows, not all distributions Λ : C8

0 pUq Ñ V can
be represented by locally integrable functions.

Distributional derivatives can be iterated arbitrarily many times, thus one can similarly define
the notion of a weak higher-order derivative Bαf P L1

locpUq of f P L1
locpUq for any multi-index α; if

it exists, then it is characterized uniquely almost everywhere via the conditionż
U

ϕpxqBαfpxq dx “ p´1q|α|
ż
U

Bαϕpxq fpxq dx for all ϕ P C8
0 pUq.

Exercise 56.3. What is the second derivative of fpxq “ |x| in the sense of distributions?

A real-valued distribution Λ : C8
0 pUq Ñ R can be multiplied by a smooth function ψ : U Ñ R,

giving rise to another real-valued distribution ψΛ : C8
0 pUq Ñ R defined by

pψΛqpϕq :“ Λpψϕq P R,

which makes sense because multiplication by ψ defines a continuous linear map C8
0 pUq Ñ C8

0 pUq.
To extend this to vector-valued distributions, suppose V,W are finite-dimensional real vector
spaces, Λ : C8

0 pUq Ñ V is a V -valued distribution, and ψ : U Ñ HompV,W q is a smooth function.
Choosing a basis A1, . . . , An P HompV,W q and writing ψ “ ψiAi, we can then define a W -valued
distribution ψΛ : C8

0 pUq ÑW by

pψΛqpϕq :“ AiΛpψiϕq PW.
You can easily check that (1) this definition does not depend on the choice of basis, and (2) it does
what you think it should in the case where Λ is represented by a V -valued function f P L1

locpUq,
i.e. ψΛ is then represented by the W -valued function ψf P L1

locpUq.
We now have enough definitions in place to consider distributional solutions to linear PDEs

with smooth coefficients. For a differential operator D “ ř
|α|ďm cαBα with smooth coefficients

cα : U Ñ HompFk,Fℓq and two distributions Λ,Λ1 valued in Fk and Fℓ respectively, we say that Λ
is a weak solution to the equation DΛ “ Λ1 if the equation

ř
|α|ďm cαBαΛ “ Λ1 is satisfied in the

sense of distributions. If Λ “ Λf and Λ1 “ Λg for two locally integrable vector-valued functions f
and g, we then call f a weak solution to the equation Df “ g.

The following exercise shows that the notion of weak derivatives defined here is consistent with
what was introduced in §54.4 in terms of Fourier transforms.
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Exercise 56.4. Show that for f, g P L2pRnq and a multi-index α, Bαf “ g in the sense of
distributions if and only if pgppq “ p2πipqα pfppq for almost every p P Rn.

Exercise 56.5. Show that for an integer k ě 0, HkpRnq is the space of functions f P L2pRnq
such that for every multi-index with |α| ď k, a weak derivative Bαf exists and belongs to L2pRnq.

For sections of a vector bundle E Ñ M over a manifold, the notions of local integrability
and weak derivatives carry over by choosing local charts and trivializations: a section is then in
L1
locpEq if and only if all its local representatives are of class L1

loc, and for a differential operator
D : ΓpEq Ñ ΓpF q, a section η P L1

locpEq is a weak solution to Dη “ ξ for some ξ P L1
locpF q if its

local representatives are all weak solutions to the corresponding local expressions of this equation.
In the global setting, we will not consider solutions that are distributions not representable by
functions or sections—we will only need to allow that level of generality in the local picture after
choosing coordinates and trivializations.

Exercise 56.6. Assume D : ΓpEq Ñ ΓpF q is a differential operator and D˚ : ΓpF q Ñ ΓpEq
is its formal adjoint for some choice of bundle metrics on E,F and volume element on M . Show
that for ξ P L1

locpF q, a section η P L1
locpEq is a weak solution to Dη “ ξ if and only if the relationż

M

xϕ, ξy dvol “
ż
M

xD˚ϕ, ηy dvol
holds for all smooth sections ϕ P ΓpF q with compact support.

56.1.2. The Sobolev spaces H´s. this part will be written someday
56.1.3. Elliptic estimates revisited. this part will be written someday
56.1.4. Difference quotients. this part will be written someday
56.1.5. Proof of the regularity theorem. this part will be written someday

56.2. The Fredholm property for elliptic operators. We are now in a position to prove
the main theorem about elliptic operators on closed manifolds, the statement of which was pre-
viewed in Theorem 53.32. We will establish first a technical version that includes Sobolev spaces
in the statement, and follow its proof with a less technical corollary in which Sobolev spaces are
required for the proof, but the statement only involves smooth objects.

In the following, E,F Ñ M are smooth vector bundles endowed with bundle metrics x , y,
while M is endowed with a volume form or volume element dvol, and we denote

xξ, ηyL2 :“
ż
M

xξ, ηy dvol
for two sections ξ, η of E or F . With these choices in place, every differential operator D : ΓpEq Ñ
ΓpF q has a formal adjoint D˚ : ΓpF q Ñ ΓpEq determined by the condition

xξ,DηyL2 “ xD˚ξ, ηyL2

for all η P ΓpEq and ξ P ΓpF q with compact support.

Theorem 56.7. Assume M is closed, D : ΓpEq Ñ ΓpF q is an elliptic differential operator of
order m P N, and D˚ : ΓpF q Ñ ΓpEq is its formal adjoint with respect to choices of bundle metrics
and a volume element as described above. Then:

(1) There exist finite-dimensional spaces of smooth sections

kerD Ă ΓpEq, kerD˚ Ă ΓpF q
which are the kernels of the unique extensions of D and D˚ to continuous linear operators
D : Hk`mpEq Ñ HkpF q and D˚ : Hk`mpF q Ñ HkpEq for every integer k ě 0.
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(2) For each integer k ě 0, the image impDq Ă HkpF q of the extended operator D :

Hk`mpEq Ñ HkpF q is a closed subspace, and

kerD˚ “  
ξ P L2pF q ˇ̌ xξ,DηyL2 “ 0 for all η P Hk`mpEq( .

Similarly, impD˚q Ă HkpEq is closed and kerD can be characterized as its L2-orthogonal
complement.

(3) For each integer k ě 0 and the extended operators D : Hk`mpEq Ñ HkpF q and D˚ :

Hk`mpF q Ñ HkpEq, we have

HkpF q “ impDq ‘ kerpD˚q, HkpEq “ impD˚q ‘ kerpDq,
where the summands of each splitting are closed linear subspaces that are L2-orthogonal
to each other.

Corollary 56.8. For each integer k ě 0 in the setting of Theorem 56.7, the continuous linear
operators D : Hk`mpEq Ñ HkpF q and D˚ : Hk`mpF q Ñ HkpEq are Fredholm, and the quotient
projections HkpF q Ñ cokerpDq “ HkpF q{ impDq and HkpEq Ñ cokerpD˚q “ HkpEq{ impD˚q
restrict to isomorphisms

kerpD˚q –ÝÑ cokerpDq, kerpDq –ÝÑ cokerpD˚q,
implying in particular that indpD˚q “ ´ indpDq. Moreover, none of the dimensions of these spaces
depend on the choice of integer k ě 0. �

Proof of Theorem 56.7. Note that D is elliptic if and only if D˚ is elliptic, thus everything
proved about D or D˚ will be equally valid if their roles are reversed. Corollary 55.20 established
already that the operator D : Hk`mpEq Ñ HkpF q has finite-dimensional kernel and closed image.
Elliptic regularity (Theorem 56.1) implies moreover that every element in the kernel is a smooth
section, thus belonging to Hk`mpEq for every integer k ě 0, and the kernel of the operator is
therefore a fixed subspace of ΓpEq independent of the choice of k.

For the second statement, observe that since spaces of smooth sections are dense in spaces of
Hm-sections, the defining relation xξ,DηyL2 “ xD˚ξ, ηyL2 for the formal adjoint is valid for all
η P HmpEq and ξ P HmpF q. If η P Hk`mpEq and ξ P kerpD˚q Ă ΓpF q, it therefore follows that

xξ,DηyL2 “ xD˚ξ, ηyL2 “ 0,

hence ξ lies in the L2-orthogonal complement of the image of D : Hk`mpEq Ñ HkpF q. Conversely,
if ξ P L2pF q and xξ,DηyL2 “ 0 for all η P Hk`mpEq, then this holds in particular for all smooth
sections η, so by Exercise 56.6, ξ is a weak solution to the equation D˚ξ “ 0. Theorem 56.1 then
implies that ξ is smooth and belongs to the space kerpD˚q.

Having shown that the closed subspaces impDq Ă HkpF q and kerpD˚q Ă HkpF q are L2-
orthogonal to each other, the third statement will follow if we can show that they also span HkpF q,
i.e. kerpD˚q ` impDq “ HkpF q. In the case k “ 0, this follows immediately from a general fact
about Hilbert spaces: for every Hilbert space H and a closed subspace V Ă H, H “ V ‘ V K. The
cases k P N now follows as a consequence of regularity: given ξ P HkpF q Ă L2pF q, the case k “ 0

gives us ξ “ Dη` ξ1 for some η P HmpEq and ξ1 P kerpD˚q, but then ξ1 is smooth and Dη “ ξ´ ξ1
is therefore of class Hk, implying η P Hk`mpEq and thus proving the result. �

Here is the less technical corollary that was promised:

Corollary 56.9. In the setting of Theorem 56.7, the elliptic operators D : ΓpEq Ñ ΓpF q and
D˚ : ΓpF q Ñ ΓpEq both have finite-dimensional kernels, and we have

ΓpF q “ impDq ‘ kerpD˚q, ΓpEq “ impD˚q ‘ kerpDq,
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where in both of these direct sums, each summand is the orthogonal complement of the other with
respect to the L2-pairing on the space of smooth sections ΓpEq or ΓpF q. In particular, the quotient
projections ΓpF q Ñ cokerpDq “ ΓpF q{ impDq and ΓpEq Ñ cokerpD˚q “ ΓpEq{ impD˚q restrict to
isomorphisms

kerpD˚q –ÝÑ cokerpDq, kerpDq –ÝÑ cokerpD˚q.
Proof. Given ξ P ΓpF q, the k “ 0 case of Theorem 56.7 gives ξ “ Dη`ξ1 for some η P HmpEq

and a unique ξ1 P kerpD˚q. Then Dη “ ξ ´ ξ1 is smooth, so regularity implies η is also smooth,
thus proving ΓpF q “ impDq ‘ kerpD˚q. Since the image of the continuously extended operator
D : HmpEq Ñ L2pF q is closed in L2pF q, and ΓpEq is dense in HmpEq, this image is also the closure
in L2pF q of the image of D : ΓpEq Ñ ΓpF q, and it follows that both have the same orthogonal
complement in L2pF q. By Theorem 56.7, that complement is kerpD˚q, which is contained in ΓpF q,
and is therefore the L2-orthogonal complement of impDq Ă ΓpF q. What remains to be shown
is that impDq Ă ΓpF q is likewise the L2-orthogonal complement of kerpD˚q in ΓpF q, i.e. every
ξ P ΓpF q that is L2-orthogonal to kerpD˚q is in the image of D : ΓpEq Ñ ΓpF q. As shown above,
every ξ P ΓpF q can be written as Dη ` ξ1 for some η P ΓpEq and ξ1 P kerpD˚q, and if ξ is also
L2-orthogonal to ξ1, it follows that

0 “ xξ, ξ1yL2 “ xDη ` ξ1, ξ1yL2 “ xξ1, ξ1yL2 “ }ξ1}2L2 ,

and thus ξ1 “ 0, implying ξ “ Dη. �

56.3. The Hodge decomposition. Now let’s apply the results of the previous section to the
Laplace-Beltrami operator ∆ “ dd˚ ` d˚d : ΩkpMq Ñ ΩkpMq on a closed Riemannian manifold
pM, gq. Thanks to Corollary 56.9, there will no longer be any need to mention Sobolev spaces,
which is fortuitous since de Rham cohomology (also denoted by H with a superscript) is about to
make a reappearance.

Recall from Lecture 53 that the Riemannian metric g determines a positive bundle metric x , y
on ΛkT ˚M for each k “ 0, . . . , n, as well as a volume form dvol P ΩnpMq or (if M is not oriented)
volume element. We can thus define an L2-pairing for differential k-forms α, β P ΩkpMq,

xα, βyL2 :“
ż
M

xα, βy dvol P R,

and since d˚ and d are formal adjoints with respect to this pairing, ∆ is its own formal adjoint.
It follows via Corollary 56.9 that ΩkpMq splits into the direct sum of the kernel and image of
∆ : ΩkpMq Ñ ΩkpMq, which are each other’s L2-orthogonal complements in ΩkpMq. To get
further mileage out of this splitting, we observe that for any harmonic k-form ω,

0 “ xω,∆ωyL2 “ xω, dd˚ω ` d˚dωyL2 “ xd˚ω, d˚ωyL2 ` xdω, dωyL2 “ }d˚ω}2L2 ` }dω}2L2,

implying dω ” d˚ω ” 0. One sees immediately from the definition of ∆ that the converse is also
true, thus:

Proposition 56.10. A k-form ω P ΩkpMq on a closed Riemannian manifold pM, gq is har-
monic if and only if it is both closed and co-closed, where the latter means d˚ω ” 0. �

Remark 56.11. It’s worth mentioning at this point that we could have chosen to define the
term “harmonic k-form” to mean a k-form that is closed and co-closed, without mentioning the
Laplace-Beltrami operator, but if we had done this, then it would be very far from obvious that the
space of harmonic forms is finite dimensional. In most cases, d and d˚ are non-elliptic operators
with infinite-dimensional kernels, and there is no obvious geometric reason why the intersection of
those two infinite-dimensional spaces should be finite dimensional. That this nonetheless holds is
the consequence of a deep interplay between geometry and analysis, resulting from the fact that
∆ is elliptic.
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We similarly call ω P ΩkpMq co-exact if ω “ d˚α for some α P Ωk`1pMq. The next result
gives a dual interpretation of the k-forms in imp∆q: they are uniquely sums of exact and co-exact
forms.

Proposition 56.12. On a closed Riemannian manifold pM, gq, the image of ∆ : ΩkpMq Ñ
ΩkpMq splits into the direct sum of the images of the operators d : Ωk´1pMq Ñ ΩkpMq and
d˚ : Ωk`1pMq Ñ ΩkpMq, which are L2-orthogonal to each other.

Proof. For any α P Ωk´1pMq and β P Ωk`1pMq, we have xdα, d˚βyL2 “ xd2α, βyL2 “ 0, thus
impdq and impd˚q are L2-orthogonal subspaces of ΩkpMq. Since ∆ω “ dpd˚ωq ` d˚pdωq for every
ω P ΩkpMq, the image of ∆ : ΩkpMq Ñ ΩkpMq is clearly contained in impdq ` impd˚q, and we
claim conversely that impdq ` impd˚q Ă imp∆q. To see this, pick any α P Ωk´1pMq, β P Ωk`1pMq
and ω P kerp∆q Ă ΩkpMq, and observe

xdα` d˚β, ωyL2 “ xα, d˚ωyL2 ` xβ, dωyL2 “ 0,

since by Proposition 56.10, ω is both closed and co-closed. As an element of the L2-orthogonal
complement of kerp∆q, dα ` d˚β is therefore in the image of ∆. �

Now we put it all together.

Theorem 56.13 (Hodge decomposition theorem). On any closed Riemannian n-manifold
pM, gq, for each k “ 0, . . . , n, the space of smooth differential k-forms splits into a direct sum
of three L2-orthogonal subspaces

ΩkpMq “ ker
´
ΩkpMq ∆Ñ ΩkpMq

¯
‘ im

´
Ωk´1pMq dÑ ΩkpMq

¯
‘ im

ˆ
Ωk`1pMq d˚Ñ ΩkpMq

˙
,

in which the first summand is the space of closed and co-closed k-forms,

kerp∆q “ ker
´
ΩkpMq dÑ Ωk`1pMq

¯
X ker

ˆ
ΩkpMq d˚Ñ Ωk´1pMq

˙
,

and the sum of the first two summands is the space of all closed k-forms,

kerp∆q ‘ impdq “ ker
´
ΩkpMq dÑ Ωk´1pMq

¯
.

Proof. The only detail we haven’t already proved is that kerp∆q ‘ impdq “ kerpdq. It is
clear that the former space is contained in the latter, and in light of the splitting of ΩkpMq into
kerp∆q ‘ impdq ‘ impd˚q, it suffices to prove that d : ΩkpMq Ñ Ωk`1pMq restricts injectively to
the subspace impd˚q Ă ΩkpMq. Indeed, if ω P ΩkpMq is nontrivial and is equal to d˚α for some
α P Ωk`1pMq, then

xα, dωyL2 “ xd˚α, ωyL2 “ xω, ωyL2 “ }ω}2L2 ą 0,

implying dω ‰ 0. �

Corollary 56.14. For each k “ 0, . . . , n on a closed Riemannian manifold pM, gq, the map
ΩkpMq Ą kerp∆q Ñ Hk

dRpMq “ kerpdq{ impdq : ω ÞÑ rωs is an isomorphism. �

56.4. The Bochner technique. We saw a couple of applications of the Hodge decomposition
theorem in §53.2, but those were results about the topology of smooth manifolds, in which the
Riemannian metric could be chosen arbitrarily. I’d like to conclude this discussion with another
application that demonstrates an interaction between topology and Riemannian geometry, in the
spirit of the Gauss-Bonnet theorem.

Recall that on a pseudo-Riemannian manifold pM, gq, the Ricci tensor Ric P ΓpT 0
2Mq is sym-

metric, and can thus be identified with a quadratic form on the tangent space at each point. We
write

Ric ě 0 or Ric ą 0
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on some region U Ă M if that quadratic form is nonnegative or positive-definite respectively at
every point in U , i.e. RicpX,Xq ě 0 for all X P TpM at points p P U , with strict inequality for
X ‰ 0 in the second case. For example, if dimM “ 2, then the relation Ric “ KG ¨ g from
Exercise 36.8 implies that Ric ě 0 if and only if the Gaussian curvature is nonnegative.

Theorem 56.15. For any closed connected Riemannian n-manifold pM, gq satisfying Ric ě 0

everywhere, dimH1
dRpMq ď n, and if additionally Ric ą 0 at some point, then H1

dRpMq is trivial.
Example 56.16. By de Rham’s theorem, H1

dRpMq for any smooth manifold M is isomorphic
to H1pM ;Rq, the singular cohomology with real coefficients. The computation of the latter for
closed oriented surfaces Σ is a standard topic in algebraic topology: if you haven’t seen this but
have seen how to compute their fundamental groups, you get H1pΣ;Rq by taking the abelianization
of π1pΣq and tensoring the result with R, hence dimH1pΣ,Rq is the number of generators in the
standard presentation of π1pΣq. Concretely, if Σg denotes the closed oriented surface of genus
g ě 0, which includes S2 and T2 as the special cases Σ0 and Σ1 respectively, then

dimH1
dRpΣgq “ 2g.

Theorem 56.15 thus tells us something about surfaces that we could also have deduced from the
Gauss-Bonnet theorem: Σg for g ě 2 does not admit any Riemannian metric with everywhere
nonnegative Ricci curvature, and the only case in which the Ricci curvature can be everywhere
nonnegative and somewhere positive is g “ 0.

Theorem 56.15 is due to Bochner, and its proof follows a trick known as the Bochner technique,
which is also responsible for various other global results relating curvature and topology on closed
Riemannian manifolds. The main ingredient needed is a so-called Weitzenböck formula, which
relates the Laplace-Beltrami operator∆ to another second-order differential operator that is defined
in a somewhat more general context, and is also a variation on the Laplace operator.

Suppose pE, x , yq is a Euclidean vector bundle over the Riemannian manifold pM, gq, with a
choice of metric connection ∇. This together with the Levi-Cività connection on TM induces a
natural connection on

F :“ HompTM,Eq – T ˚M bE,

which is likewise compatible with the bundle metric induced on T ˚M bE by the metrics on TM
and E. With this data in place, the first-order differential operator ∇ : ΓpEq Ñ ΓpF q has a formal
adjoint

∇˚ : ΓpF q Ñ ΓpEq,
and it will be useful to write down an explicit formula for it. Observe that for any λ P ΓpF q “
ΓpT ˚M b Eq “ Ω1pM,Eq, the covariant derivative ∇λ is a section of HompTM,F q “ T ˚M b
T ˚M bF , which can be transformed via a musical isomorphism into a section of T ˚M b TM bE
and then contracted via the map

T ˚M b TM bE Ñ E : αbX b v ÞÑ αpXqv.
The composition of this contraction with the aforementioned musical isomorphism defines a kind
of trace, which we will denote by

trg : T
˚M b T ˚M bE Ñ E : αb β b v ÞÑ αpβ7qv “ xα, βyv,

and if we regard elements ω P Tp̊M bTp̊M bEp as bilinear maps ω : TpM ˆTpM Ñ E, the trace
can be computed as

trgpωq “
nÿ
j“1

ωpej , ejq P Ep
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for any choice of orthonormal basis e1, . . . , en P TpM . We can now define the divergence of a
bundle-valued 1-form λ P Ω1pM,Eq by

divpλq :“ trgp∇λq P ΓpEq.
Choosing an orthonormal basis e1, . . . , en P TpM at a point p PM , this definition gives

(56.3) divpλqppq “
nÿ
j“1

p∇ejλqpejq P Ep.

Lemma 56.17. For every λ P Ω1pM,Eq “ ΓpF q, ∇˚λ “ ´ divpλq.
Proof. We can use the bundle metric x , y on E to define a fiberwise bilinear pairing x , y :

E ‘ F Ñ T ˚M via the map

E b F “ E b pT ˚M bEq Ñ T ˚M : v b λb w ÞÑ xv, wyλ “: xv, λb wy,
thus giving a pairing xη, λy P Ω1pMq for any η P ΓpEq and λ P Ω1pM,Eq. The main step is to
show that this pairing relates the divergence on Ω1pM,Eq to the divergence of vector fields via a
Leibniz rule, namely

(56.4) div
`xη, λy7˘ “ x∇η, λy ` xη, divpλqy for all η P ΓpEq, λ P Ω1pM,Eq.

To prove that this holds at any given point p PM , let us choose an orthonormal frame e1, . . . , en
for TM on some neighborhood U Ă M of p such that each ej satisfies ∇ej “ 0 at p, and let
e
j˚ :“ pejq5, so that e1˚, . . . , en˚ is the dual frame for T ˚M over U . On this neighborhood, we can
then write λ “ e

j˚ b λj for unique sections λ1, . . . , λn P ΓpE|Uq, and the assumption that the ej
are parallel at p implies ∇Y λ “ e

j˚ b∇Y λj for any Y P TpM , thus

divpλq “
nÿ
j“1

p∇ejλqpejq “
nÿ
j“1

pei˚ b∇ejλiqpejq “
nÿ
j“1

ei˚pejq∇ejλi “
nÿ
j“1

∇ejλj at p.

Note that in these expressions, there are two summations whenever both of the indices i and
j appear; the summation over i is implied due to the Einstein convention, but we’ve written
the summation over j explicitly since j does not appear in an upper/lower pair. (Some similar
situations will occur in further calculations below, and you should always assume the Einstein
convention is in effect when upper/lower pairs of indices appear, but does not apply e.g. to a pair
of matching lower indices.)

We also have xη, λy “ xη, ej˚bλjy “ xη, λjy ej˚ and thus xη, λy7 “ řn
j“1xη, λjy ej. Applying the

Leibniz rule for divergences of vector fields (Exercise 53.1) and the assumption that ∇ej “ 0 at p
now gives

div
`xη, λy7˘ “ nÿ

j“1

d
`xη, λjy˘pejq “ nÿ

j“1

`x∇ejη, λjy ` xη,∇ejλjy
˘

“ xei˚, ej˚y ¨ x∇eiη, λjy `
A
η,

nÿ
j“1

∇ejλj

E
“ xei˚ b∇eiη, e

j˚ b λjy ` xη, divpλqy

“ x∇η, λy ` xη, divpλqy
as claimed.

Since integrals of divergences of compactly supported vector fields times dvol always vanish,
it follows from (56.4) that ż

M

x∇η, λy dvol`
ż
M

xη, divpλqy dvol “ 0
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for any η P ΓpEq and λ P Ω1pM,Eq with compact support. �

Definition 56.18. On a Euclidean vector bundle E with metric connection ∇ over a Rie-
mannian manifold pM, gq, the Bochner Laplacian is the second-order differential operator

∇˚∇ : ΓpEq Ñ ΓpEq : η ÞÑ ´ divp∇ηq “ ´ trgp∇2ηq.
The Bochner Laplacian is also an elliptic operator, though we will not need to exploit any

of the deeper consequences of this fact. We will make use of the observation that it defines a
nonnegative quadratic form on ΓpEq, since

xη,∇˚
∇ηyL2 “ x∇η,∇ηyL2 “ }∇η}2L2 ě 0

for all compactly supported smooth sections η P ΓpEq, with equality if and only if η is parallel. For
the purposes of Theorem 56.15, the vector bundle on which we need to consider ∇˚∇ is T ˚M , with
its natural bundle metric and connection induced by g and the Levi-Cività connection. More gener-
ally, ∇˚∇ can also be defined on ΛkT ˚M ÑM for any k ě 0. As clarified by the next exercise, the
Levi-Cività connection on TM induces a natural connection on ΛkT ˚M that respects the bundle
metric. Recall that every covariant rank k tensor field ω P ΓpT 0

kMq can be “antisymmetrized” to
produce an alternating k-form Altpωq P ΩkpMq defined by

AltpωqpX1, . . . , Xkq :“ 1

k!

ÿ
σPSk

p´1q|σ|ωpXσp1q, . . . , Xσpkqq,

so in particular, Altpωq “ ω if and only if ω is alternating. We can regard Alt as a smooth linear
bundle map pT ˚Mqbk “ T 0

kM Ñ T 0
kM defining a fiberwise-linear projection to the subbundle

ΛkT ˚M Ă T 0
kM .

Exercise 56.19. Assume M is a smooth manifold with an affine connection ∇, and let ∇ also
denote the natural connection induced on the tensor bundle T 0

kM “ pT ˚Mqbk for each k P N.

(a) Given integers 1 ď i ă j ď k, let τ : T 0
kM Ñ T 0

kM denote the bundle map

pτωqpX1, . . . , Xi, . . . , Xj , . . . , Xkq :“ ωpX1, . . . , Xj, . . . , Xi, . . . , Xkq.
Show that τ is a parallel section of EndpT 0

kMq with respect to the natural connection
induced by ∇.

(b) Show that Alt : T 0
kM Ñ T 0

kM is also a parallel section of EndpT 0
kMq, and conclude that

for every X P XpMq and ω P ΩkpMq Ă ΓpT 0
kMq, ∇Xω P ΓpT 0

kMq is also in ΩkpMq. This
shows that the connection on T 0

kM has a natural restriction to the subbundle ΛkT ˚M ,
i.e. its parallel transport maps preserve the subbundle.

(c) Show that the connection on Λ˚T ˚M “ Àn
k“0 Λ

kT ˚M resulting from part (b) satisfies
the Leibniz rule

∇Xpα^ βq “ ∇Xα^ β ` α^∇Xβ for all α, β P Ω˚pMq and X P XpMq.
(d) Show that if the original affine connection onM is compatible with a pseudo-Riemannian

metric, then the induced connection on Λ˚TM is compatible with the induced bundle
metric on Λ˚T ˚M (defined via Lemma 53.8), and the bundle map Alt : T 0

kM Ñ T 0
kM

is self-adjoint on each fiber with respect to the induced bundle metric on T 0
kM . In

particular, Alt can be interpreted as a fiberwise orthogonal projection.
Caution: Recall from the proof of Lemma 53.8 that the natural bundle metrics on ΛkT ˚M
and T 0

kM are not identical in general, but are related by a combinatorial factor.
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(e) Show that if the original affine connection on M is symmetric, then for the induced
connection on ΛkT ˚M and any ω P ΩkpMq “ ΓpΛkT ˚Mq, the covariant derivative ∇ω P
Ω1pM,ΛkT ˚Mq “ ΓpT ˚M b ΛkT ˚Mq Ă ΓpT 0

k`1Mq satisfies
Altp∇ωq “ 1

k ` 1
dω.

Hint: Use geodesic normal coordinates (see Exercise 34.12).

In light of Exercise 56.19, we shall assume in the following that for a Riemannian manifold
pM, gq, the exterior product bundle Λ˚T ˚M is endowed with the natural connection induced by
the Levi-Cività connection, which is then compatible with the natural bundle metric on Λ˚T ˚M ,
and also enables us to compute exterior derivatives by composing Alt with ∇ and multiplying by
a combinatorial factor. Since ΛkT ˚M is a subbundle of T ˚M b Λk´1T ˚M , which is naturally
isomorphic to HompTM,Λk´1T ˚Mq, we can interpret any k-form ω P ΩkpMq as a Λk´1T ˚M -
valued 1-form, and thus define its divergence

divpωq “ trgp∇ωq P ΓpΛk´1T ˚Mq “ Ωk´1pMq for ω P ΩkpMq Ă Ω1pM,Λk´1T ˚Mq,
as a special case of what was defined above for arbitrary bundle-valued 1-forms.

Lemma 56.20. For β P ΩkpMq on a Riemannian manifold pM, gq, d˚β “ ´ divpβq.
Proof. The result follows from an extra observation added to the Leibniz rule in (56.4),

but we should first be clear on exactly what bundle metrics we are using. Let E :“ Λk´1T ˚M
and F :“ HompTM,Λk´1T ˚Mq “ T ˚M b Λk´1T ˚M , which are subbundles of T 0

k´1M and T 0
kM

respectively, while F also contains ΛkT ˚M as a distinguished subbundle. The bundle metric g on
TM induces a dual bundle metric on T ˚M and resulting tensor product bundle metrics on T 0

kM

and T 0
k´1M as explained in the proof of Lemma 53.8; we shall denote these bundle metrics by

x , yb, and recall that the natural bundle metric on ΛkT ˚M is related to it by

x , y “ 1

k!
x , yb on ΛkT ˚M.

The correct bundle metric to use on F “ T ˚M b Λk´1T ˚M is determined via the tensor product
from the bundle metrics we use on T ˚M and Λk´1T ˚M , thus it is also not identical to the bundle
metric on the larger bundle T 0

kM “ T ˚M b T 0
k´1M , but is related to it by

x , y “ 1

pk ´ 1q!x , yb on F .

Now for α P Ωk´1pMq “ ΓpEq and β P ΩkpMq Ă ΓpF q, (56.4) gives
div

`xα, βy7˘ “ x∇α, βy ` xα, divpβqy,
where the two bundle metrics appearing on the right hand side are those of F and E respectively.
We can rewrite the first one in terms of the bundle metric on T 0

kM and then use the fact that
Alt : T 0

kM Ñ T 0
kM is a fiberwise orthogonal projection, whose kernel is therefore orthogonal to

the alternating form β P ΩkpMq Ă ΓpT 0
kMq, thus

x∇α, βy “ 1

pk ´ 1q!x∇α, βyb “
1

pk ´ 1q!xAltp∇αq, βyb “
1

k!
xdα, βyb “ xdα, βy,

where we’ve used the formula in Exercise 56.19 for the exterior derivative, and replaced x , yb in the
last step with the natural bundle metric on ΛkT ˚M . We’ve thus proved that for any α P Ωk´1pMq
and β P ΩkpMq, xdα, βy ` xα, divpβqy is the divergence of a vector field that has compact support
if α and β do, so the result follows. �
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The next result is the main ingredient beyond the Hodge decomposition theorem that is needed
for the proof of Theorem 56.15.

Proposition 56.21 (Weitzenböck formula). For ω P Ω1pMq, ∆ω “ ∇˚∇ω `Ricpω7, ¨q.
Proof. Given p P M , we can choose an orthonormal frame e1, . . . , en for TM near p such

that each ej is parallel at p, and consider the dual frame formed by the 1-forms ej˚ :“ pejq5 for
j “ 1, . . . , n. We will use these frames to prove via a direct computation that the formula holds
at p.

Given ω P Ω1pMq “ ΓpT ˚Mq, ∇ω P Ω1pM,T ˚Mq “ ΓpT ˚M b T ˚Mq “ ΓpT 0
2Mq can be

written near p as
∇ω “ e

j˚ b∇ejω,

and since the 1-forms ej˚ are parallel at p, we then have

∇Xp∇ωq “ e
j˚ b∇X∇ejω for X P TpM,

implying

∇˚∇ω “ ´ divp∇ωq “ ´
nÿ
i“1

`
∇eip∇ωq

˘peiq “ ´
nÿ
i“1

´
e
j˚ b∇ei∇ejω

¯
peiq “ ´

nÿ
i“1

e
j˚peiq∇ei∇ejω

“ ´
nÿ
j“1

∇ej∇ejω.

In order to carry out a similar computation of ∆ω at p, we need local formulas for d and d˚. We
claim: for any α P Ω˚pMq, on the neighborhood of p where our orthonormal frame is defined,

(56.5) dα “ e
j˚ ^∇ejα and d˚α “ ´

nÿ
j“1

ιej p∇ejαq.

Indeed, assuming α P ΩkpMq, we have ∇α “ e
j˚ b∇ejα, and can thus apply Exercise 56.19 and

one of the standard formulas relating the wedge product and tensor product to compute

dα “ pk ` 1qAltp∇αq “ pk ` 1qAltpej˚ b∇ejαq “ pk ` 1q!
k!1!

Altpej˚ b∇ejαq “ e
j˚ ^∇ejα.

For the second formula in (56.5), observe that if α P ΩkpMq is identified with a bundle-valued
1-form α P Ω1pM,Λk´1T ˚Mq, its evaluation on a tangent vector X P TqM at some point q PM is
equivalent to the interior product ιXα P Λk´1Tq̊ M , thus (56.3) gives

divpαq “
nÿ
j“1

ιej p∇ejαq,

which implies the result in light of Lemma 56.20.
The remaining ingredient we need is a formula for commuting the covariant derivatives of

ω P Ω1pMq in different directions; this is of course how the curvature will appear. Since the ej are
parallel at p, their Lie brackets rei, ejs “ ∇eiej ´ ∇ej ei also vanish at this point, so any vector
field X P XpMq satisfies

∇ei∇ejX ´∇ej∇eiX “ Rpei, ejqX at p.

If we choose X so that ∇X “ 0 at p, then computing second derivatives of the real-valued function
ωpXq at p will produce no contributions from first derivatives of X , thus working again at p so
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that rei, ejs “ 0,

0 “ pLeiLej ´ LejLei ´ Lrei,ejsq
`
ωpXq˘ “ p∇ei∇ejω ´∇ej∇eiωqpXq ` ωp∇ei∇ejX ´∇ej∇eiXq

“ p∇ei∇ejω ´∇ej∇eiωqpXq ` ωpRpei, ejqXq at p,

implying the formula

(56.6) p∇ei∇ejω ´∇ej∇eiωqpXq “ ´ωpRpei, ejqXq,
which is valid for all X P TpM since a vector field that is parallel at p can be chosen to have any
value at p.

With these ingredients in place, we compute at the point p and use the Einstein summation
convention wherever matching upper/lower pairs of indices appear:

∆ω ´∇˚∇ω “ dd˚ω ` d˚dω ´∇˚∇ω “ ´d
˜

nÿ
j“1

ιej p∇ejωq
¸
` d˚

´
e
j˚ ^∇ejω

¯
`

nÿ
j“1

∇ej∇ejω

“ ´
nÿ
j“1

ei˚ ^∇ei

`
ιej p∇ejωq

˘´ nÿ
i“1

ιei

´
∇eipej˚ ^∇ejωq

¯
`

nÿ
j“1

∇ej∇ejω

“ ´
nÿ
j“1

ei˚ ^ ιej
`
∇ei∇ejω

˘´ nÿ
i“1

ιei

´
e
j˚ ^∇ei∇ejω

¯
`

nÿ
j“1

∇ej∇ejω,

where we’ve used the equalities ∇ei

`
ιej p∇ejωq

˘ “ ιej
`
∇ei∇ejω

˘
and ∇ei

´
e
j˚ ^∇ejω

¯
“ e

j˚ ^
∇ei∇ejω, both of which result from the assumption that ∇ej “ 0 at p. Next, recall from Exer-
cise 14.7 in the first semester that the interior product satisfies a graded Leibniz rule with respect
to the wedge product: ιXpα^ βq “ ιXα^ β ` p´1q|α|α^ ιXβ. This can be applied to the second
of the three summations above, and will cause some cancellations if we first exchange the order of
the derivatives in the first summation and relabel the indices: using (56.6), the first summation
can be rewritten as

´
nÿ
j“1

ei˚ ^ ιej
`
∇ei∇ejω

˘ “ ´
nÿ
i“1

e
j˚ ^ ιei

`
∇ej∇eiω

˘ “ ´
nÿ
i“1

e
j˚ ^ ιei

´
∇ei∇ejω` ω

`
Rpei, ejqp¨q˘¯.

We can now put this together with the other two summations, apply the Leibniz rule for ιei , cancel
redundant terms and use the symmetries of the Riemann tensor so that the remaining summation
produces the Ricci tensor:

∆ω ´∇˚∇ω “ ´
nÿ
i“1

e
j˚ ^ ιei

´
ω
`
Rpei, ejqp¨q˘¯´ nÿ

i“1

ιei pej˚q∇ei∇ejω `
nÿ
j“1

∇ej∇ejω

“ ´
nÿ
i“1

ω
`
Rpei, ejqei˘ ej˚ ´ nÿ

j“1

∇ej∇ejω `
nÿ
j“1

∇ej∇ejω “ ´
nÿ
i“1

ω
`
Rpei, ejqei˘ ej˚

“ ´
nÿ
i“1

xω7, Rpei, ejqeiy ej˚ “ ´
nÿ
i“1

Riempω7, ei, ej , eiq ej˚ “
nÿ
i“1

Riempω7, ej, ei, eiq ej˚

“
nÿ
i“1

Riempei, ei, ω7, ejq ej˚ “ Ricpω7, ejq ej˚ “
nÿ
j“1

Ricpω7, xej, ¨yejq

“ Ricpω7, ¨q P Tp̊M.

�
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Proof of Theorem 56.15. Assuming Ric ě 0 everywhere, we will show that the space of
harmonic 1-forms on M satisfies the dimension bounds stated in the theorem, so that the result
follows from the isomorphism of Hd̊RpMq with the space of harmonic forms. If ω P Ω1pMq is
harmonic, then by the Weitzenböck formula, we have

0 “
ż
M

xω,∆ωy dvol “
ż
M

xω,∇˚∇ωy dvol`
ż
M

xω,Ricpω7, ¨qy dvol.
By the defining property of the formal adjoint, the first term on the right is

ş
M
x∇ω,∇ωy dvol “ş

M
|∇ω|2 dvol, and the second term can be understood by applying a musical isomorphism to both

sides of the inner product, giving

xω,Ricpω7, ¨qy “ xω7,Ric7pω7qy “ Ricpω7, ω7q,
thus

0 “
ż
M

|∇ω|2 dvol`
ż
M

Ricpω7, ω7q dvol.
Both terms on the right hand side are now manifestly nonnegative, so they must both vanish,
implying in particular that ω is a parallel section of Λ1T ˚M “ T ˚M . In general, the space
of parallel sections of a vector bundle over a connected manifold can never be very large: each
such section is uniquely determined by its value at one point, and we conclude that the space
of harmonic 1-forms on M cannot be larger than the rank of the bundle T ˚M , which is n. If
additionally Ric ą 0 at some point (and therefore on a nonempty open set), it follows that ω7 must
vanish on that set, and since ω is parallel, this implies that ω vanishes identically, proving that the
space of harmonic 1-forms is trivial. �
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