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The original version of these notes was created in 2018�19 for a two semester sequence of topol-
ogy courses at Humboldt University, Berlin. They have since been revised a bit further following
comments from students in the class, including the incorporation of some assigned homework
problems into the notes as exercises within the relevant lectures.

Since the notes were designed for use at a German university, I have made an e�ort to include
the German translations (geschrieben in dieser Schriftart) of important terms wherever they are
introduced. The reader may notice that this e�ort subsides later in the course, as the deeper
one gets into algebraic topology, the harder it becomes to �nd authoritative German sources for
clarifying the terminology (and I am not linguistically quali�ed to invent terms in German myself).

Disclaimer: these lecture notes were written quickly, and while many typos have in the mean
time been eliminated due to careful reading by a few motivated students, some probably remain.
If you notice any, please send me an e-mail and I will correct. Thanks for corrections already
received are due to Lennard Henze, Jens Lücke, Mateusz Majchrzak, Marie Christin Schmidtlein
and, especially, Laurenz Upmeier zu Belzen. (Apologies if I forgot anyone!)

For more detailed treatments of the topics in these notes, I mainly recommend the books by
Jänich [Jän05 ] (or its English translation), Hatcher [ Hat02 ] and Bredon [Bre93 ].



First semester (Topologie I)

1. Introduction and motivation (April 18, 2023)

To start with, let us discuss what kinds of problems are studied in topology. This lecture is
only intended as a sketch of ideas, so nothing in it is intended to be precise�we'll introduce precise
de�nitions in the next lecture.

(1) Classi�cation of spaces. Let's assume for the moment that we understand what the word
�space� means. We'll be more precise about it next week, but in this course, a �space�X is a set
with some extra structure on it such that we have well-de�ned notions of things likeopen subsets
(o�ene Teilmengen) U € X and continuous maps/mappings (stetige Abbildungen) f : X Ñ Y
(where Y is another space). It is then natural to consider two spacesX and Y equivalent if there
is a homeomorphism (Homöomorphismus) between them: this means a continuous bijection
f : X Ñ Y whose inversef � 1 : Y Ñ X is also continuous. We say in this case thatX and Y are
homeomorphic (homöomorph).

So for instance, one can try to classify allsurfaces (Flächen) up to homeomorphism:

The space in this picture is known as a �closed orientable surface of genus (Geschlecht) �ve�.
The genus is a nonnegative integer that, roughly speaking, counts the number of �handles� you
would need to attach to a sphere in order to construct the surface. The notation� g is often used
for a surface of genusg ¥ 0.

There are also closed surfaces that cannot be embedded inR3, though they are harder to
visualize. Here are two examples.

Example 1.1. Here is a picture of theKlein bottle (Kleinsche Flasche), a surface that can
be �immersed� (with self-intersections) in R3, but not embedded:

We'll give a more precise de�nition of the Klein bottle as a topological space later.
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6 FIRST SEMESTER (TOPOLOGIE I)

Example 1.2. The real projective plane (reelle projektive Ebene) RP2 is a space that can
be described in various equivalent ways:

(1) RP2 :� S2{� , i.e. the set of equivalence classes of elements in the unit sphereS2 :� t x P
R3 | |x | � 1u, with the equivalence relation de�ned by x � � x for eachx PS2. In other
words, every element ofRP2 is a set of two elementst x; � xu, with both belonging to the
unit sphere. (See Remark1.3 below on notation for de�ning equivalence relations.)

(2) RP2 :� D2{� , where D2 :� t x P R2 | |x | ¤ 1u and the equivalence relation is de�ned by
z � � z for every point z on the boundary of the disk. One obtains this from the �rst
description of RP2 by restricting attention to only one hemisphere of S2; no information
is lost since the other hemisphere is identi�ed with it, but along the equator between
them, there is still an identi�cation of antipodal points.

(3) RP2 is the space of all lines through0 in R3. This is equivalent to the �rst description
since every line through the origin inR3 hits S2 at exactly two points, which are antipodal
to each other.

(4) RP2 is the space constructed by gluing a diskD2 to a Möbius strip (Möbiusband)

M :�
 
p�; t cosp�� q; t sinp�� qq PR{Z � R2

�
� � PR; t P r� 1; 1s

(
:

To see this, draw a picture of the unit sphereS2 and think of RP2 as S2{� . After
identifying antipodal points of the sphere in this way, a neighborhood of the equator
looks like a Möbius strip, and everything else is a disk (it looks like two disks in the
picture, but the two are identi�ed with each other).

More generally, for each integern ¥ 0 one can de�ne then-sphere

Sn �
 
x PRn � 1

�
� |x | � 1

(

and the real projective n-space

RPn � Sn
L
t x � � xu �

 
lines through 0 in Rn � 1

(
:

Remark 1.3. In topology, we often specify an equivalence relation� on a setX with words
such as �the equivalence relation de�ned byx � f pxq for all x P A � where A € X is a subset and
f : A Ñ X a map. This should always be interpreted to mean that� is the smallest equivalence
relation for which the stated property is true, i.e. since every equivalence relation must also be
re�exive and symmetric, it is implied that x � x for all x PX and f pxq � x for all x PA, even if we
do not say so explicitly. Transitivity may then imply further equivalences that are not explicitly
speci�ed: for an extreme example, �the equivalence relation onZ such that n � n � 1 for all n PZ�
makes every integer equivalent to every other integer, i.e. there is only one equivalence class.

Here is a result we will be able to prove later in the course:

Theorem 1.4. A closed orientable surface� g of genusg is homeomorphic to a closed orientable
surface � h of genush if and only if g � h.

The hard part is showing that if g � h, then there cannot exist any continuous bijective
map f : � g Ñ � h with a continuous inverse. This requires techniques from the subject known
as algebraic topology. The main idea will be that we can associate to each topological spaceX
an algebraic object (e.g. a group)H pX q such that any continuous map f : X Ñ Y induces a
homomorphism f � : H pX q Ñ H pY q, and such that compositions of continuous maps satisfy

pf � gq � f � � g�

and the identity map Id : X Ñ X gives rise to the identity map H pX q Ñ H pX q. These prop-
erties imply that whenever f : X Ñ Y is a homeomorphism,f � : H pX q Ñ H pYq must be an
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isomorphism. Thus it su�ces to compute the algebraic objects H p� gq and H p� h q and show that
they are not isomorphic. (Recognizing non-isomorphic groups is often easier than recognizing
non-homeomorphic spaces.)

The full classi�cation of closed orientable surfaces up to homeomorphism is completed by the
following result:

Theorem 1.5. Every closed connected and orientable surface is homeomorphic to� g for some
g ¥ 0.

The previous theorem implies of course that for any given surface, the value ofg in this result
is unique. For the moment, you can understand the word �orientable� to mean �embeddable inR3�.
There is a similar result for the non-orientable surfaces: notice that by the fourth de�nition we gave
above forRP2, one can understandRP2 as the result of taking S2, cutting out a hole (e.g. removing
the southern hemisphere, thus leaving the northern hemisphere, which is also a diskD2) and then
gluing in a Möbius strip. That is the �rst example of the following more general construction:

Theorem 1.6. Every closed connected and non-orientable surface is homeomorphic to a surface
obtained from S2 by cutting out �nitely many holes and gluing in Möbius strips.

Surfaces are the simplest interesting examples of more general topological spaces calledman-
ifolds (Mannigfaltigkeiten): a surface is a2-dimensional manifold, while a smooth curve such as
the circle S1 is a 1-dimensional manifold. In general, one can considern-dimensional manifolds
(abbreviated as �n-manifolds�) for any integer n ¥ 0; obvious examples includeRn , Sn and RPn .
The classi�cation problem becomes much harder whenn ¥ 3, e.g. the following di�cult problem
was open for almost exactly 100 years:

Poincaré conjecture (solved by G. Perelman, c. 2004). SupposeX is a closed and con-
nected3-manifold that is �simply connected� (i.e. every continuous mapf : S1 Ñ X can be extended
continuously to D2 Ñ X ). Then X is homeomorphic toS3.

One of the more surprising developments in topology in the 20th century was that the analogue
of this problem in dimensions greater than three turns out to be easier. We'll introduce the notion
of �homotopy equvalence� (Homotopieäquivalenz) in a few weeks; it turns out that for closed 3-
manifolds, the condition of being simply connected is equivalent to being homotopy equivalent
to S3. Thus the following two results are higher-dimensional versions of the Poincaré conjecture,
but they were proved much earlier:

Theorem 1.7 (S. Smale, c. 1960). For every n ¥ 5, every closed connectedn-manifold homo-
topy equivalent toSn is also homeomorphic toSn .

Theorem 1.8 (M. Freedman, c. 1980). Every closed connected4-manifold homotopy equivalent
to S4 is also homeomorphic toS4.

(2) Di�erential topology . Though we will not have much time to talk about it in this semes-
ter, the neighboring �eld of �di�erential� topology modi�es the classi�cation problem by studying
the following stronger notion of equivalence between spaces:X and Y are di�eomorphic (dif-
feomorph) if there exists a homeomorphismf : X Ñ Y such that both f and f � 1 are in�nitely
di�erentiable, i.e. C8 , and f is in this case called adi�eomorphism (Di�eomorphismus). From
your analysis courses, you at least know what this means ifX and Y are open subsets of Euclidean
spaces�de�ning �di�erentiability� on spaces more general than that requires some notions from
the subject of di�erential geometry . In a nutshell, it requires X and Y to be spaces on which any
map X Ñ Y can at least locally (i.e. in a su�ciently small neighborhood of any point) be identi�ed
with a map between open subsets of Euclidean spaces, for which we know how to de�ne derivatives.
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Identifying a small neighborhood in X with an open subset ofRn is another way of saying that
we can choose a set ofn independent �coordinates� to describe the points in that neighborhood,
and this is the fundamental property that de�nes X as an n-dimensional manifold. So talking
about smooth maps and di�eomorphisms doesn't make sense for arbitrary topological spaces, but
it does make sense for at least some class of manifolds, and these are the main objects of study in
di�erential topology.

It turns out that up to dimension three, classi�cation up to di�eomorphism is equivalent to
classi�cation up to homeomorphism:

Theorem 1.9. For n ¤ 3, two n-manifolds X and Y are di�eomorphic if and only if they are
homeomorphic.

For n � 1 and n � 2, this theorem can be explained by the fact that both versions of
the classi�cation problem for n-manifolds are not that hard to solve explicitly (this was already
understood in the 19th century), and the answer for both versions turns out to be the same. The
story of n � 3 is much more complicated, as a complete classi�cation of3-manifolds is not known,
but this theorem was proved in the �rst half of the 20th century by using the more combinatorial
notion of �piecewise linear� manifolds as an intermediary notion between �smooth� and �topological�
manifolds.

From dimension four upwards, all hell breaks loose. For example, there are �exotic�R4's:

Theorem 1.10. There exist 4-manifolds that are homeomorphic but not di�eomorphic toR4.

And from dimension seven upwards, there also tend to exist �exotic spheres�:

Theorem 1.11 (Kervaire and Milnor, 1963). There exist exactly 28 distinct manifolds that are
homeomorphic toS7 but not di�eomorphic to each other.

As you might guess, there is an algebraic phenomenon behind the appearance of the number 28
in this theorem: it is the order of a group. In every dimensionn, one can de�ne a group structure
on the set of all smooth manifolds up to di�eomorphism that are homeomorphic toSn . Milnor and
Kervaire proved that when n � 7, this group has order 28. In the mean time, this group is quite
well understood in most cases: it is sometimes trivial (e.g. forn � 1; 2; 3; 5; 6) and often nontrivial,
but always �nite. The only case for which almost nothing is known is n � 4; dimension four turns
out to be the hardest case in di�erential topology, because it is on the borderline between �low
dimensional� and �high dimensional� methods, where often neither set of methods applies. If you
can solve the following open problem, you deserve an instant Ph.D. (and also a permanent job as
a research mathematician, and possibly a Fields medal):

Conjecture 1.12 (�smooth Poincaré conjecture�). Every manifold homeomorphic toS4 is
also di�eomorphic to S4.

It is di�cult to say whether this conjecture is generally believed to be true or false.
(3) Fixed point problems. Here is a simpler class of problems on which we'll actually be able

to prove something in this semester. Supposef : X Ñ X is a continuous map. We sayx P X
is a �xed point (Fixpunkt ) of f if f pxq � x. The question is: under what assumptions onX
is f guaranteed to have a �xed point? Note that this is fundamentally di�erent from the �xed
point results you've probably seen in analysis, e.g. the Banach �xed point theorem (also known as
the contraction mapping principle) is a result about a special class of maps satisfying analytical
conditions, it does not just apply to every continuous map on a certain space.

The simplest �xed point theorem in topology is a statement about maps on then-dimensional
disk Dn :� t x PRn | |x | ¤ 1u.
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Theorem 1.13 (Brouwer's �xed point theorem) . For every integer n ¥ 1, every continuous
map f : Dn Ñ Dn has a �xed point.

The casen � 1 is an easy consequence of the intermediate value theorem, but forn ¥ 2, we
need some techniques from algebraic topology. Here is a sketch of the argument; we will �ll in the
gaps over the course of the semester.

We argue by contradiction, so suppose there exists a continuous mapf : Dn Ñ Dn such that
f pxq � x for every x PDn . Then there is a unique line inRn connecting f pxq to x for eachx PDn .
Let gpxq PSn � 1 denote the point on the boundary of Dn obtained by following the unique line
from f pxq through x until that line reaches the boundary of the disk. Note that if x is already on
the boundary, then by this de�nition gpxq � x. It is not hard to convince yourself that what we've
just de�ned is a continuous map

g : Dn Ñ Sn � 1;

and if i : Sn � 1 ãÑ Dn denotes the natural inclusion map for the subsetSn � 1 € Dn , then g satis�es

(1.1) g � i � IdSn � 1 :

We claim that, actually, no such map can exist. The proof of this requires an algebraic invariant,
whose complete construction will require some time and e�ort, but for now I'll just tell you the
result: one can associate to each spaceX an abelian groupHn � 1pX qcalled thesingular homology
(singuläre Homologie) of X in dimension n � 1, which satis�es the usual desirable properties that
continuous mapsf : X Ñ Y induce group homomorphismsf � : Hn � 1pX q Ñ Hn � 1pY q satisfying
pf � gq� � f � � g� and Id � � 1. Crucially, one can also compute this invariant for both Dn and
Sn � 1, and the answers are

Hn � 1pDn q � t 0u; Hn � 1pSn � 1q � Z:

Now the relation (1.1) implies that g� � i � is the identity map on Hn � 1pSn � 1q � Z, so in particular
it is an isomorphism. But g� � i � also factors through the trivial group Hn � 1pDn q � t 0u, and
therefore can only be the trivial homomorphism. This is a contradiction, thus proving Brouwer's
theorem.

We will discuss the construction of singular homology and carry out the required computations
for the above argument in the last few weeks of this semester; homology and the closely related
subject of cohomology (Kohomologie) will then be the main topic of Topology 2 next semester.
But before all that, we will also spend considerable time on other invariants in algebraic topology,
notably the fundamental group, which underlies the notion of �simply connected� spaces appearing
in the Poincaré conjecture.

2. Metric spaces (April 20, 2023)

We now begin in earnest with point-set topology, which will be the main topic for the next
three or four weeks. This subject is important but a little dry, so we will cover only the portions
of it that seem absolutely necessary as groundwork for studying the more geometrically motivated
questions discussed in the previous lecture.

The subject begins with metric spaces, because these are the most familiar examples of topo-
logical spaces. For most students, this material will be a review of things you've seen before in
analysis courses. Almost everything in this lecture will be generalized to a wider and slightly more
abstract context when we introduce topologies and topological spaces next week.

Definition 2.1. A metric space (metrischer Raum) is a set X endowed with a function
d : X � X Ñ R that satis�es the following conditions for all x; y; z PX :

(i) dpx; yq ¥ 0;
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(ii) dpx; xq � 0;
(iii) dpx; yq � dpy; xq, i.e. �symmetry�;
(iv) dpx; zq ¤ dpx; yq � dpy; zq, i.e. the �triangle inequality� ( Dreiecksungleichung);
(v) dpx; yq ¡ 0 wheneverx � y.

The function d is then called a metric (Metrik ). If d satis�es the �rst four conditions but not
necessarily the �fth, then it is called a pseudometric (Pseudometrik).

Much of the theory of metric spaces makes sense for pseudometrics just as well as metrics, but
we will see that some desirable and intuitively �obvious� facts become false when the positivity
condition is dropped.

In any metric spacepX; dq, one can de�ne theopen ball (o�ene Kugel) of radius r ¡ 0 about
a given point x PX as

B r pxq :�
 
y PX

�
� dpx; yq   r

(
:

An arbitrary subset U € X is then calledopen (o�en ) if for every x PU, the ball B � pxqis contained
in U for all � ¡ 0 su�ciently small. (Of course it only needs to be true for one particular � ¡ 0,
since then it is true for all smaller � as well.) Given a subsetA € X , another subsetU € X is
called a neighborhood (Umgebung) of A in X if U contains some open subset ofX that also
contains A. Some books require the neighborhood itself to be open, but we will not require this;
it makes very little di�erence in practice, but this bit of extra freedom in our de�nition will allow
us to make certain other de�nitions and proofs a few words shorter now and then.

A subset A € X is closed (abgeschlossen) if its complement X zA is open. Achtung: this is
not the same thing as saying thatA is not open. It is a common trap for beginners to think that
every subset must be either open or closed, but in reality, most are neither�and some (e.g.X
itself) are both.1

Whenever you encounter a set of axioms, you should ask yourself why we are studying these
axioms in particular�why not a slightly di�erent set of axioms? In the case of metrics, it's fairly
obvious why we would want any notion of �distance� to satisfy conditions (i)�(iii) and (v), but
perhaps the triangle inequality seems slightly less obvious. So, let us point out two obviously
desirable properties that follow mainly from the triangle inequality:


 The �open ball� B r pxq € X is also an open subset in the sense of the de�nition given
above. Indeed, for anyy P B r pxq, we haveB � pyq € B r pxq for every �   r � dpx; yq since
every z PB � pyq then satis�es

dpx; zq ¤ dpx; yq � dpy; zq   dpx; yq � �   dpx; yq � r � dpx; yq � r:


 The function d : X � X Ñ r 0; 8q is continuous (see below for a review of the de�nition of
continuity), since one can use the triangle inequality to show that for everyx; y; x 1; y1 PX ,

|dpx; yq � dpx1; y1q| ¤ dpx; x 1q � dpy; y1q:

Also, while I'm sure you already accept without question that the distance between two distinct
points should always be positive rather than zero, let us point out one �obvious� fact that would
cease to be true if condition (v) were removed:


 For every x P X , the subset t xu € X is closed. Indeed,X ztxu is an open subset ofX
because for everyy P X ztxu, the ball B � pyq is contained in X ztxu for all �   dpx; yq.
(This of course presupposes thatdpx; yq ¡ 0.)

You're probably not used to thinking about pseudometric spaces much, so here is an example.

1Yes, the empty set H € X is always open. Reread the de�nition carefully until you are convinced that this is
true.
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Example 2.2. Let X � p R � t 0; 1uq
L
� for an equivalence relation de�ned by px; 0q � p x; 1q

for every x � 0. We can think of this intuitively as a �real line with two zeroes� because it mostly
looks just the same asR (each numberx � 0 corresponding to the equivalence class ofpx; 0q and
px; 1q), but x � 0 is an exception, where there really aretwo distinct points rp0; 0qsand rp0; 1qs
in X . We can then de�ne d : X � X Ñ R by

dprpx; i qs; rpy; j qsq:� | x � y| for i; j P t0; 1u, x; y PR:

This satis�es conditions (i)�(iv) for all the same reasons that the usual metric on R does, but
condition (v) fails because

dprp0; 0qs; rp0; 1qsq � 0
even thoughrp0; 0qs � rp0; 1qs.

Exercise 2.3. Show that for the pseudometric spaceX in Example 2.2, trp0; 0qsu €X is not
a closed subset.

Definition 2.4. In a metric space pX; dq, a sequence (Folge) xn P X indexed by n P N
converges to (konvergiert gegen) a point x P X if for every � ¡ 0, we havexn P B � pxq for all n
su�ciently large. Equivalently, this means that for every neighborhood U € X of x, xn PU for all
n su�ciently large. We use the notation

xn Ñ x or lim xn � x

to indicate that xn converges tox.

Note that in the second formulation of this de�nition, involving arbitrary neighborhoods in-
stead of the open ballB � pxq, one can understand the de�nition without knowing what the metric
is�one only has to know what a �neighborhood� is, which means knowing which subsets are open
and which are not. This will be the formulation that we need when we generalize sequences and
convergence to arbitrary topological spaces.

Here is a similarly standard de�nition from analysis, for which we give three equivalent formu-
lations.

Definition 2.5. For two metric spacespX; d X q and pY; dY q, a map (Abbildung ) f : X Ñ Y
is called continuous (stetig) if it satis�es any of the following equivalent conditions:

(a) For every x0 P X and � ¡ 0, there exists a number� ¡ 0 such that dY pf pxq; f px0qq   �
wheneverdX px; x 0q   � , i.e. f pB � px0qq € B � pf px0qq.

(b) For every open subsetU € Y , the preimage

f � 1pUq :� t x PX | f pxq PUu

is an open subset ofX .
(c) For every convergent sequencexn PX , xn Ñ x implies f pxn q Ñ f pxq.

The equivalence of (a) and (b) is pretty easy to see: if (a) holds andU € Y is open, then for
every x0 P f � 1pUq, the openness ofU guarantees an� ¡ 0 such that f px0q PB � pf px0qq € U. But
then condition (a) gives a � ¡ 0 such that f pB � px0qq € B � pf px0qq € U, implying B � px0q € f � 1pUq,
henceU is open and (b) therefore holds. Conversely, if (b) holds, then (a) holds becauseB � pf px0qq
is open and thus so isf � 1pB � pf px0qqq, which containsx0 and therefore also (by openness) contains
B � px0q for some � ¡ 0.

Notice that conditions (b) and (c) do not require speci�c knowledge of the metric, but again
only require knowing what an open subset is. Condition (b) is the one we will later use to de-
�ne continuity in general topological spaces. It may be instructive to review why (b) and (c)
are equivalent�especially because this is something that will turn out to be false in general for
topological spaces, at least without some extra assumption.
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Proof that (b) ô (c). To show that (b) ñ (c), supposexn Ñ x and U € Y is a neigh-
borhood of f pxq. Then U contains an open setV containing f pxq, hencef � 1pUq contains f � 1pVq
which contains x, and by condition (b), f � 1pVq is also open, implying f � 1pUq is a neighborhood
of x. Convergence then implies thatxn P f � 1pUq and thus f pxn q PU for all n su�ciently large,
which proves f pxn q Ñ f pxq since the neighborhoodU was arbitrary.

For the other direction, we shall prove the contrapositive, i.e. we show that if (b) is false then
so is (c). So assume there is an open subsetU € Y such that f � 1pUq € X is not open. Being
not open means that for somex P f � 1pUq, no open ball about x is contained in f � 1pUq. As a
consequence, for everyn PN, we can �nd a point

xn PB1{n pxq such that xn Rf � 1pUq;

meaning f pxn q RU. The sequencexn then converges tox, since every neighborhood ofx contains
B1{n pxq for n su�ciently large, implying that xn belongs to the given neighborhood for all largen.
But f pxn qcannot converge tof pxqsince it never belongs toU, which is a neighborhood off pxq. �

I want to point out two things about the above proof. First, the proof that (b) ñ (c) never
mentioned the metric, it only talked about neighborhoods and open sets�as a consequence, that
implication will remain true when we reconsider all these notions in general topological spaces. But
the proof that (c) ñ (b) did refer to the metric, because it used the precise de�nition of openness in
terms of open balls. We will see that this implication does not actually hold in arbitrary topological
spaces, though a mild modi�cation of it does.

Definition 2.6. A map f : X Ñ Y is a homeomorphism (Homöomorphismus) if it is
continuous and bijective and its inversef � 1 : Y Ñ X is also continuous.

Example 2.7. Consider Rn with the standard Euclidean metric

dE px; yq :� | x � y | �

gf
f
e

n¸

j � 1

px j � yj q2

for vectors x � p x1; : : : ; xn q and y � p y1; : : : ; yn q in Rn . We claim that for any x PRn and r ¡ 0,
pB r pxq; dE q is homeomorphic to pRn ; dE q. (It follows of course that all open balls in Rn are also
homeomorphic to each other, though it is perhaps easier to prove the latter directly.) To construct
a homeomorphism, choose any continuous, increasing, bijective functionf : r0; rq Ñ r0; 8q and
de�ne F : B r pxq Ñ Rn by

F pxq � x and F px � yq � x � f p|y |q
y
|y |

for all y PB r p0qzt0u € Rn :

It is easy to check that both F and F � 1 are then continuous.

One conclusion to draw from the above example is that the notion of �boundedness,� which is
very important in analysis, is not going to make much sense in topology. Indeed, we would like to
consider two spaces as �equivalent� whenever they are homeomorphic, so topologically it would be
meaningless to call a space bounded if another space homeomorphic to it is not. What plays this
role instead is the somewhat stricter notion ofcompactness. To write down the correct de�nition,
we need to have the notion of anopen covering (o�ene Überdeckung): assumeI is any set (the
so-called �index set�) andt U� u� PI is a collection of open subsetsU� € X labeled by elements� P I .
We call t U� u� PI an open covering/cover of a subsetA € X if

A €
¤

� PI

U� :
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Definition 2.8. A subset K in a metric spacepX; dq is compact (kompakt) if either of the
following equivalent conditions is satis�ed:

(a) Every open cover t U� u� PI of K has a �nite subcover (eine endliche Teilüberdeckung),
i.e. there is a �nite subset t � 1; : : : ; � N u € I such that

K €
N¤

i � 1

U� i :

(b) Every sequencexn PK has a convergent subsequence with limit inK .

We call pX; dq itself a compact space if X is a compact subset of itself.

Compactness is probably the least intuitive de�nition in this course so far, and at this stage we
can only justify it by saying that it has stood the test of time: many beautiful and useful theorems
have turned out to be true for compact spaces andonly compact spaces. The �rst of these is the
following, which explains why, unlike boundedness, compactness really is a topologically invariant
notion, i.e. if X is compact, then so is every space that is homeomorphic to it.

Theorem 2.9. If f : X Ñ Y is continuous andK € X is compact, then so isf pK q € Y .

Proof. If t U� u� PI is an open cover off pK q, then the setsf � 1pU� qare all open inX and thus
form an open cover ofK , which is compact, so there is a �nite subsett � 1; : : : ; � N u € I such that

K €
N¤

i � 1

f � 1pU� i q;

implying f pK q €
” N

i � 1 U� i , hence we have found a �nite subcover of our given open cover off pK q.
�

One more remark about compactness: the equivalence of conditions (a) and (b) in De�nition2.8
is not so obvious, but is a fairly deep theorem called theBolzano-Weierstrasstheorem which you've
probably seen proved in your analysis classes. We will prove an analogue of that theorem for
topological spaces in Lecture5, but it does not say that these two de�nitions are always equivalent�
as with continuity, characterizing compactness via sequences becomes a slightly subtler issue in
topological spaces, though the equivalence does hold for most of the spaces we actually care about.

Let's see some more examples now.

Example 2.10. For any metric spacepX; dq and an arbitrary subset A € X , pA; dq is also a
metric space. So for instance, we can use the Euclidean metricdE on Rn � 1 to de�ne a metric on
the subset

Sn �
 
x PRn � 1

�
� |x | � 1

(
;

the n-dimensional sphere.

Example 2.11. Any set X can be assigned thediscrete metric (diskrete Metrik ), de�ned
by

dD px; yq �

#
0 if x � y;

1 otherwise:

This metric keeps every point at a measured distance away from every other point. So for instance,
we can assign the discrete metric toRn and compare it with the Euclidean metric dE . We claim
that the identity map on Rn de�nes a continuous map frompRn ; dD q to pRn ; dE q, but it is not a
homeomorphism, i.e. its inverse is not continuous. This follows immediately from the next exercise.
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Exercise 2.12. Show that on any setX with the discrete metric dD , every subset is open. In
particular this includes the set t xu € X for every x P X . Conclude that a sequencexn converges
to x if and only if xn � x for all n su�ciently large, i.e. the sequence is �eventually constant�. Then
use this to prove the following statements:

(a) All maps from pX; d D q to any other metric space are continuous.
(b) All continuous maps from pRn ; dE q to pX; d D q are constant.

Example 2.13. Given two metric spacespX; d X q and pY; dY q, one can de�ne a product
metric on X � Y by

dX � Y ppx; yq; px1; y1qq:�
a

dX px; x 1q2 � dY py; y1q2:

This is the obvious generalization of the Euclidean metric, e.g. ifX and Y are both R with its
standard Euclidean metric, then dX � Y becomesdE on R2. But this is not the only reasonable
choice of metric onX � Y : for instance, one can also de�ne a metric by

d1
X � Y ppx; yq; px1; y1qq:� max

 
dX px; x 1q; dY py; y1q

(
:

This metric is indeed di�erent: for instance, if we again take X and Y to be the EuclideanR, then
an open ball with respect to d1

X � Y in R2 does not look circular, it looks rather like a square. On
the other hand, this does not have a huge impact on the notion of open sets: it is not hard to show
that the identity map from pX � Y; dX � Y q to pX � Y; d1

X � Y q is always a homeomorphism.

Definition 2.14. Two metrics d and d1on the same setX are called (topologically)equivalent
if the identity map from pX; dq to pX; d 1q is a homeomorphism.

In light of the various ways we now have for de�ning what �continuous� means, equivalence of
metrics can also be understood as follows:


 d and d1 are equivalent if they both de�ne the same notion of open subsets inX ;

 d and d1 are equivalent if they both de�ne the same notion of convergence of sequences

in X .
The characterization in terms of sequences is the subject of the next exercise.

Exercise 2.15. Supposed1 and d2 are two metrics on the same setX . Show that the identity
map de�nes a homeomorphismpX; d 1q Ñ pX; d 2q if and only if the following condition is satis�ed:
for every sequencexn PX and x PX ,

xn Ñ x in pX; d 1q ðñ xn Ñ x in pX; d 2q:

Example 2.16. In functional analysis, one often studies metric spaces whose elements are
functions, and the exact choice of metric on such a space needs to be handled rather carefully.
Consider for instance the set

X � C0r� 1; 1s :� t continuous functions f : r� 1; 1s Ñ Ru:

If we think of this as an in�nite-dimensional vector space whose elementsf P X are described by
the (in�nitely many) �coordinates� f ptq PR for t P r� 1; 1s, then the natural generalization of the
Euclidean metric to such a space is

d2pf; g q :�

d » 1

� 1
|f ptq � gptq|2 dt:

This is the metric corresponding to the so-called �L 2-norm� on the space of functionsr� 1; 1s Ñ R.
On the other hand, our alternative product metric discussed in Example2.13 above generalizes to
this space in the form

d8 pf; g q :� max
t Pr� 1;1s

|f ptq � gptq|;



2. METRIC SPACES (APRIL 20, 2023) 15

which is well de�ned since continuous functions on compact intervals always attain maxima. It
is not hard to see that the identity map from pX; d 8 q to pX; d 2q is continuous, but is not a
homeomorphism. Indeed, iff n Ñ f in pX; d 8 q, then

d2pf n ; f q2 �
» 1

� 1
|f n ptq � f ptq|2 dt ¤

» 1

� 1
max

t
|f n ptq � f ptq|2 dt ¤ 2d8 pf n ; f q2 Ñ 0;

proving that f n Ñ f also in pX; d 2q. On the other hand, there exist sequencesf n P X such that
f n Ñ 0 with respect to d2 but d8 pf n ; 0q � 1 for all n: just take a sequence of �bump� functionsf n :
r� 1; 1s Ñ r0; 1sthat all satisfy f n p0q � 1 but vanish outside of progressively smaller neighborhoods
of 0. These will satisfy d2pf n ; 0q2 �

³1
� 1 |f n ptq|2 dt Ñ 0, but d8 pf n ; 0q � maxt |f n ptq| � 1 for all n,

preventing convergence to0 with respect to d8 .

Exercise 2.17. SupposepX; d X qis a metric space and� is an equivalence relation onX , with
the resulting set of equivalence classes denoted byX { � . For equivalence classesrxs; rys PX { � ,
de�ne

(2.1) dprxs; rysq:� inf
 
dX px; yq

�
� x P rxs; y P rys

(
:

(a) Show that d is a metric on X { � if the following assumption is added: for every triple
rxs; rys; rzs PX { � , there exist representativesx P rxs, y P rys and z P rzs such that

dX px; yq � dprxs; rysq and dX py; zq � dprys; rzsq:

Comment: The hard part is proving the triangle inequality.
(b) Consider the real projective n-space

RPn :� Sn { � ;

where Sn :� t x P Rn � 1 | |x | � 1u and the equivalence relation identi�es antipodal
points, i.e. x � � x . If dX is the metric on Sn induced by the standard Euclidean metric
on Rn � 1, show that the extra assumption in part (a) is satis�ed, so that ( 2.1) de�nes a
metric on RPn .

(c) For the metric de�ned on RPn in part (b), show that the natural quotient projection
� : Sn Ñ RPn sending eachx P Sn to its equivalence classrxs P RPn is continuous,
and a subsetU € RPn is open if and only if � � 1pUq € Sn is open (with respect to the
metric dX ).

(d) Here is a very di�erent example of a quotient space. De�ne

X � p� 1; 1q2ztp0; 0qu € R2

with the metric dX induced by the Euclidean metric onR2. Now �x the function f : X Ñ
R : px; yq ÞÑxy and de�ne the relation p0 � p1 for p0; p1 PX to mean that there exists a
continuous curve 
 : r0; 1s Ñ X with 
 p0q � p0 and 
 p1q � p1 such that f � 
 is constant.
Show that for this equivalence relation, the extra assumption of part (a) is not satis�ed,
and the distance function de�ned in (2.1) does not satisfy the triangle inequality.

(e) Despite our failure to de�ne X { � as a metric space in part (d), it is natural to consider
the following notion: de�ne a subset U € X { � to be open if and only if � � 1pUq is an
open subset ofpX; d X q, where � : X Ñ X { � denotes the natural quotient projection.
We can then de�ne a sequencerxn s PX { � to be convergent to an element rxs PX { � if
for every open subsetU € X { � containing rxs, rxn s PU for all n su�ciently large. Find
a sequencerxn s PX { � and two elementsrxs; rys PX { � such that

rxn s Ñ rxs and rxn s Ñ rys; but rxs � r ys:

This could not happen if we'd de�ned convergence onX { � in terms of a metric. (Why
not?)
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Exercise 2.18.

(a) Show that for any metric spacepX; dq,

d1px; yq :� mint 1; dpx; yqu

de�nes another metric on X which is equivalent to d. In particular, this means that every
metric is equivalent to one that is bounded.

(b) SupposepX; d X q and pY; dY q are metric spaces satisfying

dX px; x 1q ¤ 1 for all x; x 1 PX; d Y py; y1q ¤ 1 for all y; y1 PY :

Now let Z � X Y Y , and for z; z1 PZ de�ne

dZ pz; z1q �

$
'&

'%

dX pz; z1q if z; z1 PX;
dY pz; z1q if z; z1 PY ;

2 if pz; z1q is in X � Y or Y � X:

Show that dZ is a metric on Z with the following property: a subset U € Z is open in
pZ; dZ q if and only if it is the union of two (possibly empty) open subsets ofpX; d X q and
pY; dY q. In particular, X and Y are each both open and closed subsets ofZ . (Recall that
subsets of metric spaces are closed if and only if their complements are open.)

(c) SupposepZ; dq is a metric space containing two disjoint subsetsX; Y € Z that are each
both open and closed. Show that there exists no continuous map
 : r0; 1s Ñ Z with

 p0q PX and 
 p1q PY .

(d) Show that if pX; dqis a metric space with the discrete metric, then for every pointx PX ,
the subsett xu € X is both open and closed.

3. Topological spaces (April 25, 2023)

We saw in the last lecture that most of the notions we want to consider in topology (continuous
maps, homeomorphisms, convergence of sequences. . . ) can be de�ned on metric spaces without
speci�c reference to the metric, but using only our knowledge of which subsets areopen. Moreover,
one can de�ne distinct but �equivalent� metrics on the same space for which the open sets match
and therefore all these notions are the same. This suggests that we should view the notion of open
sets as something more fundamental than a metric. The starting point of topology is to endow a
set with the extra structure of a distinguished collection of subsets that we will call �open�. The
�rst question to answer is: what properties should we require this collection of subsets to have?

To motivate the axioms, let's revisit metric spaces for a moment and recall two important
de�nitions. Both will also make sense in the context of topological spaces once we have �xed a
de�nition for the latter.

Definition 3.1. SupposeX is a metric (or topological) space.

(a) The interior (o�ener Kern or Inneres) of a subsetA € X is the set

�A �
 
x PA

�
� some neighborhood ofx in X is contained in A

(
:

Points in this set are calledinterior points (innere Punkte) of A.
(b) The closure (abgeschlossene Hülleor Abschluss) of a subsetA € X is the set

sA �
 
x PX

�
� every neighborhood ofx in X intersects A

(
:

Points in this set are calledcluster points (Berührpunkte) of A.

The following exercise is easy, but it's worth thinking through why it is true.
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Exercise 3.2. Show that for any subsetA € X , the interior �A is the largest open subset of
X that is contained in A, and the closure sA is the smallest closed subset ofX that contains A, i.e.

�A �
¤

U€ X open, U€ A

U and sA �
£

U€ X closed, A € U

U:

I worded this exercise in a slightly sneaky way by calling the union of all the open sets insideA
the �largest open subset ofX that is contained in A �: how do we actually know that this union of
subsets is also open? This is the point: we know it because in a metric space,arbitrary unions of
open subsets are also open. This follows almost immediately from the de�nitions in the previous
lecture. It also implies (by taking complements) that arbitrary intersections of closed subsets are
also closed, hence writingsA as an intersection as in the exercise reveals thatsA is also a closed
subset. These are properties you'd expect any reasonable notion of �open� or �closed� sets to have,
so we will want to keep them.

What about intersections of open sets? Well, in metric spaces, arbitrary intersections of open
sets need not be open, e.g. the intervalsp� 1{n; 1{nq € R are open for all n PN, but

£

n PN

�
�

1
n

;
1
n



� t 0u

is not an open subset ofR. Something slightly weaker is true, however: the intersection of any
two open sets is open, and by an easy inductive argument, it follows that any�nite intersection of
open sets is open. Indeed, ifU; V € X are both open andx P U X V, we know that U and V each
contain balls about x for su�ciently small radii, so it su�ces to take any radius small enough to �t
inside both of them. (Why doesn't this necessarily work for an in�nite intersection of open sets?
Look at the example of the intervals p� 1{n; 1{nq above if you're not sure.) Taking complements,
we also deduce from this discussion that arbitrary unions of closed subsets are not always closed,
but �nite unions are.

One last remark before we proceed: in any metric spaceX , the empty set H and X itself are
both open (and therefore also closed) subsets. With these observations as motivation, here is the
de�nition on which everything else in this course will be based.

Definition 3.3. A topology (Topologie) on a set X is a collection2 T of subsets ofX
satisfying the following axioms:

(i) H P T and X PT ;
(ii) For every subcollection I € T ,

¤

UPI

U PT ;

(iii) For every pair U1; U2 PT , U1 X U2 PT .

The pair pX; T q is then called a topological space (topologischer Raum), and we call the sets
U PT the open subsets (o�ene Teilmengen) in pX; T q.

We can now repeat several de�nitions from the previous lecture in our newly generalized
context.

Definitions 3.4. AssumepX; TX q and pY;TY q are topological spaces.

(1) A subset A € X is closed (abgeschlossen) if X zA PTX .

2I am calling T a �collection� instead of a �set� in an attempt to minimize the inevitable confusion caused by
T being a set whose elements are also sets. Strictly speaking, there is nothing wrong with saying � T is a subset of
2X satisfying the following axioms. . . ,� where 2X is the set-theoretician's fancy notation for the set consisting of all
subsets of X . But if you found that sentence confusing, my recommendation is to call T a �collection� instead of a
�set�.
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(2) A map f : X Ñ Y is continuous (stetig) if for all U P TY , f � 1pUq PTX . Note that if
we prefer to describe the topology in terms of closed rather than open subsets, then it is
equivalent to say that for all U € Y closed,f � 1pUq € X is also closed.

(3) A neighborhood (Umgebung) of a subset A € X is any subset U € X such that
A € V € U for someV PTX .

(4) A sequence (Folge) xn PX converges to (konvergiert gegen) x PX (written � xn Ñ x�)
if for every neighborhoodU € X of x, xn PU holds for all n PN su�ciently large.

Remark 3.5. One can equivalently de�ne a topology T on a set X by specifying the closed
setsT 1 :� t X zU | U PT u. Then condition (ii) in De�nition 3.3 is equivalent to

£

A PI

A PT 1 for all subcollections I € T 1;

and condition (iii) is equivalent to

A1 Y A2 PT 1 for all A1; A2 PT 1:

For many topologies that one encounters in practice, it is not so easy to say whatall the open
sets look like, but much easier to describe a smaller subcollection that �generates� them.

Definition 3.6. SupposepX; T q is a topological space andB € T is a subcollection of the
open sets.


 We call B a base or basis (Basis)3 for T if every set U PT is a union of sets inB, i.e.

U �
¤

V PI

V for some subcollectionI € B:


 We call B a subbase or subbasis (Subbasis) for T if every set U PT is a union of �nite
intersections of sets inB, i.e.

U �
¤

� PI

U�

for some collection of subsetsU� € X indexed by a (possibly empty) setI , such that for
each � P I ,

U� � U1
� X : : : X UN �

�

for someN � PN and U1
� ; : : : ; UN �

� PB.

Every base is obviously also a subbase, though we'll see in a moment that the converse is not
true. You should take a moment to convince yourself that given any collectionB of subsets ofX
that cover all of X (meaning X �

”
UPB U), B is a subbase of a unique topology onX , namely the

smallest topology that contains B. It consists of all unions of �nite intersections of sets from B,
and we say in this case that the topologyT is generated by the collection B.

Example 3.7. The standard topology on R has the collection of all open intervalstpa; bq €
R | � 8 ¤ a   b ¤ 8u as a base. The smaller subcollection of half-in�nite open intervals
tp�8 ; aq | a PRu Y tpa; 8q | a PRu is also a subbase, though not a base. (Why not?)

3Things got slightly confusing in Tuesday's lecture because when I stated the de�nition of a base, I neglected
at �rst to require B € T , i.e. not only is every open set a union of sets from B, but the sets in B are themselves also
open, and as a result, every union of sets from B is also an open set. If one did not require the latter, then some
stupid examples would be possible, e.g. the collection of one-point subsets would be a base for every topology. With
the correct de�nition, however, B determines T uniquely, so taking B to consist of all one-point subsets automatically
makes T the discrete topology.
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Example 3.8. If pX; dq is any metric (or pseudometric) space, the natural topology onX
induced by the metric is de�ned via the base

B �
 
B r pxq € X

�
� x PX; r ¡ 0

(
:

Note that if d and d1 are equivalent metrics as in De�nition 2.14, then they induce the same
topology on X : indeed, if the identity map pX; dq Ñ pX; d 1q is a homeomorphism then it maps
open sets to open sets. A topology that arises in this way from a metric is calledmetrizable
(metrisierbar).

Example 3.9. On any set X , the discrete topology is the collection T consisting of all
subsets ofX . Take a moment to convince yourself that this is a topology, and moreover, it is
metrizable�it can be de�ned via the discrete metric, see De�nition 2.11. (Can you think of another
metric on X that de�nes the same topology?) As a base forT , we can takeB �

 
t xu € X

�
� x PX

(
.

Note that since all subsets are open, all subsets are also closed! Moreover:

 Every map f : X Ñ R is continuous.

 A map f : R Ñ X is continuous if and only if it is constant. Here is a quick proof: for

every x PX , t xu € X is both open and closed, so continuity requiresf � 1pxq € R also to
be both open and closed, but the only subsets ofR with this property are R itself and
the empty set.


 A sequencexn P X converges tox P X if and only if xn � x for all n P N su�ciently
large.

Example 3.10. Also on any set X , one can de�ne the trivial (also sometimes called the
�indiscrete�) topology T � tH ; X u. This topology has the distinguishing feature that every point
x PX has only one neighborhood, namely the whole set. We then have:


 A map f : X Ñ R is continuous if and only if it is constant. Proof: Supposef is
continuous, x0 PX and f px0q � t P R. Then for every � ¡ 0, f � 1pt � �; t � � q is an open
subset ofX containing x0, so it is not H and is thereforeX . This proves

f pX q €
£

� ¡ 0

pt � �; t � � q � t tu:


 All maps f : R Ñ X are continuous.

 xn Ñ x holds always, i.e. all sequences inX converge to all points! This proves that

pX; T qis not metrizable, as the limit of a convergent sequence in a metric space is always
unique. (Prove it!)

Example 3.11. The co�nite topology on a setX is de�ned such that a proper subsetA € X
is closed if and only if it is �nite. Take a moment to convince yourself that this really de�nes a
topology�see Remark 3.5. (Note that X itself is automatically closed but does not need to be
�nite, since it is not a proper subset of itself.) The neighborhoods of a pointx PX are then all of
the form X ztx1; : : : ; xN u for arbitrary �nite subsets x1; : : : ; xN PX that do not include x.

SupposeT1 and T2 are two topologies on the same setX such that

T1 € T2;

meaning every open set inpX; T1q is also an open set inpX; T2q. In this case we say thatT2 is
stronger / �ner / larger than (stärker/ feiner als) T1, and T1 is weaker / coarser / smaller than
(schwächer/ gröber als) T2. For example, since the open setsRztx1; : : : ; xN u for the co�nite topol-
ogy onR are also open with respect to its standard topology, we can say that the standard topology
of R is stronger than the co�nite topology. On any set, the discrete topology is the strongest, and
the trivial topology is the weakest. In general, having a stronger topology means that fewer se-
quences converge, fewer maps intoX from other spaces are continuous, but more functions de�ned
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on X are continuous. In various situations, it is common and natural to specify a topology on a set
as being the �strongest� or �weakest� possible topology subject to the condition that some given
collection of maps are all continuous. We will see some examples of this below.

There are several natural ways in which a given topology on one or more spaces can induce a
topology on some related space.

Definition 3.12. pX; T q determines on any subsetA € X the so-calledsubspace topology
(Unterraumtopologie)

TA :�
 
U X A

�
� U PT

(
:

This is the weakest topology onA such that the natural inclusion A ãÑ X is a continuous map.
(Prove it!)

Example 3.13. The standard topology on Rn � 1 is the one de�ned via the Euclidean metric.
We then assign the subspace topology to the set of unit vectorsSn € Rn � 1, meaning a subset
V € Sn will be considered open inSn if and only if V � Sn X U for some open subsetU € Rn � 1.
As you might expect, this is the same as the topology induced by the metric onSn de�ned by
restricting the Euclidean metric, but for a given open setV € Sn , it is not always so easy to see
an open setU € Rn � 1 such that V � U X Sn . Such a set can be constructed as follows: for each
x PV, choose� x ¡ 0 such that every y PSn satisfying |y � x |   � x is also in V. Then the set

U :�
¤

x PV

 
y PRn � 1

�
� |y � x |   � x

(

is a union of open balls and is thus open inRn � 1, and satis�es U X Sn � V.

Exercise 3.14. Convince yourself that for any metric spacepX; dqand subsetA € X , the nat-
ural metrizable topology on pA; dq is precisely the subspace topology with respect to the topology
on X induced by d.

Definition 3.15. Given a collection of topological spacestpX � ; T� qu� PI indexed by a set I
such that X � X X � � H for all � � � , the disjoint union (disjunkte Vereinigung) is the set
X :�

”
� PI X � with the topology

T :�

#
¤

� PI

U�

�
�
�
� U� PT� for all � P I

+

:

We typically denote the topological spacepX; T q de�ned in this way by
º

� PI

X � ;

or for �nite collections I � t 1; : : : ; N u, X 1 > : : : > X N . The topology on this space is called the
disjoint union topology .

Exercise 3.16. Show that the disjoint union topology T on X �
²

� X � is the strongest
topology on this set such that for every � P I , the inclusion X � ãÑ X is continuous.

Remark 3.17. A key feature of the disjoint union topology is that for every individual � P I ,
the subsetX � € X is both open and closed. It follows that there is no continuous path
 : r0; 1s Ñ
X with 
 p0q PX � and 
 p1q PX � for � � � , cf. Exercise2.18(c).

Remark 3.18. It is also often useful to be able to discuss disjoint unions
²

� X � in which the
setsX � and X � need not be disjoint for � � � , e.g. a common situation is where allX � are taken
to be the same �xed setY . In this case we still want to treat X � and X � as disjoint �copies� of the
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same subset when� � � , so that no element in the union can belong to more than one of them.
One way to do this is by rede�ning the set X �

²
� X � as

X :�
 
p�; x q

�
� � P I; x PX �

(
;

so that the disjoint union topology now literally becomes the collection of all subsets inX of the
form ¤

� PI

t � u � U�

with U� € X � open for every � , and in analogy with Exercise3.16, this is the strongest topology
on X for which the injective maps X � Ñ X : x ÞÑ p�; x q are continuous for all � P I . We
will usually not bother with this cumbersome notation when examples arise: just remember that
whenever X 1 and X 2 are two sets, disjoint or otherwise, the setX 1 > X 2 is de�ned so that its
subsetsX 1 € X 1 > X 2 and X 2 € X 1 > X 2 are disjoint.

Exercise 3.19. Let I � R and de�ne X � for each � P R to be the same space consisting
of only one element; for concreteness, sayX � :� t 0u € R. According to the de�nition described
above, this sets up an obvious bijection

º

� PR

t 0u :� tp �; 0q PR � t 0uu Ñ R;

p�; 0q ÞÑ�:

Show that this bijection is a homeomorphism if we assign the discrete topology toR on the right
hand side.

4. Products, sequential continuity and nets (April 27, 2023)

From now on, we'll adopt the following convention of terminology: if I say that X is a �space�,
then I mean X is a topological space unless I speci�cally say otherwise or the context clearly
indicates that I mean something di�erent (e.g. that X is a vector space). Similarly, if X and Y
are spaces in the above sense and I refer tof : X Ñ Y as a �map �, then I typically mean that f
is a continuous map unless the context indicates otherwise. We will sometimes have occasion to
speak of mapsf : I Ñ X where X is a space butI is only a set, on which no topology has been
speci�ed: in this case no continuity is assumed since that notion is not well de�ned, but I will often
try to be extra clear about it by calling f a �(not necessarily continuous) function� or something
to that e�ect. I do not promise to be completely consistent about this, but hopefully my intended
meaning will never be in doubt.

The previous lecture introduced two ways of inducing new topologies from old ones, namely on
subspaces and on disjoint unions. It remains to discuss the natural topologies de�ned on products
and quotients. We'll deal with the former in this lecture, and then use it to construct a surprising
example illustrating the distinction between continuity and sequential continuity.

Definition 4.1. Given two spacespX 1; T1qand pX 2; T2q, the product topology T on X 1 � X 2

is generated by the base

B :�
 
U1 � U2 € X 1 � X 2

�
� U1 PT1; U2 PT2

(
:

Notice that if X 1 � X 2 is endowed with the product topology, then both of the projection maps

� 1 : X 1 � X 2 Ñ X 1 : px1; x2q ÞÑx1

� 2 : X 1 � X 2 Ñ X 2 : px1; x2q ÞÑx2

are continuous. Indeed, for any open setU1 € X 1, � � 1
1 pU1q � U1 � X 2 is the product of two open

sets and is therefore open inX 1 � X 2; similarly, � � 1
2 pU2q � X 1 � U2 is open if U2 € X 2 is open.
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Notice moreover that the intersection of these two sets isU1 � U2, so one can form all open sets in
the product topology as unions of sets that are �nite intersections of the form� � 1

1 pU1q X � � 1
2 pU2q.

In other words, the subcollection
 
� � 1

1 pUq
�
� U PT1

(
Y

 
� � 1

2 pUq
�
� U PT2

(

forms a subbase for the product topologyT . This makes T the weakest (i.e. smallest) topology
for which the projection maps � 1 and � 2 are both continuous.

That last observation leads us to the natural generalization of this discussion to in�nite prod-
ucts, but the outcome turns out to be slightly di�erent from what you probably would have
expected.

SupposetpX � ; T� qu� PI is a collection of spaces, indexed by an arbitrary (possibly in�nite)
set I . Their product can be de�ned as the set

¹

� PI

X � :�

#

functions f : I Ñ
¤

� PI

U� : � ÞÑx � such that x � PX � for all � P I

+

:

Note that since I in this discussion is only a set with no topology, there is no assumption of
continuity for the functions � ÞÑx � . Whether the set I is in�nite or �nite, we can denote elements
of the product space by

t x � u� PI P
¹

� PI

X � ;

so we think of each of the individual elementsx � PX � as �coordinates� on the product.

Definition 4.2. The product topology (Produkttopologie) on
±

� PI X � is the weakest
topology such that all of the projection maps

� � :
¹

� PI

X � Ñ X � : t x � u� PI ÞÑx �

for � P I are continuous.

In particular, the product topology must contain � � 1
� pU� q for every � P I and U� PT� , and it

is the smallest topology that contains them, which means the sets� � 1
� pU� q form a subbase. It is

important to spell out precisely what this means. We have

� � 1
� pU� q �

#

t x � u� PI P
¹

� PI

X �

�
�
�
� x � PU�

+

;

so in each of these sets, only a single coordinate is constrained. It follows that in a �nite inters-
esection of sets of this form, only�nitely many of the coordinates will be constrained, while the
rest remain completely free. This implies:

Proposition 4.3. A base for the product topology on
±

� PI X � is formed by the collection of
all subsets of the form

±
� PI U� where U� € X � is open for every� P I and U� � X � is satis�ed

for at most �nitely many � P I . �

The last part of the above statement makes no di�erence when the product is �nite, but for
in�nite products, it means that arbitrary subsets of the form

±
� PI U� €

±
� PI X � are not open

just becauseU� € X � is open for every� . Dropping the �at most �nitely many� condition would
produce a much stronger topology with very di�erent properties (see Exercise4.6 below).

Exercise 4.4. Show that a sequencet xn
� u� PI P

±
� PI X � for n P N converges asn Ñ 8 to

t x � u� PI P
±

� PI X � in the product topology if and only if for all � P I , the individual sequences
xn

� converge inX � to x � .
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Exercise 4.5. Show that for any other spaceY , a map f : Y Ñ
±

� PI X � is continuous if and
only if � � � f : Y Ñ X � is continuous for every� P I .

There is a special notation for the product set in the case where all theX � are taken to be
the same �xed spaceX : the product

±
� PI X has an obvious identi�cation with the set of all (not

necessarily continuous) functionsI Ñ X , and we write

X I :�
¹

� PI

X � t (not necessarily continuous) functionsf : I Ñ X u:

For example we could now write Rn � Rt 1;:::;n u if we preferred. The notation is motivated in
part by the combinatorial observation that if X and I are both �nite sets with a and b elements
respectively, then X I has ab elements. The caseX � t 0; 1u is popular in abstract set theory since
t 0; 1uI � t f : I Ñ t 0; 1uuhas a straightforward interpretation as the set of all subsets ofI , which is
often abbreviated as2I :� t 0; 1uI . But this example is not very interesting for topology sincet 0; 1u
is not a very interesting topological space (no matter which topology you put on it�there are only
four choices). WhenX is a more interesting space, the most important thing to understand about
X I comes from Exercise4.4: a sequence of functionsf n PX I converges tof PX I if and only if it
convergespointwise , i.e.

f n p� q Ñ f p� q for every � P I:

The product topology on X I is therefore also sometimes called thetopology of pointwise con-
vergence (punktweise Konvergenz).

Exercise 4.6. Assume I is an in�nite set and tpX � ; T� qu� PI is a collection of topological
spaces. In addition to the usual product topology on

±
� X � , one can de�ne the so-calledbox

topology, which has a base of the form
#

¹

� PI

U�

�
�
�
� U� PT� for all � P I

+

:

(a) Compared with the usual product topology, is the box topology stronger, weaker, or
neither?

(b) What does it mean for a sequence in
±

� X � to converge in the box topology? In par-
ticular, consider the case where all theX � are a �xed spaceX and

±
� X is identi�ed

with the space of all functions X I � t f : I Ñ X u; what does it mean for a sequence of
functions f n : I Ñ X to converge in the box topology to a function f : I Ñ X ?

With examples like these at our disposal, we can now address the following important question
in full generality:

Question 4.7. To what extent are the following conditions for mapsf : X Ñ Y between
topological spaces equivalent?


 f � 1pUq € X is open for every open setU € Y ;

 For every convergent sequencexn Ñ x in X , f pxn q Ñ f pxq in Y .

The �rst condition is ordinary continuity, while the second is called sequential continuity
(Folgenstetigkeit). We proved in Lecture 2 that these two conditions are equivalent for maps
betweenmetric spaces, and if you look again at the proof that (b)ñ (c) in the discussion following
De�nition 2.5, you'll see that it still makes sense in arbitrary topological spaces, proving:

Theorem 4.8. For arbitrary topological spacesX and Y , all continuous maps X Ñ Y are
sequentially continuous. �
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The converse is trickier. Look again at the proof in Lecture2 that (c) ñ (b) for De�nition 2.5.
That proof speci�cally referred to open balls about a point, so it is not so clear how to make sense
of it in topological spaces where there is no metric. We can see however that the argument still
works if we can remove all mention of open balls and replace it with the following lemma:

�Lemma� 4.9. In any topological spaceX , a subsetA € X is not open if and only if there
exists a point x PA and a sequencexn PX zA such that xn Ñ x.

I've put the word �lemma� in quotation marks here for a very good reason: as written, the
statement is false, and so is the converse of Theorem4.8! Sequential continuity does not always
imply continuity. Here is a counterexample.

Example 4.10 (cf. [Jän05 , Ÿ6.3]). Let X � C0pr0; 1s; r� 1; 1sq € r� 1; 1sr0;1s, i.e. X is the set of
all continuous functions f : r0; 1s Ñ r� 1; 1s, and we assign to it the subspace topology as a subset
of the spacer� 1; 1sr0;1s of all functions f : r0; 1s Ñ r� 1; 1s. In other words, X carries the topology
of pointwise convergence. Next, de�neY to be the same set, but with the topology induced by
the L 2-metric

d2pf; g q �

d » 1

0
|f ptq � gptq|2 dt:

Now consider the identity map from X to Y :

� : X Ñ Y : f ÞÑf:

If f n Ñ f is a convergent sequence inX , then the functions converge pointwise, so|f n � f |2

converges pointwise to0, and we claim that this implies
³1
0 |f n ptq � f ptq|2 dt Ñ 0. This re-

quires a fundamental result from measure theory, Lebesgue'sdominated convergence theorem(see
e.g. [LL01 , Ÿ1.8] or [Rud87 , Theorem 1.34]): it states that if gn is a sequence of measurable func-
tions that converge almost everywhere tog and all satisfy |gn | ¤ G for some Lebesgue integrable
function G, then

³
gn converges to

³
g. In the present case, the hypotheses are satis�ed since the

functions f n take values in the bounded domainr� 1; 1s, which bounds|f n � f | uniformly below the
constant (and thus integrable) function 2. We conclude that d2pf n ; f q Ñ 0, hence� is sequentially
continuous.

To show however that � is continuous, we would need to �nd for every� ¡ 0 a neighborhood
U € X of 0 such that � pUq € B � p0q € Y . The trouble here is that neighborhoods inX (with
the product topology) are somewhat peculiar objects: ifU is one, then it contains some open
set containing 0, which means it contains at least one of the sets

±
� Pr0;1s U� in our base for the

product topology, where the U� are all open neighborhoods of0 in r� 1; 1s but there is at most a
�nite subset I € r 0; 1s consisting of � P r0; 1s for which U� � r� 1; 1s. Now choose a continuous
function f : r0; 1s Ñ r0; 1s that vanishes on the �nite subset I but equals 1 on a �large� subset of
r0; 1szI . Depending how many points are inI , you may have to make this function oscillate very
rapidly back and forth between 0 and 1, but since I is only �nite, you can still do this such that the
measure of the domain on whichf � 1 is as close to1 as you like, which makesd2pf; 0q also only
slightly less than 1. In particular, f belongs to the neighborhoodU in X but not to B � p0q € Y if
� is su�ciently small.

We deduce from the above example that �Lemma�4.9 is not always true, since it would imply
that continuity and sequential continuity are equivalent. We are led to ask: what extra hypotheses
could be added so that the lemma holds?

Definition 4.11. Given a point x in a spaceX , a neighborhood base (Umgebungsbasis)
for x is a collection B of neighborhoods ofx such that every neighborhood ofx contains some
U PB.
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Recall that a set I is countable (abzählbar) if it admits an injection into the natural num-
bers N. This de�nition allows I to be either �nite or in�nite; if it is �countably in�nite� then we
can equivalently say that I admits a bijection with N. This is also equivalent to saying that there
exists a sequencet xn P I un PN that includes every point of I . For example, it is easy to show that
the set Q of rational numbers is countable, but Cantor's famous �diagonal� argument shows that
R is not.

Definition 4.12 (the countability axioms). A spaceX is called �rst countable (� X erfüllt
das erste Abzählbarkeitsaxiom�) if every point in x has a countable neighborhood base. We callX
second countable (� X erfüllt das zweite Abzählbarkeitsaxiom�) if its topology has a countable
base.

It is easy to see that every second countable space is also �rst countable: ifX has a countable
baseB, then for eachx PX , the collection of sets inB that contain x is a countable neighborhood
base forx. The next example shows that the converse is false.

Example 4.13. If X has the discrete topology, then it is �rst countable because for each
x P X , one can form a neighborhood base out of the single open sett xu € X . But X is second
countable if and only if X itself is a countable set (prove it!), so e.g.R with the discrete topology
is �rst but not second countable.

Example 4.14. All metric spaces are �rst countable. Indeed, for everyx PX , the collection of
open ballsB1{n pxq € X for n PN forms a countable neighborhood base. (Note that Example4.13
is a special case of this, so not all metric spaces are second countable.)

We can now prove a corrected version of �Lemma�4.9. Let us �rst make a useful general
observation that follows directly from the axioms of a topology.

Lemma 4.15. In any spaceX , a subsetA € X is open if and only if every pointx P A has a
neighborhoodV € X that is contained in A.

Proof. If the latter condition holds, then A is the union of open sets contained in such
neighborhoods and is therefore open. Conversely, ifA is open, thenA itself can be taken as the
desired neighborhood of everyx PA. �

Lemma 4.16. In any �rst countable topological spaceX , a subsetA € X is not open if and
only if there exists a pointx PA and a sequencexn PX zA such that xn Ñ x.

Proof. If A € X is open, then for everyx P A and sequencexn P X converging to x, we
cannot havexn PX zA for all n sinceA is a neighborhood ofx. This is true so far for all topological
spaces, with or without the �rst countability axiom, but the latter will be needed in order to prove
the converse. So, suppose now thatA € X is not open, which by Lemma 4.15, means there
exists a point x P A such that no neighborhoodV € X of x is contained in A. Fix a countable
neighborhood baseU1; U2; U3; : : : for x.

It will make our lives slightly easier if the neighborhood base is a nested sequence, meaning

X • U1 • U2 • U3 • : : : Qx;

and we claim that this can be assumed without loss of generality. Indeed, setU1
1 :� U1, and if

U2 is not contained in U1
1, consider instead the setU2 X U1

1, which is also a neighborhood ofx
and therefore (by the de�nition of a neighborhood base) containsUn for somen P N. SinceUn is
contained in U1

1, we then setU1
2 :� Un . Now continue this process by settingU1

3 :� Um such that
Um € U1

2 X U3 and so forth. This algorithm produces a nested sequenceU1
1 • U1

2 • U1
3 • : : : such

that U1
n € Un for every n, hence the new neighborhoods also form a neighborhood base forx. Let

us replace our original sequence with the nested sequence and continue to call itt Un un PN.
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With this new assumption in place, observe that since none of the neighborhoodsUn can be
contained in A, there exists a sequence of points

xn PUn such that xn RA:

This sequence converges tox since every neighborhoodV € X of x contains one of theUN , implying
that for all n ¥ N ,

xn PUn € UN € V:

�

Combining this lemma with our proof in Lecture 2 that sequential continuity implies continuity
in metric spaces yields:

Corollary 4.17. For any spacesX and Y such that X is �rst countable, every sequentially
continuous mapX Ñ Y is also continuous. �

It is possible to generalize this result beyond �rst countable spaces, but it requires expanding
our notion of what a �sequence� can be. If you think of a sequence inX as a map from the (ordered)
set of natural numbers N to X , then one possible way to generalize is to consider more general
partially ordered sets as domains. Recall that a binary relation  de�ned on some subset of all
pairs of elements in a setI is called apartial order (Halbordnung or Teilordnung) if it satis�es
(i) x   x for all x, (ii) x   y and y   x implies x � y, and (iii) x   y and y   z implies x   z. We
write � x ¡ y� as a synonym for �y   x�, and the set I together with its partial order   is called a
partially ordered set (partiell geordnete Menge). One obvious example ispN; ¤q, though unlike
this example (which is totally ordered), it is not generally required in a partially ordered setpI;   q
that every pair of elementsx; y P I satisfy either x   y or y   x. We will see more exotic examples
below.

Definition 4.18. A directed set (gerichtete Menge) pI;   q consists of a setI with a partial
order   such that for every pair �; � P I , there exists an element
 P I with 
 ¡ � and 
 ¡ � .

The natural numbers pN; ¤q clearly form a directed set, but in topology, one also encounters
many interesting examples of directed sets that need not be totally ordered or countable.

Example 4.19. If X is a space andx PX , one can de�ne a directed setpI;   qwhereI is the set
of all neighborhoods ofx in X , and U   V for U; V P I meansV € U. This is a directed set because
given any pair of neighborhoodsU; V € X of x, the intersection U X V is also a neighborhood ofx
and thus de�nes an element ofI with U X V € U and U X V € V. Note that neither of U and V
need be contained in the other, so they might not satisfy eitherU   V or V   U.

Definition 4.20. Given a spaceX , a net (Netz) t x � u� PI in X is a function I Ñ X : � ÞÑx � ,
where pI;   q is a directed set.

Definition 4.21. We say that a net t x � u� PI in X converges to x PX if for every neighbor-
hood U € X of x, there exists an element� 0 P I such that x � PU for every � ¡ � 0.

Convergence of nets is also sometimes referred to in the literature asMoore-Smith convergence,
see e.g. [Kel75 ]. Note that a net t x � u� PI whose underlying directed set ispI;   q � p N; ¤q is simply
a sequence, and the above de�nition then reduces to the usual notion of convergence for a sequence.
We can now prove the most general corrected version of �Lemma�4.9.

Lemma 4.22. In any spaceX , a subsetA € X is not open if and only if there exists a point
x PA and a net t x � u� PI in X that converges tox but satis�es x � RA for every � P I .
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Proof. If A € X is open then it is a neighborhood of everyx P A, so the nonexistence of
such a net is an immediate consequence of De�nition4.21. Conversely, if A is not open, then
Lemma 4.15 provides a point x P A such that for every neighborhoodV € X of x, there exists a
point

xV PV such that xV RA:

Taking pI;   q to be the directed set of all neighborhoods ofx, ordered by inclusion as in Ex-
ample 4.19, the collection of points t xV uV PI is now a net which converges tox since for every
neighborhoodU € X of x,

V ¡ U ñ xV PV € U:

�

Putting all this together leads to the following statement equating continuity with a generalized
notion of sequential continuity. The proof is just a repeat of arguments we've already worked
through, but we'll spell it out for the sake of completeness.

Theorem 4.23. For any spacesX and Y , a map f : X Ñ Y is continuous if and only if for
every net t x � u� PI in X converging to a pointx PX , the net t f px � qu� PI in Y converges tof pxq.

Proof. Supposef is continuous and t x � u� PI is a net in X converging to x P X . Then for
any neighborhoodU € Y of f pxq, f � 1pUq € X is a neighborhood ofx, hence there exists� 0 P I
such that � ¡ � 0 implies x � P f � 1pUq, or equivalently, f px � q PU. This proves that t f px � qu� PI

converges in the sense of De�nition4.21 to f pxq.
To prove the converse, let us suppose thatf : X Ñ Y is not continuous, so there exists an

open setU € Y for which f � 1pUq € X is not open. Then by Lemma4.22, there exists a point
x P f � 1pUq and a net t x � u� PI in X that converges to x but satis�es x � Rf � 1pUq for every � P I .
Now t f px � qu� PI is a net in Y that does not converge tof pxq, sinceU is an open neighborhood of
f pxq but f px � q is never in U. �

Nets take a bit of getting used to in comparison with sequences. The following addendum to
Example 4.10 may help in this regard, but it may also make you feel deeply unsettled.

Example 4.24. For the identity map � : X Ñ Y in Example 4.10, one could extract from the
above proof an example of a nett x � u� PI in X that converges to0 without t � px � qu� PI converging
to 0 in Y , but here is perhaps a slightly simpler example. De�neI as the set of all �nite subsets of
r0; 1s, with the partial order A   B for A; B € r 0; 1s de�ned to mean A € B . Note that pI;   q is
a directed set since for any two �nite subsetsA; B € r 0; 1s, A Y B is also a �nite subset and thus
an element ofI . Now choose for eachA P I a continuous function

f A : r0; 1s Ñ r0; 1s

such that f A |A � 0 but
³1

0 |f A ptq|2 dt ¡ 1{4. The net t � pf A quA PI in Y clearly does not converge
to 0 since none of these functions belong to the ballB1{2p0q in Y . But t f A uA PI does converge to
0 in X : indeed, sinceX has the product topology, any neighborhoodU € X of 0 contains some
open neighborhood of0 that is of the form

±
� Pr0;1s U� for open neighborhoodsU� € r� 1; 1s of 0

such that U� � r� 1; 1s for all � outside of some �nite subsetA0 € r 0; 1s. It follows that for all
A P I with A ¡ A0 P I ,

f A p� q � 0 PU� for all � PA0;

implying f A PU.
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5. Compactness (May 2, 2023)

We saw in our discussion of metric spaces (Lecture2) that boundedness is not a meaningful
notion in topology, i.e. even if we have data such as a metric with which to de�ne what a �bounded�
set is, it may still be homeomorphic to sets that are not bounded. Instead, we considercompact
sets, a notion that is topologically invariant. The main de�nition carries over from Lecture 2 with
no change.

Definition 5.1. Given a spaceX and subset A € X , an open cover/covering (o�ene
Überdeckung) of A is a collection of open subsetst U� € X u� PI such that A €

”
� PI U� .

We will also occasionally use the notation

A €
¤

UPO

U

to indicate an open covering ofA, where O is a collection of open subsets ofX , i.e. O € T , where
T is the topology of X .

Definition 5.2. A subset A € X is compact (kompakt) if every open cover ofA has a �nite
subcover (eine endliche Teilüberdeckung), i.e. given an arbitrary open covert U� u� PI of A, one can
always �nd a �nite subset t � 1; : : : ; � N u € I such that A € U� 1 Y : : : Y U� N . We say that X itself
is a compact space if X is a compact subset of itself.

Exercise 5.3. Show that a subset A € X is compact if and only if A with the subspace
topology is a compact space.

Example 5.4. For any spaceX with the discrete topology, a subsetA € X is compact if and
only if A is �nite. Indeed, the collection of subsetstt xu € X ux PA forms an open covering ofA in
the discrete topology, and it has a �nite subcovering if and only if A is �nite, hence compactness
implies �niteness. The converse follows from the next example.

Example 5.5. In any space X , every �nite subset A € X is compact. Indeed, for A �
t a1; : : : ; aN u with an open covering t U� u� PI , pick any � i P I with ai P U� i for i � 1; : : : ; N , then
the setsU� 1 ; : : : ; U� N form an open subcover.

Example 5.6. A subset A € Rn in Euclidean space with its standard topology is compact
if and only if it is closed and bounded. This is known as theHeine-Borel theorem, and in one
direction it is easy to prove; see Exercise5.7 below. For the other direction, you have probably
seen a proof in your analysis classes of theBolzano-Weierstrass theorem, stating that if A is closed
and bounded then every sequence inA has a convergent subsequence with limit inA; we say in this
case thatA is sequentially compact. We will prove in the following that compactness and sequential
compactness are equivalent for second countable spaces, and every subset ofRn is second countable
(see Exercise5.9 below). A frequently occurring concrete example is the sphere

Sn € Rn � 1;

which is a closed and bounded subset ofRn � 1 and is therefore compact.

Exercise 5.7. Show that in any metric space, compact subsets must be both closed and
bounded.
Hint: For closedness, you may want to assume the theorem proved below that compact �rst
countable spaces are also sequentially compact�recall that all metric spaces are �rst countable.

Remark 5.8. Note that the converse of Exercise5.7 is generally false: being closed and
bounded is not enough for compactness in arbitrary metric spaces. Here is an important class of
examples from functional analysis: a vector spaceH with an inner product x ; y is called aHilbert
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space (Hilbertraum ) if it is complete (meaning all Cauchy sequences converge) with respect to
the metric dpx; yq �

a
xx � y; x � yy. The closed unit ball sB1p0q � t x P H | xx; xy ¤ 1u is clearly

both closed and bounded inH , and it is compact if H is �nite dimensional since, in this case,H is
both linearly isomorphic and homeomorphic toRn (or Cn in the complex case) with its standard
inner product. But if H is in�nite dimensional, then sB1p0q contains an in�nite orthonormal set
e1; e2; e3; : : :, i.e. satisfying

xei ; ei y � 1 for all i; xei ; ej y � 0 if i � j .

It then follows by a standard argument of Euclidean geometry thatdpei ; ej q �
?

2 wheneveri � j ,
so for any r  

?
2{2, no ball of radius r in H can contain more than one of these vectors. It

follows that t B r pxq | x P Hu is an open cover of sB1p0q that has no �nite subcover. This way of
characterizing the distinction between �nite- and in�nite-dimensional Hilbert spaces in terms of
the compactness of the unit ball has useful applications, e.g. in the theory of elliptic PDEs. The
latter has many quite deep applications in geometry and topology, for instance the index theory of
Atiyah-Singer (see [Boo77 ,BB85 ]), gauge-theoretic invariants of smooth manifolds [DK90 ], and
the theory of pseudoholomorphic curves in symplectic topology [MS12 ,Wen18 ].

Exercise 5.9. A space X is called separable (separabel) if it contains a countable subset
A € X that is also dense (dicht ), meaning the closure4 of A is X .

(a) Show that if X is a metric space andA € X is a dense subset, then the collection of open
balls t B1{n pxq € X | n PN; x PAu forms a base for the topology ofX .

(b) Deduce that every separable and metrizable space is second countable.
(c) Show that Rn with its standard topology is separable.
(d) Show that if X is any second countable space, then every subsetA € X with the subspace

topology is also second countable.

Example 5.10. A union of �nitely many compact subsets in a spaceX is also compact. (This
is an easy exercise.)

The next result implies that closed subsets in compact spaces are also compact.

Proposition 5.11. For any compact subsetK € X , if A € X is closed and also is contained
in K , then A is compact.

Proof. Supposet U� u� PI is an open cover ofA. Since A is closed, X zA is open, so that
supplementing the collectiont U� u� PI with X zA de�nes an open cover ofX , and therefore also an
open cover ofK . SinceK is compact, there is then a �nite subsett � 1; : : : ; � N u € I such that

K € U� 1 Y : : : Y U� N Y pX zAq:

But A € K is disjoint from X zA, so this meansA € U� 1 Y : : : Y U� N , and we have found the
desired �nite subcover for A. �

The following theorem is just a repeat of Theorem2.9, but in the more general context of
topological rather than metric spaces. The proof carries over word for word.

Theorem 5.12. If f : X Ñ Y is continuous andK € X is compact, then so isf pK q € Y . �

Now would be a good moment to introduce the quotient topology, since it provides a large
class of new examples of compact spaces.

4We gave the de�nition of the term closure in Lecture 3 (see De�nition 3.1), originally in the context of metric
spaces, but the same de�nition carries over to general topological spaces without change.
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Definition 5.13. SupposeX is a space and� is an equivalence relation onX , with the set of
equivalence classes denoted byX {� . The quotient topology on X {� is the strongest topology
for which the natural projection map � : X Ñ X {� sending each pointx P X to its equivalence
classrxs PX {� is continuous. Equivalently, a subsetU € X {� is open in the quotient topology if
and only if � � 1pUq is an open subset ofX .

I suggest you pause for a moment to make sure you understand why the two descriptions of
the quotient topology in that de�nition are equivalent. Applying Theorem 5.12 to the continuous
projection � : X Ñ X {� , we now have:

Corollary 5.14. For any compact spaceX with an equivalence relation� , X {� with the
quotient topology is also compact. �

Example 5.15. SinceSn is compact, so isRPn � Sn
L
t x � � xu if we assign it the quotient

topology. (Note that by Exercise 2.17(c), the quotient topology on RPn is metrizable, and can be
de�ned in terms of a natural metric induced on the quotient from the Euclidean metric restricted
to Sn .)

Exercise 5.16. The spaceS1, known as the circle , is normally de�ned as the unit circle in
R2 and endowed with the subspace topology (induced by the Euclidean metric onR2). Show that
the following spaces with their natural quotient topologies are both homeomorphic toS1:

(a) R{Z, meaning the set of equivalence classes of real numbers wherex � y meansx � y PZ.
(b) r0; 1s{� , where 0 � 1.

For the next example, we introduce a convenient piece of standard notation. The quotient of a
spaceX by a subsetA € X is de�ned as

X {A :� X {�

with the quotient topology, where the equivalence relation is de�ned such thatx � y for every
x; y P A and otherwisex � x for all x P X . In other words, X {A is the result of modifying X by
�collapsing A to a point�.

(c) Convince yourself that for every n PN, Sn is homeomorphic toDn {Sn � 1, where

Dn :� t x PRn | |x | ¤ 1u:

Remark: Part (b) becomes a special case of part (c) if we replacer0; 1s by D1 � r� 1; 1s.

The remainder of this lecture will be concerned with the extent to which compactness is
equivalent to the notion of sequential compactness (Folgenkompaktheit), de�ned as follows:

Definition 5.17. A subset A € X is sequentially compact if every sequence inA has a
subsequence that converges to a point inA.

As you might guess from our discussion of sequential continuity in the previous lecture, com-
pactness and sequential compactness are not generally equivalent without some extra condition.
But as with continuity, one obtains a result free of extra conditions by replacing sequences with
nets.

Definition 5.18. SupposepI;   q is a directed set andt x � u� PI is a net in a spaceX . A point
x P X is called acluster point (Häufungspunkt) of t x � u� PI if for every neighborhoodU € X of
x and every � 0 P I , there exists � ¡ � 0 such that x � PU.

Notice that the above de�nition is almost identical to that of convergenceof t x � u� PI to x
(see De�nition 4.21), only the roles of �for every� and �there exist� have been reversed at the end.
Informally, x being a cluster point does not requirex � to be arbitrarily close to x for all su�ciently
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large � , but only that one should be able to �nd some � arbitrarily large for which x � is arbitrarily
close. You should take a moment to think about what this de�nition means in the special case
pI;   q � p N; ¤q, where the net becomes a sequence, so the notion should be already familiar.

Definition 5.19. Given two directed setspI;   q and pJ;   q, and nets t x � u� PI and t y� u� PJ in
a spaceX , we call t y� u� PJ a subnet (Teilnetz) of t x � u� PI if y� � x � p� q for all � P J and some
function � : J Ñ I with the property that for every � 0 P I , there exists � 0 P J for which � ¡ � 0

implies � p� q¡ � 0.

If pI;   qand pJ;   qin the above de�nition are both pN; ¤q so that t x � u� PI and t y� u� PI become
sequencesxn and yk respectively, then yk will be a subnet of xn if it is of the form yk � xn k for
some sequencenk P N satisfying lim kÑ8 nk � 8 . This agrees with at least one of the standard
de�nitions of the term subsequence (Teilfolge); a slightly stricter de�nition would require the
sequencenk to be monotone, but this di�erence is harmless. One should however be careful
not to fall into the trap of thinking that a subnet of a sequence is always a subsequence�even if
pI;   q � p N; ¤q, De�nition 5.19allows much more general choices for the directed setpJ;   qand the
function � : J Ñ N underlying a subnet of a sequence. In particular, the following lemma cannot be
used to �nd convergent subsequences without imposing further conditions (cf. Lemma5.22below).

Lemma 5.20. A net t x � u� PI in X has a cluster point atx P X if and only if it has a subnet
convergent tox.

Proof. Let us prove that a convergent subnet can always be derived from a cluster pointx.
Let Nx denote the set of all neighborhoods ofx in X , and de�ne J � I � Nx with a partial order
  de�ned by

p�; Uq¡ p�; Vq ô � ¡ � and U € V:

This makes pJ;   q a directed set sincepI;   q is already a directed set and the intersection of two
neighborhoods is a neighborhood contained in both. Now sincex is a cluster point of the net
t x � u� PI , there exists a function � : J Ñ I such that for all p�; Uq PJ , � p�; Uq � : � satis�es � ¡ �
and x � PU. It is then straightforward to check that t x � p�; Uqup�; UqPJ is a subnet convergent tox.

The converse is easier, so I will leave it as an exercise. �

Here is the most general result relating compactness to nets.

Theorem 5.21. A spaceX is compact if and only if every net inX has a convergent subnet.

Proof. We prove �rst that if X is compact, then every nett x � u� PI has a cluster point (and
therefore by Lemma 5.20 a convergent subnet). Arguing by contradiction, suppose nox P X is
a cluster point of t x � u� PI . Then one can associate to everyx P X a neighborhoodUx and an
element � x P I such that for every � ¡ � x , x � R Ux . Without loss of generality let us suppose
the neighborhoodsUx are all open. Then the collection of setst Ux ux PX forms an open cover ofX ,
and therefore has a �nite subcover sinceX is compact. This means there is a �nite set of points
x1; : : : ; xN PX such that X � Ux 1 Y : : : Y Ux N . Now sincepI;   q is a directed set, we can �nd an
element � P I satisfying

� ¡ � x i for all i � 1; : : : ; N;

hencex � R Ux i for every i � 1; : : : ; N . But the latter sets cover X , so this is impossible, and we
have found a contradiction.

For the converse, we shall prove that ifX is not compact then there exists a net with no
cluster point. Being noncompact means one can �nd a collectionO of open subsets such that
X �

”
UPO U but no �nite subcollection of them has union equal to X . De�ne I to be the set of
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all �nite subcollections of the sets in O, so by assumption, one can associate to everyA P I a point
xA PX satisfying

(5.1) xA R
¤

UPA

U:

De�ne a partial order   on I by
A   B ô A € B;

and notice that pI;   q is now a directed set since the union of any two �nite subcollections is
another �nite subcollection that contains both. This makes t xA uA PI a net in X , and we claim
that it has no cluster point. Indeed, if x P X is a cluster point of t xA uA PI , then since the sets in
O cover X , there is a setV P O that is a neighborhood of x, and it follows that there must exist
someA ¡ t Vu in I for which

xA PV €
¤

UPA

U:

This contradicts (5.1) and thus proves the claim that there is no cluster point. �

The next step is to impose countability axioms so that Theorem5.21gives us corollaries about
sequential compactness.

Lemma 5.22. If xn P X is a sequence with a cluster point atx P X and x has a countable
neighborhood base, thenxn has a subsequence converging tox.

Proof. As in the proof of Lemma 4.16, we can assume without loss of generality that our
countable neighborhood base has the form of a nested sequence of neighborhoods

X • U1 • U2 • : : : Qx:

Since x is a cluster point, we can choosek1 P N so that xk1 P U1, and then inductively for each
n P N, choosekn P N such that xkn P Un and kn ¡ kn � 1. Then xkn is a subsequence ofxn and it
converges tox, since for all neighborhoodsV € X of x, we haveV • UN for someN PN, implying

n ¥ N ñ xkn PUn € UN € V:

�

Corollary 5.23. If X is compact and �rst countable, then it is also sequentially compact. �

Example 5.24. Though it is not so easy to see this, the spacer0; 1sR of (not necessarily
continuous) functions R Ñ r 0; 1s with the topology of pointwise convergence is compact, but
not sequentially compact. Compactness follows directly from a deep result known as Tychono�'s
theorem, which we will discuss in the next lecture. For the construction of a sequence inr0; 1sR

with no convergent subsequence, see Exercise6.5.

To prove compactness from sequential compactness, it turns out that we will need to invoke
the second countability axiom. In practice, almost all of the spaces that topologists spend their
time thinking about are second countable, resulting from the fact that most of them are separable
and metrizable (see Exercise5.9). One useful property shared by all second countable (but not
necessarily compact) spaces is the following.

Lemma 5.25. If X is second countable, then every open cover ofX has a countable subcover.

Proof. Assumet U� u� PI is an open cover ofX and B is a countable base. Then eachU� is a
union of sets inB, and the collection of all sets inB that are contained in someU� is a countable
subcollection B1 € B that also coversX . Let us denoteB1 � t V1; V2; V3; : : :u. We can now choose
for eachVn PB1 an element� n P I such that Vn € U� n , and t U� n un PN is then a countable subcover
of t U� u� PI . �
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If you now take the second half of the proof of Theorem5.21 and redo it with the focus on
sequences instead of nets, and with Lemma5.25 in mind, the result is the following.

Theorem 5.26. If X is second countable and sequentially compact, then it is compact.

Proof. We need to show that every open cover ofX has a �nite subcover. SinceX is second
countable, we can �rst use Lemma5.25 to reduce the given open cover to acountable subcover
U1; U2; U3; : : : € X . Now arguing by contradiction, suppose thatX is sequentially compact but the
setsU1; : : : ; Un do not cover X for any n PN, hence there exists a sequencexn PX such that

(5.2) xn RU1 Y : : : Y Un

for every n P N. Some subsequencexkn then converges to a pointx P X , which necessarily lies
in UN for some N P N. It follows that xkn also lies in UN for all n su�ciently large, but this
contradicts (5.2) as soon askn ¥ N . �

Exercise 5.27. Consider the space

X �
 
f P r0; 1sR

�
� f pxq � 0 for at most countably many points x PR

(
;

with the subspace topology that it inherits from r0; 1sR.
(a) Show that X is sequentially compact.

Hint: For any sequencef n PX , the set
”

n PNt x PR | f n pxq � 0u is also countable.
(b) For each x P R, de�ne Ux � t f P X | � 1   f pxq   1u. Show that the collection

t Ux € X | x P Ru forms an open cover ofX that has no �nite subcover, henceX is not
compact.

Corollary 5.23and Theorem5.26combine to give the following result that is easy to remember:

Corollary 5.28. A second countable space is compact if and only if it is sequentially compact.
�

A loose end: We know from Exercise5.9 that every separable metric space is second countable,
thus Corollary 5.28 implies the equivalence of compactness and sequential compactness for sepa-
rable metric spaces, which includes most of the metric spaces that one uses in practice. However,
more than this was claimed in Lecture2: the equivalence should hold inall metric spaces, and this
does not quite follow from what we've proved here. The missing ingredient needed is the notion
of total boundedness: one can show that every sequentially compact setA in a metric spaceX is
totally bounded (total beschränkt), meaning that for every � ¡ 0, A is contained in the union
of �nitely many balls of radius � . Taking � � 1{n for n PN then provides a countable collection of
open balls coveringA, which can serve as a substitute for the countable subcover we used in the
proof of Theorem 5.26. We will not go further into the details here, since this is a topology and
not an analysis course, and we will not need the result going forward.

6. Tychono� 's theorem and the separation axioms (May 4, 2023)

Topic 1: Products of compact spaces. Here is a result that may sound less surprising at
�rst than it actually is.

Theorem 6.1 (Tychono�'s theorem) . For any collection of compact spacest X � u� PI , the prod-
uct

±
� PI X � is compact.

Nonmathematical remark. Thinking like an Anglophone may lead you to false assumptions
about the pronunciation of the name Tychono�, e.g. I was mispronouncing it for years until I �nally
looked up the name on Wikipedia in the context of teaching this course. The original Russian
spelling is Tihonov , which would normally get transliterated into English as Tikhonov. The
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reason he instead became known outside of Russia as Tychono� is that his papers were published
in German, hence di�erent phonetic conventions.

When I is a �nite set, Theorem 6.1 says something not at all surprising, and the proof is
straightforward, so let's start with that.

Proof of Theorem 6.1 for finite products. By induction, it will su�ce to prove that
if X and Y are both compact spaces then so isX � Y . We will do so by showing that every
net in X � Y has a convergent subnet. Recall that a nettpx � ; y� qu� PI in X � Y converges to
px; yq P X � Y if and only if the nets t x � u� PI in X and t y� u� PI in Y converge to x and y
respectively. (The corresponding fact about sequences was proved in Exercise4.4�the proof for
nets is the same.) Now, sinceX is compact, t x � u� PI has a subnett x � p� qu� PJ convergent to some
point x PX , where J is some other directed set with a suitable function� : J Ñ I . Compactness
of Y implies in turn that t y� p� qu� PJ has a subnett y� p p
 qqu
 PK convergent to some pointy P Y .
We therefore obtain a subnet

tpx � �  p
 q; y� �  p
 qqu
 PK

of the original net tpx � ; y� qu� PI that converges in X � Y to px; yq. �

The much less obvious aspect of Theorem6.1 is that it is also true for in�nite products, even
those for which the index setI is uncountably in�nite. So it follows for instance that the space

r0; 1sR � t not necessarily continuous functionsf : R Ñ r 0; 1su �
¹

� PR

r0; 1s

with the topology of pointwise convergence is compact, as an immediate consequence of the fact that
r0; 1s is compact. Of course, this does not mean that every sequence of functionsf n : R Ñ r 0; 1s
has a pointwise convergent subsequence! That would be truly surprising, but it is false (see
Exercise6.5); it turns out that r0; 1sR is not a �rst countable space, so it is allowed to be compact
without being sequentially compact.

For a slightly di�erent example, r� 1; 1sN is compact. We can identify this space with the set
of all sequences inr� 1; 1s, again with the topology of pointwise convergence, i.e. a sequence of
sequencest xn

k ukPN P r� 1; 1sN converges asn Ñ 8 to a sequencet xk ukPN if limn Ñ8 xn
k � xk for

every k P N. Now observe that r� 1; 1sN also contains the unit ball in the in�nite-dimensional
Hilbert space

`2r� 1; 1s :�

#

t xk PRukPN

�
�
�
�
�

8̧

k � 1

|xk |2   8

+

with metric de�ned by

dptxk u; t yk uq2 �
8̧

k � 1

|xk � yk |2:

The unit ball in `2r� 1; 1s is clearly noncompact since it contains the sequence of sequenes

p1; 0; 0; : : :q; p0; 1; 0; : : :q; p0; 0; 1; 0; : : :q; : : : ;

which converges pointwise to0 but stays at a constant distance away from 0 with respect to
the metric, so it can have no convergent subsequence in the topology of`2r� 1; 1s. It may seem
surprising in this case that the larger set r� 1; 1sN is compact, but the reason is thatr� 1; 1sN has a
much weaker topology than`2r� 1; 1s: since it is easier to converge pointwise than it is to converge
in the `2-norm, r� 1; 1sN has more sequences with convergent subsequences (or subnets, as the case
may be).
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Remark 6.2. One conclusion you should draw from the above discussion is that Tychono�'s
theorem depends crucially on the way we de�ned the product topology on

±
� PI X � , i.e. it is

a result about the topology of pointwise convergence. The result becomes false, for instance, if
we replace the usual product topology by the �box� topology from Exercise4.6. For a concrete
example, consider the setr� 1; 1sN with the box topology, meaning sets of the form

 
f P r� 1; 1sN

�
� f pkq PUk for all k PN

(

for arbitrary collections of open subsetst Uk € r� 1; 1sukPN are open. Then the sequence of constant
functions f n pkq :� 1{n converges pointwise to0, but we claim that it has no cluster point in the
box topology. Indeed, the box topology contains the product topology, so if any subnet off n

converges in the box topology, then it must also converge in the product topology and hence
pointwise, meaning the only limit it could possibly converge to is0, and 0 is therefore the only
possible cluster point. But in the box topology,

U :�
 
f P r� 1; 1sN

�
� f pkq P p�1{k; 1{kq for all k PN

(

is an open neighborhood of0 satisfying f n R U for all n P N, so 0 is not a cluster point of this
sequence.

Let's go ahead and prove another special case of Tychono�'s theorem. The next proof is still
relatively straightforward, and it applies for instance to r� 1; 1sN. Part of the idea is to make our
lives easier by dealing with sequences instead of nets, which is made possible by the following
simple observation:

Lemma 6.3. If X 1; X 2; X 3; : : : is a countably in�nite sequence of spaces that are all second
countable, then

± 8
i � 1 X i is also second countable.

Proof. Fix for each i � 1; 2; 3; : : : a countable baseBi for the topology of X i . Then for each
n PN, the collection of sets

On :�

#

U1 � : : : � Un � X n � 1 � X n � 2 � : : : €
8¹

i � 1

X i

�
�
�
�
�

Ui PBi for each i � 1; : : : ; n

+

is countable sinceB1 � : : : � Bn is countable. Then the countable union of countable setsO1 Y
O2 Y O3 Y : : : is a base for

± 8
i � 1 X i , and it is countable. �

Proof of Theorem 6.1, second countable case. Assume the setI is countable and the
spacesX � are all second countable for� P I . In light of Lemma 6.3 and Theorem 5.26, it will
now su�ce to prove that for any sequence X 1; X 2; X 3; : : : of second countable spaces,

± 8
i � 1 X i is

sequentially compact. The idea is to combine the argument above for the case of �nite products with
Cantor's diagonal method. In order to avoid too many indices, let us denote elementsf P

± 8
i � 1 X i

as functions f : N Ñ
” 8

i � 1 X i that satisfy f piq P X i for each i P N. Now given a sequence
f n P

± 8
i � 1 X i , the compactness ofX 1 guarantees that there is a subsequencef 1

n of f n for which the
sequencef 1

n p1q in X 1 converges. Continuing inductively, we can construct a sequence of sequences
f k

n P
± 8

i � 1 X i for k; n P N such that for every k ¥ 2, t f k
n u8

n � 1 is a subsequence oft f k � 1
n u8

n � 1 and
the sequencef k

n pkq in X k converges asn Ñ 8 . It follows that for every �xed k PN, the sequence
t f n

n pkqu8n � 1 in X k converges, thust f n
n u8

n � 1 is a convergent subsequence of the original sequencef n

in
± 8

i � 1 X i . �

The ideas in the special cases we've treated so far can be applied toward a general proof of
Tychono�'s theorem, but the general case requires one major ingredient that wasn't needed so far:
the axiom of choice. This makes e.g. the compactness ofr� 1; 1sr0;1s somewhat harder to grasp
intuitively, as invoking the axiom of choice means that the existence of a cluster point for every
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sequence inr� 1; 1sr0;1s is guaranteed, but there is nothing even slightly resembling an algorithm
for �nding one. It is known in fact that this is not just a feature of any particular method of
proving the theorem�by a result due to Kelley [ Kel50 ], if one assumes that the usual axioms of
set theory (not including choice) hold and that Tychono�'s theorem also holds, then the axiom of
choice follows, thus the two are actually equivalent.

Speaking only for myself, I had a Ph.D. in mathematics already for several years before I ever
started to �nd the axiom of choice remotely worrying, so if you've never worried about it before,
I don't encourage you to start worrying now. As far as this course is concerned, we actually could
have skipped the general case of Tychono�'s theorem with no signi�cant loss of continuity�I am
including it here mainly for the sake of cultural education, and because the proof itself is interesting.

The proof given below is based on the characterization of compactness in terms of convergent
subnets (Theorem5.21) and is due to Paul Cherno� [Che92 ]. Similarly to certain standard results
in functional analysis that also depend on the axiom of choice (e.g. the Hahn-Banach theorem),
it uses the axiom in a somewhat indirect way, namely viaZorn's lemma, which is known to be
equivalent to the axiom of choice. I do not want to go far enough into abstract set theory here to
explain why it is equivalent: the proof is elementary but somewhat tedious, and you can �nd it
explained e.g. in [Jän05 ] or [Kel75 ]. I would recommend reading through that proof exactly once
in your life. For our purposes, we will just take the following statement of Zorn's lemma as a black
box.

Lemma 6.4 (Zorn's lemma). SupposepP;   q is a nonempty partially ordered set in which every
totally ordered subsetA € P has an upper bound, i.e. for every subset in which all pairsx; y P A
satisfy x   y or y   x, there exists an elementp P P such that p ¡ a for all a P A . Then every
totally ordered subsetA € P also has an upper boundp P P that is a maximal element, i.e. such
that no q PP with q � p satis�es q ¡ p. �

Proof of Theorem 6.1, general case. We shall continue to denote elements of
±

� PI X �

by functions f : I Ñ
”

� PI X � satisfying f p� q PX � for each � P I . Assuming all the X � are
compact, it su�ces by Theorem 5.21 to prove that every net t f � u� PK in

±
� PI X � has a cluster

point. The idea of Cherno�'s proof is as follows: we introduce below the notion of a �partial�
cluster point, which may be a function de�ned only on a subset ofI . We will show that the set of
all partial cluster points has a partial order for which Zorn's lemma applies and delivers a maximal
element. The last step is to show that a maximal element in the set of partial cluster points must
in fact be a cluster point of t f � u� PK .

To de�ne partial cluster points, notice that for any subset J € I , restricting any function f P±
� PI X � to the smaller domain J de�nes an elementf |J P

±
� PJ X � . We will refer to a pair pJ; gq

as apartial cluster point of the net t f � u� PK if J is a subset ofI and g P
±

� PJ X � is a cluster
point of the net t f � |J u� PK in

±
� PJ X � obtained by restricting the functions f � : I Ñ

”
� PI X �

to J € I . Let P denote the set of all partial cluster points of t f � u� PK . It is easy to see that
P is nonempty: indeed, for each individual � P I , the compactness ofX � implies that the net
t f � p� qu� PK in X � has a cluster point x � PX � , hencept� u; x � q PP .

There is also an obvious partial order onP : we shall write pJ; gq ¤ pJ 1; g1q wheneverJ € J 1

and g � g1|J . In order to satisfy the main hypothesis of Zorn's lemma, we claim that every totally
ordered subsetA € P has an upper bound. Being totally ordered means that for any two elements
of A , one is obtained from the other by restricting the function to a subset. We can therefore
de�ne a set J8 € I with a function g8 P

±
� PJ 8

X � by

J8 �
¤

t J | pJ;g qPA u

J;
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with g8 p� q de�ned as gp� q for any pJ; gq P A such that � P J . The total ordering condition
guarantees thatpJ8 ; g8 q is independent of choices, but it is not immediately clear whether it is an
element ofP , i.e. whether g8 is a cluster point of t f � |J 8 u� PK . To see this, supposeU €

±
� PJ 8

X �

is a neighborhood ofg8 , and recall that by the de�nition of the product topology, this means

g8 P
¹

� PJ 8

U� € U

for some collection of open setsU� € X � such that U� � X � for all � outside some �nite subset
J0 € J8 . SinceJ0 is �nite, and A is totally ordered, there exists somepJ; gq PA such that J0 € J .
Then the fact that pJ; gq is a partial cluster point means that for every � 0 P K , there exists a
� ¡ � 0 for which

f � |J P
¹

� PJ

U� :

It follows that f � |J 8 P
±

� PJ 8
U� as well, hencepJ8 ; g8 q is indeed a partial cluster point.

We can now apply Zorn's lemma and conclude thatP has a maximal elementpJM ; gM q PP .
We claim JM � I , which meansgM is a cluster point of the original net t f � u� PK in

±
� PI X � .

Note that since gM P
±

� PJ M
X � is a cluster point of t f � |J M u� PK , Lemma 5.20 provides a subnet

t f � p
 qu
 PL of t f � u� PK in
±

� PI X � whose restriction to JM converges togM . But if JM � I ,
then choosing an element� 0 P I zJM , we can exploit the fact that X � 0 is compact and use the
same trick as in the proof of Tychono� for �nite products to �nd a further subnet that also
converges at� 0 to some elementx0 P X � 0 . We have therefore found a subnet oft f � u� PK whose
restriction to JM Y t � 0u converges to the functiong1

M P
±

� PJ M Yt � 0 u X � de�ned by g1
M |J M � gM

and g1
M p� 0q � x0. This meanspJM Y t � 0u; g1

M q PP and pJM Y t � 0u; g1
M q¡ pJM ; gM q, which is a

contradiction since pJM ; gM q is maximal. �

Exercise 6.5. Consider the spacer0; 1sR of all functions f : R Ñ r 0; 1s, with the topology
of pointwise convergence. Tychono�'s theorem implies thatr0; 1sR is compact, but one can show
that it is not �rst countable, so it need not be sequentially compact.

(a) For x P R and n P N, let xpn q P t0; : : : ; 9u denote the nth digit to the right of the deci-
mal point in the decimal expansion ofx. Now de�ne a sequencef n P r0; 1sR by setting
f n pxq � x pn q

10 . Show that for any subsequencef kn of f n , there exists x P R such that
f kn pxq does not converge, hencef n has no pointwise convergent subsequence.
Food for thought: Could you do this if you also had to assume thatx is rational? Pre-
sumably not, becauser0; 1sQ is a product of countably many second countable spaces,
and we've proved that such products are second countable (unliker0; 1sR). This implies
that since r0; 1sQ is compact, it must also be sequentially compact.

(b) The compactness ofr0; 1sR does imply that every sequence has a convergentsubnet,
or equivalently, a cluster point. Use this to deduce that for any given sequencef n P
r0; 1sR, there exists a function f P r0; 1sR such that for every �nite subset X € R, some
subsequence off n converges tof at all points in X .
Achtung: Pay careful attention to the order of quanti�ers here. We're claiming that
the element f exists independently of the �nite set X € R on which we want some
subsequence to converge tof . (If you could let f depend on the choice of subsetX ,
this would be easy�but that is not allowed.) On the other hand, the actual choice of
subsequence is allowed to depend on the subsetX .

Challenge: Find a direct proof of the statement in part (b), without passing through Tychono�'s
theorem. I do not know of any way to do this that isn't approximately as di�cult as actually
proving Tychono�'s theorem and dependent on the axiom of choice.
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So much for Tychono�'s theorem. In truth, aside from the easy case of �nite products, the
general version of this theorem will probably not be mentioned again in this course. You may
hear of it again if you take functional analysis since it lies in the background of the Banach-
Alaoglu theorem on compactness in theweak� -topology, and I will have occasion to mention it in
Topologie II next semester in the context of the Eilenberg-Steenrod axioms for ƒech homology.
But right now we need to discuss a few more mundane things.

Topic 2: Separation axioms. Recall from Proposition 5.11 that closed subsets of compact
spaces are always compact. Your intuition probably tells you that all compact sets are closed, but
this in general is false. Here is a counterexample.

Example 6.6. Recall from Example 2.2 the so-called �line with two zeroes�. We de�ned it
as a quotient X :� p R � t 0; 1uq{� by the equivalence relation such that px; 0q � p x; 1q for all
x � 0, with a topology de�ned via the pseudometric dprpx; i qs; rpy; j qsq � |x � y|, i.e. the open balls
B r pxq :� t y P X | dpy; xq   ru for x P X and r ¡ 0 form a base of the topology. Eachx P Rzt0u
corresponds to a unique pointrpx; 0qs � rpx; 1qs PX , but for x � 0 there are two distinct points,
which we shall abbreviate by

00 :� rp 0; 0qs PX and 01 :� rp 0; 1qs PX:

As we saw in Exercise2.3, the one-point subsett 01u € X is not closed, but it certainly is compact
since �nite subsets are always compact (see Example5.5). The failure of t 01u to be closed results
from the fact that since dp00; 01q � 0, every neighborhood of00 also contains01, implying that
X zt01u cannot be open.

The example of the line with two zeroes is pathological in various ways, e.g. it has the property
that every sequence convergent to01 also converges to the distinct point00. We would now like
to formulate some precise conditions to exclude such behavior. The most important of these will
be the Hausdor� axiom, but there is a whole gradation of stronger or weaker variations on the
same theme, known collectively as theseparation axioms (Trennungsaxiome). Intuitively, they
measure the degree to which topological notions such as convergence of sequences and continuity
of maps can recognize the di�erence between two disjoint points or subsets.

Definition 6.7. A spaceX is said to satisfy axiomT0 if for every pair of distinct points in X ,
there exists an open subset ofX that contains one of these points but not the other.

Since almost all spaces we want to consider will satisfy theT0 axiom, we should point out some
examples of spaces that do not. One obvious example is any space of more than one element with
the trivial topology: if the only open subset other than H is X , then you clearly cannot �nd an
open set that containsx and not y � x or vice versa. A slightly more interesting example is the
line with two zeroes as in Example6.6 above, with the pseudometric topology: it fails to be aT0

space because every open set that contains00 or 01 must contain both of them.

Definition 6.8. A space X is said to satisfy axiom T1 if for every pair of distinct points
x; y PX , there exist neighborhoodsUx € X of x and Uy € X of y such that x RUy and y RUx .

Obviously every T1 space is alsoT0. The following alternative characterization of the T1 axiom
is immediate from the de�nitions:

Proposition 6.9. A spaceX satis�es axiom T1 if and only if for every point x PX , the subset
t xu € X is closed. �

Definition 6.10. A spaceX is said to satisfy axiom T2 (the Hausdor� axiom) if for every
pair of distinct points x; y PX , there exist neighborhoodsUx € X of x and Uy € X of y such that
Ux X Uy � H .
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Every Hausdor� space is clearly alsoT1 and T0. Here is an easy criterion with which to
recognize a non-Hausdor� space:

Exercise 6.11. Show that if X is Hausdor�, then for any sequencexn PX satisfying xn Ñ x
and xn Ñ y, we havex � y.

Finding an example that is T1 but not Hausdor� requires only a slight modi�cation of our
previous �line with two zeroes�.

Example 6.12. Consider X � p R � t 0; 1uq{� again with px; 0q � p x; 1q for every x � 0, but
instead of the pseudometric topology as in Example6.6, assign it the quotient topology, meaning
U € X is open if and only if its preimage under the projection map � : R � t 0; 1u Ñ X :
px; i q ÞÑ rpx; i qsis open. Recall that the quotient topology is the strongest topology for which�
is a continuous map, and in this case, it turns out to be slightly stronger than the pseudometric
topology. For example, the open set

V :� pp� 1; 1q � t 0uq Y pp�1; 0q � t 1uq Y pp0; 1q � t 1uq € R � t 0; 1u

is � � 1pUq for U :� � pVq € X , thus U is open in the quotient topology. But U contains 00 and not
01, so it is not an open set in the pseudometric topology. The existence of this set implies that
X with the quotient topology satis�es T0. By exchanging the roles of0 and 1, one can similarly
construct an open neighborhood of01 that does not contain 00, so the space also satis�esT1.
But it does not satisfy T2: even in the quotient topology, every neighborhood of00 has nonempty
intersection with every neighborhood of01.

Exercise 6.11 has a converse of sorts, which I will state here only for �rst countable spaces.
The countability axiom can be removed at the cost of talking about nets instead of sequences; I
will leave the details of this as an exercise for the reader.

Proposition 6.13. A �rst countable space X is Hausdor� if and only if the limit of every
convergent sequence inX is unique.

Proof. In light of Exercise 6.11, we just need to show that if X is a �rst countable space that
is not Hausdor�, we can �nd a sequencexn P X that converges to two distinct points x; y P X .
Since X is not Hausdor�, we can pick two distinct points x and y such that every neighborhood
of x intersects every neighborhood ofy. Fix countable neighborhood basesX • U1 • U2 • : : : Qx
and X • V1 • V2 : : : Qy. Then by assumption, for eachn P N there exists a point xn P Un X Vn .
It is now straightforward to verify that xn Ñ x and xn Ñ y. �

The Hausdor� axiom can still be strengthened a bit by talking about neighborhoods of closed
sets rather than points. This can be useful, for instance, when considering the quotient spaceX {A
de�ned by collapsing some closed subsetA € X to a point; cf. Exercise 6.20 below.

Definition 6.14. A spaceX is called regular (regulär) if for every point x P X and every
closed subsetA € X not containing x, there exist neighborhoodsUx € X of x and UA € X of A
such that Ux X UA � H . We say X satis�es axiom T3 if it is regular and also satis�es T1.

Definition 6.15. A space X is called normal if for every pair of disjoint closed subsets
A; B € X , there exist neighborhoodsUA € X of A and UB € X of B such that UA X UB � H .
We say X satis�es axiom T4 if it is normal and also satis�es T1.

Remark 6.16. The point of including T1 in the de�nitions of T3 and T4 is that it makes each
one-point subsett xu € X closed, thus producing obvious implications

(6.1) T4 ñ T3 ñ T2 ñ T1 ñ T0:
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Without assuming T1, it is possible for spaces to be regular or normal without being Hausdor�,
though we will not consider any examples of this. In fact, almost all spaces we actually want to
think about in this course will be Hausdor�, and most will also be normal, thus satisfying all of
these axioms.

Remark 6.17. Some of the above de�nitions, especially for axiomsT3 and T4, can be found
in a few not-quite-equivalent variations in various sources in the literature. One common variation
is to interchange the meanings of �regular� with �T3� and �normal� with \ T4�, which destroys the
�rst two implications in ( 6.1). These discrepancies are matters of convention which are to some
extent arbitrary: you are free to choose your favorite convention, but must then be careful about
stating your de�nitions precisely and remaining consistent.

We can now give a better answer to the question of when a compact set must also be closed.

Theorem 6.18. If X is Hausdor�, then every compact subset ofX is closed.

Proof. Given a compact setK € X , we need to show thatX zK is open, or equivalently, that
every x PX zK is contained in an open set disjoint fromK . By assumption X is Hausdor�, so for
eachy PK , we can �nd open neighborhoodsUy € X of x and Vy € X of y such that Uy X Vy � H .
Then the sets t Vy uyPK form an open cover ofK , and since the latter is compact by assumption,
we obtain a �nite subset y1; : : : ; yN PK such that

K € Vy1 Y : : : Y VyN :

The set U :� Uy1 X : : :X UyN is then an open neighborhood ofx and is disjoint from Vy1 Y : : :Y VyN ,
implying in particular that it is disjoint from K . �

Exercise 6.19. Prove:

(a) A �nite topological space satis�es the axiom T1 if and only if it carries the discrete
topology.

(b) X is a T2 space (i.e. Hausdor�) if and only if the diagonal � : � tp x; xq PX � X u is a
closed subset ofX � X .

(c) Every compact Hausdor� space is regular, i.e. compact� T2 ñ T3.
Hint: The argument needed for this was already used in the proof of Theorem6.18.

(d) Every metrizable space satis�es the axiomT4 (in particular it is normal ).
Hint: Given disjoint closed setsA; A 1 € X , eachx P A admits a radius � x ¡ 0 such that
the ball B � x pxq is disjoint from A1, and similarly for points in A1 (why?). The unions of
all these balls won't quite produce the disjoint neighborhoods you want, but try cutting
their radii in half.

Exercise 6.20. SupposeX is a Hausdor� space and� is an equivalence relation onX . Let
X {� denote the quotient space equipped with the quotient topology and denote by� : X Ñ X {�
the canonical projection. Given a subsetA € X , we will sometimes also use the notationX {A
explained in Exercise5.16.

(a) A map s : X {� Ñ X is called asection of � if � � s is the identity map on X {� . Show
that if a continuous section exists, thenX {� is Hausdor�.

(b) Show that if X is also regular andA € X is a closed subset, thenX {A is Hausdor�.
(c) Consider X � R with the non-closed subsetA � p 0; 1s. Which of the separation axioms

T0; : : : ; T4 doesX {A satisfy?

Just for fun: think about some other examples of Hausdor� spacesX with non-Hausdor� quotients
X {� . What stops you from constructing continuous sectionsX {� Ñ X ?
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Remark 6.21. In earlier decades, it was common to de�ne compactness slightly di�erently:
what many papers and textbooks from the �rst half of the 20th centuary call a �compact space� is
what we would call a �compact Hausdor� space�. You should be aware of this discrepancy if you
consult the older literature.

7. Connectedness and local compactness (May 9, 2023)

We would like to formalize the idea that in some spaces, you can �nd a continuous path
connecting any point to any other point, and in other spaces you cannot.

Definition 7.1. A spaceX is called path-connected (wegzusammenhängend) if for every
pair of points x; y P X , there exists a continuous map
 : r0; 1s Ñ X such that 
 p0q � x and

 p1q � y.

A subset ofX is similarly called path-connected if it is a path-connected space in the subspace
topology, which is equivalent to saying that any two points in the subset can be connected by a
continuous path in that subset. We will refer to any maximal path-connected subset of a spaceX
as apath-component (Wegzusammenhangskomponente) of X .

Exercise 7.2. Show that any two path-components of a spaceX must be either identical or
disjoint, i.e. the path-components partition X into disjoint subsets. One can also express this by
saying that there is a well-de�ned equivalence relation� on X such that x � y if and only if x
and y belong to the same path-component. (Why is that an equivalence relation?)

The notion of path-connectedness is framed in terms of maps intoX , but there is also a �dual�
perspective based on functions de�ned onX . To motivate this, notice that if f : X Ñ t 0; 1u is any
continuous function and x; y P X belong to the same path-component, then continuity demands
f pxq � f pyq. (We will formalize this observation in the proof of Theorem 7.13 below.)

Definition 7.3. A spaceX is connected (zusammenhängend) if every continuous mapX Ñ
t 0; 1u is constant.

In many textbooks one �nds a cosmetically di�erent de�nition of connectedness in terms of
subsets that are both open and closed, but the two de�nitions are equivalent due to the following
result.

Proposition 7.4. A spaceX is connected if and only ifH and X are the only subsets ofX
that are both open and closed.

Proof. We prove �rst that the condition in this statement implies connectedness. The key
observation is that the setst 0u and t 1u in t 0; 1u are each both open and closed, so iff : X Ñ t 0; 1u
is continuous, the same must hold for bothf � 1p0q and f � 1p1q in X . Then one of these is the
empty set and the other isX , so f is constant.

Conversely, supposeX contains a nonempty subsetX 0 € X that is both open and closed
but X 0 � X . Then X 1 :� X zX 0 is also a nonempty open and closed subset, implying thatX is
the union of two disjoint open subsetsX 0 and X 1. We can now de�ne a nonconstant continuous
function f : X Ñ t 0; 1u by f |X 0 � 0 and f |X 1 � 1. Checking that it is continuous is easy since
t 0; 1u only contains four open sets: the main point is thatf � 1p0q � X 0 and f � 1p1q � X 1 are both
open. �

Remark 7.5. The important fact about t 0; 1u used in the above proof was that it is a space
of more than one element with the discrete topology: o�cially t 0; 1u carries the subspace topology
as a subset ofR, but this happens to match the discrete topology since0 and 1 are each centers
of open balls in R that do not touch any other points of t 0; 1u. If we preferred, we could have
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replaced De�nition 7.3 with the condition that every continuous map f : X Ñ Y to any spaceY
with the discrete topology is constant.

We can of course also talk aboutconnected subsets A € X , meaning subsets that become
connected spaces with the subspace topology. Spaces or subsets that are not connected are some-
times calleddisconnected . By analogy with path-components, any maximal connected subset of
X will be called a connected component (Zusammenhangskomponente) of X .

Proposition 7.6. Any two connected componentsA; B € X are either identical or disjoint.

Proof. If A and B are both maximal connected subsets ofX and A X B � H , then we claim
that A Y B is also connected. Indeed, any continuous functionf : A Y B Ñ t 0; 1u must restrict
to constant functions on both A and B , so if y P A X B , then f pxq � f pyq for every x P A Y B ,
implying that every continous function A Y B Ñ t 0; 1u is constant. Now if A and B are not
identical, then the set A Y B is strictly larger than either A or B , giving a contradiction to the
maximality assumption. �

Example 7.7. For any collection t X � u� PI of connected spaces, the disjoint unionX :�²
� PI X � has the individual spacesX � € X for � P I as its connected components. Indeed,

endowing X with the disjoint union topology makes each of the subsetsX � € X open, and since
X zX � �

”
� � � X � is then also open, it follows that X � is also closed. Any strictly larger set

A € X with X � € A could not then be connected, as it would containX � as a nonempty proper
open and closed subset; this makesX � a maximal connected subset ofX .

Exercise 7.8. Show that if the spacesX � in Example 7.7 are also path-connected, then they
also form the path-components of the disjoint unionX �

²
� PI X � .

For an arbitrary space X , let us choose an index setI with which to label each connected
component ofX , so the connected components from a collection of spacest X � u� PI , each of which
is a subset X � € X endowed with the subspace topology. Proposition7.6 shows that X � X
X � � H whenever � � � , and obviously

”
� PI X � � X , so as sets, there is a canonical bijective

correspondence betweenX and the disjoint union
²

� PI X � . It is natural to wonder: is this
correspondence a homeomorphism? It is easy to see that it is continuous in at least one direction:
the individual subsets X � € X come with inclusion mapsi � : X � ãÑ X , and endowingX � with
the subspace topology makesi � continuous. The canonical bijection from

²
� PI X � to X can then

be written as

(7.1)
º

� PI

i � :
º

� PI

X � Ñ X;

meaning it is the unique map whose restriction to each of the subsetsX � €
²

� PI X � is preciselyi � .
The de�nition of the disjoint union topology makes this map automatically continuous. The
following example shows however that, in general, its inverse need not be continuous.

Example 7.9. The set Q of rational numbers is a perfectly nice algebraic object, but when
endowed with the subspace topology as a subset ofR, it becomes a very badly behaved topological
space. We claim that if A € Q is any subset with more than one element, thenA is disconnected.
Indeed, givenx; y P A with x   y, we can �nd an irrational number r P RzQ with x   r   y, and
the sets A � :� A X p�8 ; rq and A � :� A X pr; 8q are then nonempty open subsets ofA which
are complements of each other, hence both are open and closed. This proves that the connected
components ofQ are simply the one-point subspacest xu € Q for all x P Q, so the map (7.1) in
this case takes the form º

x PQ

t xu Ñ Q:
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The domain and target of this map are the same set, and the map itself is the identity, but the
two sets are endowed with very di�erent topologies: in particular, the domain carries the discrete
topology, while Q on the right hand side carries the subspace topology that it inherits from the
standard topology of R. The identity map is thus continuous�indeed, every map de�ned on
a space with the discrete topology is continuous�but it is not a homeomorphism, because the
discrete topology contains many open sets that are not open in the standard topology ofQ.

Example 7.9 shows that while every spaceX has a natural bijective correspondence with the
disjont union

²
� PI X � of its connected components, the natural topology on

²
� PI X � may in

general be di�erent from the original topology of X . We've seen for instance that each individual
X � is automatically both an open and closed subset of

²
� PI X � , thus there is no hope of (7.1)

being a homeomorphism unlessX � is also an open and closed subset ofX . The example of Q
shows that the latter is not always true: the 1-point connected componentst xu € Q are closed
subsets, but they are not open. The fact that they are closed turns out to be a completely general
phenomenon:

Proposition 7.10. Every connected componentA € X of a spaceX is a closed subset.

Proof. AssumeA € X is a maximal connected subset. Recall from De�nition3.1 that the
closure sA € X of A is the set of all points x PX for which every neighborhood ofx intersectsA. If
we equip sA with the subspace topology and view it as a topological space in itself, withA € sA as a
subset, then the closure ofA in sA is still sA : indeed, every neighborhood insA of a point x P sA takes
the form U X sA for some neighborhoodU of x in X , implying that U intersects A, and therefore
so doesU X sA.

Now supposef : sA Ñ t 0; 1u is a continuous function. Its restriction to A is then also contin-
uous, and therefore constant, sinceA is connected; let us writef pAq � t iu € t 0; 1u. Then since
t iu is a closed subset oft 0; 1u and f is continuous, f � 1piq is a closed subset ofsA that contains A,
and it therefore also contains the closuresA. This implies that f is in fact constant on sA, and thus
proves that sA is connected. SinceA is a maximal connected subset, we concludeA � sA , meaning
A is closed. �

We note one obvious case in which connected components will necessarily be both closed and
open: here openness follows from the fact that the complement of a connected component is a
union of disjoint connected components, and �nite unions of closed sets are closed.

Corollary 7.11. If X is a space with only �nitely many connected components, then each of
them is both closed and open. �

Exercise 7.12. If t X � € X u� PI are the connected components of a spaceX , show that the
canonical continuous bijection (7.1) from

²
� PI X � to X is a homeomorphism if and only if every

X � is an open subset ofX . (In particular, Corollary 7.11 implies that this is always true if I is
�nite, and we will see in Prop. 7.18 below that it is also true if X is locally connected.)

It is time to clarify the relationship between connectedness and path-connectedness.

Theorem 7.13. Every path-connected spaceX is connected.

Proof. If X is not connected, then there exist pointsx; y P X and a continuous function
f : X Ñ t 0; 1u such that f pxq � 0 and f pyq � 1. But if X is path-connected, then there also exists
a continuous map 
 : r0; 1s Ñ X with 
 p0q � x and 
 p1q � y. The composition g :� f � 
 is then
a continuous function g : r0; 1s Ñ t 0; 1u satisfying gp0q � 0 and gp1q � 1, and this violates the
intermediate value theorem. �

Surprisingly, the converse of this theorem is false.
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Example 7.14. De�ne X € R2 to be the subset ofR2 consisting of the vertical line t x � 0u
and the graph of the equationt y � sinp1{xqufor x � 0. The latter is a sine curve that oscillates
more and more rapidly asx Ñ 0. We claim that

X 0 :� t x � 0u

is a path-component ofX . It clearly is path-connected, so we need to show that there does not
exist any continuous path 
 : r0; 1s Ñ X that begins on the sine curvet y � sinp1{xquand ends on
the line t x � 0u. Sincet x � 0u is a closed subset, the preimage of this set under
 is closed (and
therefore compact) in r0; 1s, implying that it has a minimum � P p0; 1s. We can therefore restrict
our path to 
 : r0; � s Ñ X and assume that it lies on the sine curve for all0 ¤ t   � but ends
on the vertical line at t � � . Now observe that due to the rapid oscillation asx Ñ 0, we can �nd
for any y P r� 1; 1s a sequencetn P r0; � q with tn Ñ � such that 
 ptn q Ñ p0; yq. The point y here
is arbitrary, yet continuity of 
 requires 
 ptn q Ñ 
 p� q, so this is a contradiction and proves the
claim. In particular, this proves that X is not path-connected. The other path-components ofX
are now easy to identify: they are

X � :� X X t x   0u and X � :� X X t x ¡ 0u;

the portions of the sine curve lying to the left and right of X 0, so there are three path-components in
total. The path-components are path-connected and therefore (by Theorem7.13) also connected.
But neither X � nor X � is closed, so by Prop.7.10, neither of these can be a connected component.
The maximal connected subset containingX � , for instance, must be a closed set containingX �

and therefore contains the closure…X � , which includes points in X 0. SinceX 0 is path-connected,
it follows that the connected component containing X � also contains all of X 0. But the same
argument applies equally well to X � , and these two observations together imply that all three
path-components are in the same connected component, i.e.X is connected.

The space in Example7.14 is sometimes called thetopologist's sine curve. There is a certain
�local� character to the pathologies of this space, i.e. part of the reason for its bizarre proper-
ties is that one can zoom in on certain points inX arbitrarily far without making it look more
reasonable�in particular this is true for the points in X 0 that are in the closure of X � and X � .
One can use neighborhoods of points to formalize this notion of �zooming in� arbitrarily far.

Definition 7.15. A spaceX is locally connected (lokal zusammenhängend) if for all points
x PX , every neighborhood ofx contains a connected neighborhood ofx.

The version of this for path-connectedness is completely analogous.

Definition 7.16. A spaceX is locally path-connected (lokal wegzusammenhängend) if for
all points x PX , every neighborhood ofx contains a path-connected neighborhood ofx.

Local path-connectedness obviously implies local connectedness by Theorem7.13. Since most
spaces we can easily imagine will have both properties, it is important at this juncture to look at
some examples that do not. The topologist's sine curve in Example7.14is one such space: it is not
locally connected (even though it is connected), since su�ciently small neighborhoods of points
p0; yq PX for � 1   y   1 always have in�nitely many pieces of the sine curve passing through and
are thus disconnected. Here is an example that is path-connected, but not locally:

Example 7.17. Let X € R2 denote the compact set

X �

�
8¤

n � 1

L n

�

Y L 8 ;
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where for eachn PN, L n denotes the straight line segment fromp0; 1qto p1{n; 0q, and the casen �
8 is included for the vertical segment fromp0; 1q to p0; 0q. Then su�ciently small neighborhoods
of p0; 0q in this space are never connected, soX is not locally connected. Notice however that
there are continuous paths along the line segmentsL n from any point in X to p0; 1q, so X is
path-connected.

Proposition 7.18. If X is locally connected, then its connected components are open subsets.
Similarly, if X is locally path-connected, then its path-components are open subsets.

Proof. If X is locally connected andA € X is a maximal connected subset, then for each
x PA, �x a connected neighborhoodUx € X of x. Now for U :�

”
x PA Ux , any continuous function

f : U Ñ t 0; 1u must restrict to a constant on eachUx and also onA, implying that f is constant,
henceU is connected. The maximality of A thus implies A � U, but U is also a neighborhood of
A and thus contains an open set containingA, therefore A is open.

A completely analogous argument works in the locally path-connected case, taking path-
connected neighborhoodsUx and using the fact that their union must also be path-connected. �

A consequence of this result is that the phenomenon allowing certain spaces to be connected
but not path-connected is essentially local:

Theorem 7.19. Every space that is connected and locally path-connected is also path-connected.

Proof. If X is locally path-connected, then by Prop. 7.18 its path-components are open.
Then if A € X is a path-component, X zA is a union of path-components and is therefore also
open, implying that A is both open and closed. IfX is connected, it follows that A � X , so X is
a path-component. �

Exercise 7.20. In this exercise we show that products of (path-)connected spaces are also
(path-)connected, so long as one uses the correct topology on the product.

(a) Prove that if X and Y are both connected, then so isX � Y .
Hint: Start by showing that for any x P X and y P Y , the subsetst xu � Y and X � t yu
in X � Y are connected. Then think about continuous mapsX � Y Ñ t 0; 1u.

(b) Show that for any collection of path-connected spacest X � u� PI , the space
±

� PI X � is
path-connected in the usual product topology.
Hint: You might �nd Exercise 4.5 helpful.

(c) ConsiderRN with the �box topology� which we discussed in Exercise4.6. Show that the set
of all elements f P RN represented as functionsf : N Ñ R that satisfy lim n Ñ8 f pnq � 0
is both open and closed, henceRN in the box topology is not connected (and therefore
also not path-connected).

The rest of this exercise is aimed at generalizing part (a) to the statement that for an arbitrary
collection t X � u� PI of connected (but not necessarily path-connected) spaces,

±
� PI X � with the

product topology is also connected. Choose a pointt c� u� PI P
±

� PI X � and, for each �nite subset
J € I of the index set, consider the set

X J :�

#

t x � u� PI P
¹

� PI

X �

�
�
�
�
�

x � � c� for all � P I zJ

+

;

endowed with the subspace topology that it inherits from the product topology of
±

� PI X � .
(d) Show that for every choice of �nite subset J € I , X J is connected.

Hint: This is not really that di�erent from part (a).
(e) Deduce that the union

”
J X J €

±
� PI X � is also connected, whereJ ranges over the set

of all �nite subsets of I .
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(f) Show that the closure of the subset
”

J X J €
±

� PI X � is
±

� PI X � , and deduce that±
� PI X � is also connected.

With the de�nition of local connectedness in mind, we now brie�y revisit the subject of com-
pactness.

Definition 7.21. A spaceX is locally compact (lokal kompakt) if every point x PX has a
compact neighorhood.

Local compactness is one of the notions for which one can �nd multiple inequivalent de�nitions
in the literature, but as we'll see in a moment, all the plausible de�nitions of this concept are
equivalent if we only consider Hausdor� spaces. Let's �rst note a few examples.

Example 7.22. The Euclidean spaceRn is locally compact, and more generally, so is any
closed subsetX € Rn endowed with the subspace topology. Indeed, since closed and bounded
subsets ofRn are compact, everyx PX € Rn has a compact neighborhood of the form‡B r pxq XX
for any r ¡ 0.

Example 7.23. This is a non-example: a Hilbert space is not locally compact if it is in�nite
dimensional. This is due to the fact that every neighborhood of a pointx must contain some closed
ball ‡B r pxq, but the latter is not compact (cf. Remark 5.8).

Example 7.24. Since a space is a neighborhood of all of its points, every compact space is
(trivially) locally compact.

The last example is the one that becomes slightly controversial if you look at alternative
de�nitions of local compactness in the literature, and indeed, if we had phrased De�nition 7.21
more analogously to the de�nition of local (path-)connectedness, it would be easy to imagine spaces
that are compact without being locally compact. As it happens, this never happens for Hausdor�
spaces, and since we will mainly be interested in Hausdor� spaces, we shall take the following
result as an excuse to avoid worrying any further about discrepancies in de�nitions. It will also be
a useful result in its own right.

Theorem 7.25. If X is Hausdor�, then the following conditions are equivalent:

(i) X is locally compact (in the sense of De�nition 7.21);
(ii) For all x PX , every neighborhood ofx contains a compact neighborhood ofx;

(iii) If K € U € X where K is compact andU is open, thenK € V € sV € U for some open
set V with compact closuresV.

Proof. Since single point subsetst xu € X are always compact, it is clear that (iii) ñ (ii) ñ (i).
The implication (ii) ñ (iii) is a relatively straightforward exercise using the �nite covering property
for the compact setK . We will therefore focus on the implication (i) ñ (ii).

Assume we are given a neighborhoodU € X of x and would like to �nd a compact neighborhood
inside U. By assumption, x also has a compact neighborhoodK € X . It will do no harm to replace
U with a smaller neighorhood such as the interior ofU X K , so without loss of generality, let us
assumeU is open and contained inK , in which case (sinceX is Hausdor� and K is therefore
closed) its closuresU is also contained inK and is thus compact. We de�ne theboundary of sU by

BsU � sU X †X zU:

This is a closed subset ofsU and is therefore also compact, and we observe that sincex is contained
in a neighborhood disjoint from X zU, x is not in the closure †X zU and thus

x R BsU:
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SinceX is Hausdor�, for every y P BsU there exists a pair of open neighborhoods

x PAy € X; y PBy € X such that Ay X By � H :

Then the setsBy for y P BsU form an open cover of the compact setBsU, hence there exists a �nite
subset t y1; : : : ; yN u € B sU such that

BsU €
N¤

i � 1

By i :

Now the set

V :� U X

�
N£

i � 1

Ay i

�

is an open neighborhood ofx contained in U and disjoint from the neighborhood
” N

i � 1 By i of BsU.
The latter implies that for any y P BsU, y has a neighborhood disjoint from V, hence y R sV.
Similarly, V € U implies y cannot be in the closure ofV if it is in the interior of †X zU, so we
conclude sV € U. The compactness ofsV follows because it is a closed subset ofsU and the latter is
compact. �

Exercise 7.26. Prove the implication that was skipped in the proof of Theorem7.25 above,
namely: if X is locally compact and Hausdor�, then for any nested pair of subsetsK € U € X
with K compact and U open, there exists an open setV € X with compact closure sV such that
K € V € sV € U.

Exercise 7.27. There is a cheap trick to view any topological space as a compact space with a
single point removed. For a spaceX with topology T , let t8u denote a set consisting of one element
that is not in X , and de�ne the one point compacti�cation of X as the setX � � X Y t8u
with topology T � consisting of all subsets inT plus all subsets of the formpX zK q Y t8u € X �

where K € X is closed and compact.
(a) Verify that T � is a topology and that X � is always compact.
(b) Show that if X is �rst countable and Hausdor�, a sequence in X € X � converges to

8 P X � if and only if it has no convergent subsequence with a limit inX . Conclude that
if X is �rst countable and Hausdor�, X � is sequentially compact.

(c) Show that for X � R, X � is homeomorphic to S1. (More generally, one can use stere-
ographic projection to show that the one point compacti�cation of Rn is homeomorphic
to Sn .)

(d) Show that if X is already compact, then X � is homeomorphic to the disjoint union
X > t8u .

(e) Show that X � is Hausdor� if and only if X is both Hausdor� and locally compact.
Notice that Q is not locally compact, since every neighborhood of a pointx PQ contains sequences
without convergent subsequences, e.g. any sequence of rational numbers that converges to an
irrational number su�ciently close to x. The one point compacti�cation Q� is a compact space,
and by part (b) it is also sequentially compact, but those are practically the only nice things we
can say about it.

(f) Show that for any x P Q, every neighborhood ofx in Q� intersects every neighborhood
of 8 , so in particular, Q� is not Hausdor�.
Advice: Do not try to argue in terms of sequences with non-unique limits (cf. part (g)
below), and do not try to describe precisely what arbitrary compact subsets ofQ can
look like (the answer is not nice). One useful thing you can say about arbitrary compact
subsets ofQ is that they can never contain the intersection ofQ with any open interval.
(Why not?)
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(g) Show that every convergent sequence inQ� has a unique limit. (SinceQ� is not Hausdor�,
this implies via Proposition 6.13that Q� is not �rst countable�in particular, 8 does not
have a countable neighborhood base.)

(h) Find a point in Q� with a neighborhood that does not contain any compact neighborhood.

Exercise 7.28. Given spacesX and Y , let CpX; Y q denote the set of all continuous maps
from X to Y , and consider the natural evaluation map

ev : CpX; Y q � X Ñ Y : pf; x q ÞÑf pxq:

It is easy to show that ev is a continuous map if we assign the discrete topology toCpX; Y q, but
usually one can also �nd more interesting topologies onCpX; Y q for which ev is continuous. The
compact-open topology is de�ned via a subbase consisting of all subsets of the form

UK;V :�
 
f PCpX; Y q

�
� f pK q € V

(
;

where K ranges over all compact subsets ofX , and V ranges over all open subsets ofY . Prove:
(a) If Y is a metric space, then convergence of a sequencef n PCpX; Y q in the compact-open

topology means that f n converges uniformly on all compact subsets ofX .
(b) If CpX; Y q carries the topology of pointwise convergence (i.e. the subspace topology

de�ned via the obvious inclusion CpX; Y q € Y X ), then ev is not sequentially continuous
in general.

(c) If CpX; Y q carries the compact-open topology, thenev is always sequentially continuous.
(d) If CpX; Y q carries the compact-open topology andX is locally compact and Hausdor�,

then ev is continuous.
(e) Every topology on CpX; Y q for which ev is continuous contains the compact-open topol-

ogy. (This proves that if X is locally compact and Hausdor�, the compact-open topology
is the weakest topology for which the evaluation map is continuous.)
Hint: If pf 0; x0q Pev� 1pV q where V € Y is open, thenpf 0; x0q PO � U € ev� 1pV q for
some openO € CpX; Y q and U € X . Is UK;V a union of setsO that arise in this way?

(f) For the compact-open topology onCpQ; Rq, ev : CpQ; Rq � Q Ñ R is not continuous.

Exercise 7.29. One of the good reasons to use the notationX Y for the set of all functions
f : Y Ñ X between two sets is that there is an obvious bijection

Z X � Y Ñ pZ Y qX

sending a functionF : X � Y Ñ Z to the function � : X Ñ Z Y de�ned by

(7.2) � pxqpyq � F px; yq:

The existence of this bijection is sometimes called theexponential law for sets. In this exercise we
will explore to what extent the exponential law carries over to topological spaces and continuous
maps. We will see that this is also related to the question of how to de�ne a natural topology on
the group of homeomorphisms of a space.

If X and Y are topological spaces, let us denote byCpX; Y q the space of all continuous maps
X Ñ Y , with the compact-open topology, which has a subbase consisting of all sets of the form

UK;V :�
 
f PCpX; Y q

�
� f pK q € V

(

for K € X compact and V € Y open (see Exercise7.28 above). AssumeZ is also a topological
space.

(a) Prove that if F : X � Y Ñ Z is continuous, then the correspondence (7.2) de�nes a
continuous map � : X Ñ CpY; Zq.

(b) Prove that if Y is locally compact and Hausdor�, then the converse also holds: any
continuous map � : X Ñ CpY; Zq de�nes a continuous mapF : X � Y Ñ Z via (7.2).
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Let's pause for a moment to observe what these two results imply for the caseX :� I � r 0; 1s.
First, here is a quick de�nition of a notion that will appear very often in the remainder of this
course: given two continuous mapsf 0; f 1 : Y Ñ Z , a continuous map

h : I � Y Ñ Z such that hp0; �q � f 0 and hp1; �q � f 1

is called ahomotopy (Homotopie) between f 0 and f 1, and we call f 0 and f 1 homotopic (homo-
top) if a homotopy between them exists. According to part (a), a homotopy between two maps
Y Ñ Z can always be regarded as a continuous path inCpY; Zq, and part (b) says that the converse
is also true if Y is locally compact and Hausdor�, hence two mapsY Ñ Z are homotopic if and
only if they lie in the same path-component ofCpY; Zq.5

(c) Deduce from part (b) a new proof of the following result from Exercise7.28(d): if X is
locally compact and Hausdor�, then the evaluation mapev : CpX; Y q� X Ñ Y : pf; x q ÞÑ
f pxq is continuous.
Hint: This is very easy if you look at it from the right perspective.
Remark: If you were curious to see a counterexample to part (b) in a case whereY is not
locally compact, you could now extract one from Exercise7.28(f).

(d) The following cannot be deduced directly from part (b), but it is a similar result and
requires a similar proof: show that if Y is locally compact and Hausdor�, then

CpX; Y q � CpY; Zq Ñ CpX; Z q : pf; g q ÞÑg � f

is a continuous map.
Hint: Exercise 7.26 is useful here.

Now let's focus on maps from a spaceX to itself. A group G with a topology is called a
topological group if the maps

G � G Ñ G : pg; hq ÞÑgh and G Ñ G : g ÞÑg� 1

are both continuous. Common examples include the standard matrix groupsGLpn; Rq, GLpn; Cq
and their subgroups, which have natural topologies as subsets of the vector space of (real or
complex) n-by-n matrices. Another natural example to consider is the group

HomeopX q �
 
f PCpX; X q

�
� f is bijective and f � 1 PCpX; X q

(

for any topological spaceX , where the group operation is de�ned via composition of maps. We
would like to know what topologies can be assigned toCpX; X q so that HomeopX q € CpX; X q,
with the subspace topology, becomes a topological group. Notice that the discrete topology clearly
works; this is immediate because all maps between spaces with the discrete topology are automat-
ically continuous, so there is nothing to check. But the discrete topology is not very interesting.
Let TH denote the topology onCpX; X q with subbase consisting of all sets of the formUK;V and
UX zV;X zK , where againK € X can be any compact subset andV € X any open subset. Notice
that if X is compact and Hausdor�, then for any V open and K compact, X zV is compact and
X zK is open, thus TH is again simply the compact-open topology. But if X is not compact or
Hausdor�, TH may be stronger than the compact-open topology.

5Since CpX � Y; Z q and CpX; C pY; Z qqboth have natural topologies in terms of the compact-open topology,
you may be wondering whether the correspondence ( 7.2) de�nes a homeomorphism between them. The answer to
this is more complicated than one would like, but Steenrod showed in a famous paper in 1967 [ Ste67 ] that the
answer is �yes� if one restricts attention to spaces that are compactly generated, a property that most respectable
spaces have. The caveat is that CpX; Y q in the compact-open topology will not always be compactly generated if X
and Y are, so one must replace the compact-open topology by a slightly stronger one that is compactly generated
but otherwise has the same properties for most practical purposes. If you want to know what �compactly generated�
means and why it is a useful notion, see [ Ste67 ]. These issues are somewhat important in homotopy theory at more
advanced levels, though it is conventional to worry about them as little as possible.
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(e) Show that if X is locally compact and Hausdor�, then HomeopX q with the topology TH

is a topological group.
Hint: Notice that f pK q € V if and only if f � 1pX zVq € X zK . Use this to show directly
that f ÞÑf � 1 is continuous, and reduce the rest to what was proved already in part (d).

Conclusion: We've shown that if X is compact and Hausdor�, then HomeopX q with the compact-
open topology is a topological group. This is actually true under somewhat weaker hypotheses,
e.g. it su�ces to know that X is Hausdor�, locally compact and locally connected. (If you're
interested, a quite clever proof of this fact may be found in[Are46 ].)

Just for fun, here's an example to show that just being locally compact and Hausdor� is
not enough: let X � t 0u Y t en | n P Zu € R with the subspace topology, and notice that X
is neither compact (since it is unbounded) nor locally connected (since every neighborhood of
0 is disconnected). Consider the sequencef k P HomeopX q de�ned for k P N by f k p0q � 0,
f k pen q � en � 1 for n ¤ � k or n ¡ k, f k pen q � en for � k   n   k, and f k pek q � e� k . It is not hard
to show that in the compact-open topology onCpX; X q, f k Ñ Id but f � 1

k •Ñ Id as k Ñ 8 , hence
the map HomeopX q Ñ HomeopX q : f ÞÑf � 1 is not continuous.

8. Paths, homotopy and the fundamental group (May 11, 2023)

The rest of this course will concentrate onalgebraic topology. The class of spaces we consider
will often be more restrictive than up to this point, e.g. we will usually (though not always) require
them to be Hausdor�, second countable, locally path-connected and one or two other conditions
that are satis�ed in all interesting examples.6 It will happen often from now on that the best
way to prove any given result is with a picture, but I might not always have time to produce the
relevant picture in these notes. I'll do what I can.

As motivation, let us highlight two examples of questions that the tools of algebraic topology
are designed to answer.

Sample question 8.1. The following �gures show two examples ofknots K and K 0 in R3:

PSfrag replacements

K € R3€

PSfrag replacements

€
K 0 € R3

The �rst knot K is known as thetrefoil knot (Kleeblattknoten), and the secondK 0 is the trivial
knot or unknot (Unknoten). Roughly speaking, a knot is a subset inR3 that is homeomorphic to
S1 and satis�es some additional condition to avoid overly �wild� behavior, e.g. one could sensibly
require each ofK and K 0 to be the image of some in�nitely di�erentiable 1-periodic map R Ñ R3.
The question then is: canK be deformed continuously toK 0? Let us express this more precisely.
If you imagine K and K 0 as physical knots in space, then when you move them around, you don't

6The question of which examples are considered �interesting� depends highly on context, of course. In functional
analysis, one encounters many interesting spaces of functions that do not have all of the properties we just listed.
But this is not a course in functional analysis.
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move only the knots�you also displace the air around them, and the motion of this collection of
air particles over time can be viewed as de�ning a continuous family of homeomorphisms onR3.
Mathematically, the question is then, does there exists a continuous map

' : r0; 1s � R3 Ñ R3

such that ' pt; �q : R3 Ñ R3 is a homeomorphism for everyt P r0; 1s, ' p0; �q is the identity map on
R3 and ' p1; �q : R3 Ñ R3 sendsK 0 to K ?

It turns out that the answer is no: in particular, if a homeomorphism ' p1; �q on R3 sending
K 0 to K exists, then there must also be a homeomorphism betweenR3zK and R3zK 0, and we
will see that the latter is impossible. The reason is because we can associate to these spaces
groups � 1pR3zK q and � 1pR3zK 0q, which would need to be isomorphic ifR3zK and R3zK 0 were
homeomorphic, and we will be able to compute enough information about both groups to show
that they are not isomorphic.

Sample question 8.2. Here is another pair of spaces de�ned as subsets ofR3:

PSfrag replacements

A

F

1

PSfrag replacements

A

F 1

A question of tremendous practical import: can the setF in the picture at the left be shifted
continuously to match the set F 1 in the picture at the right, but without �passing through� A,
i.e. is there a continuous family of embeddingsF ãÑ R3zA that begins as the natural inclusion and
ends by sendingF to F 1? If there is, then you may want to adjust your bike lock.

Of course there is no such continuous family of embeddings, and to see why, you could just
delete the bicycle from the picture and pay attention only to the loop representing the bike lock,
which is shown �linked� with A in the left picture and not in the right picture. The precise way
to express the impossibility of deforming one picture to the other is that this loop is parametrized
by a �noncontractible loop� 
 : S1 Ñ R3zA, meaning 
 represents a nontrivial element in the
fundamental group � 1pR3zAq.

Our task in this lecture is to de�ne what the fundamental group is for an arbitrary space. We
will then develop a few more of its general properties in the next lecture and spend the next four
or �ve weeks developing methods to compute it.

We must �rst discuss paths in a spaceX . Since the unit interval r0; 1s will appear very often
in the rest of this course, let us abbreviate it from now on by

I :� r 0; 1s:

For two points x; y P X , a path (Pfad) from x to y is a map 
 : I Ñ X satisfying 
 p0q � x and

 p1q � y.7 We will sometimes use the notation

x


 y

to indicate that 
 is a path from x to y.
The inverse of a path x



 y is the path

y

 � 1

 x

7This seems a good moment to emphasize that all maps in this course are assumed continuous unless otherwise
noted.



52 FIRST SEMESTER (TOPOLOGIE I)

de�ned by 
 � 1ptq :� 
 p1 � tq. The reason for this terminology and notation will become clearer
when we give the de�nition of the fundamental group below. The same goes for the notion of
the product of two paths: there is no natural multiplication de�ned for a pair of paths between

arbitrary points, but given x
�
 y and y

�
 z, we can de�ne the product path x

� � �
 z by

(8.1) p� � � qptq �

#
� p2tq if 0 ¤ t ¤ 1{2;

� p2t � 1q if 1{2 ¤ t ¤ 1:

This operation is also called aconcatenation of paths. The trivial path at a point x P X is
de�ned as the constant path x

ex x, i.e.

ex ptq � x:

The idea is for this to play the role of the identity element in some kind of group structure.
If we want to turn concatenation into a product structure on a group, then we have one

immediate problem: it is not associative. In fact, given pathsx
�
 y, y

�
 z and z



 a, we have

� � p� � 
 q � p � � � q � 
;

though clearly the images of these two concatenations are the same, and their di�erence is only in
the way they are parametrized. We would like to introduce an equivalence relation on the set of
paths that forgets this distinction in parametrizations.

Definition 8.3. Two maps f; g : X Ñ Y are homotopic (homotop) if there exists a map

H : I � X Ñ Y such that H p0; �q � f and H p1; �q � g:

The map H is in this case called ahomotopy (Homotopie) from f to g, and when a homotopy
exists, we shall write

f �
h

g:

It is straightforward to show that �
h

is an equivalence relation. In particular, if there are

homotopies from f to g and from g to h, then by reparametrizing the parameter in I � r 0; 1s we
can �glue� the two homotopies together to form a homotopy from f to h. The de�nition of the
new homotopy is analogous to the de�nition of the concatenation of paths in (8.1).

For paths in particular we will need a slightly more restrictive notion of homotopy that �xes
the end points.

Definition 8.4. For two paths � and � from x to y, we write

� �
h �

�

and say � is homotopic with �xed end points to � if there exists a map H : I � I Ñ X
satisfying H p0; �q � � , H p1; �q � � , H ps;0q � x and H ps;1q � y for all s P I .

Exercise 8.5. Show that for any two points x; y P X , �
h �

de�nes an equivalence relation on

the set of all paths from x to y.

We will now prove several easy results about paths and homotopies. In most cases we will
give precise formulas for the necessary homotopies, but one can also represent the main idea quite
easily in pictures (see e.g. [Hat02 , pp. 26�27]). We adopt the following convenient terminology:
if H : I � X Ñ Y is a homotopy from f 0 :� H p0; �q : X Ñ Y to f 1 :� H p1; �q : X Ñ Y , then we
obtain a continuous family of maps f s :� H ps; �q : X Ñ Y for s P I . The words �continuous
family� will be understood as synonymous with �homotopy� in this sense.
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Proposition 8.6. If � �
h �

� 1 are homotopic paths fromx to y and � �
h �

� 1 are homotopic

paths from y to z, then
� � � �

h �
� 1 � � 1:

Proof. By assumption, there exist continuous families of pathsx
� s y and y

� s z for s P I
with � 0 � � , � 1 � � 1, � 0 � � and � 1 � � 1. Then a homotopy with �xed end points from � � � to
� 1 � � 1 can be de�ned via the continuous family

x
� s � � s z for s P I:

�

We next show that while concatenation of paths is not an associative operation, it is associative
�up to homotopy�.

Proposition 8.7. Given pathsx
�
 y, y

�
 z and z



 a,

p� � � q � 
 �
h �

� � p� � 
 q:

Proof. A suitable homotopy H : I � I Ñ X can be de�ned as a family of linear reparametriza-
tions of the sequence of paths�; �; 
 :

H ps; tq �

$
''&

''%

�
�

4t
s� 1

	
if 0 ¤ t ¤ s� 1

4 ;

� p4t � p s � 1qq if s� 1
4 ¤ t ¤ s� 2

4 ;



�

4
2� s pt � 1q � 1

	
if s� 2

4 ¤ t ¤ 1:

�

And �nally, a result that allows us to interpret the constant paths ex as �identity elements�
and 
 and 
 � 1 as �inverses�:

Proposition 8.8. For any path x


 y, the following relations hold:

(i) ex � 
 �
h �




(ii) 
 �
h �


 � ey

(iii) 
 � 
 � 1 �
h �

ex

(iv) 
 � 1 � 
 �
h �

ey

Proof. For (i), we de�ne a family of reparametrizations of the concatenated pathex � 
 that
shrinks the amount of time spent onex from 1{2 to 0:

H ps; tq �

#
x if 0 ¤ t ¤ 1� s

2 ;



�

2
s� 1 pt � 1q � 1

	
if 1� s

2 ¤ t ¤ 1:

The homotopy for (ii) is analogous.
For (iii), the idea is to de�ne a family of paths that traverse only part of 
 up to some time

depending ons, then stay still for a suitable length of time and, in a third step, follow 
 � 1 back
to x:

H ps; tq �

$
'&

'%


 p2tq if 0 ¤ t ¤ 1� s
2 ;


 p1 � sq if 1� s
2 ¤ t ¤ 1� s

2 ;

 p2 � 2tq if 1� s

2 ¤ t ¤ 1:

The last relation follows from this by interchanging the roles of 
 and 
 � 1. �
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The last three propositions combine to imply that the group structure in the following de�nition
is a well-de�ned associative product which admits an identity element and inverses.

Definition 8.9. Given a spaceX and a point p P X , the fundamental group (Fundamen-
talgruppe) of X with base point (Basispunkt) p is de�ned as the set of equivalence classes of
paths p  p up to homotopy with �xed end points:

� 1pX; pq :�
!

paths p


 p

) L
�
h �

:

The product of two equivalence classesr� s; r� s P� 1pX; pq is de�ned via concatenation:

r� sr� s :� r � � � s;

and the identity element is represented by the constant pathreps. The inverse element forr
 s P
� 1pX; pq is represented by the reversed path
 � 1.

Before exploring the further properties of the group� 1pX; pq, let us clarify in what sense it is a
�topological invariant� of the space X . Intuitively, we would like this to mean that whenever X and
Y are two homeomorphic spaces, their fundamental groups should be isomorphic groups. What
makes this statement a tiny bit more complicated is that the fundamental group ofX doesn't just
depend onX alone, but also on a choice of base point, so in order to make precise and correct
statements about topological invariance, we will need to carry around a base point as extra data.
The following de�nition is intended to formalize this notion.

Definition 8.10. A pointed space (punktierter Raum) is a pair pX; pq consisting of a topo-
logical spaceX and a point p P X . The point p P X is in this case called thebase point
(Basispunkt) of X . Given pointed spacespX; pq and pY; qq, any continuous map f : X Ñ Y
satisfying f ppq � q is called apointed map or map of pointed spaces , and can be denoted by

f : pX; pq Ñ pY; qq:

We also sometimes refer to such objects asbase-point preserving maps. Finally, given two
pointed maps f; g : pX; pq Ñ pY; qq, a homotopy H : I � X Ñ Y from f to g that satis�es
H ps; pq � q for all s P I is called a pointed homotopy , or homotopy of pointed maps ,
or base-point preserving homotopy . One can equivalently describe such a homotopy as a
continuous 1-parameter family of pointed maps f s :� H ps; �q : pX; pq Ñ pY; qq de�ned for s P I .

Here is the �rst main result about the topological invariance of � 1:

Theorem 8.11. One can associate to every pointed mapf : pX; pq Ñ pY; qq a group homo-
morphism

f � : � 1pX; pq Ñ � 1pY; qq : r
 s ÞÑ rf � 
 s;

which has the following properties:

(i) For any pointed maps pX; pq
f
Ñ pY; qq and pY; qq

g
Ñ pZ; r q, pg � f q� � g� � f � .

(ii) The map associated to the identity mappX; pq IdÑ pX; pq is the identity homomorphism
� 1pX; pq 1Ñ � 1pX; pq.

(iii) Each homomorphism f � depends only on the pointed homotopy class off .

Proof. It is clear that up to homotopy (with �xed end points), the path q
f � 

 q in Y depends

only on the path p


 p only up to homotopy with �xed end points; indeed, if H : I � I Ñ X de�nes

a homotopy with �xed end points between two paths � and � based atp, then f � H : I � I Ñ Y
de�nes a corresponding homotopy betweenf � � and f � � . Similarly, if r
 s P � 1pX; pq and
f; g : pX; pq Ñ pY; qq are homotopic via a base-point preserving homotopyH : I � X Ñ Y , then
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h : I � I Ñ Y : ps; tq ÞÑH ps; 
 ptqqde�nes a homotopy with �xed end points between f � 
 and
g � 
 . This shows that f � : � 1pX; pq Ñ � 1pY; qq is a well-de�ned map that depends onf only up
to base-point preserving homotopy. It is similarly easy to check thatf � is a homomorphism and

satis�es the �rst two stated properties: e.g. for any two paths p
�;�
 p, we have

f � pr� sr� sq � r f � p � � � qs � rpf � � q � pf � � qs � f � r� sf � r� s

and

f � reps � r eqs:

�

Corollary 8.12. If X and Y are spaces admitting a homeomorphismf : X Ñ Y , then for
any choice of base pointp PX , the groups� 1pX; pq and � 1pY; f ppqqare isomorphic.

Proof. Abbreviate q :� f ppq, so f : pX; pq Ñ pY; qq is a pointed map, and since its inverse
is continuous, f � 1 : pY; qq Ñ pX; pq is also a pointed map. Using Theorem8.11, the commutative
diagram (see Remark8.14 below) of continuous maps

(8.2)

pY; qq

pX; pq pX; pq

f � 1f

Id

then gives rise to a similar commutative diagram of group homomorphisms

(8.3)

� 1pY; qq

� 1pX; pq � 1pX; pq

f � 1
�f �

1

Reversing the roles ofpX; pq and pY; qq produces similar diagrams to show that f � and f � 1
� are

inverse homomorphisms, hence both are isomorphisms. �

Remark 8.13. The fancy way to summarize Theorem8.11 is that � 1 de�nes a �covariant
functor� from the category of pointed spaces and pointed homotopy classes to the category of groups
and homomorphisms. We will discuss categories and functors more next semester inTopologie II.

Remark 8.14. Commutative diagrams such as (8.2) and (8.3) will appear more and more
often as we get deeper into algebraic topology. When we say that such a diagramcommutes , it
means that any two maps obtained by composing a sequence of arrows along di�erent paths from
one place in the diagram to another must match, so e.g. the message carried by (8.2) is the relation
f � 1 � f � Id, and (8.3) means f � 1

� � f � � 1. These were especially simple examples, but later we
will also encounter larger diagrams like

A B C �

A B 1 C1

f

�

g

� 


f 1 g1

The purpose of this one is to communicate the two relations� � f � f 1� � and 
 � g � g1� � , along
with all the more complicated relations that follow from these, such asg1 � f 1 � � � 
 � g � f .
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Since the paths representing elements of� 1pX; pq have the same �xed starting and ending
point, we often think of them as loops in X . We will establish some general properties of� 1pX; pq
in the next lecture, starting with the observation that whenever X is path-connected,� 1pX; pq up
to isomorphism does not actually depend on the choice of the base pointp PX , thus we can sensibly
write it as � 1pX q. Computing � 1pX qfor a given spaceX is not always easy or possible, but we will
develop some methods that are very e�ective on a wide class of spaces. I can already mention two
simple examples: �rst, � 1pRn q is the trivial group, resulting from the relatively obvious fact that
(by linear interpolation) every path in Rn from a point to itself is homotopic with �xed end points
to the constant path. In contrast, we will see that � 1pS1q and � 1pR2zt0uqare both isomorphic to
the integers, and this simple result already has many useful applications, e.g. we will derive from
it a very easy proof of the fundamental theorem of algebra.

9. Some properties of the fundamental group (May 16, 2023)

We would now like to clarify to what extent � 1pX; pq depends onp in addition to X .

Theorem 9.1. Given p; q P X , any homotopy class (with �xed end points) of pathsp


 q

determines a group isomorphism

� 
 : � 1pX; qq Ñ � 1pX; pq : r� s ÞÑ r
 � � � 
 � 1s:

Proof. Note that in writing the formula above for � 
 pr� sq, we are implicitly using the fact
(Proposition 8.7) that concatenation of paths is an associative operation up to homotopy, so one
can represent� 
 pr� sqby either of the paths 
 �p� � 
 � 1qor p
 � � q�
 � 1 without the result depending
on this choice. Similarly, Proposition 8.6 implies that the homotopy class of 
 � � � 
 � 1 with �xed
end points only depends on the homotopy classes of
 and � (also with �xed end points). 8 This
proves that � 
 is a well-de�ned map as written. The propositions in the previous lecture imply in
a similarly straightforward manner that � 
 is a homomorphism, i.e.

� 
 pr� sr� sq � r 
 � � � � � 
 � 1s � r 
 � � � 
 � 1 � 
 � � � 
 � 1s � � 
 pr� sq� 
 pr� sq;

and
� 
 preqsq � r 
 � eq � 
 � 1s � r 
 � 
 � 1s � r eps:

It remains only to observe that � 
 and � 
 � 1 are inverses of each other, hence both are isomor-
phisms. �

Corollary 9.2. If X is path-connected, then� 1pX; pq up to isomorphism is independent of
the choice of base pointp PX . �

Due to this corollary, it is conventional to abbreviate the fundamental group by

� 1pX q :� � 1pX; pq

wheneverX is path-connected, and we will see many theorems about� 1pX q in situations where
the base point plays no important role. If X is not path-connected but X 0 € X denotes the
path-component containing p, then � 1pX; pq � � 1pX 0; pq � � 1pX 0q, so in practice it is su�cient to
restrict our attention to path-connected spaces. Some caution is nonetheless warranted in using
the notation � 1pX q: strictly speaking, � 1pX q is not a concrete group but only an isomorphism
class of groups, and the subtle distinction between these two notions occasionally leads to trouble.
You should always keep in the back of your mind that even if the base point is not mentioned, it
is an essential piece of the de�nition of� 1pX q.

8Note that the homotopy class of 
 determines that of 
 � 1 . (Why?)
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We next discuss some alternative ways to interpret� 1pX; pq. Recall the following useful nota-
tional device: given a spaceX with subset A € X , we de�ne

X {A :� X {�

with the quotient topology, where the equivalence relation de�nesa � b for all a; b P A. In other
words, this is the quotient space obtained fromX by �collapsing� the subset A to a single point.
For example, it is straightforward (see Exercise5.16) to show that Dn {Sn � 1 is homeomorphic toSn

for every n PN, and if we replaceD1 � r� 1; 1sby the unit interval I � r 0; 1s, we obtain the special
case

r0; 1s
L
t 0; 1u � I

L
BI � S1:

Here we have used the notation

BX :� �boundary of X � ;

which comes from di�erential geometry, so for instanceBDn � Sn � 1 and we can therefore also
identify Sn with Dn {BDn . A speci�c homeomorphism I {BI Ñ S1 can be written most easily by
thinking of S1 as the unit circle in C:

I {BI Ñ S1 : rts ÞÑe2�it :

Lemma 9.3. For any spaceX and subsetA € X , there is a canonical bijection between the
set of all continuous mapsf : X Ñ Y that are constant on A and the set of all continuous maps
g : X {A Ñ Y . For any two maps f and g that correspond under this bijection, the diagram

X X {A

Y

�

f

g

commutes, where� : X Ñ X {A denotes the quotient projection; in other words,g � � � f .

Proof. The diagram determines the correspondence: giveng : X {A Ñ Y , we can de�ne
f :� g� � to obtain a map X Ñ Y that is automatically constant on A, and conversely, iff : X Ñ Y
is given and is constant onA, then there is a well-de�ned map g : X {A Ñ Y : rxs ÞÑf pxq. Our
main task is to show that f is continuous if and only if g is continuous. In one direction this
is immediate: if g is continuous, then f � g � � is the composition of two continuous maps and
is therefore also continuous. Conversely, iff is continuous, then for every open setU € Y , we
know f � 1pUq € X is open. A point rxs PX {A is then in g� 1pUq if and only if x P f � 1pUq, so
g� 1pUq � � pf � 1pUqqand thus � � 1pg� 1pUqq � f � 1pUq is open. By the de�nition of the quotient
topology, this means that g� 1pUq € X {A is open, sog is continous. �

Lemma 9.3 gives a canonical bijection between the set of all pathsp


 p in X beginning and

ending at the base point and the set of all continuous pointed maps

pI {BI; r0sq Ñ pX; pq:

It is easy to check moreover that two pathsp


 p are homotopic with �xed end points if and only

if they correspond to mapspI {BI; r0sq Ñ pX; pq in the same pointed homotopy class. Under the
aforementioned homeomorphismI {BI � S1 € C that identi�es r0s � r 1s with 1, this gives us an
alternative description of � 1pX; pq as

� 1pX; pq �
 
pointed maps 
 : pS1; 1q Ñ pX; pq

( L
�
h �

;
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PSfrag replacements

f

A

f pAq

Figure 1. A map f : I 2 Ñ D2 which descends to a homeomorphismg : I 2{A Ñ
D2 in the proof of Theorem 9.4.

where �
h �

now denotes the equivalence relation de�ned by pointed homotopy. The group structure

of � 1pX; pq is less easy to see from this perspective, but it will nonetheless be extremely useful to
think of elements of � 1pX q as represented byloops 
 : S1 Ñ X .

Theorem 9.4. A loop 
 : pS1; 1q Ñ pX; pq represents the identity element in� 1pX; pq if and
only if there exists a continuous mapu : D2 Ñ X with u|BD2 � 
 .

Proof. I can't explain this proof without a picture, so to start with, have a look at Figure 1.
It depicts a map f : I 2 Ñ D2 € C that collapses the red region consisting of three sides of the
square

A :� pB I � I q Y pI � t 1uq € I 2

to the single point f pAq � t 1u € D2, but is bijective everywhere else, and maps the pathI �t 0u € I 2

to the loop BD2. By Lemma 9.3, f determines a map

g : I 2{A Ñ D2

which is continuous and bijective, and it is also an open map (i.e. it maps open sets to open sets),
hence its inverse is also continuous andg is therefore a homeomorphism. Now, a path
 : I Ñ X
with 
 p0q � 
 p1q � p represents the identity in � 1pX; pq if and only if there exists a homotopy
H : I 2 Ñ X with H p0; �q � 
 and H |A � p. Applying Lemma 9.3 again, such a map is equivalent
to a map h : I 2{A Ñ X which sends the equivalence class represented by every point inA to
the base point p. In this case, h � g� 1 is a map D2 Ñ X whose restriction to BD2 is the loop
S1 � I {BI Ñ X determined by 
 : I Ñ X . �

Remark 9.5. Maps 
 : S1 Ñ X that admit extensions over D2 as in the above theorem are
called contractible loops (zusammenziehbare Schleifen).

Definition 9.6. A spaceX is called simply connected (einfach zusammenhängend) if it is
path-connected and its fundamental group is trivial.

It is common to denote the trivial group by � 0�, so for path-connected spaces, we can write

X is simply connected ô � 1pX q � 0:

By Theorem 9.4, this is equivalent to the condition that every map 
 : S1 Ñ X admits a continuous
extensionu : D2 Ñ X satisfying u|BD2 � 
 . Note that there was no need to mention the base point
in this formulation: if X is path-connected, then � 1pX q � 0 means � 1pX; pq � 0 for every p, so
for a given loop 
 : S1 Ñ X we are free to choosep :� 
 p1q PX as the base point and then apply
Theorem 9.4.
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PSfrag replacements
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Figure 2. Two equivalent pictures of the same homotopy with �xed end points
x and y between two paths � and � , using a homeomorphismI 2 � D2.

Examples 9.7. Though we will need to develop a few more tools before we can prove it, the
sphereS2 is simply connected. (Try to imagine a loop inS2 that cannot be �lled in by a disk�but
do not try too hard!)

In contrast, R2zt0u is not simply connected: we will see that the natural inclusion map
 :
S1 ãÑ R2zt0u is an example of a loop that cannot be extended to a mapu : D2 Ñ R2zt0u. Of
course, it can be extended to a mapD2 Ñ R2, but it will turn out that such an extension must
always hit the origin somewhere�in other words, the loop is contractible in R2, but not contractible
in R2zt0u. This observation has many powerful implications, e.g. we will see in the next lecture
that it is the key idea behind one of the simplest proofs of thefundamental theorem of algebra,
that every nonconstant complex polynomial has a root.

Another example with nontrivial fundamental group is the torus T2 :� S1 � S1. Pictures
of this space embedded inR3 typically depict it as the surface of a tube (or a doughnut or a
bagel�depending on your cultural preferences). Can you visualize a loop on this surface that is
contractible in R3 but not in T2?

One can also use the fundamental group to gain insight into homotopy classes of non-closed
paths:

Theorem 9.8. Two paths x
�;�
 y in X are homotopic with �xed end points if and only if the

concatenated pathx
� � � � 1

 x represents the identity element in� 1pX; x q.

Proof. The condition � �
h �

� means the existence of a homotopyH : I 2 Ñ X with certain

properties as depicted at the left in Figure2, but by a suitable choice of homeomorphismI 2 � D2

as shown to the right of that picture, we can equally well regardH as a map D2 Ñ X . The
loop 
 :� H |BD2 : S1 Ñ X can then be viewed as the concatenation� � ey � � � 1 � ex , which by
Proposition 8.8 is homotopic with �xed end points to � � � � 1. The result then follows directly from
Theorem 9.4. �

Corollary 9.9. A spaceX is simply connected if and only if for every pair of pointsp; q PX ,
there exists a path fromp to q and it is unique up to homotopy with �xed end points. �

Let us �nally work out a few concrete examples.

Example 9.10. For each n ¥ 0, the Euclidean spaceRn is simply connected. Indeed, since it
is path-connected, we are free to choose the base point0 P Rn , and can then observe that every
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loop 0


 0 is homotopic to the constant loop via the continuous family of loops


 s : I Ñ Rn : t ÞÑs
 ptq for s P I:

Example 9.11. Since every open ballB r pxqin Rn is homeomorphic toRn itself, Corollary 8.12
implies that � 1pB r pxqqalso vanishes, i.e.B r pxq is simply connected. One could also give a direct
proof of this, analogously to Example9.10: just choosex P B r pxq as the base point and de�ne

 s via linear interpolation between 
 and the constant loop at x. A similar trick works in fact
for any convex subset K € Rn , i.e. any set K with the property that the straight line segment
connecting any two points x; y P K is also contained inK . It follows that all convex subsets of
�nite-dimensional vector spaces are simply connected.

Example 9.12. Our �rst example of a nontrivial fundamental group (and probably also the
most important one to take note of in this course) is the circle: we claim that

� 1pS1q � Z:

The proof is based on a pair of lemmas that we will prove (in more general forms) in a few weeks,
though I suspect you will already �nd them easy to believe. RegardingS1 as the unit circle in C,
consider the map

f : R Ñ S1 : t ÞÑe2�it :

This is our �rst interesting example of a so-calledcovering map (Überlagerung): it is surjective,
and it looks like a homeomorphismon the small scale(i.e. if you zoom in close enough on any
particular point in R), but it is not injective, in fact it �wraps� the line R around S1 in�nitely
many times. The next two statements are special cases of results that we will later prove about a
much more general class of covering spaces:

(1) Given a path x


 y in S1 and a point ~x P f � 1pxq, there exists a unique path~x

~

 ~y in R

that is a �lift� of 
 in the sense that f � ~
 � 
 .
(2) Given a homotopy H : I � I Ñ S1 of paths x



 y (with �xed end points) and a point

~x P f � 1pxq, there exists a unique homotopy rH : I � I Ñ R of lifted paths ~x
~


 ~y which
lifts H in the sense that f � rH � H .

Now for any r
 s P� 1pS1; 1q represented by a path1


 1, there is a unique lift to a path 0

~

 ~
 p1q

in R. Unlike 
 , the end point of the lift need not match its starting point, but the fact that it is a
lift implies ~
 p1q Pf � 1p1q � Z, and the fact that homotopies can be lifted implies that this integer
does not change if we replace
 with any other representative of r
 s P � 1pS1; 1q. We therefore
obtain a well-de�ned map

� : � 1pS1; 1q Ñ Z : r
 s ÞÑ~
 p1q:

It is easy to show that � is a group homomorphism by lifting concatenated paths. Moreover,�
is surjective since� pr
 k sq � k for each of the loops
 k ptq � e2�ikt with k P Z, as these have lifts
~
 ptq � kt . Injectivity amounts to the statement that 
 must be homotopic to a constant whenever
its lift satis�es ~
 p1q � 0, and this follows from the fact that � 1pRq � 0: indeed, in this case~
 is not
just a path in R but is also a loop, thus it represents an element of� 1pR; 0q � 0 and is therefore
homotopic to the constant loop. Composing that homotopy with f : R Ñ S1 gives a homotopy of
the original loop 
 to a constant.

Exercise 9.13. In this exercise we show that the fundamental group of a product is a product
of fundamental groups.

(a) Given two pointed spacespX; x q and pY; yq, prove that � 1pX � Y;px; yqqis isomorphic to
the product group � 1pX; x q � � 1pY; yq.
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Hint: Use the projections pX : X � Y Ñ X and pY : X � Y Ñ Y to de�ne a natural map
from � 1 of the product to the product of � 1 's, then prove that it is an isomorphism.

(b) Generalize part (a) to the case of an in�nite product of pointed spaces (with the product
topology).

Exercise 9.14. Let us regard � 1pX; pq as the set of base point preserving homotopy classes
of maps pS1; ptq Ñ pX; pq, and let rS1; X s denote the set of homotopy classes of mapsS1 Ñ X ,
with no conditions on base points. (The elements ofrS1; X s are called free homotopy classes
of loops in X ). There is a natural map

F : � 1pX; pq Ñ rS1; X s

de�ned by ignoring base points. Prove:
(a) F is surjective if X is path-connected.
(b) F pr� sq � F pr� sqif and only if r� s and r� s are conjugate in � 1pX; pq.

Hint: If H : r0; 1s � S1 Ñ X is a homotopy with H p0; �q � � and H p1; �q � � , and t0 PS1

is the base point inS1, then 
 :� H p�; t0q : r0; 1s Ñ X begins and ends atp, and therefore
also de�nes a loop. Compare� and the concatenation
 � � � 
 � 1.

The conclusion is that if X is path-connected,F induces a bijection betweenrS1; X s and the set
of conjugacy classes in� 1pX q. In particular, � 1pX q � r S1; X s whenever� 1pX q is abelian.

10. Retractions and homotopy equivalence (May 23, 2023)

Having proved that two homeomorphic spaces always have isomorphic fundamental groups, it
is natural to wonder whether the converse is true. The answer is an emphaticno, but this will turn
out to be more of an advantage than a disadvantage: it becomes much easier to compute� 1pX q
if we are free to replaceX with another space X 1 that is not homeomorphic to X but still has
certain features in common. This idea leads us naturally to the notion ofhomotopy equivalence,
another equivalence relation on topological spaces that is strictly weaker than homeomorphism.

Let us �rst discuss conditions that make the homomorphismsf � : � 1pX; pq Ñ � 1pY; qqinjective
or surjective.

Definition 10.1. For a spaceX with subset A € X , a map f : X Ñ A is called aretraction
(Retraktion ) if f |A is the identity map A Ñ A. Equivalently, if i : A ãÑ X denotes the natural
inclusion map, then f being a retraction means that the following diagram commutes:

(10.1)
A A

X

Id

i f

We say in this case thatA is a retract of X .

Example 10.2. For A :� R � t 0u € R2, the map f : R2 Ñ A : px; yq ÞÑ px; 0q is a retraction.

A wide class of examples of retractions arises from the following general construction.

Definition 10.3. The wedge sum of two pointed spacespX; pq and pY; qq is the space

X _ Y :� p X > Y q
L
�

where the equivalence relation setsp P X equivalent to q P Y and is otherwise trivial. More
generally, any (potentially in�nite) collection of pointed spaces tpX � ; p� qu� PJ has a wedge sum

ª

� PJ

X � :�
º

� PJ

X �

M
� ;
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where the equivalence relation identi�es all the base pointsp� � p� for �; � P J . The wedge sum
is naturally also a pointed space, with base pointrp� s P

š
� X � .

Remark 10.4. I did not specify the topology on X _ Y or
š

� X � , but by now you know
enough to deduce from context what it must be: e.g. for the wedge of two spaces, we assign the
disjoint union topology to X > Y and then endowpX > Yq{� with the resulting quotient topology.
We will see many more constructions of this sort that involve a combination of quotients with
disjoint unions and/or products, so you should always assume unless otherwise speci�ed that the
topology is whatever arises naturally from disjoint union, product and/or quotient topologies.

The notation for wedge sums is slightly nonideal since the de�nition of
š

� X � depends not just
on the spacesX � but also on their base pointsp� PX � , and it is not true in general that changing
base points always produces homeomorphic wedge sums. It is true however for most examples
that arise in practice, so the ambiguity in notation will usually not cause a problem. Note that
since each of the individual spacesX � are naturally subspaces of

²
� X � , they can equally well

be regarded as subspaces of
š

� X � , and it is straightforward to show that the obvious inclusion
X � ãÑ

š
� X � for each � is a homeomorphism onto its image. But while the intersection ofX �

and X 
 in
²

� X � for � � 
 is always empty, in
š

� X � they intersect at the base point, and only
there. The next example should be understood in this context.

Example 10.5. For the wedge sumX _ Y of two pointed spacespX; pq and pY; qq, there is a
natural base-point preserving retraction

f : X _ Y Ñ X : rxs ÞÑ

#
x if x PX;
p if x PY :

In words, f maps X € X _ Y to itself as the identity map while collapsing all of Y € X _ Y to
the base point. One can analogously de�ne a natural retractionX _ Y Ñ Y , and for a wedge sum
of arbitrarily many spaces, a natural retraction

š
� PJ X � Ñ X � for each � PJ .

Exercise 10.6. Convince yourself that the map f : X _ Y Ñ X in Example 10.5is continuous.

Example 10.7. For X � Y � S1, the wedge sumS1 _ S1 is a space homeomorphic to the
symbols �8� and �8 �, i.e. a so-called�gure eight. Note that in this case, we did not need to specify
the base points on the two copies ofS1 because choosing di�erent base points leads to wedge sums
that are homeomorphic. As a special case of Example10.5, there are two retractions S1 _ S1 Ñ S1

that collapse either the top half or the bottom half of the �8� to a point.

The next example originates in the proof of the Brouwer �xed point theorem that we sketched
at the end of Lecture 1 (cf. Theorem 1.13).

Example 10.8. As explained in Lecture1, if there exists a continuous mapf : Dn Ñ Dn with
no �xed point, then one can use it to de�ne a map g : Dn Ñ BDn � Sn � 1 that satis�es gpxq � x
for all x P BDn . The idea is to follow the unique line from x through f pxq until arriving at some
point of the boundary, which is de�ned to be gpxq. This makesg a retraction of Dn to BDn . The
main step in the proof of Brouwer's �xed point theorem is to show that no such retraction exists.
We will carry this out for n � 2 in a moment.

Theorem 10.9. If f : X Ñ A is a retraction and i : A ãÑ X denotes the inclusion, then for
any choice of base pointa P A, the induced homomorphismi � : � 1pA; aq Ñ � 1pX; aq is injective,
while f � : � 1pX; aq Ñ � 1pA; aq is surjective.
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Proof. Since the maps in the commutative diagram (10.1) all send the base pointa P A to
itself, Theorem 8.11 produces a corresponding commutative diagram of homomorphisms:

� 1pA; aq � 1pA; aq

� 1pX; aq

1

i � f �

In particular, f � � i � is both injective and surjective, which is only possible ifi � is injective and f �

is surjective. �

Proof of the Brouwer fixed point theorem for n � 2. If there is a map f : D2 Ñ D2

with no �xed point, then there is also a retraction g : D2 Ñ BD2 � S1 as explained in Example10.8,
so Theorem10.9 implies that the induced homomorphismg� : � 1pD2q Ñ � 1pS1q is surjective. As
we saw at the end of the previous lecture,� 1pS1q � Z, and an easy modi�cation of Example 9.10
shows that � 1pD2q � 0. (In fact, the same argument proves that every convex subset ofRn is
simply connected�this will also follow from the more general Corollary 10.23below.) But there
is no surjective homomorphism from the trivial group to Z, so this is a contradiction. �

Definition 10.10. Assume X is a space with subsetA € X and i : A ãÑ X denotes the
inclusion. A deformation retraction (Deformationsretraktion) of X to A is a homotopy H :
I � X Ñ X such that H ps; �q|A � IdA for every s P I , H p1; �q � IdX and H p0; �q � i � f for
some retraction f : X Ñ A. If a deformation retraction exists, we say that A is a a deformation
retract (Deformationsretrakt ) of X .

You should imagine a deformation retraction as a gradual �pulling� of all points in X toward
the subsetA until eventually all of them end up in A.

Example 10.11. We call X € Rn a star-shaped domain (sternförmige Menge) if for every
x P X , the rescaled vectortx is also in X for every t P r0; 1s. In this case H pt; x q :� tx de�nes a
deformation retraction of X to the one-point subsett 0u.

Example 10.12. This is actually a non-example: while the mapsf : S1 _ S1 Ñ S1 in
Example 10.7 are retractions, i � f in this case is not homotopic to the identity on S1 _ S1, so
S1 is not a deformation retract of S1 _ S1. We are not yet in a position to prove this, as it will
require more knowledge of� 1pS1 _ S1q than we presently have, but the necessary results will be
proved within the next four lectures. For now, feel free to try to imagine how you might de�ne
a homotopy of mapsS1 _ S1 Ñ S1 _ S1 that starts with the identity and ends with a retraction
collapsing one of the circles. (Keep in mind however that it is not possible, so don't try too hard.)

Example 10.13. The sphereSn � 1 € Rn zt0u is a deformation retract of the punctured Eu-
clidean space. A suitable homotopyH : I � p Rn zt0uq Ñ Rn zt0u can be de�ned by

H pt; x q �
x

t � p 1 � tq|x|
;

which makesH p1; �qthe identity map, while H p0; xq :� x{|x| retracts Rn zt0uto Sn � 1 and H pt; x q �
x for x PSn � 1. It is important to observe that no continuous map can be de�ned in this way with
all of Rn as its domain: the removal of one point changes the topology ofRn in an essential way
that makes the deformation retraction to Sn � 1 possible. (We will later be able to prove that Rn

does not admit any retraction to Sn � 1. When n � 2, this already follows from Theorem10.9since
� 1pS1q � Z and � 1pR2q � 0.)
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Example 10.14. Writing Sn �
 
px; zq PRn � R

�
� |x |2 � z2 � 1

(
, de�ne the two �poles� p� �

p0; � 1q. Removing these poles produces a space that can be decomposed into a1-parameter family
of pn � 1q-spheres, i.e. there is a homeomorphism

Sn ztp� ; p� u �ÝÑ Sn � 1 � p� 1; 1q : px; zq ÞÑ
�

x
|x |

; z



:

If we identify Sn ztp� ; p� u with Sn � 1 � p� 1; 1q in this way, then we see that the �equator�
Sn � 1 � t 0u € Sn is a deformation retract of Sn ztp� ; p� u. This follows from the fact that t 0u
is a deformation retract of p� 1; 1q.

Definition 10.15. A map f : X Ñ Y is a homotopy equivalence (Homotopieäquivalenz) if
there exists a mapg : Y Ñ X such that g� f and f � g are each homotopic to the identity map onX
and Y respectively. When this exists, we say thatg is a homotopy inverse (Homotopieinverse) of
f , and that the spacesX and Y are homotopy equivalent (homotopieäquivalent). This de�nes
an equivalence relation on topological spaces which we shall denote in these notes by

X �
h:e:

Y:

Exercise 10.16. Verify that homotopy equivalence de�nes an equivalence relation.

Remark 10.17. The notation � �
h:e:

� for homotopy equivalence is not universal, and there are

several similar but slightly di�erent standards that frequently appear in the literature. This one
happens to be my current favorite, but I may change to something else next year.

Example 10.18. A homeomorphism f : X Ñ Y is obviously also a homotopy equivalence,
with homotopy inverse f � 1.

Example 10.19. If H : I � X Ñ X is a deformation retraction with H p0; �q � f � i for a
retraction f : X Ñ A, then the inclusion i : A ãÑ X is a homotopy inverse off , so that both f
and i are homotopy equivalences and thusX �

h:e:
A. Indeed, the retraction condition implies that

f � i is not just homotopic but also equal to IdA , and adding the word �deformation� provides the
condition i � f �

h
IdX .

Definition 10.20. We say that a spaceX is contractible (zusammenziehbaror kontrahier-
bar) if it is homotopy equivalent to a one-point space.

Remark 10.21. The above de�nitions imply immediately that any space admitting a defor-
mation retraction to a one-point subset (as in Example10.11) is contractible. The converse is not
quite true. Indeed, supposet xu is a one-point space andf : X Ñ t xu is a homotopy equivalence
with homotopy inverse g : t xu Ñ X and a homotopy H : I � X Ñ X from IdX to g � f . (We
do not need to discuss any homotopy off � g since there is only one mapt xu Ñ t xu.) Then if
p :� gpxq PX , F : X Ñ t pu denotes the constant map atp and i : t pu ãÑ X is the inclusion,
we haveF � i � Id t pu, and H is a homotopy from IdX to i � F . Unfortunately, the de�nition of
homotopy equivalence does not guarantee that this homotopy will satisfyH pt; pq � p for all t P I ,
soH might not be a deformation retraction in the strict sense of De�nition 10.10. It turns out that
this distinction matters, but only for fairly strange spaces: see [Hat02 , p. 18, Exercise 6] for an
example of a space that is contractible but does not admit a deformation retraction to any point.

We can now state the main theorem of this lecture.

Theorem 10.22. If f : X Ñ Y is a homotopy equivalence withf ppq � q, then the induced
homomorphism f � : � 1pX; pq Ñ � 1pY; qq is an isomorphism.
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Since a one-point space contains only one path and therefore has trivial fundamental group,
this implies:

Corollary 10.23. For every contractible spaceX , � 1pX q � 0. �

Proof of Theorem 10.22. Here is a preliminary remark: if you're only half paying at-
tention, then you might reasonably think this theorem follows immediately from Theorem 8.11.
Indeed, we stated in that theorem that the homomorphismf � : � 1pX; pq Ñ � 1pY; qq depends only
on the pointed homotopy class off , and the same is of course true of the compositionsg � f and
f � g, which ought to make g� � f � and f � � g� both the identity if g � f and f � g are homotopic
to the identity. The problem however is that we are not paying attention to the base point: the
de�nition of homotopy equivalence never mentions any base point and says �homotopy� rather than
�pointed homotopy,� while in Theorem 8.11, maps and homotopies are always required to preserve
base points. In particular, if f ppq � q and g : Y Ñ X is a homotopy inverse off , then there is
no reason to expectgpqq � p, in which caseg� : � 1pY; qq Ñ � 1pX; gpqqqcannot be an inverse of
f � : � 1pX; pq Ñ � 1pY; qq, as its target is not even the same group as the domain off � . The main
content of the following proof is an argument to cope with this annoying detail.

With that out of the way, assume f : X Ñ Y is a map with homotopy inverse g : Y Ñ X ,
satisfying f ppq � q and gpqq � r , so we have a sequence of pointed maps

pX; pq
f

ÝÑ p Y; qq
g

ÝÑ p X; r q

and induced homomorphisms

(10.2) � 1pX; pq
f �ÝÑ � 1pY; qq

g�ÝÑ � 1pX; r q:

By assumption there exists a homotopyH : I � X Ñ X , which we shall write as a1-parameter
family of maps

hs :� H ps; �q : X Ñ X for s P I;

satisfying h0 � IdX and h1 � g � f . We can therefore de�ne a pathp


 r by


 ptq :� ht ppq;

and by Theorem 9.1, this gives rise to an isomorphism

� 
 : � 1pX; r q Ñ � 1pX; pq : r� s ÞÑ r
 � � � 
 � 1s:

We claim that the diagram

� 1pX; pq � 1pY; qq

� 1pX; r q

f �

� � 1



g�

commutes, or equivalently, � 
 � g� � f � is the identity map on � 1pX; pq. Given a loop p
�
 p, the

element � 
 � g� � f � r� s � � 
 � pg � f q� r� s is represented by
 � pg � f � � q �
 � 1, so we need to show
that the latter is homotopic with �xed end points to � . A precise formula for such a homotopy is
provided by the following 1-parameter family of loops: for s P I , let

� s :� 
 s � phs � � q � 
 � 1
s ;

where p

 s 
 psq denotes the path 
 sptq :� 
 pstq. (For a visualization of what this homotopy is

actually doing, I recommend the picture on page 37 of [Hat02 ].) This proves the claim, and since
� 
 is an isomorphism, it implies that g� � f � � � � 1


 is also an isomorphism, from which we deduce
that f � is injective and g� is surjective.



66 FIRST SEMESTER (TOPOLOGIE I)

The preceding argument was based on the assumption thatg � f : X Ñ X is homotopic to
the identity. We have not yet used the assumption that f � g : Y Ñ Y is also homotopic to the
identity, but we can use it now to carry out the same argument again with the roles off and g
reversed. The conclusion is thatf � � g� is also an isomorphism, implyingg� is injective and f � is
surjective. We conclude that f � and g� are in fact both isomorphisms. �

Example 10.24. Here are some examples of contractible spaces, which therefore have iso-
morphic (trivial) fundamental groups even though they are not all homeomorphic: Rn , Dn (not
homeomorphic to Rn since it is compact), any convex subset or star-shaped domain inRn as in
Example 10.11. A quite di�erent type of example comes from graph theory: a graph is a combi-
natorial object consisting of a setV (called the vertices ) and a setE whose elements (theedges)
are unordered pairs of vertices. A graph is typically represented by depicting the vertices as points
and the edgest x; yu PE as curves connecting the corresponding verticesx and y to each other.
One can thus naturally view a graph as a topological space in which each vertex is a point and each
edge is a subset homeomorphic tor0; 1s (possibly with its end points identi�ed if its two vertices
are the same one). A graph is called atree if there is exactly one path (up to parametrization)
connecting any two of its vertices. It is not hard to show that any �nite graph with this property is
a contractible space: pick your favorite vertexv PV , draw the unique path from v to every other
vertex, then de�ne a deformation retraction to v by pulling everything back along these paths.

Example 10.25. Viewing S1 as the unit circle in C, associate to eachz P C the loop 
 z :
S1 ãÑ Cztzu : ei� ÞÑz � ei� . Since these are pointed mapspS1; 1q Ñ pCztzu; z � 1q, they represent
elementsr
 zs P� 1pCztzu; z � 1q. We claim in fact that this group is isomorphic to Z, and that r
 zs
generates it. The proof is mainly the observation that
 zpS1qis a deformation retract of Cztzu, by a
construction analogous to Example10.13, hence
 z is a homotopy equivalence and therefore induces
an isomorphism � 1pS1; 1q Ñ � 1pCztzu; z � 1q. Since the identity map pS1; 1q Ñ pS1; 1q represents
a generator of � 1pS1; 1q, composing this with 
 z now represents a generator of� 1pCztzu; z � 1q as
claimed.

Exercise 10.26. For a point z PC and a continuous map
 : r0; 1s Ñ Cztzu with 
 p0q � 
 p1q,
one de�nes thewinding number of 
 about z as

windp
 ; zq � � p1q � � p0q PZ

where � : r0; 1s Ñ R is any choice of continuous function such that


 ptq � z � rptqe2�i� pt q

for some function r : r0; 1s Ñ p0; 8q . Notice that since 
 ptq � z for all t, the function rptq is
uniquely determined, and requiring � ptq to be continuous makes it unique up to the addition of a
constant integer, hence� p1q � � p0q depends only on the path
 and not on any additional choices.
One of the fundamental facts about winding numbers is their important role in the computation
of � 1pS1q: as we saw in Example9.12, viewing S1 as t z PC | |z| � 1u, the map

� 1pS1; 1q Ñ Z : r
 s ÞÑwindp
 ; 0q

is an isomorphism to the abelian grouppZ; �q . Assume in the following that 
 € C is an open set
and f : 
 Ñ C is a continuous function.

(a) Supposef pzq � w and w R f pUztzuqfor some neighborhoodU € 
 of z. This implies
that the loop f � 
 � for 
 � : r0; 1s Ñ 
 : t ÞÑz � �e2�it has image in Cztwu for all
� ¡ 0 su�ciently small, hence windpf � 
 � ; wq is well de�ned. Show that for some� 0 ¡ 0,
windpf � 
 � ; wq does not depend on� as long as0   � ¤ � 0.
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(b) Show that if the ball B r pz0q of radius r ¡ 0 about z0 P 
 has its closure contained in
 ,
and the loop 
 ptq � z0 � re2�it satis�es windpf � 
 ; wq � 0 for somew P C, then there
exists z PB r pz0q with f pzq � w.
Hint: Recall that if we regard elements of � 1pX; pq as pointed homotopy classes of maps
S1 Ñ X , then such a map represents the identity in� 1pX; pq if and only if it admits a
continuous extension to a mapD2 Ñ X . De�ne X in the present case to beCztwu.

(c) Prove the Fundamental Theorem of Algebra: every nonconstant complex polynomial has
a root.
Hint: Consider loops 
 ptq � Re2�it with R ¡ 0 large.

(d) We call z0 P 
 an isolated zero of f : 
 Ñ C if f pz0q � 0 but 0 R f pUztz0uq for
some neighborhoodU € 
 of z0. Let us say that such a zero hasorder k P Z if
windpf � 
 � ; 0q � k for 
 � ptq � z0 � �e2�it and � ¡ 0 small (recall from part (a) that this
does not depend on the choice of� if it is small enough). Show that if k � 0, then for
any neighborhoodU € 
 of z0, there exists � ¡ 0 such that every continuous function
g : 
 Ñ C satisfying |f � g|   � everywhere has a zero somewhere inU.

(e) Find an example of the situation in part (d) with k � 0 such that f admits arbitrarily
close perturbationsg that have no zeroes in some �xed neighborhood ofU.
Hint: Write f as a continuous function ofx and y wherex � iy P 
 . You will not be able
to �nd an example for which f is holomorphic�they do not exist!

General advice: Throughout this problem, it is important to remember that Cztwu is homotopy
equivalent to S1 for every w PC. Thus all questions about � 1pCztwuqcan be reduced to questions
about � 1pS1q.

11. The easy part of van Kampen's theorem (May 25, 2023)

The main question of this lecture is the following: If X is the union of two subsetsA Y B and
we know both � 1pAq and � 1pB q, what can we say about� 1pX q?

Example 11.1. The sphereSn can be viewed as the union of two subsetsA and B that are both
homeomorphic to Dn , e.g. whenn � 2, we would take the northern and southern �hemispheres�
of the globe. SinceDn is contractible, � 1pAq � � 1pB q � 0. We will see below that this is almost
enough information to compute � 1pSn q.

The next lemma is the �easy� �rst half of an important result about fundamental groups
known as the Seifert-van Kampen theorem, or often simply van Kampen's theorem. The much
more powerful �hard� part of the theorem will be dealt with in the two subsequent lectures, though
the easy part already has several impressive applications. We will state it here in somewhat
greater generality than is needed for most applications: on �rst reading, you are free to replace
the arbitrary open covering X �

”
� PJ A � with a covering by two open subsetsX � A Y B , which

will be the situation in all of the examples below.

Lemma 11.2. SupposeX �
”

� PJ A � for a collection of open subsetst A � € X u� PJ satisfying
the following conditions:

(1) A � is path-connected for every� PJ ;
(2) A � X A � is path-connected for every pair�; � PJ ;
(3)

“
� PJ A � � H .

Let A �
i �ãÑ X denote the natural inclusion maps. Then for any base pointp P

“
� PJ A � , � 1pX; pq

is generated by the subgroups
pi � q� p� 1pA � ; pqq € � 1pX; pq;
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i.e. every element of� 1pX; pq is a product of elements of the formpi � q� r
 s for some � P J and
r
 s P� 1pA � ; pq.

Before proving the lemma, let's look at several more examples, starting with a rehash of
Example 11.1 above.

Example 11.3. Denote points in the unit sphereSn by px; zq PRn � R such that |x |2 � z2 � 1,
and de�ne the open subsets

A :� t z ¡ � � u € Sn ; B :� t z   � u € Sn

for some � ¡ 0 small. Then A � B � Rn , so both have trivial fundamental group. Moreover,
A X B � Sn � 1 �p� �; � qis path-connected ifn ¥ 2. (Note that this is not true if n � 1: the 0-sphere
S0 is just the set of two points t 1; � 1u € R, so it is not path-connected.) The lemma therefore
implies that for any p PA X B , � 1pSn ; pq is generated by images of homomorphisms into� 1pSn ; pq
from the groups � 1pA; pq and � 1pB; pq, both of which are trivial, therefore � 1pSn ; pq is trivial.

We just proved:

Corollary 11.4. For all n ¥ 2, Sn is simply connected. �

Here is an easy application:

Theorem 11.5. For every n ¥ 3, R2 is not homeomorphic toRn .

Proof. The complement of one point inRn is homotopy eqivalent toSn � 1, thus � 1pRn ztptuq �
� 1pSn � 1q � 0 if n ¥ 3, while � 1pR2ztptuq � � 1pS1q � Z. It follows that R2ztptu and Rn ztptu for
n ¥ 3 are not homeomorphic, hence neither areR2 and Rn . �

A wider class of examples comes from the following general construction known asgluing of
spaces. AssumeX , Y and A are spaces and we have inclusions9

i X : A ãÑ X; i Y : A ãÑ Y:

We then de�ne the space

X YA Y :� p X > Y q
L
�

where the equivalence relation identi�es i X paq PX with i Y paq PY for every a P A. As usual in
such constructions, we assign toX > Y the disjoint union topology and then give X YA Y the
quotient topology. We say that X YA Y is the space obtained bygluing X to Y along A. Note
that we can regard X and Y both as subspaces ofX YA Y , and their intersection is a subspace
homeomorphic to A. The wedge sum of two spaces (see Example10.3) is the special case of this
construction whereA is a single point. (The notation is slightly non-ideal sinceX YA Y depends on
the inclusions ofA into X and Y , not just on the three spaces themselves, but in most interesting
examples the inclusions are obvious, so the notation is easy to interpret.)

Example 11.6. If X � Y � Dn and A � Sn � 1 is included in both as the boundaryBDn , then
the descriptions ofSn in Examples 11.1 and 11.3 translates into

Dn YSn � 1 Dn � Sn :

9The technical meaning of the word inclusion in this context is a map A ãÑ X which is injective and is a
homeomorphism onto its image (with the subspace topology). Such a map is also sometimes called a topological
embedding .
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Example 11.7. In Example 1.2 we gave a description ofRP2 as the space obtained by gluing
a disk D2 to a Möbius strip

M :�
 
pei� ; t cosp� {2q; t sinp� {2qq PS1 � R2

�
� ei� PS1; t P r� 1; 1s

(

along their boundaries, which are both homeomorphic toS1. Choose a particular inclusion ofS1

as the boundary ofM , e.g.

S1 ãÑ M : ei� ÞÑ pe2i� ; cosp� q; sinp� qq:

Then our picture of RP2 can be expressed succinctly as

RP2 � D2 YS1 M:

Lemma 11.2 can now be applied to this as follows. There is an obvious deformation retraction of
M to the �central� circle S1 � t 0u € M , de�ned via the homotopy

H : I � M Ñ M : ps;pei� ; t cosp� {2q; t sinp� {2qqq ÞÑ pei� ; st cosp� {2q; st sinp� {2qq;

thus M �
h:e:

S1. The gluing construction allows us to view both D2 and M as subsets ofRP2,

but they are not open subsets as required by the lemma. This can easily be �xed by slightly
expanding both of them. Concretely, by adding a neighborhood ofBM in M to D2, we obtain an
open neighborhoodA € RP2 of D2 that is homeomorphic to an open disk, and similarly, adding
a neighborhood ofBD2 in D2 to M gives an open neighborhoodB € RP2 of M that admits a
deformation retraction to M and thus also to the central circleS1 � t 0u € M . We now have

� 1pAq � � 1p�D2q � 0 and � 1pB q � � 1pMq � � 1pS1q � Z;

and notice also that A and B are both path connected, and so isA X B since we can arrange for
the latter to be homeomorphic to S1 � p� 1; 1q, i.e. it is the union of an annular neighborhood of
BD2 in D2 with another annular neighborhood of BM in M . The lemma thus implies that for any
p P A X B , � 1pRP2; pq is generated by the elementi B

� r
 s P � 1pRP2; pq, where i B : B ãÑ RP2 is
the inclusion and 
 : pS1; 1q Ñ pB; pq is any loop such that r
 s generates� 1pB; pq � Z. In light
of the deformation retraction to the central circle, the inclusion of that circle into B induces an
isomorphism of fundamental groups, thus we can take
 to be the obvious inclusion ofS1 into B
as the central circle:


 : S1 �Ñ S1 � t 0u € M € RP2;

ei� ÞÑ pei� ; 0q:
(11.1)

The conclusion is that if we regard
 in this way as a loop in RP2, then r
 s generates� 1pRP2; pq.
The loop 
 is not hard to visualize if you translate from our picture of RP2 as D2 YS1 M back to
the usual de�nition of RP2 as a quotient of S2 (see Example1.2): in the latter picture you can
realize 
 as a path along the equator ofS2 that goes exactly halfway around. Note that this is not
a loop in S2, but it becomes a loop when you project it to RP2 since its starting and end point
are antipodal.

A word of caution is in order: we have not yet actually computed� 1pRP2q, we have only shown
that every element in � 1pRP2q is a power of a single elementr
 s. It is still possible that � 1pRP2q is
trivial because 
 is contractible�this will turn out not to be the case, but we are not in a position
to prove it just yet. We can say one more thing, however:r
 s2 is the identity element in � 1pRP2; pq.
Indeed, r
 s2 is represented by the concatenation of
 with itself, which can also be realized as the
projection through S2 �Ñ RP2 of a path that goes all the way around the equator in S2, i.e. it
is the concatenation of two paths that go halfway around. But if � : S1 Ñ S2 parametrizes
this loop around the equator, then there is obviously an extension of� to a map u : D2 Ñ S2

satisfying u|BD2 � � , namely the inclusion of either the northern or southern hemisphere ofS2.
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The map � � u : D2 Ñ RP2 is then an extension over the disk of our loop representingr
 s2, which
proves via Theorem9.4 that r
 s2 is trivial. This proves that � 1pRP2q is either the trivial group
or is isomorphic to Z2; we will see that it is the latter when we prove that the generator r
 s is
nontrivial.

Here is another pair of general constructions that produce many more examples.

Definition 11.8. Given a spaceX , the cone (Kegel) of X is the space

CX :� p X � I q{pX � t 1uq:

The single point in CX represented bypx; 1qfor every x PX is sometimes called the �summit�
or �node� of the cone.

Exercise 11.9. Show that CSn � 1 is homeomorphic toDn .

Lemma 11.10. For every spaceX , the coneCX is contractible.

Proof. There is an obvious deformation retraction ofX � I to X � t 1u de�ned by pushing
every px; t q PX � I upward in the t-coordinate. Writing down this same deformation retraction
on the quotient pX � I q{pX � t 1uq, the result is that everything gets pushed to a single point, the
summit of the cone. �

Definition 11.11. Given a spaceX , the suspension (Einhängung) of X is the space

SX :� C� X YX �t 0u C� X;

where C� X :� CX as above, andC� X is the �reversed� conepX � r� 1; 0sq{pX � t� 1uq. Equiva-
lently, the suspension can be written as

SX � p X � r� 1; 1sq
L
�

where px; 1q � p y; 1q and px; � 1q � p y; � 1q for every x; y PX .

Exercise 11.12. Show that SSn � 1 � Sn .

We can now generalize the result that� 1pSn q � 0 for n ¥ 2 as follows.

Theorem 11.13. If X is path-connected, then its suspensionSX is simply connected.

Proof. We de�ne A; B € SX to be open neighborhoods ofC� X and C� X respectively, e.g.

A :� p X � p� �; 1sq
L
pX � t 1uq; B :� p X � r� 1; � qq

L
pX � t� 1uq

for any � P p0; 1q. The subspaces are both contractible for the same reason thatC� X and C� X
are: one can de�ne deformation retractions to a point by pushing upward inA and downward
in B . Moreover, A X B � X � p� �; � q is path-connected if and only if X is path-connected, and in
that case, Lemma11.2 implies that � 1pSX q is generated by the images of homomorphisms from
� 1pAq and � 1pB q, both of which are trivial, therefore � 1pSX q is trivial. �

Let us �nally prove the lemma.

Proof of Lemma 11.2. We assumeX �
”

� PJ A � and p P
“

� PJ A � , where the setsA � € X
are open and path-connected, andA � X A � is also path-connected for every pair�; � PJ . What we
need to show is that every loopp



 p in X is homotopic with �xed end points to a concatenation

of �nitely many loops based at p that are each contained in one of the subsetsA � . To start with,
observe that since
 : I Ñ X is continuous, I � :� 
 � 1pA � q is an open subset ofI for every � , and
is therefore a union of open subintervals ofI .10 The union of all these open subintervals for all

10Remember that since sets like r0; � q € I that include an end point are open subsets of I , they are included
in the term �open subinterval of I �.
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� P J thus forms an open covering ofI , which has a �nite subcovering sinceI is compact, giving
rise to a �nite collection of open subintervals

I � I 1 Y : : : Y I N

such that for eachj � 1; : : : ; N , 
 pI j q € A � j for some� j PJ . After relabeling the � j 's if necessary,
we can then �nd a �nite increasing sequence

0 � : t0   t1   : : :   tN � 1   tN :� 1

such that 
 prt j � 1; t j sq € A � j for each j � 1; : : : ; N . In particular, for j � 1; : : : ; N � 1, each 
 pt j q
lies in both A � j and A � j � 1 . The intersection of these two sets is path-connected by assumption, so
choose a path� j in A � j X A � j � 1 from 
 pt j q to the base point p. Then if we write 
 j :� 
 |rt j � 1 ;t j s
and reparametrize each of these paths to de�ne them on the usual intervalI , we have


 � 
 1 � : : : � 
 N �
h �


 1 � � 1 � � � 1
1 � 
 2 � � 2 � � � 1

2 � : : : � � N � 2 � � � 1
N � 2 � 
 N � 1 � � N � 1 � � � 1

N � 1 � 
 N :

The latter is the concatenation we were looking for since
 1 � � 1 is a loop from p to itself in A � 1 ,
� � 1

1 � 
 2 � � 2 is a loop from p to itself in A � 2 , and so forth up to � � 1
N � 2 � 
 N � 1 � � N � 1 in A � N � 1 and

� � 1
N � 1 � 
 N in A � N . �

To conclude this lecture, we would like to restate Lemma11.2 in more precise terms. This
requires a few notions from combinatorial group theory.

Definition 11.14. Supposet G� u� PJ is a collection of groups, with the identity element in
each denoted bye� P G� . For any integer N ¥ 0, an ordered setb1b2 : : : bN together with a
corresponding ordered set� 1; � 2; : : : ; � N P J is called a word in t G� u� PJ if bi P G� i for each
i � 1; : : : ; N . Informally, we call the elements of the sequenceletters, and denote the word by
b1 : : : bN even though, strictly speaking, the set of indices� 1; : : : ; � N P J is also part of the data
de�ning the word. 11 Note that this de�nition includes the so-called empty word, with N � 0,
i.e. the word with no letters. A word a1 : : : aN is called areduced word if:


 none of the lettersbi are the identity element e� i PG� i in the corresponding group, and

 no two adjacent letters bi and bi � 1 satisfy � i � � i � 1, i.e. the groups that appear in

adjacent positions are distinct.
Note that the empty word trivially satis�es both conditions, thus it is a reduced word.

There is an obvious map calledreduction from the set of all words to the set of all reduced
words: it acts on a given wordb1 : : : bN by replacing all adjacent pairs bi bi � 1 with their product
in G� whenever� i � � i � 1 � � , and removing all e� 's.

Definition 11.15. The free product (freies Produkt) � � PJ G� of a collection of groups
t G� u� PJ is de�ned as the set of all reduced words int G� u� PJ . The product of two reduced words
w � b1 : : : bN and w1 � b1

1 : : : b1
N 1 in this group is de�ned to be the reduction of the concatenated

word ww1 � b1 : : : bN b1
1 : : : b1

N 1. The identity element is the empty word, and will be denoted by

e P �
� PJ

G� :

We will typically deal with collections of only �nitely many groups G1; : : : ; GN , in which case
the free product is usually denoted by

G1 � : : : � GN :

11This is important to remember in case some G� and G� contain common elements for � � � , e.g. if they
are both subgroups of a single larger group. If not, then this detail is safe to ignore and the notation b1 : : : bN for a
word is completely unambiguous.
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In general, this is an enormous group, e.g. it is always in�nite if there are at least two nontrivial
groups in the collection, no matter how small those groups are. It is also always nonabelian in
those cases. Let us see some examples.

Example 11.16. Consider two copies of the same groupG � H � Z2, with the unique
nontrivial elements of G and H denoted by a P G and b P H . Then G � H consists of all possible
reduced words built out of these two letters, plus the empty worde, so

Z2 � Z2 � G � H � t e; a; b; ab; ba; aba; bab; abab; baba; : : :u:

For an example of how multiplication in Z2 � Z2 works, the product of aba and ab is a, i.e. this is
the result of reducing the unreduced wordabaabsinceaa and bbare both identity elements.

Example 11.17. Let G � Z with a generator denoted by a P G, and H � Z2 with nontrivial
element b. If we write G as a multiplicative group so that its elements are all of the formap for
p PZ, then

Z � Z2 � G � H �
 
e; ap; b; apb; bap; apbaq; bapbaq; apbaqbar ; : : :

�
� p; q; r; : : : PZ

(
:

For an example of a product,apbar times a� 1b givesapbar � 1b.

With this terminology understood, here is what we actually proved when we proved Lemma11.2.

Lemma 11.18. Given X �
”

� PJ A � and p P
“

� PJ A � as in Lemma11.2, there exists a natural
group homomorphism

�
� PJ

� 1pA � ; pq �ÝÑ � 1pX; pq

sending each reduced wordr
 1s: : : r
 N s P� � PJ � 1pA � ; pqwith r
 i s P� 1pA � i ; pq to the concatenation
r
 1 � : : : � 
 N s P� 1pX; pq, and � is surjective. �

The existence of the homomorphism� is an easy and purely algebraic fact, which we'll expand
on a bit in the next lecture. The truly nontrivial statement here is that � is surjective. If we
can now identify the kernel of � , then � descends to an isomorphism from the quotient of the
free product by ker � to � 1pX; pq, and we will thus have a formula for � 1pX; pq. Identifying the
kernel and then using the resulting formula in applications will be our main topic for the next two
lectures.

12. Normal subgroups, generators and relations (May 30, 2023)

Before stating the general version of the Seifert-van Kampen theorem, we need to collect a few
more useful algebraic facts about groups and the free product. Recall from the previous lecture
that the free product � � PJ G� of an arbitrary collection of groups t G� u� PJ is de�ned to consist of
all so-calledreduced wordsg1 : : : gN in which each �letter� gi is an element of one of the groupsG� i ,
and the choice of� i P J such that gi P G� i for each i � 1; : : : ; N is considered part of the data
de�ning the word. 12 The word �reduced� means that the sequence of letters in the word cannot
be simpli�ed by computing products in any of the individual groups, hence no consecutive letters
gi gi � 1 with � i � � i � 1 � : � appear�if such a pair appeared then it could be replaced by a single
letter formed from the product gi gi � 1 P G� �and similarly, none of the letters is the identity
element in any of the groups. Products in� � PJ G� are formed by concatenating words and then

12This latter detail is unimportant if the groups G� are all disjoint sets in the �rst place, but if any of them
have elements in common, e.g. if some G� and G� for � � � are copies of the same group, then we regard them
as separate copies and always keep track of which letter belongs to which copy. The idea is somewhat analogous
to constructing the disjoint union

²
� PJ X � of sets, in which X � and X 
 for � � 
 always become disjoint subsets

of
²

� PJ X � , even if they are originally de�ned as the same set, e.g. R > R is by de�nition two disjoint copies of R,
which is di�erent from the ordinary union R Y R � R.
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reducing them if necessary, so for example, ifG and H are two groups containing elementsg P G
and h; k PH , then the product of the reduced wordsgh PG � H and h� 1k PG � H is

pghqph� 1kq � gk PG � H;

since the concatenated wordghh� 1k can be reduced by replacinghh� 1 with the identity element
e PH and then removing e from the word. The identity element in � � PJ G� itself is the so-called
�empty� word, with zero letters, which we will usually denote by e; there should be no danger of
confusing this with the identity elements of the individual groups G� , since they never appear in
reduced words.

The following result is easy to prove directly from the de�nitions.

Proposition 12.1. Assumet G� u� PJ is a collection of groups. Then:

(1) For each � P J , the free product � � PJ G� contains a distinguished subgroup isomorphic
to G� : it consists of the empty word plus all reduced words of exactly one letter which is
in G� .

(2) If we regard eachG� as a subgroup of� 
 PJ G
 as described above, then for every�; � PJ
with � � � , the intersection G� X G� in � 
 PJ G
 consists only of the identity elemente
(i.e. the empty word), and any two nontrivial elementsg PG� and h PG� satisfy gh � hg
in � 
 PJ G
 .

(3) For any group H with a collection of homomorphismst � � : G� Ñ H u� PJ , there exists a
unique homomorphism

� : �
� PJ

G� Ñ H

whose restriction to each of the subgroupsG� € � � PJ G� is � � .

The third item in this list deserves brief comment: the homomorphism � : � � PJ G� Ñ H
exists and is unique because every element of� � PJ G� is uniquely expressible as a reduced word
g1 : : : gN with gi PG� i for some speci�ed� 1; : : : ; � N PJ , hence the de�nition of � can only be

� pg1 : : : gN q � � � 1 pg1q: : : � � N pgN q PH:

It is similarly straightfoward to verify that � by this de�nition is a homomorphism.

Remark 12.2. In Lemma 11.18at the end of the previous lecture the homomorphism

(12.1) �
� PJ

� 1pA � ; pq �ÝÑ � 1pX; pq

is determined as in the proposition above by the homomorphismspi � q� : � 1pA � ; pq Ñ � 1pX; pq
induced by the inclusionsi � : A � ãÑ X .

We now address the previously unanswered question about the homomorphism (12.1) from
Lemma 11.18: what is its kernel?

We can make two immediate observations about this: �rst, for any group homomorphism
	 : G Ñ H , ker 	 is a normal subgroup ofG. Recall that a subgroup K € G is called normal if
it is invariant under conjugation with arbitrary elements of G, i.e.

gkg� 1 PK for all k PK and g PG:

This condition is abbreviated by � gKg � 1 � K �. It is obviously satis�ed if K � ker 	 since	 pkq � e
implies 	 pgkg� 1q � 	 pgq	 pkq	 pg� 1q � 	 pgqe	 pgq� 1 � e. Recall further that for any subgroup
K € G, the quotient G{K is de�ned as the set of all left cosets of K , meaning subsets of the
form gK :� t gh | h P K u for �xed elements g P G. For arbitrary subgroups K € G, the quotient
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G{K does not have a natural group structure, but it does whenK is a normal subgroup: indeed,
the condition gKg � 1 � K gives rise to a well-de�ned product

paK qpbKq :� p abqK PG{K

since, as subsets ofG, aKbK � apbKb� 1qbK � abKK � abK . In particular, any homomorphism
	 : G Ñ H between groupsG and H gives rise to a normal subgroupK :� ker 	 € G and thus a
quotient group G{K , such that 	 determines a a well-de�ned map

G{ ker 	 Ñ H : gK ÞÑ	 pgq;

meaning that the value 	 pgq of this map does not depend on the choice of elementg P G repre-
senting the cosetgK P G{K . It is easy to check that this map is also a group homomorphism, in
which case we say that	 descends to a homomorphism G{K Ñ H , and moreover, it is injective
since 	 pgq � e meansg P ker 	 � K and thus gK � K � eK , which is the identity element of
G{K . It follows that the induced map G{ ker 	 Ñ H is an isomorphism whenever the original
homomorphism 	 is surjective. (A standard reference for these basic notions from group theory is
[Art91 ].)

The second observation concerns certain speci�c elements that obviously belong to the kernel
of the map (12.1). Consider the inclusions

j �� : A � X A � ãÑ A �

for each pair �; � P J , and recall that i � : A � ãÑ X denotes the inclusion ofA � € X . Then the
following diagram commutes,

A �

A � X A � X

A �

i �
j ��

j ��
i �

meaning i � � j �� � i � � j �� , since both are just the inclusion ofA � X A � into X . This trivial
observation has a nontrivial consequence for the homomorphism� . Indeed, for any loopp



 p in

A � X A � representing a nontrivial element of� 1pA � X A � ; pq, the two elementspj �� q� r
 s P� 1pA � ; pq
and pj �� q� r
 s P � 1pA � ; pq belong to distinct subgroups in the free product � 
 PJ � 1pA 
 ; pq, yet
clearly

pi � q� pj �� q� r
 s � p i � q� pj �� q� r
 s P� 1pX; pq

since i � � j �� � i � � j �� . It follows that � ppj �� q� r
 sq � � ppj �� q� r
 sq, henceker � must contain
the reduced word formed by the two letterspj �� q� r
 s P� 1pA � ; pq and pj �� q� r
 s� 1 P � 1pA � ; pq:

pj �� q� r
 spj �� q� r
 s� 1 Pker � :

Combining this with the �rst observation, ker � must contain the smallest normal subgroup of
� 
 PJ � 1pA 
 ; pq that contains all elements of this form.

Definition 12.3. For any group G and subsetS € G, we denote by

xSy € G

the smallest subgroup ofG that contains S, i.e. xSy is the set of all products of elementsg PS and
their inversesg� 1. Similarly,

xSyN € G
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denotes the smallestnormal subgroup of G that contains S. Concretely, this meansxSyN is the
set of all conjugates of products of elements ofS and their inverses.

We are now in a position to state the complete version of the Seifert-van Kampen theorem.
The �rst half of the statement is just a repeat of Lemma 11.18, which we have proved already. The
second half tells us whatker � is, and thus gives a formula for� 1pX; pq.

Theorem 12.4 (Seifert-van Kampen). SupposeX �
”

� PJ A � for a collection of open and
path-connected subsetst A � € X u� PJ with nonempty intersection, denote byi � : A � ãÑ X and
j �� : A � X A � ãÑ A � the inclusion maps for �; � PJ , and �x p P

“
� PJ A � .

(1) If A � X A � is path-connected for every pair�; � PJ , then the natural homomorphism

� : �
� PJ

� 1pA � ; pq Ñ � 1pX; pq

induced by the homomorphismspi � q� : � 1pA � ; pq Ñ � 1pX; pq is surjective.
(2) If additionally A � X A � X A 
 is path-connected for every triple�; �; 
 PJ , then

ker � �
A!

pj �� q� r
 spj �� q� r
 s� 1
�
�
� �; � PJ; r
 s P� 1pA � X A � ; pq

)E

N
:

In particular, � then descends to an isomorphism

�
� PJ

� 1pA � ; pq
M

ker � �ÝÑ � 1pX; pq:

Remark 12.5. In most applications, we will consider coverings ofX by only two subsets
X � A Y B , and the condition on triple intersections in the second half of the statement then
merely demands that A X B be path-connected, which we already needed for the �rst half. (One
can take the third subset in that condition to be either A or B ; we never said that � , � and 
 need
to be distinct!)

I will give you the remaining part of the proof of this theorem in the next lecture. Let's now
discuss some simple applications.

Example 12.6. Consider the �gure-eight S1 _ S1 with its natural base point p P S1 _ S1,
i.e. S1 _ S1 is the union of two circles A; B € S1 _ S1 with A X B � t pu. These are not open
subsets, but since a neighborhood ofp in S1 _ S1 has a fairly simple structure, we can get away
with the usual trick (cf. Examples 11.3and 11.7) of replacing both with homotopy equivalent open
neighborhoods: de�neA1 € S1 _ S1 as a small open neighborhood ofA and B 1 € S1 _ S1 as a
small open neighborhood ofB such that there exist deformation retractions of A1 to A and B 1

to B . The inclusions A ãÑ A1 and B ãÑ B 1 then induce isomorphismsZ � � 1pA; pq �ÝÑ � 1pA1; pq
and Z � � 1pB; pq �ÝÑ � 1pB 1; pq. The intersection A1X B 1 is now a pair of line segments with one
intersection point at p, so it admits a deformation retraction to p and is thus contractible, implying
� 1pA1X B 1; pq � 0. This makesker � in Theorem 12.4 trivial, hence the map

� 1pA; pq � � 1pB; pq Ñ � 1pS1 _ S1; pq

determined by the homomorphisms of� 1pA; pq and � 1pB; pq to � 1pS1 _ S1; pq induced by the
inclusions A; B ãÑ S1 _ S1 is an isomorphism. To see more concretely what this group looks like,
�x generators � P � 1pA; pq � Z and � P � 1pB; pq � Z, each of which can also be identi�ed with
elements of� 1pS1 _ S1; pq via the inclusions of A and B into S1 _ S1. Then

� 1pS1 _ S1; pq � Z � Z � t e; � p; � q; � p � q; � p � q; � p� q� r ; : : : | p; q; r; : : : PZu:

These elements are easy to visualize:� and � are represented by loops that start and end atp and
run once around the circlesA or B respectively, so each element in the above list is a concatenation
of �nitely many repetitions of these two loops and their inverses. Notice that �� � �� , so
� 1pS1 _ S1q is our �rst example of a nonabelian fundamental group.
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Example 12.7. Recall from Exercise7.27 that for each n P N, one can identify Sn with the
one point compacti�cation of Rn , a space de�ned by adjoining a single point called �8 � to Rn :

Sn � Rn Y t8u :

This gives rise to an inclusion mapRn iãÑ Sn with image Sn zt8u . We claim that for any compact
subsetK € R3 such that R3zK is path-connected, and any choice of base pointp PR3zK ,

i � : � 1pR3zK; pq Ñ � 1pS3zK; pq

is an isomorphism. To see this, de�ne the open subsetA :� R3zK € S3zK , and chooseB0 € S3zK
to be an open ball about8 , i.e. a set of the formpR3z‡BR p0qqYt8u where ‡BR p0q € R3 is any closed
ball large enough to containK . Sincep might not be contained in B0 but R3zK is path-connected,
we can then de�ne a larger setB by adjoining to B0 the neighborhood inR3zK of some path from
a point in B0 to p: this can be done so that bothB0 and B are homeomorphic to an open ball, so in
particular they are contractible. The intersection A X B is then B zt8u and is thus homoemorphic
to R3zt0u and homotopy equivalent to S2, implying � 1pA X B q � 0. The Seifert-van Kampen
theorem therefore gives an isomorphism� 1pR3zK; pq � � 1pB; pq Ñ � 1pS3zK; pq, but � 1pB; pq is the
trivial group, so this proves the claim.

A frequently occuring special case of this example is whenK € R3 is a knot, i.e. the image of
an embeddingS1 ãÑ R3. The fundamental group � 1pR3zK q is then called the knot group of K ,
and the argument above shows that we are free to adjoin a point at in�nity and thus replace the
knot group with � 1pS3zK q. This will be convenient for certain computations.

As in the previous lecture, we shall conclude this one by introducing some more terminology
from combinatorial group theory in order to state a more usable variation on the Seifert-van
Kampen theorem.

Definition 12.8. Given a set S, the free group on S is de�ned as

FS :� �
� PS

Z;

or in other words, the set of all reduced wordsap1
1 ap2

2 : : : apN
N for N ¥ 0, pi P Z with pi � 0,

ai P S and ai � ai � 1 for every i , with the product de�ned by concatenation of words followed by
reduction. The elements ofS are called thegenerators of FS .

Example 12.9. The computation in Example 12.6 gives � 1pS1 _ S1q � Ft �;� u � Z � Z, where
the set generatingFt �;� u consists of the two loops� and � parametrizing the two circles that form
S1 _ S1.

Proposition 12.10. For any set S, group G and map � : S Ñ G, there is a unique group
homomorphism � : FS Ñ G satisfying � paq � � paq for single-letter words a P FS de�ned by
elementsa PS.

Proof. Writing elements of FS in the form ap1
1 ap2

2 : : : apN
N , there is clearly only one formula

for � : FS Ñ G that will match � on single-letter words and also be a homomorphism, namely

� pap1
1 : : : apN

N q � � pa1qp1 : : : � paN qpN :

It is straightforward to check that this de�nes a homomorphism. �

Proposition 12.11. Every group is isomorphic to a quotient of a free group by some normal
subgroup.

Proof. Pick any subsetS € G that generatesG, e.g. one can chooseS :� G, though smaller
subsets are usually also possible. Then the unique homomorphism� : FS Ñ G sending each
g PS € FS to g PG is surjective, thus � descends to an isomorphismFS { ker � Ñ G. �
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Definition 12.12. Given a setS, a relation in S is de�ned to mean any equation of the form
� a � b� where a; bPFS .

Definition 12.13. For any set S and a setR consisting of relations inS, we de�ne the group

t S | Ru :� FS

M
xR1yN

where R1 is the set of all elements of the formab� 1 P FS for relations � a � b� in R. The elements
of S are called thegenerators of this group, and elements ofR are its relations .

Let us pause a moment to interpret this de�nition. By a slight abuse of notation, we can write
each element oft S | Ru as a reduced wordw formed out of letters in S, with the understanding that
w represents an equivalence class in the quotientFS {xR1yN , thus it is possible to havew � w1 in
t S | Ru even if w and w1 are distinct elements ofFS . This will happen if and only if w� 1w1 belongs
to the normal subgroup xR1yN , and in particular, it happens whenever �w � w1� is one of the
relations in R. The relations are usually necesary because most groups are not free groups: while
free groups are easy to describe (they depend only on their generators), most groups have more
interesting structure than free groups, and this structure is encoded by relations. Proposition12.11
implies that every group can be presented in this way, i.e. every group is isomorphic tot S | Ru
for some set of generatorsS and relations R. Indeed, if G � FS { ker � for a set S and a surjective
homomorphism � : FS Ñ G, then we can takeS as the set of generators and de�neR to consist
of all relations of the form �a � b� such that ab� 1 Pker � ; the latter is equivalent to the condition
� paq � � pbq, so the relations tell us precisely when two products of generators give us the same
element in G.

Definition 12.14. Given a groupG, a presentation of G consists of a subsetS € G together
with a set R of relations in S such that the unique homomorphismFS Ñ G matching the inclusion
S ãÑ G on single-letter words descends to a group isomorphism

t S | Ru �ÝÑ G:

We say that G is �nitely presented if it admits a presentation such that S and R are both �nite
sets.

Example 12.15. The group t au :� t a | Hu consisting of a single generatora with no relations
is isomorphic to the free groupFt au on one element. The isomorphismap ÞÑp identi�es this with
the integers Z.

Example 12.16. The group t a; b | ab � bau has two generators and is abelian, so it is isomor-
phic to Z2. An explicit isomorphism is de�ned by apbq ÞÑ pp; qq. To see that this is an isomorphism,
observe �rst that since Ft a;bu is free, there exists a unique homomorphism� : Ft a;bu Ñ Z2 with
� paq � p 1; 0q and � pbq � p 0; 1q, and � is clearly surjective since it necesarily sendsapbq to pp; qq.
SinceZ2 is abelian, we also have

� pabpbaq� 1q � � paba� 1b� 1q � � paq � � pbq � � paq � � pbq � 0;

so ker � contains abpbaq� 1 and therefore also contains the smallest normal subgroup containing
abpbaq� 1, which is the group xR1yN appearing in the quotient t a; b | ab � bau � Ft a;bu{xR1yN . This
proves that � descends to a surjective homomorphismt a; b | ab � bau Ñ Z2. Finally, observe that
since ab � ba in the quotient t a; b | ab � bau, every reduced word inFt a;bu is equivalent in this
quotient to a word of the form apbq for somepp; qq PZ2, and � papbqq then vanishes if and only if
apbq � e, proving that � is also injective.

Example 12.17. The group t a | ap � eu is isomorphic to Zp :� Z{pZ, with an explicit
isomorphism de�ned in terms of the unique homomorphismFt au Ñ Zp that sends a to r1s.
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Example 12.18. We will prove in Lecture 14 that for the trefoil knot K € R3 € S3, (see
Lecture 8), � 1pS3zK q � t a; b | a2 � b3u, and Exercise12.20 below proves that this group is not
abelian. By contrast, we will also see that the unknotK 0 € R3 € S3 has � 1pS3zK 0q � Z, which
is abelian. This implies via Example12.7 that � 1pR3zK q � � 1pR3zK 0q, so R3zK and R3zK 0 are
not homeomorphic, hence the trefoil cannot be deformed continuously to the unknot.

Note that for any given set of generatorsS and relations R, it is often possible to reduce these
to smaller sets without changing the isomorphism class of the group that they de�ne. For the
relations in particular, it is easy to imagine multiple distinct choices of the subsetR1 € FS that
will produce the same normal subgroupxR1yN . In general, it is a very hard problem to determine
whether or not two groups described via generators and relations are isomorphic; in fact, it is
known that there does not exist any algorithm to decide whether a given presentation de�nes the
trivial group. Nonetheless, generators and relations provide a very convenient way to describe
many simple groups that arise in practice, especially in the context of van Kampen's theorem.
This is due to the following reformulation of Theorem 12.4 for the case of two open subsets when
all fundamental groups are �nitely presented.

Corollary 12.19 (Seifert-van Kampen for �nitely-presented groups). SupposeX � A Y B
where A; B € X are open and path-connected subsets such thatA X B is also path-connected, and
j A : A X B ãÑ A and j B : A X B ãÑ B denote the inclusions. Suppose moreover that there exist
�nite presentations

� 1pAq �
 
t ai u

�
� t Rj u

(
; � 1pB q �

 
t bk u

�
� t S` u

(
; � 1pA X B q �

 
t cpu

�
� t Tqu

(
;

with the indices i; j; k; `; p; q each ranging over �nite sets. Then

� 1pX q �
 
t ai u Y t bk u

�
� t Rj u Y t S` u Y tpj A q� cp � p j B q� cpu

(
:

�

In other words, as generators for� 1pX q, one can take all generators of� 1pAq together with all
generators of� 1pB q. The relations must then include all of the relations among the generators of
� 1pAq and � 1pB q separately, but there may be additional relations that mix the generators from
� 1pAq and � 1pB q: these extra relations setpj A q� cp P � 1pAq equal to pj B q� cp P � 1pB q for each of
the generatorscp of � 1pA X B q. These extra relations are exactly what is needed to describe the
normal subgroup ker � in the statement of Theorem12.4. The relations in � 1pA X B q do not play
any role.

Exercise 12.20. Let us prove that the �nitely-presented group G � t x; y | x2 � y3u mentioned
in Example 12.18is nonabelian.

(a) Denoting the identity element by e, consider the related group

H � t x; y | x2 � y3; y3 � e; xyxy � eu:

Show that every element ofH is equivalent to one of the six elementse; x; y; y2; xy; xy 2 P
H . This proves that H has order at most six, though in theory it could be less, since
some of those six elements might still be equivalent to each other. To prove that this is
not the case, construct (by writing down a multiplication table) a nonabelian group H 1

of order six that is generated by two elementsa; bsatisfying the relations a2 � b3 � e and
abab� e. Show that there exists a surjective homomorphismH Ñ H 1, which is therefore
an isomorphism since|H | ¤ 6.
Remark: You don't need this fact, but if you've seen some of the standard examples of
�nite groups before, you might in any case notice that H is isomorphic to the dihedral
group (Diedergruppe) of order6.
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(b) Show that H is a quotient of G by some normal subgroup, and deduce thatG is also
nonabelian.

Exercise 12.21. Given a group G, the commutator subgroup rG; Gs € G is the subgroup
generated by all elements of the form

rx; ys :� xyx � 1y� 1

for x; y PG.

(a) Show that rG; Gs € G is always a normal subgroup, and it is trivial if and only if G is
abelian.

(b) The abelianization (Abelisierung) of G is de�ned as the quotient groupG
L
rG; Gs. Show

that this group is always abelian, and it is equal to G if G is already abelian.13

(c) Given any two abelian groupsG; H , �nd a natural isomorphism from the abelianization
of the free product G � H to the Cartesian product G � H .

(d) Prove that the abelianization of t x; y | x2 � y3u is isomorphic to Z.
Hint: An isomorphism ' from the abelianization to Z will be determined by two integers,
' pxq and ' pyq. If ' exists, how must these two integers be related to each other?

13. Proof of the Seifert-van Kampen theorem (June 1, 2023)

We have put o� the proof of the Seifert-van Kampen theorem long enough. Here again is the
statement.

Theorem 13.1 (Seifert-van Kampen). SupposeX �
”

� PJ A � for a collection of open and
path-connected subsetst A � € X u� PJ , i � : A � ãÑ X and j �� : A � X A � ãÑ A � denote the natural
inclusion maps for �; � PJ , and p P

“
� PJ A � .

(1) If A � X A � is path-connected for every pair�; � PJ , then the unique homomorphism

� : �
� PJ

� 1pA � ; pq Ñ � 1pX; pq

that restricts to each subgroup� 1pA � ; pq € � � PJ � 1pA � ; pq as pi � q� is surjective.
(2) If additionally A � X A � X A 
 is path-connected for every triple�; �; 
 PJ , then

ker � � x SyN ;

meaning ker � is the smallest normal subgroup containing the set

S :�
!

pj �� q� r
 spj �� q� r
 s� 1
�
�
� �; � PJ; r
 s P� 1pA � X A � ; pq

)
:

In particular, if we abbreviate F :� � � PJ � 1pA � ; pq, then � descends to an isomorphism

F
M

xSyN Ñ � 1pX; pq:

Proof. We proved the �rst statement already in Lecture 11, so assume the hypothesis of the
second statement holds. As observed in the previous lecture,� ppj �� q� 
 q � � ppj �� q� 
 q for every
�; � P J and 
 P � 1pA � X A � ; pq, thus ker � clearly contains xSyN , and in particular, � descends
to a surjective homomorphismF

L
xSyN Ñ � 1pX; pq. We need to show that this homomorphism is

injective, or equivalently, that whenever � pwq � � pw1q for a pair of reduced wordsw; w1 PF , their
equivalence classes inF

L
xSyN must match.

13Note that if G � t S | Ru is a �nitely-presented group with generators S and relations R, then its abelianization
is t S | R1u where R1 is the union of R with all relations of the form � ab � ba� for a; b P S.
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Given a loopp


 p in X , let us say that a factorization of 
 is any �nite sequencetp
 i ; � i quNi � 1

such that � i PJ and p

 i p is a loop in A � i for each i � 1; : : : ; N , and


 �
h �


 1 � : : : � 
 N :

The �rst half of the theorem follows from the fact (proved in Lemma 11.2) that every 
 has a
factorization. Now observe that any factorization as described above determines a reduced word
w P F , de�ned as the reduction of the word r
 1s: : : r
 N s with r
 i s P� 1pA � i ; pq for i � 1; : : : ; N ,
and this word satis�es � pwq � r 
 s. Conversely, every reduced wordw P � � 1pr
 sqcan be realized
as a factorization of 
 by choosing speci�c loops to represent the letters inw. The theorem will
then follow if we can show that any two factorizations of 
 can be related to each other by a �nite
sequence of the following operations and their inverses:

(A) Given two adjacent loops 
 i and 
 i � 1 such that � i � � i � 1, replace them with their

concatenation p

 i � 
 i � 1

 p. (This does not change the corresponding reduced word inF ,
as it just implements a step in the reduction of an unreduced word.)

(B) Replace some
 i with any loop 
 1
i that is homotopic (with �xed end points) in A � i . (This

also does not change the corresponding reduced word inF ; in fact it doesn't even change
the unreduced word from which it is derived.)

(C) Given a loop 
 i that lies in A � i X A � for some � P J , replace � i with � . (In the
corresponding reduced word inF , this replaces a letter of the formpj � i � q� r
 i s P� 1pA � i ; pq
with one of the form pj �� i q� r
 i s P� 1pA � ; pq, thus it changes the word but does not change
its equivalence class inF

L
xSyN .)

We now prove that any two factorizations tp
 i ; � i quNi � 1 and tp
 1
i ; � 1

i quN
1

i � 1 of 
 are related by these
operations. By assumption
 1 � : : : � 
 N �

h �

 1

1 � : : : � 
 1
N 1, so after choosing suitable parametrizations

of both of these concatenations on the unit intervalI ,14 there exists a homotopy

H : I 2 Ñ X

with H p0; �q � 
 1 � : : : � 
 N , H p1; �q � 
 1
1 � : : : � 
 1

N and H ps;0q � H ps;1q � p for all s P I . SinceI 2 is
compact, one can �nd a number � ¡ 0 such that for every ps; tq PI 2,15 the intersection of I 2 with
the box

rs � 2�; s � 2� s � r t � 2�; t � 2� s € R2

is contained in H � 1pA � q for some � P J . For suitably small � � 1{n with n P N, we can therefore
break up I 2 into n2 boxes of side length� which are each contained inH � 1pA � q for some � P J
(possibly a di�erent � for each box), forming a grid in I 2. For each box in the diagram there may
be multiple � P J that satisfy this condition, but let us choose a speci�c one to associate to each
box. (These choices are indicated by the three colors in Figure3.) Notice that each vertex in the
grid is contained in the intersection of H � 1pA � q for each of the � P J associated to boxes that it
touches. We can now perturb this diagram slightly to �ll I 2 with a collection of boxes of slightly
varying sizes such that every vertex in the interior touches only three of them (see the right side
of Figure 3). We can similarly assume after such a perturbation that the vertices int s � 0u and
t s � 1u never coincide with the starting or ending times of the loops
 i ; 
 1

i in the concatenations

14Recall that concatenation of paths is associative up to homotopy, so the N -fold concatenation 
 1 � : : : � 
 N is
not a uniquely determined path I Ñ X if N ¡ 2, but it is unique up to homotopy with �xed end points.

15I do not consider this statement completely obvious, but it is a not very di�cult exercise in point-set topology,
and since that portion of the course is now over, I would rather leave it as an exercise than give the details here.
Here is a hint: if the claim is not true, one can �nd a sequence psk ; t k q PI 2 such that for each k , the intersection
of I 2 with the box of side length 1{k about psk ; t k q is not fully contained in any of the subsets H � 1pA � q. This
sequence has a convergent subsequence. What can you say about its limit?
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perturbation

PSfrag replacements

A �
A �

A �A �

A 

A 



 1 
 2 
 N

: : :

: : :

p p


 1
1 
 1

2 
 1
N 1

Figure 3. A grid on the domain of the homotopy H : I 2 Ñ X between two
factorizations 
 1 � : : : � 
 N and 
 1

1 � : : : � 
 1
N 1 of a loop p



 p in X . In this example,

there are three open setsA � ; A � ; A 
 € X , and colors are used to indicate that
each of the small boxes �lling I 2 has image lying in (at least) one of these subsets.
In the perturbed picture at the right, every vertex in the interior touches exactly
three boxes.


 1 � : : : � 
 N and 
 1
1 � : : : � 
 1

N 1. Moreover, each vertex still lies in the same intersection of setsH � 1pA � q
as before, assuming the perturbation is su�ciently small.

Now supposeps; tq PI 2 is a vertex in the interior of the perturbed grid. Then ps; tq is on the
boundary of exactly three boxes in the diagram, each of which belongs to one of the setsH � 1pA � q,
H � 1pA � q and H � 1pA 
 q for three associated elements�; �; 
 P J (they need not necessarily be
distinct). If p0; tq is a vertex with t R t0; 1u, then it is on the boundary of exactly two boxes
and thus lies in H � 1pA � X A � q for two associated elements�; � P J , but it also lies in H � 1pA 
 q
where 
 :� � i is associated to the particular path 
 i whose domain as part of the concatenation
H p0; �q � 
 1 � : : : � 
 N contains p0; tq. For vertices p1; tq with t R t0; 1u, chooseA 
 :� A � 1

i
similarly

in terms of the concatenation
 1
1 � : : : � 
 1

N 1. In any of these cases, we have associated to each vertex
ps; tq a path-connected setA � X A � X A 
 that contains H ps; tq, thus we can choose a path16

H ps; tq
� ps;t q
 p in A � X A � X A 
 :

Since H ps; tq � p for t P t0; 1u, this de�nition can be extended to vertices with t P t0; 1u by
de�ning � ps;t q as the trivial path. Now if E is any edge in the diagram, i.e. a side of one of the
boxes, connecting two neighboring verticesps0; t0q and ps1; t1q, then we can identify E with the
unit interval in order to regard H |E : E Ñ X as a path, and thus associate toE a loop

p

 E p in A � X A � ; 
 E :� � � 1

ps0 ;t 0 q � H |E � � ps1 ;t 1 q;

where �; � P J are the two (not necessarily distinct) elements associated to the boxes bordered
by E .

16This is the speci�c step where we need the assumption that triple intersections are path-connected. If
you're curious to see an example of the second half of the theorem failing without this assumption, I refer you to
[Hat02 , p. 44].
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With these choices in place, any path throughI 2 that follows a sequence of edgesE1; : : : ; Ek

starting at some vertex in ps0; 0qand ending at a vertexps1; 1qproduces various factorizations of

in the form tp
 E i ; � i quki � 1. Here there is some freedom in the choices of� i P J : whenever a given
edgeE i lies in H � 1pA � q X H � 1pA 
 q, we can choose� i to be either � or 
 and thus produce two
valid factorizations, which are related to each other by operation (C) in the list above.

We can now describe a procedure to modify the factorizationtp
 i ; � i quNi � 1 to tp
 1
i ; � 1

i quN
1

i � 1. We
show �rst that tp
 i ; � i quNi � 1 is equivalent via our three operations to the factorization corresponding
to the sequence of edges int s � 0u moving from t � 0 to t � 1. This is not so obvious because,
although H p0; �q is a parametrization of the concatenated path
 1 � : : : � 
 N , the times that mark
the boundaries between one path and the next in this concatenation need not have anything to
do with the vertices of our chosen grid. Instead, our perturbation of the grid ensured that each
 i

in the concatenation hits vertices only in the interior of its domain, not at starting or end points.
Denote by p0; t1q; : : : ; p0; tm � 1q the particular grid vertices in the domain of 
 i , thus splitting up

 i into a concatenation of paths 
 i � 
 1

i � : : : � 
 m
i which have these vertices as starting and/or end

points. Then


 i �
h �

p
 1
i � � p0;t 1 qq � p� � 1

p0;t 1 q � 
 2
i � � p0;t 2 qq �: : : � p� � 1

p0;t m � 1 q � 
 m
i q in A � i :

We can now apply operations (B) and (A) in that order to replace 
 i with the sequence of loops
of the form � � 1

p0;t j � 1 q � 
 j
i � � p0;t j q in A � i as indicated above. The result is a new factorization that

has more loops in the sequence, but the resulting concatenation is broken up along points that
include all vertices in t s � 0u. It is also broken along more points, corresponding to the pieces of
the original concatenation 
 1 � : : : � 
 N , but after applying operation (C) if necessary, we can now
apply operation (A) to combine all adjacent loops whose domains belong to the same edge. The
result is precisely the factorization corresponding to the sequence of edges int s � 0u. The same
procedure can be used to modifytp
 1

i ; � 1
i quN

1

i � 1 to the factorization corresponding to the sequence
of edges int s � 1u.

To �nish, we need to show that the factorization given by the edges int s � 0u can be trans-
formed into the corresponding factorization at t s � 1u by applying our three operations. The core
of the idea for this is shown in Figure4, where the purple curves show two sequences of edges which
represent two factorizations. In this case the di�erence between one path and the other consists
only of replacing two edges on adjacent sides of a particular boxQ € I 2 with their two opposite
sides, and we can change from one to the other as follows. First, if the boxQ is in H � 1pA � q,
apply the operation (C) to both factorizations until all the loops corresponding to sides ofQ are
regarded as loops inA � . Having done this, both factorizations now contain two consecutive loops
in A � that correspond to two sides ofQ, so we can apply the operation (A) to concatenate each of
these pairs, reducing two loops to one distinguished loop throughA � in each factorization. Those
two distinguished loops are also homotopic inA � , as one can see by choosing a homotopy of paths
through the squareQ that connects two adjacent sides to their two opposite sides (Figure4, right).
This therefore applies the operation (B) to change one factorization to the other.

We note �nally that for any sequence of edges that includes edges int t � 0u or t t � 1u, those
edges represent the constant path at the base pointp, and since concatenation with constant paths
produces homotopic paths, adding these edges or removing them from the diagram changes the
factorization by a combination of operations (A) and (B). It now only remains to observe that the
path of edges alongt s � 0u can always be modi�ed to the path of edges alongt s � 1u by a �nite
sequence of the modi�cations just described.

�
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Figure 4. The magenta paths in both pictures are sequences of edges that de�ne
factorizations of 
 , di�ering only at pairs of edges that surround a particular box Q.
We can change one to the other by applying the three operations in our list.

Exercise 13.2. Recall that the wedge sum of two pointed spacespX; x q and pY; yq is de�ned
as X _ Y � p X > Y q{� where the equivalence relation identi�es the two base pointsx and y. It is
commonly said that wheneverX and Y are both path-connected and are otherwise �reasonable�
spaces, the formula

(13.1) � 1pX _ Y q � � 1pX q � � 1pY q

holds. We saw for instance in Example12.6 that this is true when X and Y are both circles. The
goal of this problem is to understand slightly better what �reasonable� means in this context, and
why such a condition is needed.

(a) Show by a direct argument (i.e. without trying to use Seifert-van Kampen) that if X and
Y are both Hausdor� and simply connected, thenX _ Y is simply connected.
Hint: Hausdor� implies that X ztxu and Yztyu are both open subsets. Consider loops

 : r0; 1s Ñ X _ Y based atrxs � r ysand decomposer0; 1s into subintervals in which 
 ptq
stays in either X or Y .

(b) Call a pointed spacepX; x q nice17 if x has an open neighborhood that admits a deforma-
tion retraction to x. Show that the formula (13.1) holds wheneverpX; x q and pY; yq are
both nice.

(c) Here is an example of a space that is not �nice� in the sense of part (b):
the so-called Hawaiian earring can be de�ned as the subset ofR2

consisting of the union for all n P N of the circles of radius 1{n
centered at p1{n; 0q. As usual, we assign to this set the subspace
topology induced by the standard topology of R2. Show that in
this space, the point p0; 0q does not have any simply connected open
neighborhood.

(d) It is tempting to liken the Hawaiian earring to the in�nite wedge sum of circles X :�š 8
n � 1 S1, de�ned as above by choosing a base point in each copy of the circle and then

identifying all the base points in the in�nite disjoint union
² 8

n � 1 S1. Since both X and

17Not a standardized term, I made it up.
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the Hawaiian earring are unions of in�nite collections of circles that all intersect each
other at one point, it is not hard to imagine a bijection between them. Show however
that such a bijection can never be a homeomorphism; in particular, unlike the Hawaiian
earring, X is �nice� for any choice of base point.
Hint: Pay attention to how the topology of X is de�ned�it is a quotient of a disjoint
union.

14. Surfaces and torus knots (June 6, 2023)

We will discuss two applications of the Seifert-van Kampen theorem in this lecture: one to the
study of surfaces, and the other to knots. Let's begin with surfaces.

Someday, when we talk about topological manifolds in this course (namely in Lecture 18), I
will give you a precise mathematical de�nition of what the word �surface� means, but that day is
not today. For now, we're just going to consider a class of speci�c examples that can be presented
in a way that is convenient for computing their fundamental groups. A theorem we will discuss
later in the semester implies that all compact surfaces can be presented in this way, but that is
rather far from obvious.

We are going to consider pictures of polygons such as the following:
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Suppose in general thatP € R2 is a compact region bounded by some collection ofN smooth
curves that are arranged in a cyclic sequence with matching end points and do not intersect each
other except at the matching end points. We will refer to these curves asedges, and label each of
them with a letter ai and an arrow. The letters a1; : : : ; aN need not all be distinct. We then de�ne
a topological space

X :� P
L
� ;

where the equivalence relation is trivial on the interior of P but identi�es all vertices with each
other, thus collapsing the set of vertices to a single point, and it also identi�es any pair of edges
labeled by the same letter with each other via a homeomorphism that matches the directions of
the arrows. (The exact choice of this homeomorphism will not matter.) In the picture above, this
means the two edges labeled with �a� get identi�ed, and so do the two edges labeled with �b�. (By
the time you've read to the end of this lecture, you should be able to form a fairly clear picture of
this surface in your mind, but I suggest reading somewhat further before you try this.)

Example 14.1. Take P to be a square whose sides have two labelsa and b such that opposite
sides of the square have matching letters and arrows pointing in the same direction. You could then
build a physical model of X � P {� in two steps: take a square piece of paper and bend it until
you can tape together the two opposite sides labeleda, producing a cylinder. The two boundary
components of this cylinder are circles labeledb, so if you were doing this with a su�ciently
stretchable material (paper is not stretchable enough), you could then bend the cylinder around
and tape together its two circular boundary components. The result is what's depicted in the
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picture at the right, a space conventionally known as the2-torus (or just �the torus� for short)
and denoted byT2. It is homeomorphic to the product S1 � S1.
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Example 14.2. If you relax your usual understanding of what a �polygon� is, you can also
allow edges of the polygon to be curved as in the following example with only two edges:
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The polygon itself is homeomorphic to the diskD2, but identifying the two edges via a homeomor-
phism matching the arrows means we identify each point onBD2 with its antipodal point. The
result matches the second description ofRP2 that we saw in the �rst lecture, see Example 1.2.

Theorem 14.3. SupposeX � P {� is a space de�ned as described above by a polygonP with
N edges labeled by (possibly repeated) lettersa1; : : : ; aN , where we are listing them in the order in
which they appear as the boundary is traversed once counterclockwise. LetG denote the set of all
letters that appear in this list, and for eachi � 1; : : : ; N , write pi � 1 if the arrow at edgei points
counterclockwise around the boundary andpi � � 1 otherwise. Then � 1pX q is isomorphic to the
group with generatorsG and exactly one relationap1

1 : : : apN
N � e:

� 1pX q �
 
G

�
� ap1

1 : : : apN
N � e

(
:

Proof. Let P1 :� B P
L
� € X . Since all vertices are identi�ed to a point, P1 is homeomorphic

to a wedge sum of circles, one for each of the letters that appear as labels of edges, hence by an
easy application of the Seifert-van Kampen theorem,

� 1pP1q � � 1pS1q � : : : � � 1pS1q � Z � : : : � Z � FG ;

the free group generated by the setG. Now decomposeX into two open subsetsA and B , where
A is the interior of the polygon (not including its boundary) and B is an open neighborhood
of P1. We can arrange this so thatA X B is homeomorphic to an annulusS1 � p� 1; 1q occupying
a neighborhood ofBP in the interior of P , so for any choice of base pointp P A X B , � 1pA X
B; pq � Z is generated by a loop that circles around parallel toBP . Since the neighborhood
of BP admits a deformation retraction to BP , there is similarly a deformation retraction of B
to P1, giving � 1pB; pq � � 1pP1q � FG . Likewise, A is homeomorphic to an open disk, hence
� 1pAq � 0. The Seifert-van Kampen theorem then ideni�es � 1pX; pq with a quotient of the free
product � 1pA; pq� � 1pB; pq � � 1pP1q � FG , modulo the normal subgroup generated by the relation
that if j A : A X B ãÑ A and j B : A X B ãÑ B denote the inclusion maps andr
 s P� 1pA X B; pq � Z
is a generator, thenpj A q� r
 s � p j B q� r
 s. The left hand side of this equation is the trivial element
since � 1pAq � 0. On the right hand side, we have the element of� 1pB; pq represented by a
loop p



 p in the annulus A X B that is parallel to the boundary of the polygon. Under the
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deformation retraction of A X B to P1, 
 becomes the concatenated loopap1
1 : : : apN

N de�ned by
composing a traversal ofBP with the quotient projection BP Ñ P1, thus producing the relation
ap1

1 : : : apN
N � e. �

Example 14.4. Applying the theorem to the torus in Example 14.1 gives

� 1pT2q � t a; b | aba� 1b� 1 � eu � t a; b | ab � bau � Z2:

Notice that this matches the result of applying Exercise9.13(a), which gives � 1pS1 � S1q � � 1pS1q�
� 1pS1q � Z � Z.

Example 14.5. For the picture of RP2 in Example 14.2, we obtain

� 1pRP2q � t a | a2 � eu � Z2:

We already saw in Example11.7 that � 1pRP2q is generated by a single loop
 : S1 Ñ RP2, the
projection to RP2 � S2{� of a path that goes halfway around the equator of the sphere from one
point to its antipodal point. We have now shown that r
 sreally is a nontrivial element of � 1pRP2q,
but its square is trivial. We could also have deduced the latter already from the fact that S2 is
simply connected: the concatenation of
 with itself is the projection to RP2 of a path that goesall
the way around the equator in S2, i.e. it is a loop, and can then be �lled in with a map D2 Ñ S2

since � 1pS2q � 0. Composing the mapD2 Ñ S2 with the projection S2 Ñ RP2 then contracts the
loop 
 2 in RP2. However, we could not have deduced so easily from our knowledge ofS2 the fact
that 
 itself is not a contractible loop in RP2; that required the full strength of the Seifert-van
Kampen theorem.

In Lecture 1, I drew you some pictures of topological spaces that I called �surfaces of genusg�
for various values of a nonnegative integerg. I will now give you a precise de�nition of this space
which, unfortunately, looks completely di�erent from the original pictures, but we will soon see
that it is equivalent.

Definition 14.6. For any integer g ¥ 0, the closed orientable surface � g of genus
(Geschlecht) g is de�ned to be S2 if g � 0, and otherwise � g :� P {� where P is a polygon
with 4g edges labeled by2g distinct letters t ai ; bi u

g
i � 1 in the order

a1; b1; a1; b1; a2; b2; a2; b2; : : : ; ag; bg; ag; bg;

such that the arrows point counterclockwise on the �rst instance of each letter in this sequence
and clockwise on the second instance.

Once you've fully digested this de�nition, you may recognize that � 1 is de�ned by the square
in Example 14.1, i.e. it is the torus T2. The diagram for � 2 is shown at the bottom of Figure 5.
The projective plane RP2 is not an �orientable� surface, so it is not � g for any g, though it is
sometimes called a �non-orientable surface of genus1�. This terminology will make more sense
when we later discuss the classi�cation of surfaces.

In order to understand what � g has to do with pictures we've seen before, we consider an
operation on surfaces called theconnected sum. It can be de�ned on any pair of surfaces� and
� 1, or more generally, on any pair ofn-dimensional topological manifolds, though for now we will
consider only the casen � 2. Since I haven't yet actually given you precise de�nitions of the terms
�surface� and �topological manifold,� for now you should just assume� and � 1 come from the list
of speci�c examples� 0 � S2, � 1 � T2, � 2, � 3; : : : de�ned above.

Given a pair of inclusionsD2 ãÑ � and D2 ãÑ � 1, the connected sum (zusammenhängende
Summe) of � and � 1 is de�ned as the space

�#� 1 :�
�

� z�D2
	

YS1

�
� 1z�D2

	
:
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Figure 5. The connected sumT2# T2 is formed by cutting holes D2 out of two
copies ofT2 along some loop
 , and then gluing together the two copies ofT2zD2.
The result is � 2, the closed orientable surface of genus2.

The result of this operation is not hard to visualize in many concrete examples, see e.g. Figure6.
More generally, for topologicaln-manifolds M and M 1, one de�nes the connected sumM # M 1

by choosing inclusions ofDn into M and M 1, then removing the interiors of these disks and gluing
together M z�Dn and M 1z�Dn along Sn � 1 � B Dn . The notation M # M 1 obscures the fact that the
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Figure 6. The connected sum of two surfaces is de�ned by cutting a hole out
of each of them and gluing the rest together along the resulting boundary circle.

de�nition of the connected sum depends explicitly on choices of inclusions ofDn into both spaces,
and it is not entirely true in general that M # M 1 up to homeomorphism is independent of this
choice. It is true however for surfaces:

Lemma 14.7 (slightly nontrivial) . Up to homeomorphism, the connected sum�#� 1 of two
closed connected surfaces� and � 1 does not depend on the choices of inclusionsD2 ãÑ � and
D2 ãÑ � 1.

Sketch of a proof. A complete proof of this would be too much of a digression and require
more knowledge about the classi�cation of surfaces than is presently safe to assume, but I can
give the rough idea. The main thing you need to believe is that �up to orientation� (I'll come
back to that detail in a moment), any inclusion i 0 : D2 ãÑ � can be deformed into any other
inclusion i 1 : D2 ãÑ � through a continuous family of inclusions i t : D2 ãÑ � for t P I . You should
imagine this roughly as follows: sinceD2 is homeomorphic via the obvious rescalings to the disk
D2

r of radius r for every r ¡ 0, one can �rst deform i 0 and i 1 to inclusions whose images lie in
arbitrarily small neighborhoods of two points z0; z1 P � . Now since � is connected (and therefore
also path-connected, as all topological manifolds are locally path-connected), we can choose a path

 from z0 to z1, and the idea is then to de�ne i t as a continuous family of inclusionsD2 ãÑ � such
that the image of i t lies in an arbitrarily small neighborhood of 
 ptqfor each t. You should be able
to imagine concretely how to do this in the special case� � R2. That it can be done on arbitrary
connected surfaces� depends on the fact that every point in � has a neighborhood homeomorphic
to R2 (in other words, � is a topological 2-manifold).

Now for the detail that was brushed under the rug in the previous paragraph: even ifi 0; i 1 :
D2 ãÑ � are two inclusions that send0 to the same point z P � and have images in an arbitrarily
small neighborhood ofz, it is not always true that i 0 can be deformed toi 1 through a continuous
family of inclusions. For example, if we take� � R2, it is not true for the two inclusions i 0; i 1 :
D2 ãÑ R2 de�ned by i 0px; yq � p �x; �y q and i 1px; yq � p �x; � �y q. In this example, both inclusions
are de�ned as restrictions of injective linear mapsR2 Ñ R2, but one has positive determinant and
the other has negative determinant, so one cannot deform from one to the other through injective
linear maps. One can use the technology oflocal homology groups(which we'll cover next semester)
to remove the linearity from this argument and show that there also is no deformation from i 0

to i 1 through continuous inclusions. The issue here is one oforientations: i 0 is an orientation-
preserving map, while i 1 is orientation-reversing. It turns out that two inclusions of D2 into R2

can be deformed to each other through inclusions if and only if they are either both orientation
preserving or both orientation reversing. This obstruction sounds like bad news for our proof,
but the situation is saved by the following corollary of the classi�cation of surfaces: every closed
orientable surface admits an orientation-reversing homeomorphism to itself. For example, if you
picture the torus as the usual tube embedded inR3 and you embed it so that it is symmetric
about some2-dimensional coordinate plane, then the linear re�ection through that plane restricts
to a homeomorphism ofT2 that is orientation reversing. Once we see what all the other closed
orientable surfaces look like, it will be easy to see that one can do that with all of them. Actually,
it is also not so hard to see this for the surfaces� g de�ned as polygons: you just need to choose
a su�ciently clever axis in the plane containing the polygon and re�ect across it. Once this is
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understood, you realize that the orientation of your inclusion D2 ãÑ � does not really matter, as
you can always replace it with an inclusion having the opposite orientation, and the picture you
get in the end will be homeomorphic to the original.

With this detail out of the way, you just have to convince yourself that if you have a pair of
continuous families of inclusionsi t : D2 ãÑ � and j t : D2 ãÑ � 1 de�ned for t P r0; 1s, then the
resulting glued surfaces

�# t � 1 :�
�

� zi t p�D2q
	

YS1

�
� 1zj t p�D2q

	

are homeomorphic for all t. It su�ces in fact to prove that this is true just for t varying in an
arbitrarily small interval pt0 � �; t 0 � � q, since r0; 1s is compact and can therefore be covered by
�nitely many such intervals. A homeomorphism �# t � 1 Ñ �# s � 1 for t � s is easy to de�ne if we
can �rst �nd a homeomorphism � Ñ � that sends i t pzq ÞÑi spzq for every z P D2 and similarly
on � 1. This is not hard to construct if t and s are su�ciently close. �

Now we are in a position to relate� g with the more familiar pictures of surfaces.

Theorem 14.8. For any nonnegative integersg; h, � g#� h � � g� h . In particular, � g is the
connected sum ofg copies of the torus:

� g � T2# : : : # T2
loooooomoooooon

g

Proof. The result becomes obvious if one makes a su�ciently clever choice of hole to cut
out of � g and � h , and Lemma 14.7 tells us that the resulting space up to homeomorphism is
independent of this choice. The example ofg � h � 1 is shown in Figure 5, and the same idea
works (but is more e�ort to draw) for any values of g and h. �

Now that we know how to draw pretty pictures of the surfaces� g, we can also observe that we
have already proved something quite nontrivial about them: we have computed their fundamental
groups!

Corollary 14.9 (of Theorem14.3). The closed orientable surface� g of genusg ¥ 0 has a
fundamental group with2g generators and one relation, namely

� 1p� gq �
 
a1; b1; : : : ; ag; bg

�
� a1b1a� 1

1 b� 1
1 a2b2a� 1

2 b� 1
2 : : : agbga� 1

g b� 1
g � e

(
:

�

Using the commutator notation from Exercise 12.21, the relation in Corollary 14.9 can be
conveniently abbreviated as

g¹

i � 1

rai ; bi s � e:

Exercise 14.10. Show that the abelianization (cf. Exercise12.21) of � 1p� gq is isomorphic to
the additive group Z2g.
Hint: � 1p� gq is a particular quotient of the free group on 2g generators. Observe that the abelian-
ization of that free group is identical to the abelianization of � 1p� gq. (Why?)

By the classi�cation of �nitely generated abelian groups, Zm and Zn are never isomorphic
unlessm � n, so Exercise14.10implies that � 1p� gq and � 1p� h q are not isomorphic unlessg � h.
This completes the �rst step in the classi�cation of closed surfaces:

Corollary 14.11. For two nonnegative integersg � h, � g and � h are not homeomorphic. �

Exercise 14.12. AssumeX and Y are path-connected topological manifolds of dimensionn.
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Figure 7. The surface� 1;3 as in Exercise14.13.

(a) Use the Seifert-Van Kampen theorem to show that ifn ¥ 3, then � 1pX # Y q � � 1pX q �
� 1pY q. Where does your proof fail in the casesn � 1 and n � 2?

(b) Show that the formula of part (a) is false in general for n � 1; 2.

Exercise 14.13. For integers g; m ¥ 0, let � g;m denote the compact surface obtained by
cutting m disjoint disk-shaped holes out of the closed orientable surface with genusg. (By this
convention, � g � � g;0.) The boundary B� g;m is then a disjoint union of m circles, e.g. the case
with g � 1 and m � 3 is shown in Figure 7.

(a) Show that � 1p� g;1q is a free group with 2g generators, and if g ¥ 1, then any simple
closed curve parametrizingB� g;1 represents a nontrivial element of� 1p� g;1q.18

Hint: Think of � g as a polygon with some of its edges identi�ed. If you cut a hole in
the middle of the polygon, what remains admits a deformation retraction to the edges.
Prove it with a picture.

(b) Assume 
 is a simple closed curve separating� g

into two pieces homeomorphic to� h; 1 and � k; 1

for someh; k ¥ 0. (The picture at the right shows
an example with h � 2 and k � 4.) Show that
the image of r
 s P� 1p� gq under the natural pro-
jection to the abelianization of � 1p� gq is trivial.
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Hint: What does 
 look like in the polygonal picture from part (a)? What is it homotopic
to?

(c) Prove that if g ¥ 2 and G denotes the group
 
a1; b1; : : : ; ag; bg

�
� ± g

i � 1rai ; bi s � e
(
, then

for any proper subsetJ € t 1; : : : ; gu,
±

i PJ rai ; bi s is a nontrivial element of G.
Hint: Given j P J and ` P t1; : : : ; guzJ , there is a homomorphism� : Ft a1 ;b1 ;:::;a g ;bg u Ñ
Ft x;y u that sends aj ÞÑx, bj ÞÑy, a` ÞÑy, b̀ ÞÑx and maps all other generators to the
identity. Show that � descends to the quotientG and maps

±
i PJ rai ; bi s PG to something

nontrivial.
(d) Deduce from part (c) that if h ¡ 0 and k ¡ 0, then the curve 
 in part (b) represents a

nontrivial element of � 1p� gq.
(e) Generalize part (a): show that if m ¥ 1, � 1p� g;m q is a free group with 2g � m � 1

generators.

Now let's talk about knots. Back in Lecture 8, I showed you two simple examples of knots
K € R3: the trefoil and the unknot. I claimed that it is impossible to deform one of these knots
into the other, and in fact that the complements of both knots in R3 are not homeomorphic. It is
time to prove this.

18Terminology: one says in this case that B� g; 1 is homotopically nontrivial or essential , or equivalently,
B� g; 1 is not nullhomotopic .
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Figure 8. The trefoil knot K 2;3 and unknot K 1;0.

We will consider both as special cases of a more general class of knots calledtorus knots. Fix
the standard embedding of the torus

f : T2 � S1 � S1 ãÑ R3;

where by �standard,� I mean the one that you usually picture when you imagine a torus embedded
in R3 (see the surface bounding the grey region in Figure9). Given any two relatively prime
integers p; q PZ, the pp; qq-torus knot is de�ned by

K p;q :�
 
f pepi� ; eqi� q

�
� � PR

(
€ R3:

In other words, K p;q is a knot lying on the image of the embedded torusf pT2q € R3, obtained from
a loop that rotates p times around one of the dimensions ofT2 � S1 � S1 while rotating q times
around the other. It is conventional to assumep and q are relatively prime, since the de�nition of
K p;q above would not change if bothp and q were multiplied by the same nonzero constant.

Example 14.14. K 2;3 is the trefoil knot (Figure 8, left).

Example 14.15. K 1;0 is the unknot (Figure 8, right).

The knot group of a knot K € R3 is de�ned as the fundamental group of the so-calledknot
complement, � 1pR3zK q. We saw in Example12.7 that the natural inclusion R3 ãÑ S3 de�ned by
identifying S3 with the one-point compacti�cation R3 Y t8u induces an isomorphism of� 1pR3zK q
to � 1pS3zK q, thus in order to compute knot groups, we may as well regard the knotK € R3 as a
subset of the slightly larger but compact spaceS3 and compute � 1pS3zK q. We shall now answer
the question: given relatively prime integersp and q, what is � 1pS3zK p;qq?

Here is a useful trick for picturing S3. By de�nition, S3 � B D4, but notice that D4 is also
homeomorphic to the �box� D2 � D2, whose boundary consists of the two piecesBD2 � D2 and
D2 � B D2, intersecting each other alongBD2 � B D2. The latter is a copy of T2, and the pieces
S1 � D2 and D2 � S1 are called solid tori since we usually picture them as the region inR3

bounded by the standard embedding of the torus. The homeomorphismD4 � D2 � D2 thus allows
us to identify S3 with the space constructed by gluing together these two solid tori along the
obvious identi�cation of their boundaries:

S3 � p S1 � D2q YT2 pD2 � S1q:

A picture of this decomposition is shown in Figure9. Here the 2-torus along which the two solid
tori are glued together is depicted as the standard embedding ofT2 in R3, so this is where we
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PSfrag replacements

�

S1 � D2

D2 � S1

8

8

Figure 9. The sphere S3 � R3 Y t8u decomposed as a union of two solid
tori whose common boundary is the �standard� embedding ofT2 in R3: S3 �
BpD2 � D2q � p S1 � D2q YT2 pD2 � S1q. The vertical blue line passing through the
middle is actually a circle in S3 passing through the point at 8 .

will assume K p;q lies. The region bounded by this torus isS1 � D2, shown in the picture as an
S1-parametrized family of disks D2. It requires a bit more imagination to recognize D2 � S1 in
the picture: instead of a family of disks, we have drawn it as aD2-parametrized family of circles,
where it is important to understand that one of those circles passes through8 P S3 and thus
looks like a line instead of a circle in the picture. This picture will now serve as the basis for a
Seifert-van Kampen decomposition ofS3zK p;q into two open subsets. They will be de�ned as open
neighborhoods of the two subsets

A0 :� p S1 � D2qzK p;q ; B0 :� p D2 � S1qzK p;q :

In order to de�ne suitable neighborhoods, let us identify a neighborhood off pT2q in R3 with
p� 1; 1q � T2 such that f pT2q becomest 0u � T2 € R3. We then de�ne

A :�
�

S1 � �D2
	

Y
�
p� 1; 1q � p T2zf � 1pK p;qqq

�
;

and

B :�
�

�D2 � S1
	

Y
�
p� 1; 1q � p T2zf � 1pK p;q qq

�
:



14. SURFACES AND TORUS KNOTS (JUNE 6, 2023) 93

By contracting the interval p� 1; 1q, we can de�ne a deformation retraction of A to A0 and then
retract further by contractng the disk D2 to its center, eventually producing a deformation retrac-
tion of A to the circle S1 � t 0u at the center of the inner solid torus�this is the red circle in
Figure 9 that passes through the center of each disk. In an analogous way, there is a deformation
retraction of B to the center t 0u � S1 of the outer solid torus, which is the blue line through8 in
the picture, though you might prefer to perturb this to one of the parallel circles t zu� S1 € D2 � S1

for z � 0, since these actually look like circles in the picture. We can now regard� 1pAq and � 1pB q
as separate copies of the integers whose generators we shall calla and b respectively,

� 1pAq � t a | Hu ; � 1pB q � t b | Hu :

The intersection is

A X B � p� 1; 1q �
�
T2zf � 1pK p;q q

�
�

h:e:
T2zf � 1pK p;qq �

h:e:
S1:

That last homotopy equivalence deserves an explanation: if you drawT2 as a square with its
sides identi�ed, then f � 1pK p;q q looks like a straight line that periodically exits one side of the
square and reappears at the opposite side. Now draw another straight path parallel to this one (I
recommend using a di�erent color), and you will easily see that after removingf � 1pK p;qq from T2,
what remains admits a deformation retraction to the parallel path, which is an embedded copy
of S1. We will call the generator of its fundamental group c,

� 1pA X B q � t c | Hu :

According to the Seifert-van Kampen theorem (in particular Corollary 12.19, the version for �nitely-
presented groups), we can now write

� 1pS3zK p;qq �
 
a; b

�
� pj A q� c � p j B q� c

(
;

where j A and j B denote the inclusions ofA X B into A and B respectively. To interpret this
properly, we should choose a base point inA X B and picture a, b and c as represented by speci�c
loops through this base point, so without loss of generality,a is a loop near the boundaryT2 of
S1 � D2 that wraps once around theS1 direction, and b is another loop nearT2 that wraps once
around the S1-direction of D2 � S1, which is the other dimension ofT2 � S1 � S1. The interesting
part is c, as it is represented by a loop inT2 that is parallel to K p;q , thus it wraps p times around
the direction of a and q times around the direction of b. This meanspj A q� c � ap and pj B q� c � bq,
so putting all of this together yields:

Theorem 14.16. � 1pS3zK p;qq � t a; b | ap � bqu. �

Example 14.17. For pp; qq � p 1; 0q, we obtain the knot group of the unknot: � 1pS3zK 1;0q �
t a; b | a � eu � t b | Hu � Z. In particular, this is an abelian group.

Example 14.18. The knot group of the trefoil is � 1pS3zK 2;3q � t a; b | a2 � b3u. We proved
in Exercise 12.20that this group is not abelian, in contrast to Example 14.17, hence� 1pS3zK 2;3q
and � 1pS3zK 1;0q are not isomorphic.

Corollary 14.19. The knot complementsR3zK 1;0 and R3zK 2;3 are not homeomorphic. �

Before moving on19 from the Seifert-van Kampen theorem, I would like to sketch one more
application, which answers the question, �which groups can be fundamental groups of nice spaces?�
If we are only interested in �nitely-presented groups and decide that �nice� should mean �compact
and Hausdor��, then the answer turns out to be that there is no restriction at all.

19We ran out of time in the actual lecture before we could talk about Theorem 14.20, but I am including it in
the notes just because it is interesting.
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Theorem 14.20. Every �nitely-presented group is the fundamental group of some compact
Hausdor� space.

Proof. The following lemma will be used as an inductive step. SupposeX 0 is a compact
Hausdor� space with a �nitely-presented fundamental group

� 1pX 0; pq �
 
t ai u

�
� t Rj u

(
:

Then for any loop 
 : pS1; 1q Ñ pX 0; pq, we claim that the space

X :� D2 Y 
 X 0 :�
�
D2 > X 0

� M
z � 
 pzq PX 0 for all z P BD2

is compact and Hausdor� with

� 1pX; pq �
 
t ai u

�
� t Rj u; r
 s � e

(
;

i.e. its fundamental group has the same generators and one new relation, de�ned by settingr
 s P
� 1pX 0; pq equal to the trivial element. This claim follows easily20 from the Seifert-van Kampen
theorem using the decompositionX � A Y B where A � �D2 and B is an open neighborhood
of X 0 obtained by adding a small annulus near the boundary ofBD2. Since the annulus admits
a deformation retraction to BD2, we haveB �

h:e:
X 0, while A X B �

h:e:
S1 and A is contractible.

According to Corollary 12.19, � 1pX; pq then inherits all the generators and relations of � 1pB q �
� 1pX 0q, no new generators from� 1pAq � 0, and one new relation from the generator of� 1pA X B q �
Z, whose inclusion intoA is trivial, so the relation says that its inclusion into B must become the
trivial element. That inclusion is precisely r
 s P� 1pX 0; pq, hence the claim is proved.

Now supposeG is a �nitely-presented group with generators x1; : : : ; xN and relations w1 �
e; : : : ; wm � e for wi P Ft x 1 ;:::;x N u. We start with a space X 0 whose fundamental group is the
free group on t x1; : : : ; xN u: the wedge sum ofN circles will do. As the previous paragraph
demonstrates, we can then attach a2-disk for each individual relation we would like to add to the
fundamental group, and doing this �nitely many times produces a compact Hausdor� space with
the desired fundamental group. �

15. Covering spaces and the lifting theorem (June 8, 2023)

We now leave the Seifert-van Kampen theorem behind and introduce the second major tool
for computing fundamental groups: the theory of covering spaces.

Definition 15.1. A map f : Y Ñ X is called acovering map (Überlagerung), or simply a
cover of X , if for every x PX , there exists an open neighborhoodU € X such that

f � 1pUq �
¤

� PJ

V�

for a collection of disjoint open subsetst V� € Y u� PJ such that f |V � : V� Ñ U is a homeomorphism
for each � PJ . The domain Y of this map is called acovering space (Überlagerungsraum) of X .
Any subset U € X satisfying the conditions stated above is said to beevenly covered .

Example 15.2. The map f : R Ñ S1 : � ÞÑei� is a covering map ofS1.

Example 15.3. The map S1 Ñ S1 sendingei� to eki� for any nonzerok PZ is also a covering
map of S1.

20I am glossing over the detail where we need to prove that X is also compact and Hausdor�. This is not
completely obvious, but it is yet another exercise in point-set topology that I feel justi�ed in not explaining now
that that portion of the course is �nished.
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Example 15.4. The n-dimensional torus Tn :� S1 � : : : � S1looooooomooooooon
n

admits a covering map

Rn Ñ Tn : p� 1; : : : ; � n q ÞÑ pei� 1 ; : : : ; ei� n q:

More generally, it is straightforward to show that given any two covering maps f i : Yi Ñ X i for
i � 1; 2, there is a �product� cover

Y1 � Y2
f 1 � f 2ÝÑ X 1 � X 2 : px1; x2q ÞÑ pf 1px1q; f 2px2qq:

Example 15.5. For any spaceX , the identity map X Ñ X is trivially a covering map.

Example 15.6. Another trivial example of a covering map can be de�ned for any spaceX
and any set J by setting X � :� X for every � P J and de�ning f :

²
� PJ X � Ñ X as the unique

map that restricts to each X � � X as the identity map on X . This is a disconnectedcovering
map. We will usually restrict our attention to covering spaces that are connected.

Example 15.7. For eachn PN, the quotient projection Sn Ñ RPn � Sn {� is a covering map.

Theorem 15.8. If X is connected andf : Y Ñ X is a cover, then the number (�nite or
in�nite) of points in f � 1pxq € Y does not depend on the choice of a pointx PX .

Proof. Given x PX , choose an evenly covered neighborhoodU € X of x and write f � 1pUq �”
� PJ V� . Then for every y PU, |f � 1pyq| � | J |, and it follows that for every n P t0; 1; 2; 3; : : : ; 8u ,

the subset X n :� t x P X | |f � 1pxq| � nu € X is open. If x P X n , notice that
”

m � n X m is also
open, thus X n is also closed, so connectedness impliesX n � X . �

In the setting of the above theorem, the number of points in f � 1pxq is called the degree
(Grad) of the cover. If degpf q � n, we sometimes callf an n-fold cover.

Examples 15.9. The cover S1 Ñ S1 : z ÞÑzk from Example 15.3 has degree|k|, while the
quotient projection Sn Ñ RPn has degree2 and the coverR Ñ S1 from Example 15.2 has in�nite
degree.

Remark 15.10. Some authors strengthen the de�nition of a covering mapf : Y Ñ X by
requiring f to be surjective. We did not require this in De�nition 15.1, but notice that if X
is connected, then it follows immediately from Theorem15.8. In practice, it is only sensible to
consider covers of connected spaces, and we shall always assume connectedness.

Note that in De�nition 15.1, one should explicitly require the setsV� € f � 1pUq to be open.
This is important, as part of the point of that de�nition is that X can be covered by open neigh-
borhoodsU whose preimages are homeomorphic todisjoint unions of copies ofU, i.e.

f � 1pUq �
º

� PJ

U:

This is true speci�cally because each of the setsV� is open, and therefore (as the complement of”
� � � V� ) also closed inf � 1pUq. To put it another way, in a covering map, every point x PX has

a neighborhoodU such that f � 1pUq is the disjoint union of homeomorphic neighborhoods of the
individual points in f � 1pxq. An important consequence of this de�nition is that every covering
map f : Y Ñ X is also a local homeomorphism, meaning that for each y P Y and x :� f pyq, f
maps some neighborhood ofy homeomorphically to some neighborhood ofx.

Almost every result in covering space theory is based on the answer to the following question:
given a map f : A Ñ X and a covering mapp : Y Ñ X , can f be �lifted� to a map ~f : A Ñ Y
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satisfying p � ~f � f ? This problem can be summarized with the diagram

(15.1)
Y

A X

p
~f

f

in which the maps f and p are given, but the dashed arrow for ~f indicates that we do not know
whether such a map exists. If it does, then we call~f a lift of f to the cover. It is easy to see that
lifts do not always exist: take for instance the coverp : R Ñ S1 : � ÞÑei� and let f : S1 Ñ S1

be the identity map. A lift ~f : S1 Ñ R would need to associate to everyei� P S1 some point
� :� ~f pei� q such that ei� � ei� . It is easy to de�ne a function that does this, but can we make it
continuous? If it were continuous, then ~f pei� q would have to increase by2� as ei� turns around
the circle from � � 0 to � � 2� , producing two values ~f pe2�i q � ~f p1q � 2� even thoughe2�i � 1.
The goal for the remainder of this lecture is to determine precisely which maps can be lifted to
which covering spaces and which cannot.

We start with the following observation: choose base pointsa P A and x P X to make
f : pA; aq Ñ pX; x q into a pointed map. Then if a lift ~f : A Ñ Y exists and we sety :� ~f paq to
make ~f a pointed map, p now becomes one as well sinceppyq � pp~f paqq � f paq � x, hence (15.1)
becomes a diagram of pointed maps and induces a corresponding diagram of group homomorphisms

(15.2)

� 1pY; yq

� 1pA; aq � 1pX; x q:

p�

~f �

f �

The existence of this diagram implies a nontrivial condition that relates the homomorphismsf �

and p� but has nothing intrinsically to do with the lift: it implies im f � € im p� , i.e. these are
two subgroups of � 1pX; x q, and one of them must be contained in the other. The lifting theorem
states that under some assumptions that are satis�ed by most reasonable spaces, this necessary
condition is also su�cient.

Theorem 15.11 (lifting theorem). Assume X; Y; A are all path-connected spaces,A is also
locally path-connected,p : Y Ñ X is a covering map andf : pA; a0q Ñ pX; x 0q is a base-point
preserving map. Then for any choice of base pointy0 P f � 1px0q € Y , f admits a base-point
preserving lift ~f : pA; a0q Ñ pY; y0q if and only if

f � p� 1pA; a0qq € p� p� 1pY; y0qq;

and the point y0 � ~f pa0q uniquely determines the lift ~f .

Let us discuss some applications before we get to the proof.

Corollary 15.12. For any covering mapp : Y Ñ X between path-connected spaces and any
spaceA that is simply connected and locally path-connected, every mapf : A Ñ X can be lifted
to Y . �

Corollary 15.13. For every base-point preserving covering mapp : pY; y0q Ñ pX; x 0qbetween
path-connected spaces, the homomorphismp� : � 1pY; y0q Ñ � 1pX; x 0q is injective.

Proof. Suppose~
 : pS1; 1q Ñ pY; y0q is a loop such that p� r~
 s � e P � 1pX; x 0q. Then

 :� p � ~
 : pS1; 1q Ñ pX; x 0q admits an extensionu : pD2; 1q Ñ pX; x 0q with u|BD2 � 
 . But D2 is
simply connected, sou admits a lift ~u : pD2; 1q Ñ pY; y0q satisfying p � ~u � u, thus p � ~u|BD2 � 

implies that ~u|BD2 : pS1; 1q Ñ pY; y0q is a lift of 
 . Uniqueness of lifts then implies~u|BD2 � ~
 and
thus r~
 s � e P � 1pY; y0q. �
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Corollary 15.14. If X is simply connected, then every path-connected covering space ofX
is also simply connected. �

Example 15.15. Corollary 15.14implies that there does not exist any covering mapS1 Ñ R.

Here is an application important in complex analysis. Observe that

p : C Ñ C� :� Czt0u : z ÞÑez

is a covering map. Writing ppx � iy q � ex eiy , we can picturep as a transformation from Cartesian
to polar coordinates: it maps every horizontal line t Im z � constu to a ray in C� emanating from
the origin, and every vertical line t Rez � constu to a circle in C� , which it covers in�nitely many
times. This shows that p is not bijective, so it has no global inverse, but it will admit inverses if we
restrict it to suitably small domains, and it is useful to know what domains will generally su�ce
for this. In other words, we would like to know which open subsetsU € C� can be the domain of
a continuous function

log : U Ñ C such that elog z � z for all z PU:

For simplicity, we will restrict our attention to path-connected 21 domains and also assume1 P U,
so that we can adopt the conventionlogp1q :� 0. De�ning f : pU; 1q ãÑ pC� ; 1q as the inclusion,
the desired function log : pU; 1q Ñ pC; 0q will then be the unique solution to the lifting problem

pC; 0q

pU; 1q pC� ; 1q

p
log

f

Theorem15.11now gives the answer:log : U Ñ C exists if and only if f � p� 1pU; 1qq € p� p� 1pC; 0qq �
0, or in other words, if every loop in U can be extended to a mapD2 Ñ C� . Using the notion of
the winding number from Exercise10.26, this is the same as saying every loop
 : S1 Ñ U satis�es
windp
 ; 0q � 0. For example, log : U Ñ C can be de�ned wheneverU is simply connected, or ifU
has the shape of an annulus whose outer circle does not enclose the origin. Examples that do not
work include any annulus whose inner circle encloses the origin: this will always contain a loop
that winds nontrivially around the origin, so that trying to de�ne log along this loop produces a
function that shifts by 2�i as one rotates fully around the loop. Notice that whenlog : U Ñ C
exists, it is uniquely determined by the condition logp1q � 0; without this one could equally well
modify any given de�nition of log by adding integer multiples of 2�i .

The proof of the lifting theorem requires two lemmas that are also special cases of the theorem.
We assume for the remainder of this lecture thatpY; y0q

p
Ñ pX; x 0q is a covering map andX , Y

and A are all path-connected.

Lemma 15.16 (the path lifting property) . Every path 
 : pI; 0q Ñ pX; x 0q has a unique lift
~
 : pI; 0q Ñ pY; y0q.

Proof. SinceI is compact, we can �nd a �nite partition 0 � : t0   t1   : : :   tN � 1   tN :� 1
such that for each j � 1; : : : ; N , the image of 
 j :� 
 |rt j � 1 ;t j s lies in an evenly covered open subset
Uj € X with p� 1pUj q �

”
� PJ V� . Now given any y P p� 1p
 pt j � 1qq, we havey P V� for a unique

� PJ , and 
 j has a unique lift ~
 j : rt j � 1; t j s Ñ Y with ~
 j pt j � 1q � y, de�ned by

~
 j � p p|V � q� 1 � 
 j :

21Since U € C� is open, it is locally path-connected, thus it will automatically be path-connected if it is
connected.
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With this understood, the unique lift ~
 of 
 with ~
 p0q � y0 can be constructed by lifting ~
 1 as
explained above, then lifting ~
 2 with starting point ~
 2pt1q :� ~
 1pt1q, and continuing in this way to
cover the entire interval. �

Lemma 15.17 (the homotopy lifting property) . SupposeH : I � A Ñ X is a homotopy with
H p0; �q � f : A Ñ X , and ~f : A Ñ Y is a lift of f . Then there exists a unique lift rH : I � A Ñ Y
of H satisfying rH p0; �q � ~f .

Proof. The previous lemma implies that each of the pathss ÞÑH ps; aq P X for a P A
have unique lifts s ÞÑ rH ps; aq PY with rH p0; aq � ~f paq. One should then check that the map
rH : I � A Ñ Y de�ned in this way is continuous; I leave this as an exercise. �

Proof of Theorem 15.11. We shall �rst de�ne an appropriate map ~f : A Ñ Y and then
show that the de�nition is independent of choices. Its uniqueness will be immediately clear, but its
continuity will not be: in the �nal step we will use the hypothesis that A is locally path-connected
in showing that ~f is continuous.

Given a PA, choose a patha0
�
 a, giving a path x0

f � �
 f paq, which lifts via Lemma 15.16to

a unique path ‚f � � in Y that starts at y0. If a lift ~f exists, it clearly must satisfy

~f paq � ‚f � � p1q:

We claim that this point in Y does not depend on the choice of the path� , and thus gives a

well-de�ned (though not necessarily continuous) map ~f : A Ñ Y . Indeed, supposea0
�
 a is

another path. Then � � � � 1 is a loop based ata0 and thus represents an element of� 1pA; a0q, and
f � r� � � � 1s P� 1pX; x 0q is represented by the looppf � � q � pf � � � 1q. The hypothesis im f � € im p�

then implies the existence of a loopy0
~


 y0 in Y such that

rpf � � q � pf � � � 1qs � p� r~
 s � r p � ~
 s;

so there is a homotopyH : I 2 Ñ X with H p0; �q � 
 :� p � ~
 , H p1; �q � p f � � q � pf � � � 1q,
and H ps;0q � H ps;1q � x0 for all s P I . Notice that ~
 is a lift of 
 : pI; 0q Ñ pX; x 0q. Now
Lemma 15.17 provides a lift rH : I 2 Ñ Y of H with rH p0; �q � ~
 . In this homotopy, the paths
s ÞÑ rH ps;0q and s ÞÑ rH ps;1q are lifts of the constant path H p�; 0q � H p�; 1q � x0 starting at
~
 p0q � ~
 p1q � y0, so the uniqueness in Lemma15.16 implies that both are also constant paths,
hence rH ps;0q � rH ps;1q � y0 for all s P I . This shows that the unique lift of pf � � q � pf � � � 1q
to a path in Y starting at y0 is actually a loop, i.e. its end point is alsoy0: indeed, this lift is
rH p1; �q. This lift is necessarily the concatenation of the lift ‚f � � of f � � starting at y0 with the
lift of f � � � 1 starting at ‚f � � p1q. Since it ends aty0, we conclude that this second lift is simply
the inverse of ‚f � � , implying that

‚f � � p1q � ‚f � � p1q;

which proves the claim.
It remains to show that ~f : A Ñ Y as de�ned by the above procedure is continuous. Given

a P A with x � f paq PX and y � ~f paq PY , choose any neighborhoodV € Y of y that is small
enough for U :� ppVq € X to be an evenly covered neighborhood ofx, with p|V : V Ñ U a
homeomorphism. It will su�ce to show that a has a neighborhoodO € A with ~f pOq € V. Since
A is locally path-connected, we can chooseO € f � 1pUqto be a path-connected neighborhood ofa,

�x a path a0


 a in A and, for any a1 P O, choose a patha

�
 a1 in O. Now 
 � � is a path from

a0 to a1, so
~f paq � ‚f � 
 p1q � y PV and ~f pa1q � ‚f � 
 � ‚f � � p1q;
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where ‚f � � is the unique lift of f � � starting at y. Since f � � lies entirely in the evenly covered
neighborhood U, this second lift is simply pp|V q� 1 � pf � � q, which lies entirely in V, proving
~f pa1q PV. �

Example 15.18. If the local path-connectedness assumption onA is dropped, then the proof
above gives a procedure for de�ning a unique lift ~f : A Ñ Y , but it may fail to be continuous. A
concrete example is depicted in [Hat02 , p. 79], Exercise 7. The idea is to de�neA as a space that
mostly consists of the usual circleS1 € R2, but replace a portion just to the right of the top point
p0; 1qwith a curve resembling the graph of the functiony � sinp1{xq� 1. The point p0; 1qis included
in A, along with every point of the usual circle just to the left of it, but on the right, A consists
of an in�nitely long curve that is compressed into a compact space and has accumulation points
along an interval but no well-de�ned limit. This space is path-connected, because one can start
from p0; 1q and go around the circle to reach any other point, including any point on the in�nitely
long compressed sine curve; it is also simply connected, due to the fact that continuous paths
along the compressed sine curve can never actually reach the end of it, but must instead go back
the other way around the circle before they can reachp0; 1q. But A is not locally path-connected,
because su�ciently small neighborhoods ofp0; 1q in A always contain many disjoint segments of
the compressed sine curve and thus cannot be path-connected. Now consider the covering map
R Ñ S1 : � ÞÑei� and a continuous map f : A Ñ S1 de�ned as the identity on most of A, but
projecting the graph of y � sinp1{xq � 1 to the circle in the obvious way near p0; 1q. One can
de�ne a lift ~f : A Ñ R by choosing ~f p0; 1q to be any point in p� 1pf p0; 1qqand then lifting paths to
de�ne ~f everywhere else. But since every neighborhood ofp0; 1qcontains some points that cannot
be reached except by paths rotating almost all the way around the circle, this neighborhood will
contain points a P A for which ~f paq di�ers from ~f p0; 1q by nearly 2� . In particular, ~f cannot be
continuous at p0; 1q.
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