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B.1 Topological and Lie groups

Almost every interesting bundle comes with some extra structure attached
to its fibers, for instance the vector space structure for a vector bundle,
or an inner product (bundle metric) or orientation. One of the useful
things about the concept of a bundle is that it allows us to treat all of
these structures as special cases of the same thing: in principle one need
only specify the structure group of the bundle. This notion is explained
in Chapter 2, and plays an important role in the theory of connections in
Chapter 3. Since one must first understand the basic concepts of Lie groups
and their associated Lie algebras, we shall now give a quick overview of
these ideas. Besides, Lie groups are interesting in their own right.

Recall first that a group is a set G together with an operation G×G→
G, usually denoted as “multiplication” (a, b) 7→ ab.1 The operation is
required to be associative, a(bc) = (ab)c, and there is a special element
e ∈ G, called the identity, such that eg = ge = g for all g ∈ G. Moreover,
every g ∈ G has an inverse g−1 ∈ G such that g−1g = gg−1 = e. We expect

1Sometimes the group operation is denoted alternatively as “addition” (a, b) 7→ a+b.
This is the custom particularly when the operation is commutative, i.e. a + b = b + a,
in which case we say G is abelian.
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this notion is already familiar to the reader. From a geometric perspective,
it becomes more interesting if we assume that G is also a topological space
or a manifold.

Definition B.1. A topological group G is a group with a topology such
that the maps

G×G→ G : (a, b) 7→ ab and G→ G : a 7→ a−1

are both continuous.
Similarly, a Lie group is a group that is also a smooth manifold, such

that the two maps above are both smooth. A Lie subgroup is a subgroup
H ⊂ G that is also a submanifold, i.e. the inclusion map H →֒ G is both
a group homomorphism and a smooth embedding.

The groups that are of greatest interest in geometry and topology typ-
ically consist of bijective maps ϕ : M → M on some space M , with the
group multiplication law given by composition,

ϕψ := ϕ ◦ ψ,

and inversion being the obvious operation ϕ 7→ ϕ−1. If M is a topological
space, then there are various possible topologies one can define on spaces
of continuous maps M →M , depending sometimes on extra (e.g. smooth)
structures; these details will not be integral to our discussion, so we will
suppress them. It will at least be clear in all the examples of interest that
the groups under consideration can be regarded as topological groups.

The simplest example is

Homeo(M) = {ϕ :M →M | ϕ is bijective, ϕ and ϕ−1 both continuous},

where M is any topological space. If M is also an orientable topological
manifold, then Homeo(M) has an important subgroup

Homeo+(M) = {ϕ ∈ Homeo(M) | ϕ preserves orientation};

we refer to [Hat02] for the definition of “orientation preserving” on a topo-
logical manifold. If M is a smooth manifold, there are the corresponding
subgroups

Diff(M) = {ϕ ∈ Homeo(M) | ϕ and ϕ−1 are smooth},

and in the orientable case,

Diff+(M) = {ϕ ∈ Diff(M) | ϕ preserves orientation}.

There are still other groups corresponding to extra structures on a smooth
manifoldM , such as a Riemannian metric g or a symplectic form ω. These
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two in particular give rise to the groups of isometries and symplectomor-

phisms respectively,

Isom(M, g) = {ϕ ∈ Diff(M) | ϕ∗g ≡ g},
Symp(M,ω) = {ϕ ∈ Diff(M) | ϕ∗ω ≡ ω}.

Most of these examples are infinite dimensional,2 which introduces some
complications from an analytical point of view. They cannot be considered
smooth Lie groups, though they clearly are topological groups.

Actual Lie groups are usually obtained by considering linear transfor-
mations on finite dimensional vector spaces. As always, let F denote either
R or C. Groups which are smooth submanifolds of the vector space

F
n×n := {all n-by-n matrices with entries in F}

are called linear groups or matrix groups. Denote by 1n (or simply 1 when
there’s no ambiguity) the n-by-n identity matrix

1 = 1n =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 ;

this will be the identity element of every linear group. Now observe that
the map

F
n×n × F

n×n → F
n×n : (A,B) 7→ AB

is smooth; indeed, it’s a bilinear map, and every bilinear map on a finite
dimensional vector space is smooth (prove it!). A slightly less obvious but
very important fact is that if we define the open subset

GL(n,F) = {A ∈ F
n×n | det(A) 6= 0},

then the map GL(n,F) → Fn×n : A 7→ A−1 is also smooth. This is
easy to see in the case n = 2 since you can write down A−1 explicitly; in
fact it follows more generally from Cramer’s rule, an explicit formula for
inverses of arbitrary invertible matrices, but that’s not the clever way to
do it. The clever way is to observe first that the power series expansion
1

1+x
= 1− x+ x2 − x3 + . . . can be generalized to matrices: we have

(1+B)−1 = 1−B+B2 −B3 + . . . (B.1)

for any matrix B sufficiently close to 0. Indeed, we see that (1 + B)
is necessarily invertible if B is sufficiently small, since det(1) = 1 and

2The exception is Isom(M, g), which is generated infinitessimally by the finite di-
mensional space of Killing vector fields ; see e.g. [GHL04].
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det(1+B) is a continuous function of B. Defining a norm |B| on matrices
by identifying F

n×n with F
n2

, it’s not hard to show that there is a constant
C > 0 such that |AB| ≤ C|A||B|, and in particular |Bk| ≤ Ck−1|B|k =
1
C
(C|B|)k. Thus by a standard argument from analysis, the infinite sum

above can be bounded by

∣∣∣∣∣

∞∑

k=0

(−1)kBk

∣∣∣∣∣ ≤
∞∑

k=0

|Bk| ≤ 1

C

∞∑

k=0

(C|B|)k <∞

whenever B is small enough so that C|B| < 1. Now one sees by an easy
computation that

(1+B)

∞∑

k=0

(−1)kBk =

(
∞∑

k=0

(−1)kBk

)
(1+B) = 1.

We apply this as follows to show that the map ι : GL(n,F) → F
n×n : A 7→

A−1 is smooth: for H ∈ Fn×n sufficiently small, we have

ι(A +H) = (A+H)−1 = (1+A−1H)−1A−1

=
(
1−A−1H+ (A−1H)2 − . . .

)
A−1

= ι(A)−A−1HA−1 +O(|H|2),

proving that ι is differentiable and dι(A)H = −A−1HA−1. (Notice that
this generalizes the formula d

dx
1
x

= − 1
x2 .) Next observe that the map

GL(n,F) → Hom(Fn×n,Fn×n) : A 7→ dι(A) is a quadratic function of the
differentiable mapA 7→ A−1, and is thus also differentiable. Repeating this
argument inductively, we conclude that ι has infinitely many derivatives.

This fact lays the groundwork for the following examples.

Example B.2. The set GL(n,F) defined above is precisely the set of all
invertible n-by-n matrices: this is called the general linear group. As an
open subset of the vector space Fn×n, it is trivially also a smooth manifold
(of dimension n2 if F = R, or 2n2 if F = C), and the remarks above
show that multiplication and inversion are smooth, so that GL(n,F) is
a Lie group. It’s useful to think of GL(n,F) as the set of invertible F-
linear transformations A : Fn → F

n, with group multiplication defined
by composition of transformations. In this way GL(n,F) is naturally a
subgroup of Diff(Fn). The next several examples will all be Lie subgroups
of either GL(n,R) or GL(n,C).

In fact, one can also regard GL(n,C) as a Lie subgroup of GL(2n,R).
Indeed, if we identify Cn with R2n via the bijection

R
2n → C

n : (x1, . . . , xn, y1, . . . , yn) 7→ (x1 + iy1, . . . , xn + iyn),
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then multiplication of i by vectors in Cn becomes a real linear transforma-
tion J0 : R

2n → R
2n represented by the matrix

J0 =

(
0 −1n

1n 0

)
,

and multiplication of a complex scalar a + ib by vectors in R2n is now the
linear transformation a1+bJ0 ∈ R2n×2n. Any A ∈ Cn×n defines a complex
linear transformation Cn → Cn, and therefore also a real linear transforma-
tion R

2n → R
2n, but with the extra property of preserving complex scalar

multiplication: this means that for all v ∈ R2n and a + ib ∈ C,

A(a1+ bJ0)v = (a1+ bJ0)Av.

It’s not hard to see that this is true if and only if A commutes with J0,
i.e. AJ0 = J0A. We therefore can give an alternative definition of Cn×n:
in addition to being the complex n2-dimensional vector space of n-by-
n matrices, it is also the real 2n2-dimensional vector space of matrices
A ∈ R2n×2n such that AJ0 = J0A. As such it is a linear subspace of
R2n×2n, and we can similarly define GL(n,C) as a Lie subgroup

GL(n,C) = {A ∈ GL(2n,R) | AJ0 = J0A},

also of (real) dimension 2n2. Take a brief moment to convince yourself that
if A and B both commute with J0, then so do AB and A−1.

Example B.3. It’s easy to see that topologically, GL(n,R) is not con-

nected : one can’t join every pair of matrices A,B ∈ GL(n,R) by a con-
tinuous path of matrices in GL(n,R). In particular there is no such path
if det(A) > 0 and det(B) < 0. The sign of the determinant defines an
important subgroup of GL(n,R):

GL+(n,R) = {A ∈ GL(n,R) | det(A) > 0}.

This is clearly an open subset of GL(n,R), and is thus also a Lie group
of dimension n2. To interpret GL+(n,R) geometrically, recall that the set
of bases of Rn can be divided into positive and negative bases: a basis
(v1, . . . ,vn) is positive (regarded as an ordered set of linearly independent
vectors) if and only if it can be deformed through a continuous family of
bases to the standard basis (e1, . . . , en); we say otherwise that (v1, . . . ,vn)
is negative. An invertible linear map A : Rn → Rn is then called orienta-

tion preserving if it maps positive bases to positive bases, otherwise it is
called orientation reversing. By definition the standard basis is positive,
and since det(1) = 1, we deduce that the sign of any basis (v1, . . . ,vn) is
the same as the sign of

det
(
v1 · · · vn

)
,
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where the vectors vj form the columns of an n-by-nmatrix. Thus GL+(n,R)
is precisely the set of orientation preserving linear transformations Rn →
Rn.

Example B.4. The special linear group is defined by

SL(n,F) = {A ∈ F
n×n | det(A) = 1}.

This is obviously a subgroup, and we claim that it is also a smooth sub-
manifold of GL(n,F), with dimension n2 − 1 in the real case, 2n2 − 2 in
the complex case. This follows from the implicit function theorem, using
the map

det : Fn×n → F.

As a polynomial function of the matrix entries, det is clearly a smooth
map; one then has to show that its derivative d(det)(A) : Fn×n → F is a
surjective linear map whenever det(A) = 1.

Exercise B.5.

(a) If A(t) ∈ Fn×n is a smooth path of matrices with A(0) = 1 and its
time derivative is denoted by Ȧ(t), show that

d

dt
det(A(t))

∣∣∣∣
t=0

= tr(Ȧ(0)). (B.2)

Hint: think of A(t) as an n-tuple of column vectors

A(t) =
(
v1(t) · · · vn(t)

)

with vj(0) = ej , the standard basis vector. Then det(A(t)) is the
evaluation of an alternating n-form on these vectors, which can be
written using components as in Appendix A. Write it this way and
use the product rule. Note: you won’t actually need to know what
the components are!

(b) Show that if A ∈ GL(n,F) then the derivative of det : Fn×n → F at
A is

d(det)(A)H = det(A) · tr(A−1H).

(c) Show that the aforementioned derivative is surjective, implying that
det−1(1) ⊂ F

n×n is a smooth submanifold of dimension n2 − 1 if
F = R, or 2n2 − 2 if F = C.

In the real case, the special linear group has a simple geometric inter-
pretation. Recall that if v1, . . . ,vn are column vectors then

det
(
v1 · · · vn

)
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gives the signed volume of the parallelopiped in Rn spanned by these vec-
tors; in particular this is nonzero if and only if the vectors (v1, . . . ,vn)
form a basis of Rn, and it’s positive if and only if this basis is positive. It
follows that SL(n,R) is the set of all linear transformations A : Rn → Rn

that preserve both volume and orientation. It is precisely half of the larger
group

{A ∈ F
n×n | det(A) = ±1},

which consists of all volume preserving linear transformations on R
n. While

simpler to interpret geometrically, the larger group is less interesting in
applications—we encounter SL(n,R) much more often.

It is not so simple to interpret SL(n,C) geometrically, but algebraically
it can be characterized as the set of all linear transformations on Cn

that preserve a certain natural alternating n-form. Indeed, defining ω ∈
Λn(Cn)∗ by

ω(v1, . . . ,vn) = det
(
v1 · · · vn

)
, (B.3)

a linear transformation A : Cn → Cn is in SL(n,C) if and only if A∗ω = ω.

Example B.6. The orthogonal group is the subgroup

O(n) = {A ∈ GL(n,R) | ATA = 1},

where AT denotes the transpose of the matrix. Its elements are called
orthogonal matrices. These have a geometric interpretation as the set of
all linear transformations A : Rn → Rn that preserve the Euclidean dot
product v ·w. Indeed, we have

Av ·Aw = (Av)T(Aw) = vTATAw = vTw = v ·w

for all v,w ∈ Rn if and only if A ∈ O(n).

Exercise B.7. Show that A ∈ O(n) if and only if its columns v1, . . . ,vn

form an orthonormal basis of Rn, i.e.

vi · vj =

{
1 if i = j,

0 otherwise.

And that the same remark applies to the rows of A.

To show that O(n) is a smooth submanifold of Rn×n, denote by Σ(n) ⊂
Rn×n the space of all symmetric real n-by-n matrices, i.e. those which
satisfy AT = A. This is a linear subspace of Rn×n, and there is a smooth
map

F : Rn×n → Σ(n) : A 7→ ATA,

such that F−1(1) = O(n).
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Exercise B.8. Defining the map F : Rn×n → Σ(n) as above, show that
the derivative dF (A) : Rn×n → Σ(n) is surjective whenever A is invertible.

Conclude that O(n) ⊂ Rn×n is a smooth manifold of dimension n(n−1)
2

.

Observe that every matrix A ∈ O(n) has det(A) = ±1. Taking only
those with positive determinant defines the subgroup

SO(n) = {A ∈ O(n) | det(A) = 1},

called the special orthogonal group. Since SO(n) = O(n) ∩ SL(n,R), the
linear transformations A ∈ SO(n) can be characterized as those which
preserve both orientation and the Euclidean dot product. These are the
rotations of Rn.

Exercise B.9. Show that every A ∈ O(n) can be decomposed as A = RT

where R ∈ SO(n) and T is the orientation reversing transformation

T =




−1
1

. . .

1


 . (B.4)

Proposition B.10. The group SO(n) is connected for all n, i.e. for any

pair of matrices A0,A1 ∈ SO(n), there is a continuous path A(t) ∈ SO(n)
for t ∈ [0, 1] with A(0) = A0 and A(1) = A1.

Proof. For each n ≥ 1, there is an injective homomorphism SO(n) →֒
SO(n+ 1) defined by

A 7→
(
1

A

)
, (B.5)

thus we can regard SO(n) as a subgroup of SO(n + 1). We claim that for
every A0 ∈ SO(n + 1), there is a continuous path A(t) ∈ SO(n + 1) with
A(0) = A0 and A(1) ∈ SO(n). The idea is to construct A(t) via column
vectors

A(t) =
(
v1(t) · · · vn+1(t)

)

which form a continuous family of orthonormal bases. It’s easy to see that
such a family of bases (not necessarily orthonormal) can be constructed
so that v1(1) is the standard basis vector e1. One can then use the
Gram-Schmidt orthgonalization process (cf. [Str80]) to turn this into an
orthonormal basis for all t, without changing either A(0) or v1(1). Now
by construction, A(t) is orthogonal for all t, and since det(A(0)) = 1 and
the determinant depends continuously on the matrix, A(t) ∈ SO(n + 1).
Moreover the upper left entry of A(1) is 1, and since the rows of A(1) are
all orthogonal unit vectors (by Exercise B.7), the top row of A(1) is also
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e1, implying that A(1) has the same block form as in (B.5). One verifies
easily that the lower right block must then be an orthogonal matrix with
determinant 1, so A(1) ∈ SO(n).

The result now follows by induction, for in the n = 1 case, the argument
above connectsA(0) withA(1) ∈ SO(1), and there is only one such matrix:
the identity. This shows that there is a continuous path from any A ∈
SO(n) to 1.

Corollary B.11. GL+(R, n) is also connected, and GL(R, n) and O(n)
each have exactly two connected components. In particular, there is a con-

tinuous path in GL(R, n) or O(n) from any A to either 1 or the orientation

reversing matrix (B.4).3

Proof. The statement about connected components of O(n) follows im-
mediately from Prop. B.10 and Exercise B.9. To apply this result to
GL(n,R) and GL+(n,R), we use the polar decomposition: recall that every
A ∈ GL(R, n) can be written as

A = PQ

where P is a positive definite symmetric matrix and Q ∈ O(n); moreover
Q ∈ SO(n) if A ∈ GL+(R, n). Indeed, since A is invertible, ATA is a
symmetric positive definite matrix, and the spectral theorem (see [Str80])
therefore guarantees that one can write

ATA = UDUT

where U ∈ O(n) and D is a diagonal matrix with only positive entries
λ1, . . . , λn along the diagonal. We can then define a “square root”

√
D as

the diagonal matrix with entries
√
λ1, . . . ,

√
λn, and define

P :=
√
ATA := U

√
DUT,

a positive definite symmetric matrix whose square is ATA. It is now
straightforward to verify that

Q :=
(√

ATA
)−1

A

is orthogonal, and by construction A = PQ.
Observe next that one can easily construct a continuous path of positive

definite symmetric matrices from 1 to P: let

P(t) = U



λ
t/2
1

. . .

λ
t/2
n


UT.

3An equivalent statement is that every basis of Rn can be deformed through a family
of bases to one of two standard forms. This is why it makes sense to divide the set of
all bases into two classes, positive and negative.
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Then A(t) := P(t)Q is a continuous path from O(n) to A. The statements
about GL(n,R) and GL+(n,R) therefore follow from the corresponding
statements about O(n) and SO(n).

Example B.12. The complex analogue of O(n) is the unitary group

U(n) = {A ∈ C
n×n | A†A = 1},

where by definition A† is the complex conjugate of AT. Its elements are
called unitary matrices, and analogously to orthogonal matrices, their sets
of columns and rows form orthonormal bases with respect to the standard
Hermitian inner product

〈v,w〉 =
n∑

j=1

v̄jwj.

on Cn. In fact, U(n) is precisely the set of linear transformations A : Cn →
Cn which preserve this inner product.

As with O(n), we can write U(n) = F−1(1) for a smooth map F :
C

n×n → H(n) : A 7→ A†A, where H(n) ⊂ C
n×n denotes the vector space

of Hermitian matrices, satisfying A† = A. Then applying the implicit
function theorem the same way as in Exercise B.8 shows that U(n) is a
smooth submanifold of Cn×n with dimension n2.

Exercise B.13. Adapt the arguments of Prop. B.10 and Corollary B.11
to show that U(n) and GL(n,C) are both connected for all n. Hint: U(1)
is diffeomorphic to S1; in particular, it’s connected (unlike O(1)).4

Taking the determinant of A†A = 1 implies | det(A)| = 1, but this
allows many more possibilities than in the real case: det(A) can now lie
anywhere on the unit circle in C. The special unitary group

SU(n) = {A ∈ U(n) | det(A) = 1}

is therefore a submanifold of dimension less than that of U(n). Indeed,
writing the unit circle in C as S1 and applying the implicit function theorem
to the map

det : U(n) → S1,

one can show that SU(n) is a smooth manifold of dimension n2 − 1. (Try
it!) It consists of the linear transformations on Cn that preserve both the
standard Hermitian inner product and the alternating n-form defined by
(B.3).

4This is why the concept of orientation does not exist for complex bases.
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Finally, we give two examples of Lie groups that are not matrix groups
in any natural way (they do admit representations as matrix groups, but
these are not canonical).

Example B.14. Fn itself is obviously an abelian Lie group, with vector
addition as the group operation. We can regard it as a space of bijective
maps as follows: for each v ∈ Fn, define the diffeomorphism

ϕv : Fn → F
n : w 7→ w + v.

Then clearly ϕv+w = ϕv ◦ ϕw and ϕ−v = ϕ−1
v
. In this way Fn becomes a

finite dimensional subgroup of Diff(Fn).

Example B.15. The vector space structure of Fn defines a special group
of diffeomorphisms of which GL(n,F) is a subgroup. Namely, a map ϕ :
Fn → Fn is called affine if it has the form

ϕ(v) = Av + b

for any A ∈ GL(n,F) and b ∈ Fn. These form the group of affine trans-

formations on F
n. It has both GL(n,F) and F

n as subgroups, and in group
theoretic terms, is called the semidirect product of these. The same trick
can be used to produce many Lie subgroups: for instance, the semidirect
product of O(n) with Rn is the Euclidean group

{ϕ ∈ Diff(Rn) | ϕ(v) = Av + b for some A ∈ O(n) and b ∈ R
n}.

This is in fact Isom(Rn, 〈 , 〉), the group of rigid motions on Rn, i.e. those
diffeomorphisms of Rn which preserve the Riemannian metric defined by
the standard Euclidean inner product. An important cousin of this arises
in Einstein’s theory of Special Relativity: the Poincaré group is the set of
diffeomorphisms on R4 that preserve the Minkowski metric, a generalized
version of an inner product which is not positive definite. See [Car] for
details.

In the next sections we will examine the relationship between the global
algebraic structure of a Lie group and the algebraic structure that this
induces locally on the tangent space to the identity. For this it will be
helpful to know that for topological groups in general, the group structure
is in some sense determined by a neighborhood of the identity. Recall that
a subset of any topological space is called a connected component if it is
both open and closed, and the space itself is called connected if it contains
no connected components other than itself and the empty set.

Proposition B.16. If G is a connected topological group and U is a neigh-

borhood of the identity e ∈ G, then U generates G, i.e. every g ∈ G can be

written as a product of elements in U .
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Proof. We shall give an outline of the proof and leave several details to
the reader.5 One begins by showing that if H ⊂ G is a subgroup that is
also an open set, then the subset gH = {gh | g ∈ H} is also open for each
g. One can then show that H is also a closed set, so in particular if G is
connected, H = G. These are simple exercises in point set topology.

Now assuming G is connected and U is an open neighborhood of e, for
each n ∈ N let

Un = {a1 . . . an ∈ G | a1, . . . , an ∈ U}.

It is straightforward to show that Un+1 is a neighborhood of Un, i.e. any
sequence gj ∈ G approaching a point in Un satisfies gj ∈ Un+1 for j suffi-
ciently large. Then the union

∞⋃

n=1

Un

is both a subgroup of G and an open subset, and is thus equal to G.

B.2 Lie algebras in general

Vector spaces are important in differential geometry mainly because they
arise as “linearizations” (e.g. tangent spaces) of smooth manifolds. From
this point of view, one should expect that the extra (algebraic) structure
of a Lie group should contribute some extra algebraic structure to the
corresponding vector spaces. This is known as a Lie algebra structure.

In general, a Lie algebra is any vector space V equipped with a Lie

bracket [ , ] : V ⊕ V → V , which is a bilinear map satisfying the following
two conditions:

1. Antisymmetry: [u, v] = −[v, u]

2. The Jacobi identity: [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

Example B.17 (The Lie algebra of vector fields). On a smooth mani-
foldM , the space Vec(M) is a Lie algebra with respect to the usual bracket
on vector fields.

Example B.18 (The Lie algebra of matrices). The space Fm×m of
m-by-m matrices is a Lie algebra with respect to the commutator [A,B] =
AB−BA.

As mentioned above, Lie brackets arise naturally as linearizations of
group operations. A case that should already be familiar is the Lie algebra

5This outline is borrowed from some exercises in Chapter 10 of [Spi99].
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of vector fields on a manifold M , where the bracket [X, Y ] in some sense
measures the failure of the flows generated by X and Y to commute. Put
another way, the operation

[ , ] : Vec(M)⊕ Vec(M) → Vec(M)

measures the extent to which the group Diff(M) is not abelian, at least
in an infinitessimal neighborhood of the identity. This correspondence
between the group Diff(M) and the Lie algebra Vec(M) is one example of
a very general phenomenon which we will now explore further.

B.3 Lie algebras of matrix groups

To motivate the more general notions, we examine first a special case which
is also in many ways the most important: assume G is a Lie subgroup of
GL(n,F), e.g. one of the groups O(n), SU(n), or for that matter, GL(n,F)
itself. Most such groups are not abelian, and the failure of commutativity
can be measured by the failure of the equation

ABA−1B−1 = 1. (B.6)

Informally, consider two matrices 1 +A and 1 + B which we assume are
infinitesimally close to the identity. Since A and B are small, we can
express inverses via the expansion

(1+A)−1 = 1−A+A2 −A3 + . . .

as in (B.1), and similarly for B. Considering now the left side of (B.6)
with A and B replaced by 1+A and 1+B, we have

(1+A)(1+B)(1+A)−1(1+B)−1

= (1+A)(1+B)(1−A+A2 − . . .)(1−B+B2 − . . .)

= 1+AB−BA+ . . .

where the dots represent all terms that are of third degree or higher. We
see that the commutator AB−BA measures the failure of Equation (B.6)
in the lowest order approximation.

To make this discussion precise, we replace “matrices infinitessimally
close to 1” with smooth paths through 1, characterized by their tangent
vectors in T1G. Recall that GL(n,F) is an open subset of the vector space
Fn×n. Since G is a subgroup of GL(n,F) by assumption, the tangent space
T1G can be identified in a natural way with a (real) linear subspace of
Fn×n. We denote this subspace by g and call it the Lie algebra of G, for
reasons that will shortly become apparent.
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Consider two smooth paths s 7→ As ∈ G and t 7→ Bt ∈ G with A0 =
B0 = 1, and denote their velocity vectors by

Ȧs =
d

ds
As ∈ TAs

G ⊂ F
n×n and Ḃt =

d

dt
Bt ∈ TBt

G ⊂ F
n×n;

in particular, Ȧ0 and Ḃ0 are both elements of g. Now define a function

f(s, t) = AsBtA
−1
s B−1

t ,

which maps a neighborhood of (0, 0) in R
2 smoothly into a neighborhood of

1 in G ⊂ Fn×n. Obviously f(0, 0) = 1, and we can measure the deviation
of f(s, t) from 1 via its partial derivatives at (0, 0). The following simple
formula will come in useful.

Exercise B.19. Show that d
ds
A−1

s = −A−1
s ȦsA

−1
s . Hint: the simplest

approach is to apply the product rule to A−1
s As, though this also follows

from our discussion of the smoothness of ι(A) = A−1 in §B.1.

As a special case, d
ds
A−1

s

∣∣
s=0

= −Ȧ0. Now we compute,

∂f

∂s
= ȦsBtA

−1
s B−1

t −AsBtA
−1
s ȦsA

−1
s B−1

t ,

∂f

∂t
= AsḂtA

−1
s B−1

t −AsBtA
−1
s B−1

t ḂtB
−1
t .

Notice that both derivatives vanish at (s, t) = (0, 0) since A0 = B0 = 1.
We use these to compute the second partial derivatives at (s, t) = (0, 0),

∂2f

∂s2

∣∣∣∣
(s,t)=(0,0)

= Ä0 − Ȧ0Ȧ0 − Ȧ0Ȧ0 − (−Ȧ0)Ȧ0 − Ä0 − Ȧ0(−Ȧ0) = 0,

∂2f

∂t2

∣∣∣∣
(s,t)=(0,0)

= B̈0 − Ḃ0Ḃ0 − Ḃ0Ḃ0 − (−Ḃ0)Ḃ0 − B̈0 − Ḃ0(−Ḃ0) = 0,

∂2f

∂s∂t

∣∣∣∣
(s,t)=(0,0)

= Ȧ0Ḃ0 − Ȧ0Ḃ0 − Ḃ0Ȧ0 − Ȧ0(−Ḃ0) = Ȧ0Ḃ0 − Ḃ0Ȧ0.

Thus the lowest order nonvanishing derivative of f at (0, 0) is the com-

mutator, [Ȧ0, Ḃ0] = Ȧ0Ḃ0 − Ḃ0Ȧ0. This leads to a proof of the following
rather non-obvious fact:

Proposition B.20. For anyA,B ∈ g, the commutator [A,B] = AB−BA

is also in g.

Proof. Referring to the construction above, it suffices to show that the
mixed partial derivative ∂t∂sf(0, 0) ∈ Fn×n lies in the subspace g = T1G.
We can see this most easily by viewing it as the linearization of a vector
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field along a path (see Chapter 3). Namely, let γ(t) = f(0, t) and define a
vector field on G along γ by

V (t) = ∂sf(0, t).

Since V (0) = 0, the expression ∇tV (0) ∈ T1G is defined independently
of any choice of connection on G; in particular, we can choose ∇ so that
parallel transport is defined via the natural embedding of G in Fn×n, in
which case ∇tV (0) = ∂tV (0) = ∂t∂sf(0, 0).

In light of this result, g inherits a Lie algebra structure from the com-
mutator bracket on Fn, and we say that g is a Lie subalgebra of Fn.

Definition B.21. A Lie algebra is called abelian if the bracket operation
is trivial, i.e. [v, w] = 0 for all v and w.

It should now be clear where this terminology comes from: if G is
an abelian subgroup of GL(n,F), then the map (s, t) 7→ AsBtA

−1
s B−1

t is
constant, so the above discussion implies that [A,B] must vanish for all
A,B ∈ g. There is a converse to this statement, though it’s harder to
prove; see Prop. B.30 below.

We’ve already seen the first example of the Lie algebra for a linear
group: if G = GL(n,F) itself, the tangent space T1 GL(n,F) is identified
with Fn×n. There is a standard convention of denoting such algebras by the
same letters as the corresponding groups, but in lowercase fraktur script,
thus

gl(n,F) = F
n×n.

Example B.22 (The Lie algebra of O(n)). If At is a smooth path of
orthogonal matrices withA0 = 1, then differentiating the relation AT

t At ≡
1 at time 0 gives

ȦT
0 + Ȧ0 = 0.

Thus o(n) is contained in the vector space of antisymmetric matrices in
R

n×n; in fact, since the dimension of this space is (n − 1)n/2 and thus
matches dimO(n), we see that o(n) is precisely the space of antisymmetric
matrices. This is indeed a Lie subalgebra of gl(n,R), since for any two
antisymmetric matrices A and B, [A,B]T = (AB − BA)T = BTAT −
ATBT = (−B)(−A)− (−A)(−B) = −(AB−BA) = −[A,B].

Exercise B.23. Confirm the identity of each of the following Lie algebras
and, just for reassurance, verify that each is closed under the commutator
bracket. For some of these it will help to recall the formula of Exercise B.5,
part (a).

(a) sl(n,F) = {A ∈ gl(n,F) | trA = 0}
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(b) so(n) = o(n) = {A ∈ gl(n,R) | AT = −A}

(c) u(n) = {A ∈ gl(n,C) | A† = −A}

(d) su(n) = {A ∈ gl(n,C) | A† = −A and trA = 0}

(e) gl(n,C) = Cn×n ∼= {A ∈ R2n×2n | AJ0 = J0A}

It is a basic fact in the theory of linear differential equations that for
any matrix A ∈ Fn×n, the initial value problem

{
ẋ(t) = Ax(t)

x(0) = x0

has a unique solution x : R → Fn in the form x(t) = etAx0. The matrix
exponential is defined by the power series

exp(A) := eA := 1+A+
A2

2!
+

A3

3!
+ . . .

which converges for all A ∈ Fn×n. The smooth path of matrices Φ(t) =
exp(tA) can alternatively be characterized as the unique solution to the
problem {

Φ̇(t) = AΦ(t)

Φ(0) = 1

Observe that Φ(s + t) = Φ(s)Φ(t), so Φ defines a group homomorphism
R → GL(n,F). This turns out to be another characterization of the matrix
exponential:

Proposition B.24. Let G be a Lie subgroup of GL(n,F), and pick any

A ∈ g. Then t 7→ exp(tA) is a smooth path through G, and it is the

unique homomorphism R → G with velocity vector A at t = 0.

A corollary is, for example, the fact that etA is orthogonal for all t if
A is antisymmetric. To prove the result in general, we first introduce the
concept of left invariant vector fields on a Lie group.

Suppose G is any Lie group (not necessarily a subgroup of GL(n,F))
with identity element e ∈ G, and denote g = TeG. For every X ∈ g, there
is a unique smooth vector field X̃ ∈ Vec(G) which satisfies X̃(e) = X and
is left invariant, meaning

X̃(Lg(h)) = (Lg)∗X̃(h),

where Lg is the diffeomorphism G → G : h 7→ gh. A formula for X̃ is

easily found by plugging in h = e, thus X̃(g) = (Lg)∗X .
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Exercise B.25. Verify that for any fixed X ∈ g = TeG, the vector field
on G defined by X̃(g) = (Lg)∗X is left invariant.

For subgroups G ⊂ GL(n,F), the left invariant vector fields take an
especially simple form: recall that we can naturally regard any such group
as a submanifold of Fn×n, thus all tangent vectors are matrices in Fn×n.
Now for any B ∈ G, the diffeomorphism LB : G → G : A 7→ BA is also a
linear map on Fn×n, so the unique left invariant vector field XA ∈ Vec(G)
with XA(1) = A ∈ g takes the form

XA(B) = (LB)∗A =
d

dt
B exp(tA)

∣∣∣∣
t=0

= BA.

Notice that this vector field is globally defined on Fn×n for every A, but it
is also tangent to G by construction if A ∈ g; in particular, its flow then
preserves G.

We are now in a position to prove Proposition B.24. The crucial obser-
vation is that Φ(t) = exp(tA) is an orbit of the left invariant vector field
XA; indeed,

d

dt
exp(tA) = exp(tA)A = XA(exp(tA)).

Thus if A ∈ T1G ⊂ Fn×n, the orbit is confined to G ⊂ Fn×n. The unique-
ness of homomorphisms R → G now follows from the fact that any such
map must also be an orbit of some left invariant vector field. In particular,
if Φ : R → G satisfies Φ(s+ t) = Φ(s)Φ(t) and Φ̇(0) = A, then

Φ̇(t) =
d

ds
Φ(t+ s)

∣∣∣∣
s=0

=
d

ds
Φ(t)Φ(s)

∣∣∣∣
s=0

= Φ(t)Φ̇(0) = Φ(t)A

= XA(Φ(t)).

Consequently Φ(t) = exp(tA).

B.4 General Lie groups and their Lie alge-

bras

The above discussion can be extended to arbitrary Lie groups, at the cost
of a little abstraction. In particular, the bracket operation [ , ] on g and
the map exp : g → G can be defined in the general case, though we will no
longer have such convenient formulas for computing them.

Suppose G is a Lie group with identity element e ∈ G, and denote
g = TeG. The quickest definition of the Lie bracket on g is via left invariant
vector fields, using the following result.
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Proposition B.26. For any two left invariant vector fields X̃ and Ỹ on

G, the vector field [X̃, Ỹ ] is also left invariant.

This follows easily from the formula ϕ∗[X, Y ] = [ϕ∗X,ϕ∗Y ], true for
any pair of vector fields and any diffeomorphism ϕ on a manifold M . As
a result, the space of left invariant vector fields is a finite dimensional Lie
subalgebra of Vec(G), and we can pull back this algebraic structure to
define a bracket operation on g. Let us adopt the convention that for any
X, Y ∈ g, the unique left invariant vector fields with these values at the
identity are denoted by X̃ and Ỹ respectively. Then the bracket on g is
defined such that

[X, Y ] = Z ⇐⇒ [X̃, Ỹ ] = Z̃.

Proposition B.27. The general definition of [X, Y ] for X, Y ∈ g matches

the previous definition in the case G ⊂ GL(n,F), i.e. for any A,B ∈ g, if

XA and XB are the corresponding left invariant vector fields on G, then
[XA, XB] = XAB−BA.

Proof. The following is essentially a coordinate proof, though we’ve tried to
avoid letting it look unnecessarily ugly. Recall that in any local coordinate
chart x1, . . . , xn on a manifold M , the Lie bracket of two vector fields
X = X i∂i and Y = Y i∂i has components

[X, Y ]i = Xj∂jY
i − Y j∂jX

i.

If M is an open subset of Rn, then there are global coordinates and every
tangent vector can be identified with a vector in Rn, so the vector fields
are smooth maps M → Rn and the above formula says that for all p ∈M ,

[X, Y ](p) = dY (p)X(p)− dX(p)Y (p). (B.7)

We apply this to the special case M = GL(n,R) ⊂ Rn×n ∼= Rn2

. The left
invariant vector field defined by A ∈ gl(n,R) takes the form XA(p) = pA,
and since this is a linear map Rn×n → Rn×n, its derivative is

dXA(p) : R
n×n → R

n×n : H 7→ HA.

Now (B.7) gives

[XA, XB](p) = dXB(p)pA− dXA(p)pB = pAB− pBA

= XAB−BA(p).

This proves the result for all matrix groups, since they are all subgroups
of GL(n,R); note that this is even true for GL(n,C) and its subgroups
(e.g. U(n)), which can be viewed as subgroups of GL(2n,R).
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We next construct a generalization of the matrix exponential. One can
show that on any Lie group, the flow of a left invariant vector field exists
globally for all time (see, for example, [GHL04]). Then if Φ : R → G is a
smooth homomorphism with Φ̇(0) = X ∈ g, we have

Φ̇(t) =
d

ds
Φ(t + s)

∣∣∣∣
s=0

=
d

ds
Φ(t)Φ(s)

∣∣∣∣
s=0

= (LΦ(t))∗Φ̇(0) = X̃(Φ(t)),

so Φ is an orbit of X̃. This proves both the existence and uniqueness of
such homomorphisms.

Definition B.28. For any Lie group G, the map exp : g → G is defined
so that t 7→ exp(tX) is the unique smooth homomorphism R → G with

d

dt
exp(tX)

∣∣∣∣
t=0

= X.

It turns out that exp is a smooth immersion, and becomes an embed-
ding if we restrict to a small enough neighborhood of zero in g. More
importantly for our present purposes, it provides a convenient formula for
the flow of any left invariant vector field.

Exercise B.29. Show that if ϕt
X̃
: G→ G is the flow of the left invariant

vector field X̃ with X̃(e) = X ∈ g, then

ϕt
X̃
(g) = g exp(tX). (B.8)

We can now generalize the discussion by which the matrix Lie bracket
was derived. Given X, Y ∈ g, we consider the smooth paths through e ∈ G
defined by

gs = exp(sX) and ht = exp(tY ),

so ġ0 = X and ḣ0 = Y . Define a smooth “commutator” map f : R2 → G
by

f(s, t) = gshtg
−1
s h−1

t = exp(sX) exp(tY ) exp(−sX) exp(−tY ). (B.9)

As in the matrix case, the extent to which f(s, t) deviates from e for (s, t)
near (0, 0) measures the noncommutativity of G. We can use Exercise B.29,

to reexpress this in terms of the flows of the left invariant vector fields X̃
and Ỹ : in particular, if we define a map F : R2 ×G→ G by

F (s, t, g) = ϕ−t

Ỹ
◦ ϕ−s

X̃
◦ ϕt

Ỹ
◦ ϕs

X̃
(g),

then F (s, t, e) = f(s, t). Now, it is a familiar fact from differential geometry
that the lowest order nonvanishing derivative of F (s, t, ·) at (s, t) = 0 is

precisely the Lie bracket of X̃ and Ỹ : in particular

∇s∂tF (0, 0, g) = [X̃, Ỹ ](g).
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(A version of this is proved in [Spi99].) Consequently,

∇s∂tf(0, 0) = [X, Y ].

One can take this as a coordinate free proof that our new definition of the
bracket on g matches the old one for G ⊂ GL(n,F).

Proposition B.30. A connected Lie group G is abelian if and only if its

Lie algebra g is abelian.

Proof. The above discussion shows that [ , ] vanishes if G is abelian. To
show the converse, recall from Prop. B.16 that every connected Lie group
is generated by a neighborhood of e ∈ G, thus it suffices to show that

exp(X) exp(Y ) = exp(Y ) exp(X)

for all X, Y ∈ g, or equivalently using (B.9), f(s, t) = e for all s, t ∈ R.

This follows from (B.8) and the fact that if [X̃, Ỹ ] ≡ 0, then the flows of

X̃ and Ỹ commute.

Exercise B.31. Show that all connected 1-dimensional Lie groups are
abelian.

There is one more piece of general Lie group theory that will be im-
portant in the discussions to come. For two Lie groups G and H , a map
ϕ : G → H is called a Lie group homomorphism if it is both a group ho-
momorphism and a smooth map. Then the tangent map at the identity is
a Lie algebra homomorphism

dϕ(e) : g → h,

i.e. a linear map A : g → h that satisfies A([X, Y ]) = [A(X), A(Y )]. This
follows easily from the above discussion, together with the fact that

ϕ ◦ exp(tX) = exp[t(ϕ∗X)]

for every X ∈ g.
An important special case of a Lie group homomorphism is a represen-

tation. In particular, given G and a vector space V , a representation of G
on V is a Lie group homomorphism

ρ : G→ Aut(V ),

where Aut(V ) is the group of invertible linear maps on V . This induces a
Lie algebra representation

ρ̄ : g → End(V ),
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satisfying ρ̄([X, Y ]) = [ρ̄(X), ρ̄(Y )], with the bracket on End(V ) defined as
the commutator [A,B] := AB − BA. This fact is crucial in the study of
group representations: the first step in the effort to classify all representa-
tions of a given group G is to classify the representations of its Lie algebra,
usually a simpler problem since it is essentially linear in nature.

Every Lie group has a special representation on its own Lie algebra,
called the adjoint representation,

Ad : G→ Aut(g).

This is defined via the conjugation map Cg : G→ G : h 7→ ghg−1, thus

Adg(X) := (Cg)∗X =
d

dt
g exp(tX)g−1

∣∣∣∣
t=0

.

We observe that conjugation is a smooth left action of G on itself, i.e. Cgh =
Cg ◦ Ch. It follows easily that Ad is a group homomorphism since

Adgh = (Cgh)∗ = (Cg ◦ Ch)∗ = (Cg)∗(Ch)∗ = Adg ◦Adh .

Exercise B.32. Show that if G is a Lie subgroup of GL(n,F), the adjoint
representation takes the form AdB(A) = BAB−1.

The corresponding Lie algebra representation is denoted

ad : g → End(g) : X 7→ adX .

This is simplest to compute in the case of a matrix group G ⊂ GL(n,F),
where

adA(B) =
d

dt
AdetA(B)

∣∣∣∣
t=0

=
d

dt
etABe−tA

∣∣∣∣
t=0

= AB−BA = [A,B].

Exercise B.33. Use the Jacobi identity to verify that the map gl(n,F) →
End(gl(n,F)) sending A to the linear map B 7→ [A,B] is a Lie algebra
homomorphism.

References

[Car] S. M. Carroll, Lecture Notes on General Relativity. available at
http://pancake.uchicago.edu/~carroll/notes/.

[GHL04] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, 3rd ed.,
Springer-Verlag, Berlin, 2004.

[Hat02] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

[Spi99] M. Spivak, A comprehensive introduction to differential geometry, 3rd ed.,
Vol. 1, Publish or Perish Inc., Houston, TX, 1999.

[Str80] G. Strang, Linear algebra and its applications, 2nd ed., Academic Press [Har-
court Brace Jovanovich Publishers], New York, 1980.

http://pancake.uchicago.edu/~carroll/notes/

	Lie groups and Lie algebras
	Topological and Lie groups
	Lie algebras in general
	Lie algebras of matrix groups
	General Lie groups and their Lie algebras


