
Differential Geometry I Humboldt-Universität zu Berlin

C. Wendl Winter Semester 2016–17

PROBLEM SET 11

Suggested reading

Lecture notes (on the website): still Chapter 4 (we’ll get to Chapter 5 next week)

Problems

1. One of the standard examples of “non-Euclidean” geometry is a Riemannian manifold known as the
Poincaré half-plane (H, h). It is defined as the 2-manifold

H = {(x, y) ∈ R
2 | y > 0}

equipped with the Riemannian metric

h =
1

y2
gE ,

where gE is the standard Euclidean metric on R
2. In other words, the inner product of two vectors

X,Y ∈ T(x,y)H tangent at the point (x, y) ∈ H is defined as

h(X,Y ) =
1

y2
〈X,Y 〉,

where 〈 , 〉 denotes the standard Euclidean inner product on R
2 (we are using the canonical identifi-

cation of T(x,y)H with R
2).

(a) Show that a smooth path γ(t) = (x(t), y(t)) ∈ H is a geodesic on (H, h) if and only if it satisfies
the following second-order system of ordinary differential equations:

ẍ−
2

y
ẋẏ = 0

ÿ +
1

y

(

ẋ2 − ẏ2
)

= 0.

(1)

Hint: H has an obvious global chart, so this is a straightforward computation in coordinates if you
remember the relevant formulas. Specifically, the geodesic equation in coordinates (x1, . . . , xn)
generally takes the form

ẍi + Γi
jkẋ

j ẋk = 0,

where the Christoffel symbols for the Levi-Civita connection with respect to a Riemannian metric
g are determined by its components gij = g(∂i, ∂j) and the associated inverse matrix (with entries
denoted by gij) according to

Γi
jk =

1

2
giℓ (∂jgkℓ + ∂kgℓj − ∂ℓgjk) .

(The latter was derived in our proof of existence and uniqueness of the Levi-Civita connection;
see also §4.3.3 in the lecture notes.)

(b) Show that for any constants x0 ∈ R and r > 0, Equations (1) admit solutions of the form

(x(t), y(t)) = (x0, y(t))

for some function y(t) > 0, as well as

(x(t), y(t)) = (x0 + r cos θ(t), r sin θ(t)) .

for some function θ(t) ∈ (0, π).
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(c) Prove that the solutions of part (a) give all geodesics on (H, h), and that any two points in H can
be joined by a unique geodesic. Note: You can prove this mostly with pictures.

(d) Compute the length of the geodesic segment joining (x0, y0) and (x0, y1) for any 0 < y0 <

y1. Compute also the length of the geodesic segment joining (x0 + r cos θ0, r sin θ0) and (x0 +
r cos θ1, r sin θ1) for any 0 < θ0 < θ1 < π. Use these results to show that for all p ∈ H and
X ∈ TpH, the geodesic t 7→ exp(tX) exists for all t ∈ R. (Riemannian manifolds with this
property are called geodesically complete.)

2. Assume M is a smooth n-manifold with a submanifold Σ ⊂ M of dimension m < n. At each point
p ∈ Σ, the tangent space TpΣ is then naturally a linear subspace of TpM , so one can define the normal

bundle of Σ as a rank n−m vector bundle NΣ/M → Σ whose fiber for each p ∈ Σ is

(NΣ/M )p = TpM
/

TpΣ.

(Take a moment before continuing to consider how one might prove that NΣ/M is a smooth vector
bundle.)

(a) Show that for any Riemannian metric g on M , NΣ/M is isomorphic to the subbundle of TM |Σ
whose fiber at each p ∈ Σ is the orthogonal complement of TpΣ in TpM with respect to g.

(b) Use the inverse function theorem to prove the tubular neighborhood theorem: there exists a neigh-
borhood U ⊂ NΣ/M of the zero-section and an embedding Φ : U →֒ M whose image is a neigh-
borhood of Σ in M such that, identifying Σ with the zero-section of NΣ/M , the restriction of Φ
to the zero-section is just the inclusion of Σ into M .
Hint: Choose a Riemannian metric so that NΣ/M can be identified as in part (a) with a subbundle
of TM |Σ, then use the exponential map.

The tubular neighborhood theorem looks a bit abstract in its general form, but notice what it implies
if we also assume that Σ is compact and its normal bundle happens to be trivial: it then identifies
a neighborhood of Σ in M with Σ × D

n−m such that Σ becomes Σ × {0}; here D
n−m denotes the

(n−m)-dimensional unit disk.

3. Suppose M is a smooth manifold, ∇ is a connection on its tangent bundle, H(TM) ⊂ T (TM) denotes
the associated horizontal subbundle and Horv : TpM → Hv(TM) is the corresponding horizontal lift
isomorphism defined for each p ∈ M and v ∈ TpM . This allows us to define a vector field X on the
total space TM by

X(v) := Horv(v).

(a) How is the flow of this vector field related to the geodesic equation on M with respect to the
connection ∇?

(b) Show that if M is a closed manifold and ∇ is the Levi-Civita connection with respect to a Rieman-
nian metric g, then (M, g) is geodesically complete (cf. Problem 1(d)). Prove this as a corollary
of the fact that flows of vector fields on closed manifolds exist for all time.
Hint: While TM itself is not compact, all flow lines of X are confined to certain compact
submanifolds—explain.

(c) It is perfectly possible for a noncompact Riemannian manifold to be geodesically complete, e.g. this
is true for Rn with its standard Euclidean metric. However, show that Rn also admits Riemannian
metrics that are not geodesically complete.
Hint: Rn is diffeomorphic to the open unit ball.

4. Recall that a pseudo-Riemannian metric is a tensor field g ∈ Γ(T 0
2M) that is everywhere symmetric and

nondegenerate, but not necessarily positive-definite (see Problem Set 9 #2). A large portion—but not
all—of standard Riemannian geometry extends to the pseudo-Riemannian case. Show in particular that
the notion of the Levi-Civita connection generalizes to this context, i.e. for every pseudo-Riemannian
metric g, TM admits a unique symmetric connection ∇ that is compatible with g in the sense that
∇g ≡ 0. Similarly, geodesics γ with respect to ∇ have constant “speed squared” g(γ̇, γ̇)—which may
be positive, zero, or negative—and they are critical points of the energy functional.

Can you think of any results that do not obviously extend to the pseudo-Riemannian setting?
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