DIFFERENTIAL GEOMETRY I C. WENDL Humboldt-Universität zu Berlin Winter Semester 2016–17

PROBLEM SET 12

Suggested reading

Lecture notes (on the website): Chapter 5

Problems

1. In this problem we shall prove the Gauss lemma, which states that for any point p in a Riemannian manifold (M, g) and any tangent vector $X \in T_p M$ with $r_0 := |X| := \sqrt{g(X, X)} > 0$ sufficiently small, the geodesic segment $[0, 1] \to M : t \mapsto \exp(tX)$ meets each of the spheres

$$S(r) := \left\{ \exp(Y) \in M \mid Y \in T_p M \text{ with } |Y| = r \right\}$$

around p orthogonally. We used this in lecture to prove that the unique short geodesic between two nearby points is always the *shortest* path between those points.

We will again use the notion of "*n*-dimensional polar coordinates," which can be defined as follows. Abbreviate $\langle X, Y \rangle := g(X, Y)$ and $|X| := \sqrt{\langle X, X \rangle}$ as usual, and choose any diffeomorphism¹

$$\psi: S^{n-1} \to ST_p M := \{Y \in T_p M \mid |Y| = 1\}.$$

Then for some small $r_0 > 0$, we consider the smooth map

$$\Phi: [0, r_0] \times S^{n-1} \to M: (r, x) \mapsto \exp(r\psi(x)),$$

whose image we shall denote by $\mathcal{U} \subset M$. Since exp maps a neighborhood of 0 in T_pM diffeomorphically to a neighborhood of p in M, we can assume if r_0 is sufficiently small that Φ restricts to a diffeomorphism

$$(0, r_0] \times S^{n-1} \xrightarrow{\Phi} \mathcal{U} \setminus \{p\},\$$

which identifies the sphere $\{r\} \times S^{n-1}$ with S(r) for each $r \in (0, r_0]$. In the case n = 2, the diffeomorphism $(0, r_0] \times S^1 \to \mathcal{U} \setminus \{p\}$ determines two polar coordinate vector fields ∂_r and ∂_{θ} , and the geodesics emanating from p are precisely the radial paths in these coordinates, so the Gauss lemma amounts to the statement that $\langle \partial_r, \partial_\theta \rangle \equiv 0$.

In the general case, we shall denote by ∂_r the vector field on $\mathcal{U} \setminus \{p\}$ which associates to each point $q = \Phi(r, x)$ the tangent vector $\frac{\partial}{\partial r} \Phi(r, x) \in T_q M$. Similarly, any vector field $Y \in \operatorname{Vec}(S^{n-1})$ gives rise to a vector field Z on $\mathcal{U} \setminus \{p\}$ which associates to each point $q = \Phi(r, x)$ the vector

$$Z(q) := T\Phi(0, Y(x)) \in T_q M,$$

where we view (0, Y(x)) as an element of $T_{(r,x)}([0, r_0] \times S^{n-1})$ via its natural isomorphism with $T_r[0, r_0] \times T_x S^{n-1} = \mathbb{R} \times T_x S^{n-1}$. The vector field Z is a generalization of ∂_{θ} from the n = 2 case; since $Y \in \operatorname{Vec}(S^{n-1})$ can take any value we like at a given point, it will now suffice to prove that $\langle \partial_r, Z \rangle$ must vanish identically on $\mathcal{U} \setminus \{p\}$.

(a) Show that ⟨∂_r, ∂_r⟩ ≡ 1.
Hint: Notice that the paths t → Φ(t, x) for each x ∈ Sⁿ⁻¹ are geodesics and therefore have constant speed. What is their speed at t = 0?
Remark: One can deduce from this that ∂_r, while a smooth vector field on U \{p}, does not extend continuously over the point p. (Why not?) This is a symptom of the fact that polar coordinates are singular at r = 0.

¹We would normally define $\psi : S^{n-1} \to ST_pM$ by choosing an orthonormal basis of T_pM , thus identifying T_pM with \mathbb{R}^n so that ST_pM matches the standard unit sphere. For the proof at hand, it really doesn't matter.

- (b) Show that in contrast to ∂_r , the vector field $Z \in \text{Vec}(\mathcal{U} \setminus \{p\})$ admits a continuous extension over \mathcal{U} , with Z(p) = 0. Hint: What does Φ do to the sphere $\{0\} \times S^{n-1}$?
- (c) Assuming ∇ is the Levi-Civita connection on (M, g), show that ∂_r and $\nabla_Z(\partial_r)$ are orthogonal everywhere on $\mathcal{U} \setminus \{p\}$. Hint: Differentiate $\langle \partial_r, \partial_r \rangle$ in the direction of Z.
- (d) Show that $[\partial_r, Z] \equiv 0$. (Do their flows commute?)
- (e) Show that L_{∂r} ⟨∂r, Z⟩ ≡ 0.
 Hint: You will need to use both of the defining properties of the Levi-Civita connection here, i.e. symmetry, and compatibility with the metric.
- (f) Show that the real-valued function $\langle \partial_r, Z \rangle$ on $\mathcal{U} \setminus \{p\}$ has a continuous extension over \mathcal{U} that equals 0 at p, and conclude via the previous steps that it vanishes identically. The Gauss lemma is thus proven. Hint: Remember the Cauchy-Schwarz inequality for inner products: $|\langle v, w \rangle| \leq |v| \cdot |w|$.
- 2. A diffeomorphism $\varphi : M \to N$ between two Riemannian manifolds (M, g) and (N, h) is called an *isometry* if $\varphi^*h = g$. This has the following geometric interpretation: φ is an isometry if and only if its tangent map preserves the lengths of tangent vectors and angles between them (as measured in terms of the metrics g and h).
 - (a) Show that if φ : (M,g) → (N,h) is an isometry, then a curve γ : (a, b) → M is a geodesic with respect to g if and only if φ ∘ γ : (a, b) → N is a geodesic with respect to h. Remark: This is the kind of statement that you will probably regard as "obvious" once you have developed a certain comfort level with differential geometry, but the first time you see it, it's worth thinking a little about why it is true. The proof is not hard.

Now suppose G is a Lie group with Lie algebra \mathfrak{g} and identity element $e \in G$, let $L_g : G \to G : h \mapsto gh$ and $R_g : G \to G : h \mapsto hg$ denote the diffeomorphisms defined by left- and right-translation respectively, and given any $X \in \mathfrak{g}$, denote by $X^L, X^R \in \operatorname{Vec}(G)$ the left- and right-invariant vector fields respectively satisfying $X^L(e) = X^R(e) = X$. Consider the diffeomorphism

$$\operatorname{inv}: G \to G: g \mapsto g^{-1}.$$

(b) Show that for any $X \in \mathfrak{g}$ and $g \in G$,

$$T(inv)(X^{L}(g)) = -X^{R}(g^{-1}).$$

Hint: First prove it assuming g = e, then for the general case, write $X^{L}(g)$ and $X^{R}(g^{-1})$ in terms of X and the maps L_{g} and $R_{g^{-1}}$.

A Riemannian metric \langle , \rangle on G is called *left-invariant* if $L_g : G \to G$ is an isometry from (G, \langle , \rangle) to itself for every $g \in G$. One similarly defines right-invariant metrics using the maps R_g , and a metric that is both left- and right-invariant is called *bi-invariant*. One can use an averaging procedure (via the bi-invariant volume forms of Problem Set 8 #3) to show that every *compact* Lie group admits a bi-invariant Riemannian metric.

- (c) Show that for any bi-invariant metric \langle , \rangle on G, inv : $G \to G$ is an isometry of (G, \langle , \rangle) to itself.
- (d) Deduce that if \langle , \rangle is bi-invariant, then every geodesic $\gamma : (-\epsilon, \epsilon) \to G$ with $\gamma(0) = e$ satisfies

$$\gamma(-t) = (\gamma(t))^{-1}$$
 for all $t \in \mathbb{R}$.

One can go further and show that whenever \langle , \rangle is bi-invariant, the geodesics in part (d) extend to smooth maps $\mathbb{R} \to G$ which are also group homomorphisms. This means that in this setting, our two definitions for the map exp : $T_e G \to G$, one in terms of group homomorphisms $\mathbb{R} \to G$ and the other via geodesics, coincide. To this end:

(e) Given any left-invariant Riemannian metric \langle , \rangle on a Lie group G, show that the following two conditions are equivalent:

- i. Every smooth group homomorphism $\mathbb{R} \to G$ is a geodesic;
- ii. Every pair of left-invariant vector fields $X, Y \in \text{Vec}(M)$ satisfies

$$\nabla_X Y = \frac{1}{2} [X, Y],\tag{1}$$

where ∇ is the Levi-Civita connection for \langle , \rangle .

Hint 1: Recall that smooth group homomorphisms $\mathbb{R} \to G$ are also flow lines of left-invariant vector fields.

Hint 2: Given condition (i), what can you say about $\nabla_{X+Y}(X+Y)$ if X and Y are both left invariant?

It turns out that Equation (1) holds whenever \langle , \rangle is bi-invariant, though the proof of this is a bit tedious, so we will not work through it here. This has the following interesting consequence. By a standard result in Riemannian geometry called the Hopf-Rinow theorem, if (M, g) is a connected Riemannian manifold containing a point p for which all geodesics through p exist for all time, then any two points on M can be joined by a geodesic. It follows that for every compact and connected Lie group G, the algebraic exponential map $\exp : \mathfrak{g} \to G$ (defined in terms of group homomorphisms $\mathbb{R} \to G$) is surjective. This sometimes also holds for noncompact groups, but we saw in Problem Set 8 #5 that it does not hold for $\mathrm{SL}(2,\mathbb{R})$; in particular, one deduces from this that $\mathrm{SL}(2,\mathbb{R})$ does not admit a bi-invariant Riemannian metric.

3. The following lemma is needed for our proof of the Frobenius integrability theorem in lecture: if $\xi \subset TM$ is a smooth k-dimensional distribution on an n-manifold M, then for every $p \in M$, there exists a neighborhood $\mathcal{U} \subset M$ of p, a smooth k-dimensional manifold Q and a smooth map $\pi : \mathcal{U} \to Q$ which is a fiber bundle admitting a connection whose horizontal subbundle is ξ . Prove this.

Hint: The neighborhood \mathcal{U} can be arbitrarily small, so you should be able to define a chart on \mathcal{U} and write down π in coordinates. Don't be too clever; choose \mathcal{U} and Q to be as simple as possible.

4. Suppose M is an oriented 3-manifold and $\lambda \in \Omega^1(M)$ is nowhere zero, i.e. for all $p \in M$ there exist vectors $X \in T_pM$ with $\lambda(X) \neq 0$. Then at every $p \in M$, the kernel ker $\lambda_p = \{X \in T_pM \mid \lambda(X) = 0\}$ is a 2-dimensional subspace of T_pM , and the union of these for all p defines a smooth 2-dimensional distribution

$$\xi := \ker \lambda \subset TM.$$

(a) Show that the following conditions are equivalent:

- i. $\lambda \wedge d\lambda \equiv 0;$
- ii. For all $p \in M$ and $X, Y \in T_pM$, $d\lambda(X, Y) = 0$;
- iii. ξ is integrable.

Hint: In Problem Set 6 #4(c), you will find a useful formula for $d\lambda$ as a C^{∞} -bilinear form on vector fields. Combine this with the Frobenius theorem.

The 1-form λ is called a *contact form* if $\lambda \wedge d\lambda$ is a volume form; the distribution ξ (called the *contact structure*) is then "as non-integrable as possible." An example on \mathbb{R}^3 is shown in the figure above. Such examples can be constructed by the following trick. Let (ρ, ϕ, z) denote the standard cylindrical coordinates on \mathbb{R}^3 , so $x = \rho \cos \phi$ and $y = \rho \sin \phi$. Choose smooth real-valued functions $f(\rho), g(\rho)$ and define λ at (ρ, ϕ, z) by

$$\lambda = f(\rho) \, dz + g(\rho) \, d\phi. \tag{2}$$

- (b) Since the coordinates (ρ, ϕ, z) are not well defined at $\rho = 0$, there is of course some danger that the 1-form defined in Equation (2) might be singular at the z-axis. Show that λ is in fact smooth on all of \mathbb{R}^3 and satisfies $\lambda \wedge d\lambda \neq 0$ near the z-axis if we assume $f(\rho) = 1$ and $g(\rho) = \rho^2$ for ρ sufficiently close to 0. *Hint: Convert to Cartesian coordinates.*
- (c) Assuming f and g take the form desribed above for ρ near 0, show that λ is a contact form if and only if

$$f(\rho)g'(\rho) - f'(\rho)g(\rho) \neq 0$$

for all $\rho > 0$. What does this mean geometrically about the curve $\rho \mapsto (f(\rho), g(\rho)) \in \mathbb{R}^2$? Interpret this in terms of "twisting" of the planes ξ_p as $p \in \mathbb{R}^3$ moves along radial paths away from the *z*-axis.

(d) By a fundamental result in contact geometry known as *Gray's theorem*, contact structures have the following remarkable "stability" property: if M is a closed 3-manifold and $\{\xi_t\}_{t\in[0,1]}$ is any smooth family of contact structures on M, then they are all "equivalent" in the sense that there exists a smooth family of diffeomorphisms $\{\varphi_t : M \to M\}_{t\in[0,1]}$ such that $\varphi_0 = \text{Id}$ and $T\varphi_t(\xi_0) = \xi_t$ for all $t \in [0,1]$. Show that this is not true in general for arbitrary smooth families of distributions, e.g. it becomes false if we assume that ξ_0 is integrable but ξ_t is a contact structure for each t > 0.