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Suggested reading

Lecture notes (on the website): Chapter 5

Problems

1. In this problem we shall prove the Gauss lemma, which states that for any point p in a Riemannian
manifold (M, g) and any tangent vector X ∈ TpM with r0 := |X | :=

√

g(X,X) > 0 sufficiently small,
the geodesic segment [0, 1] →M : t 7→ exp(tX) meets each of the spheres

S(r) :=
{

exp(Y ) ∈M
∣

∣ Y ∈ TpM with |Y | = r
}

around p orthogonally. We used this in lecture to prove that the unique short geodesic between two
nearby points is always the shortest path between those points.

We will again use the notion of “n-dimensional polar coordinates,” which can be defined as follows.
Abbreviate 〈X,Y 〉 := g(X,Y ) and |X | :=

√

〈X,X〉 as usual, and choose any diffeomorphism1

ψ : Sn−1 → STpM :=
{

Y ∈ TpM
∣

∣ |Y | = 1
}

.

Then for some small r0 > 0, we consider the smooth map

Φ : [0, r0]× Sn−1 → M : (r, x) 7→ exp(rψ(x)),

whose image we shall denote by U ⊂M . Since exp maps a neighborhood of 0 in TpM diffeomorphically
to a neighborhood of p inM , we can assume if r0 is sufficiently small that Φ restricts to a diffeomorphism

(0, r0]× Sn−1 Φ
−→ U \ {p},

which identifies the sphere {r} × Sn−1 with S(r) for each r ∈ (0, r0]. In the case n = 2, the diffeomor-
phism (0, r0]×S

1 → U \{p} determines two polar coordinate vector fields ∂r and ∂θ, and the geodesics
emanating from p are precisely the radial paths in these coordinates, so the Gauss lemma amounts to
the statement that 〈∂r, ∂θ〉 ≡ 0.

In the general case, we shall denote by ∂r the vector field on U \ {p} which associates to each point
q = Φ(r, x) the tangent vector ∂

∂r
Φ(r, x) ∈ TqM . Similarly, any vector field Y ∈ Vec(Sn−1) gives rise

to a vector field Z on U \ {p} which associates to each point q = Φ(r, x) the vector

Z(q) := TΦ(0, Y (x)) ∈ TqM,

where we view (0, Y (x)) as an element of T(r,x)
(

[0, r0]× Sn−1
)

via its natural isomorphism with
Tr[0, r0] × TxS

n−1 = R × TxS
n−1. The vector field Z is a generalization of ∂θ from the n = 2

case; since Y ∈ Vec(Sn−1) can take any value we like at a given point, it will now suffice to prove that
〈∂r, Z〉 must vanish identically on U \ {p}.

(a) Show that 〈∂r, ∂r〉 ≡ 1.
Hint: Notice that the paths t 7→ Φ(t, x) for each x ∈ Sn−1 are geodesics and therefore have
constant speed. What is their speed at t = 0?
Remark: One can deduce from this that ∂r, while a smooth vector field on U \{p}, does not extend
continuously over the point p. (Why not?) This is a symptom of the fact that polar coordinates
are singular at r = 0.

1We would normally define ψ : Sn−1
→ STpM by choosing an orthonormal basis of TpM , thus identifying TpM with R

n so

that STpM matches the standard unit sphere. For the proof at hand, it really doesn’t matter.
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(b) Show that in contrast to ∂r, the vector field Z ∈ Vec(U \ {p}) admits a continuous extension over
U , with Z(p) = 0. Hint: What does Φ do to the sphere {0} × Sn−1?

(c) Assuming ∇ is the Levi-Civita connection on (M, g), show that ∂r and ∇Z(∂r) are orthogonal
everywhere on U \ {p}. Hint: Differentiate 〈∂r, ∂r〉 in the direction of Z.

(d) Show that [∂r, Z] ≡ 0. (Do their flows commute?)

(e) Show that L∂r
〈∂r , Z〉 ≡ 0.

Hint: You will need to use both of the defining properties of the Levi-Civita connection here,
i.e. symmetry, and compatibility with the metric.

(f) Show that the real-valued function 〈∂r, Z〉 on U\{p} has a continuous extension over U that equals
0 at p, and conclude via the previous steps that it vanishes identically. The Gauss lemma is thus
proven. Hint: Remember the Cauchy-Schwarz inequality for inner products: |〈v, w〉| ≤ |v| · |w|.

2. A diffeomorphism ϕ : M → N between two Riemannian manifolds (M, g) and (N, h) is called an
isometry if ϕ∗h = g. This has the following geometric interpretation: ϕ is an isometry if and only if its
tangent map preserves the lengths of tangent vectors and angles between them (as measured in terms
of the metrics g and h).

(a) Show that if ϕ : (M, g) → (N, h) is an isometry, then a curve γ : (a, b) → M is a geodesic with
respect to g if and only if ϕ ◦ γ : (a, b) → N is a geodesic with respect to h.
Remark: This is the kind of statement that you will probably regard as “obvious” once you have
developed a certain comfort level with differential geometry, but the first time you see it, it’s
worth thinking a little about why it is true. The proof is not hard.

Now suppose G is a Lie group with Lie algebra g and identity element e ∈ G, let Lg : G→ G : h 7→ gh

andRg : G→ G : h 7→ hg denote the diffeomorphisms defined by left- and right-translation respectively,
and given anyX ∈ g, denote by XL, XR ∈ Vec(G) the left- and right-invariant vector fields respectively
satisfying XL(e) = XR(e) = X . Consider the diffeomorphism

inv : G→ G : g 7→ g−1.

(b) Show that for any X ∈ g and g ∈ G,

T (inv)(XL(g)) = −XR(g−1).

Hint: First prove it assuming g = e, then for the general case, write XL(g) and XR(g−1) in terms
of X and the maps Lg and Rg−1 .

A Riemannian metric 〈 , 〉 on G is called left-invariant if Lg : G→ G is an isometry from (G, 〈 , 〉) to
itself for every g ∈ G. One similarly defines right-invariant metrics using the maps Rg, and a metric
that is both left- and right-invariant is called bi-invariant. One can use an averaging procedure (via
the bi-invariant volume forms of Problem Set 8 #3) to show that every compact Lie group admits a
bi-invariant Riemannian metric.

(c) Show that for any bi-invariant metric 〈 , 〉 on G, inv : G→ G is an isometry of (G, 〈 , 〉) to itself.

(d) Deduce that if 〈 , 〉 is bi-invariant, then every geodesic γ : (−ǫ, ǫ) → G with γ(0) = e satisfies

γ(−t) = (γ(t))−1 for all t ∈ R.

One can go further and show that whenever 〈 , 〉 is bi-invariant, the geodesics in part (d) extend to
smooth maps R → G which are also group homomorphisms. This means that in this setting, our two
definitions for the map exp : TeG → G, one in terms of group homomorphisms R → G and the other
via geodesics, coincide. To this end:

(e) Given any left-invariant Riemannian metric 〈 , 〉 on a Lie group G, show that the following two
conditions are equivalent:
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i. Every smooth group homomorphism R → G is a geodesic;

ii. Every pair of left-invariant vector fields X,Y ∈ Vec(M) satisfies

∇XY =
1

2
[X,Y ], (1)

where ∇ is the Levi-Civita connection for 〈 , 〉.

Hint 1: Recall that smooth group homomorphisms R → G are also flow lines of left-invariant
vector fields.
Hint 2: Given condition (i), what can you say about ∇X+Y (X + Y ) if X and Y are both left
invariant?

It turns out that Equation (1) holds whenever 〈 , 〉 is bi-invariant, though the proof of this is a bit
tedious, so we will not work through it here. This has the following interesting consequence. By
a standard result in Riemannian geometry called the Hopf-Rinow theorem, if (M, g) is a connected
Riemannian manifold containing a point p for which all geodesics through p exist for all time, then
any two points on M can be joined by a geodesic. It follows that for every compact and connected
Lie group G, the algebraic exponential map exp : g → G (defined in terms of group homomorphisms
R → G) is surjective. This sometimes also holds for noncompact groups, but we saw in Problem
Set 8 #5 that it does not hold for SL(2,R); in particular, one deduces from this that SL(2,R) does not
admit a bi-invariant Riemannian metric.

3. The following lemma is needed for our proof of the Frobenius integrability theorem in lecture: if
ξ ⊂ TM is a smooth k-dimensional distribution on an n-manifold M , then for every p ∈ M , there
exists a neighborhood U ⊂M of p, a smooth k-dimensional manifold Q and a smooth map π : U → Q

which is a fiber bundle admitting a connection whose horizontal subbundle is ξ. Prove this.

Hint: The neighborhood U can be arbitrarily small, so you should be able to define a chart on U and
write down π in coordinates. Don’t be too clever; choose U and Q to be as simple as possible.

4. Suppose M is an oriented 3-manifold and λ ∈ Ω1(M) is nowhere zero, i.e. for all p ∈ M there exist
vectors X ∈ TpM with λ(X) 6= 0. Then at every p ∈ M , the kernel kerλp = {X ∈ TpM | λ(X) = 0}
is a 2-dimensional subspace of TpM , and the union of these for all p defines a smooth 2-dimensional
distribution

ξ := kerλ ⊂ TM.

z

x

y

(a) Show that the following conditions are equivalent:
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i. λ ∧ dλ ≡ 0;

ii. For all p ∈M and X,Y ∈ TpM , dλ(X,Y ) = 0;

iii. ξ is integrable.

Hint: In Problem Set 6 #4(c), you will find a useful formula for dλ as a C∞-bilinear form on
vector fields. Combine this with the Frobenius theorem.

The 1-form λ is called a contact form if λ ∧ dλ is a volume form; the distribution ξ (called the contact

structure) is then “as non-integrable as possible.” An example on R
3 is shown in the figure above.

Such examples can be constructed by the following trick. Let (ρ, φ, z) denote the standard cylindrical
coordinates on R

3, so x = ρ cosφ and y = ρ sinφ. Choose smooth real-valued functions f(ρ), g(ρ) and
define λ at (ρ, φ, z) by

λ = f(ρ) dz + g(ρ) dφ. (2)

(b) Since the coordinates (ρ, φ, z) are not well defined at ρ = 0, there is of course some danger that
the 1-form defined in Equation (2) might be singular at the z-axis. Show that λ is in fact smooth
on all of R3 and satisfies λ ∧ dλ 6= 0 near the z-axis if we assume f(ρ) = 1 and g(ρ) = ρ2 for ρ
sufficiently close to 0. Hint: Convert to Cartesian coordinates.

(c) Assuming f and g take the form desribed above for ρ near 0, show that λ is a contact form if and
only if

f(ρ)g′(ρ)− f ′(ρ)g(ρ) 6= 0

for all ρ > 0. What does this mean geometrically about the curve ρ 7→ (f(ρ), g(ρ)) ∈ R
2? Interpret

this in terms of “twisting” of the planes ξp as p ∈ R
3 moves along radial paths away from the

z-axis.

(d) By a fundamental result in contact geometry known as Gray’s theorem, contact structures have the
following remarkable “stability” property: ifM is a closed 3-manifold and {ξt}t∈[0,1] is any smooth
family of contact structures on M , then they are all “equivalent” in the sense that there exists a
smooth family of diffeomorphisms {ϕt : M → M}t∈[0,1] such that ϕ0 = Id and Tϕt(ξ0) = ξt for
all t ∈ [0, 1]. Show that this is not true in general for arbitrary smooth families of distributions,
e.g. it becomes false if we assume that ξ0 is integrable but ξt is a contact structure for each t > 0.
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