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1. (a) Suppose γ : R → Σ is a geodesic with period T > 0, whose image γ(R) ⊂ Σ bounds an embedded
disk D ⊂ Σ. We can then regard D as a polygonal region bounded by a single smooth curve
ℓ parametrized by γ|[0,T ], hence beginning and ending at the same point p := γ(0) = γ(T ).
Moreover, since γ is periodic, the angle formed at the vertex p must be π, as γ̇(T ) = γ̇(0). The
Gauss-Bonnet formula thus gives

π = (1− 2)π +

∫

D

KG dA,

where the geodesic curvature terms do not appear since ℓ is a geodesic. In particular, this implies
∫

D
KG dA is positive, which is impossible since KG ≤ 0 everywhere.

(b) If a family of paths {γs : [0, 1] → Σ}s∈[0,1] with the stated properties exists, then the geodesic
segments γ0 and γ1 are disjoint except at p and q, and the set P := {γs(t) ∈ Σ | s ∈ [0, 1], t ∈ [0, 1]}
is a polygonal region in Σ bounded by the two edges γ0([0, 1]) and γ1([0, 1]), which meet at the
two vertices p and q. Since geodesics are uniquely determined up to parametrization by their
tangent vectors at any given point, the fact that γ0 and γ1 are distinct implies that the vectors
γ̇0(0) and γ̇1(0) must be linearly independent, hence the angle αp between them is nonzero (and
therefore positive). By a similar argument, the angle αq at which they meet at q is also positive.
Plugging all this into the Gauss-Bonnet formula and dropping the geodesic curvature terms since
γ0 and γ1 are geodesics, we have

0 < αp + αq =

∫

P

KG dA,

once again contradicting the assumption that KG is everywhere nonpositive.

(c) The simplest closed surface with nonpositive curvature is the “flat” torus T
2 := R

2/Z2 with its
natural Euclidean metric gE (it descends to the quotient because the translation maps R2 → R2

defined by elements of T2 are Euclidean isometries). The geodesics on (T2, gE) are then simply
the curves of the form π ◦ γ where γ : R → R2 is a line with constant velocity and π : R2 → T2

is the natural quotient projection. In particular, any curve of the form t 7→ [(t, y0)] ∈ T2 for a
constant y0 ∈ R is then a periodic geodesic.

(d) Fix on S2 the natural metric induced by the Euclidean metric on R
3 via the embedding of S2

into the latter as the unit sphere. Its geodesics are then the “great circles,” i.e. intersections of
the unit sphere S2 ⊂ R3 with 2-dimensional linear subspaces of R3. There is an infinite set of
such great circles connecting any two antipodal points, and they trace out polygonal regions as
in part (b).

2. (a) Suppose γ(t) ∈ Vα is a smooth path and v(t) ∈ (f∗E)γ(t) = Ef◦γ(t) is an arbitrary smooth section
along this path. Expressed in the trivialization Ψα, we can write v(t) as a function vα(t) ∈ Fm,
and by construction we get the same function if we instead view v as a section of E along f ◦ γ
and express it in the trivialization Φα. To show that f∗Aα is the connection 1-form with respect
to Ψα, it suffices to show that

(∇tv(0))α = ∂tvα(0) + (f∗Aα)(γ̇(0))vα(0).

Using the definition of ∇t via parallel transport, we have

∇tv(0) =
d

dt

(

(P t
γ)

−1(v(t))
)

∣

∣

∣

∣

t=0

.
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But since P t
γ : (f∗E)γ(0) → (f∗E)γ(t) is defined to match the parallel transport map Ef(γ(0)) →

Ef(γ(t)) for the connection on E along the path f ◦ γ(t) ∈ Uα, this covariant derivative is exactly
the same as what one obtains by viewing v instead as a section of E along f ◦ γ, and computing
the latter in the trivialization Φα gives

(∇tv(0))α = ∂tvα(0) +Aα(∂t(f ◦ γ)(0))vα(0).

Since Aα(∂t(f ◦ γ)(0)) = Aα(Tf(γ̇(0))) = (f∗Aα)(γ̇(0)), the desired result follows.

(b) Choose any Hermitian bundle metric 〈 , 〉 on E, thus reducing the structure group of E to U(1),
and fix a U(1)-compatible connection ∇. By definition, c1(E) is the cohomology class represented
by the closed 2-form − 1

2πiF ∈ Ω2(M), where the “curvature 2-form” F ∈ Ω2(M, u(1)) matches
the exterior derivative of the connection 1-form Aα on Uα for any choice of U(1)-compatible
local trivialization Φα : E|Uα

→ Uα × C. Note that while the 2-form F depends on the choices
of Hermitian bundle metric and U(1)-compatible connection, the cohomology class c1(E) does
not. Note also that the bundle metric on E induces a bundle metric on f∗E since every fiber
of the latter is also a fiber of the former, and the pullback connection on f∗E is then also U(1)-
compatible since its parallel transport maps are unitary by construction. Part (a) then implies
that the curvature 2-form for the pullback connection is f∗F , hence

c1(f
∗E) =

[

−
1

2πi
f∗F

]

= f∗

[

−
1

2πi
F

]

= f∗c1(E).

(c) If there is a bundle isomorphism Φ : E → F , it suffices to observe that for any choice of bundle
metric and compatible connection on E, one can use the isomorphism to define a corresponding
bundle metric and connection on F ; moreover, this isomorphism associates to every local trivi-
alization of E a corresponding local trivialization of F such that the connection 1-forms for E
and F with respect to corresponding trivializations become identical. This implies that they have
identical curvature 2-forms, hence c1(E) = c1(F ).

3. (a) We first need to digress for a moment and consider how local trivializations are actually defined for
tensor product bundles. To that end, suppose more generally that E1, E2 → M are bundles of rank
m and n respectively over the field F, and Φ1

α : E1|Uα
→ Uα × Fm and Φ2

α : E2|Uα
→ Uα × Fn are

trivializations over the same open subset Uα ⊂ M . The most natural way to define a trivialization
of E1 ⊗ E2 over this same subset is to identify the vector spaces Fmn and Fm ⊗ Fn and define

Φ12
α : (E1 ⊗ E2)|Uα

→ Uα × (Fm ⊗ F
n)

as the unique linear bundle map such that for all x ∈ Uα, v ∈ (E1)x and w ∈ (E2)x, if Φ
1
α(v) =

(x, vα) and Φ2
α(w) = (x,wα), then

Φ12
α (v ⊗ w) = (x, vα ⊗ wα). (1)

The fact that this defines a bilinear map with respect to v and w implies that it extends uniquely
to a well-defined linear map (E1)x ⊗ (E2)x → Fm ⊗ Fn for each x ∈ Uα. Now it is easy to check
that if Φ1

β and Φ2
β are trivializations on an overlapping neighborhood Uβ with smooth transition

maps g1βα : Uα ∩ Uβ → Fm×m and g2βα : Uα ∩ Uβ → Fn×n, then the transition map relating Φ12
α to

Φ12
β is a smooth map

g12βα : Uα ∩ Uβ → End(Fm ⊗ F
n)

uniquely determined by the property that g12βα(x)(v⊗w) =
(

g1βα(x)v
)

⊗
(

g2βα(x)w
)

for all v ∈ Fm

and w ∈ Fn.

This story simplifies considerably when E1 and E2 are both complex line bundles, due to the fact
that

C⊗ C → C : v ⊗ w 7→ vw
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is a complex vector space isomorphism. Using this to rewrite Φ12
α as a bundle map (E1⊗E2)|Uα

→
Uα × C, we replace (1) with

Φ12
α (v ⊗ w) = (x, vαwα).

With this understood, suppose s1 ∈ Γ(E1) and s2 ∈ Γ(E2) are both sections with only finitely
many zeroes, where without loss of generality (e.g. after small adjustments to s2 in local coordi-
nates) their zero sets are disjoint, and consider the section s1⊗s2 ∈ Γ(E1⊗E2). Choosing trivial-
izations of both bundles over a region Uα and writing the sections accordingly as sα1 , s

α
2 : Uα → C,

their tensor product is now expressed in the corresponding local trivialization of E1 ⊗ E2 as

(s1 ⊗ s2)
α(z) = sα1 (z)s

α
2 (z).

From this, one deduces the following: if s1(z0) = 0 but s2(z0) 6= 0 for some point z0 ∈ Uα, then
ind(s1⊗s2; z0) = ind(s1; z0) since on a sufficiently small disk containing z0, s2 can be continuously
deformed without touching zero until sα2 ≡ 1, implying that the winding of sα1 s

α
2 about the

boundary of this disk matches that of sα1 . The same argument proves ind(s1⊗s2; z0) = ind(s2; z0)
if s2(z0) = 0 but s1(z0) 6= 0. Note finally that s1(z)⊗ s2(z) can only be zero when either s1(z) or
s2(z) is zero. In summary, this proves

c1(E1⊗E2) =
∑

z∈(s1⊗s2)−1(0)

ind(s1⊗s2; z) =
∑

z∈s
−1

1
(0)

ind(s1; z)+
∑

z∈s
−1

2
(0)

ind(s2; z) = c1(E1)+c1(E2).

(b) Observe first that if E → Σ is any trivial complex line bundle then c1(E) = 0: indeed, triviality
implies the existence of a nowhere zero section s ∈ Γ(E), hence

∑

z∈s−1(0) ind(s; z) = 0. Next

recall from Problem Set 9 #3(c) that for any complex line bundle E → Σ, the product E ⊗E∗ is
a trivial bundle. The reason is very simple: for every complex vector bundle there exists a natural
linear bundle map of E∗ ⊗ E to the trivial line bundle,

E∗ ⊗ E → Σ⊗ C : λ⊗ v 7→ λ(v)

which is manifestly surjective. For dimensional reasons, it is also injective if E has rank 1. Now
part (a) gives us

0 = c1(E
∗ ⊗ E) = c1(E

∗) + c1(E),

implying c1(E
∗) = −c1(E).

(c) By part (b) and the result of Problem 2(c), E cannot be isomorphic to E∗ unless c1(E) = 0.
From the Gauss-Bonnet formula, we know in the case at hand that c1(E) = χ(Σg) = 2− 2g, thus
vanishing if and only if g = 1. We also know in the genus 1 case that E is a trivial bundle, as TT2

admits a vector field that is nowhere zero, giving a global frame for E. Since a global frame for
E naturally gives rise to a global frame for E∗, defined by taking the dual basis at every point, it
follows that E∗ is also trivial and thus E ∼= E∗.
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