
Differential Geometry I Humboldt-Universität zu Berlin
C. Wendl Winter Semester 2016–17

PROBLEM SET 6

Suggested reading

As usual, chapter and section indications in Lee refer to the 2003 edition and may differ in the 2013 edition.

• Friedrich and Agricola: §2.6 and §3.8–3.9

• Lee: Chapter 15 (up to “Homotopy Invariance”) and Chapter 18 (“Lie derivatives of Tensor Fields”)

Problems

1. Let’s start with something easy: suppose M is a compact oriented n-manifold with boundary, α ∈
Ωk(M) and β ∈ Ω`(M) with k + ` = n− 1. Prove the n-dimensional integration by parts formula:∫

M

dα ∧ β =

∫
∂M

α ∧ β − (−1)k
∫
M

α ∧ dβ.

2. In lecture last Thursday I got the definition of orientations somewhat muddled, so here is a corrected
version. AssumeM is a smooth n-manifold (possibly with boundary), and denote byA = {(Uα, xα)}α∈I
its maximal atlas of smoothly compatible charts xα : Uα → x(Uα) ⊂ Hn. An orientation on M is then
a choice of subatlas A+ ⊂ A, i.e. a subcollection {(Uα, xα)}α∈I+ with I+ ⊂ I, satisfying the following
conditions:

• M =
⋃
α∈I+ Uα;

• For every α, β ∈ I+, the transition map xα ◦ x−1β is orientation preserving;

• A+ is maximal in the sense that every (U , x) ∈ A for which x ◦ x−1α is orientation preserving for
every (Uα, xα) ∈ A+ also belongs to A+.

Given an orientation A+ ⊂ A, we refer to the charts in A+ as orientation preserving (or “positively
oriented”), and define the collection A− ⊂ A of orientation-reversing charts by the condition that
(U , x) ∈ A− if and only if x ◦x−1α is an orientation-reversing map for every (Uα, xα) ∈ A+. Notice that
A+∩A− = ∅, though it is also possible for a chart (U , x) ∈ A to be in neither A+ nor A−, e.g. this may
happen if U has more than one connected component, as x could restrict to an orientation-preserving
chart on one connected component of its domain and an orientation-reversing chart on a different
component.1 It remains true however that an orientation on M determines orientations of all the
vector spaces TpM for p ∈M , namely via the requirement that for any (U , x) ∈ A+, the vector space
isomorphism

x∗|TpM : TpM → Tx(p)Rn

should be orientation preserving with respect to the canonical orientation on Tx(p)Rn defined via its
natural identification with Rn.

(a) Show that if M is an oriented manifold, then every chart x : U → Hn whose domain is connected
is either orientation preserving or orientation reversing.

(b) The Klein bottle K2 is a smooth 2-manifold which can be defined as the following quotient of the
torus T2 = R2/Z2 (see Figure 1):

K2 := T2
/
∼ where [(θ, φ)] ∼ [(θ + 1/2,−φ)] for all [(θ, φ)] ∈ T2.

Find a pair of charts (U1, x1) and (U2, x2) on K2 such that the subsets U1 and U2 are both
connected but U1 ∩U2 has two connected components, and the transition map x1 ◦ x−12 is neither
orientation preserving nor orientation reversing.

1I overlooked this detail in last Thursday’s lecture, which is why even the revised definition I gave there was not quite right.
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Figure 1: The image of a (non-injective) immersion of the Klein bottle into R3. (Picture borrowed from
The Manifold Atlas, http://www.map.mpim-bonn.mpg.de/2-manifolds)

(c) Explain why part (b) implies that K2 is not orientable, i.e. it does not admit an orientation.

(d) Find a continuous path γ : [0, 1] → K2 with γ(1) = γ(0) =: p and a continuous family of
bases (X1(t), X2(t)) of Tγ(t)K2 such that (X1(0), X2(0)) and (X1(1), X2(1)) determine distinct
orientations of the vector space TpK2, i.e. they are not related to each other by any continuous
family of bases of TpK2.

3. If M and N are oriented manifolds of dimensions m and n respectively, the product orientation of M×N
is uniquely determined by the following property: given any point (p, q) ∈ M ×N and any positively
oriented bases (X1, . . . , Xm) of TpM and (Y1, . . . , Yn) of TqN , the basis (X1, . . . , Xm, Y1, . . . , Yn) of
T(p,q)(M ×N) is positively oriented. This definition uses the fact that there is a natural isomorphism
T(p,q)(M × N) = TpM × TqN ; take a moment to convince yourself that this is true, and that the
resulting notion of product orientation is well defined. Then show:

(a) M×N = (−1)mnN×M , where for any oriented manifold Q, we denote by −Q the same manifold
with its orientation reversed.

(b) If M and/or N has boundary, then assuming all boundaries carry the natural boundary orienta-
tions and products carry the natural product orientations,

∂(M ×N) = (∂M ×N) ∪ (−1)m(M × ∂N).

Remark: If both M and N have nonempty boundary then we are cheating slightly with this
notation, as M ×N is not technically a manifold with boundary, but a more general object called
a “manifold with boundary and corners”. (In particular its structure near ∂M × ∂N does not fit
the definition of a manifold with boundary). There is no need to worry about this detail right
now—just show that the boundary orientations indicated above are correct at all points on the
boundary of (M ×N) \ (∂M × ∂N).

4. Recall that if (x1, . . . , xn) : U → Rn is a chart defined on an open subset in some n-manifold M , any
k-form ω ∈ Ωk(M) can be written on U as

ω = ωi1...ik dx
i1 ⊗ . . .⊗ dxik =

1

k!
ωi1...ik dx

i1 ∧ . . . ∧ dxik =
∑

i1<...<ik

ωi1...ik dx
i1 ∧ . . . ∧ dxik ,

where the first two expressions use the Einstein summation convention and the third one does not.
Here the component functions ωi1...ik : U → R can be written in terms of the coordinate vector fields
∂1, . . . , ∂n as ωi1...ik = ω(∂i1 , . . . , ∂ik). In order to write down a coordinate formula for the exterior
derivative, we introduce the following notation: given any collection of functions Ti1...ik on U labeled
by the indices i1, . . . , ik, define

T[i1...ik] :=
1

k!

∑
σ∈Sk

(−1)|σ|Tiσ(1)...iσ(k) ,
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so for instance if Ti1...ik are the components of a tensor field T , then Alt(T )i1,...,ik = T[i1...ik], and the

wedge product of α ∈ Ωk(M) and β ∈ Ω`(M) can now be written in coordinates as

(α ∧ β)i1...ikj1...j` = α[i1...ikβj1...j`].

(a) Prove that the exterior derivative d : Ωk(M)→ Ωk+1(M) satisfies

(dω)i1...ik+1
= (k + 1)∂[i1ωi2...ik+1].

(b) Show that for λ ∈ Ω1(M) and ω ∈ Ω2(M), the above formula reduces to

(dλ)ij = ∂iλj − ∂jλi, and (dω)ijk = ∂iωjk + ∂jωki + ∂kωij .

(c) It now follows from Problem Set 4 #1(a) that the exterior derivative of a 1-form λ can also be
written as

dλ(X,Y ) = LX(λ(Y ))− LY (λ(X))− λ([X,Y ]).

Indeed, the right hand side is C∞-linear with respect to vector fields X,Y ∈ Vec(M) and thus
defines a tensor field, whose component functions we’ve seen match the formula from part (b).
Prove the corresponding formula for the exterior derivative of a 2-form,

dω(X,Y, Z) = LX (ω(Y, Z)) + LY (ω(Z,X)) + LZ (ω(X,Y ))

− ω([X,Y ], Z)− ω([Y,Z], X)− ω([Z,X], Y ).

Remark: Similar formulas exist for the exterior derivatives of k-forms for all k > 2, though I
cannot recall ever having needed to use them.

5. Recall that the kth de Rham cohomology group Hk
dR(M) of a smooth manifold M is a real vector space

defined as the kernel of d : Ωk(M)→ Ωk+1(M) modulo the image of d : Ωk−1(M)→ Ωk(M). Here we
adopt the convention Ω−1(M) = {0} so that this is also well defined for k = 0. Show that the map

H1
dR(S1)→ R : [λ] 7→

∫
S1

λ

is a well-defined vector space isomorphism.
Hint: You might find some inspiration on Problem Set 4, #3.

6. Given a volume form µ ∈ Ωn(M) on an n-manifold M , one can define volumes of compact regions
U ⊂M by

Vol(U) :=

∫
U
µ.

The divergence of a vector field X ∈ Vec(M) can then be defined in terms of the Lie derivative of µ
with respect to X: let div(X) : M → R be the unique real-valued function such that

LXµ = div(X)µ.

Note that this is well defined since LXµ is an n-form and the space ΛnT ∗pM of n-forms at each point
p ∈ M is 1-dimensional. Observe also that dµ = 0 since Ωn+1(M) = {0}, so Cartan’s formula implies
div(X)µ = dιXµ, which matches the formula we saw in lecture for the case M = Rn.

(a) Show that if ϕtX : M →M denotes the flow of X, then for any compact region U ⊂M ,

d

dt
Vol(ϕtX(U)) =

∫
ϕtX(U)

div(X)µ.

(b) Show that in the case M = R3 with µ = dx ∧ dy ∧ dz and X = Xx∂x +Xy∂y +Xz∂z ∈ Vec(R3)
in standard Cartesian coordinates (x, y, z),

div(X) = ∂xX
x + ∂yX

y + ∂zX
z.

The latter expression is sometimes also denoted by ∇ ·X.
Note: One can show more generally that if µ = dx1 ∧ . . . ∧ dxn on Rn then div(X) = ∂iX

i.
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(c) Recall that on R3, the gradient of a function f : R3 → R is the vector field

grad(f) = ∇f := (∂xf)∂x + (∂yf)∂y + (∂zf)∂z,

and the curl of a vector field X = Xx∂x +Xy∂y +Xz∂z is the vector field

curl(X) = ∇×X := (∂yX
z − ∂zXy)∂x + (∂zX

x − ∂xXz)∂y + (∂xX
y − ∂yXx)∂z.

Using the relations of these operations to differential forms and the exterior derivative, deduce
from d2 = 0 the formulas

∇× (∇f) = 0 and ∇ · (∇×X) = 0

for all f ∈ C∞(R3) and X ∈ Vec(R3).

(d) Use the Poincaré lemma to deduce that on R3, any vector field with zero curl is the gradient of a
function, and any vector field with zero divergence is the curl of another vector field.

(e) Find an example of a vector field X on R3 \{x = y = 0} that has zero curl but is not the gradient
of a function.

7. In this problem we shall work through a proof of the fact that for a smooth map f : M → N , the
induced homomorphism on de Rham cohomology

f∗ : Hk
dR(N)→ Hk

dR(M)

depends on f only up to smooth homotopy. Recall that two maps f, g : M → N are smoothly homotopic
if there exists a smooth homotopy between them, meaning a smooth map h : [0, 1]×M → N such that
h(0, ·) = f and h(1, ·) = g.

Assume throughout the following that h : R×M → N is a smooth map, let ft := h(t, ·) : M → N and
jt : M ↪→ R×M : p 7→ (t, p) for each t ∈ R, and define

Φ : Ωk(N)→ Ωk−1(R×M) : ω 7→ ι∂t(h
∗ω) := h∗ω(∂t, . . .),

where t : R ×M → R denotes the standard coordinate function on the first factor (i.e. the natural
projection R ×M → R) and ∂t ∈ Vec(R ×M) is the corresponding coordinate vector field. Notice
that the flow ϕs : R ×M → R ×M is well defined for all times s ∈ R and is very simple, namely
ϕs(t, p) = (t+ s, p). We also define

Φt := j∗t Φ : Ωk(N)→ Ωk−1(M)

for every t ∈ R, and let ω denote an arbitrary k-form on N .

(a) Use Cartan’s formula to derive the expression

L∂t(h
∗ω) = dΦω + Φdω. (1)

(b) For any (t, p) ∈ R×M , the tangent space T(t,p)(R×M) has a subspace of codimension 1 that is
naturally identified with TpM , namely the space of all vectors tangent at (t, p) to the submanifold
{t} ×M . With this understood, show that for all tuples (X1, . . . , Xk) ∈ TpM ⊂ T(t,p)(R ×M)
and all s ∈ R,

(h ◦ ϕs)∗ω(X1, . . . , Xk) = f∗t+sω(X1, . . . , Xk). (2)

(c) Use (2) and the definition of the Lie derivative of k-forms to show that for all (t, p) ∈ R×M and
tuples (X1, . . . , Xk) ∈ TpM ⊂ T(t,p)(R×M),

L∂t(h
∗ω)(X1, . . . , Xk) =

d

dt
f∗t ω(X1, . . . , Xk). (3)

Combining this (1) and applying the operator j∗t , this implies the formula

d

dt
f∗t ω = dΦtω + Φtdω for all t ∈ R, ω ∈ Ωk(N). (4)

(d) Integrate (4) with respect to t in order to show that there exists a homomorphism H : Ωk(N)→
Ωk−1(M) satisfying f∗1ω − f∗0ω = (d ◦H + H ◦ d)ω for all ω ∈ Ωk(N). Explain why this implies
that f∗0 and f∗1 descend to the same map Hk

dR(N)→ Hk
dR(M).
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