
Differential Geometry I Humboldt-Universität zu Berlin
C. Wendl Winter Semester 2016–17

PROBLEM SET 8

Suggested reading

Lecture notes (on the website): Chapter 2, Bundles (up to §2.3); you might also find Chapter 1 informative,
but it is inessential

Problems

1. In this problem, we prove that for any Lie group G with Lie algebra g = TeG,

exp(X + Y ) = exp(X) exp(Y ) (1)

holds for any X,Y ∈ g that satisfy [X,Y ] = 0. Note that the formula clearly does not hold in general
without this extra hypothesis, since exp(X) exp(Y ) would then always equal exp(Y ) exp(X) and thus
imply that G is abelian near the identity. The latter turns out to be true however if g is abelian; this
fact was mentioned at the end of last Thursday’s lecture, and we already proved the converse.

Throughout the following, we associate to any X ∈ g the unique left-invariant vector field XL ∈ Vec(G)
with XL(e) = X.

(a) Recall that exp(tX) = ϕtXL(e) for every t ∈ R and X ∈ g. Use this characterization of the
exponential map to show that for every g ∈ G, X ∈ g and t ∈ R,

g exp(tX) = ϕtXL(g).

In particular, this implies exp(sX) exp(tY ) = ϕtY L ◦ ϕsXL(e) for all s, t ∈ R and X,Y ∈ g.

(b) Now assume X,Y ∈ g satisfy [X,Y ] = 0, and show that the paths α(t) := exp(t(X + Y )) and
β(t) := exp(tX) exp(tY ) satisfy the same initial value problem, hence they are identical for all t,
implying exp(X + Y ) = exp(X) exp(Y ).
Hint: Recall that vector fields with vanishing Lie brackets have commuting flows.

(c) One can show (cf. Proposition B.16 in the lecture notes) that every connected topological group
is generated by a neighborhood of its identity element, hence the above result implies that a
connected Lie group is abelian if and only if its Lie algebra is abelian. Find an example of a
disconnected Lie group that is nonabelian even though its Lie algebra is abelian.
Hint: All 1-dimensional Lie algebras are abelian. (Why?) Out of the simple examples of Lie groups
that you know, is there one that is 1-dimensional and has multiple connected components?

2. We say that a smooth manifold M is parallelizable if its tangent bundle TM →M is trivial.

(a) Show that every trivial vector bundle is orientable. (This is easy.) Hence every parallelizable
manifold is orientable.

(b) Show that every Lie group is parallelizable.
Hint: Start by choosing an isomorphism of the tangent space at the identity to Rn. Then think
about left-invariant vector fields.

3. Given a Lie group G with Lie algebra g = TeG and an element g ∈ G, denote by Lg, Rg : G →
G the diffeomorphisms Lg(h) = gh and Rg(h) = hg; these maps are called left translations and
right translations respectively. It will be useful to observe that while Lg and Lh do not generally
commute with each other unless gh = hg, and a similar statement holds for right translations, every
left translation commutes with every right translation. (Take a moment to convince yourself of this.)

A k-form ω on G is called left-invariant or right-invariant if it satisfies

L∗
gω = ω or R∗

gω = ω

respectively for all g ∈ G.
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(a) Show that for every ω ∈ Λkg∗ there exists a unique left-invariant k-form ωL ∈ Ωk(G) and a unique
right-invariant k-form ωR ∈ Ωk(G) such that ωLe = ωRe = ω. In particular, since dim Λng∗ = 1
if dimG = n, this means G admits left-invariant and right-invariant volume forms that are each
unique up to multiplication by a constant.

(b) Show that if ω is a left-invariant k-form on G, then so is R∗
gω for every g ∈ G.

(c) Denote R∗ := R \ {0}, regarded as a group with respect to multiplication. Parts (a) and (b)
together imply the existence of a unique smooth function f : G → R∗ such that if µ is any
left-invariant volume form on G,

R∗
gµ = f(g)µ.

Show that f : G→ R∗ is a group homomorphism. We call f the modular function on G.

(d) A Lie group is called unimodular if its modular function is identically equal to 1, which means
every left-invariant volume form is also right-invariant (in this case we say it is bi-invariant).
Show that G is unimodular whenever (i) it is abelian, or (ii) it is compact and connected.
Hint: What can a compact and connected subgroup of R∗ look like?

(e) Out of the usual matrix groups GL(n,F), SL(n,F), O(n), SO(n), U(n) and SU(n), which ones are
(i) abelian, (ii) connected, (iii) compact?

Hint: Recall that all of them can be identified with subsets of Fn×n ∼= Fn2

(here F = R or C), so
“compact” means the same thing as “closed and bounded”.

(f) Here is a simple example of a Lie group that is connected but neither abelian nor compact: the
group of orientation-preserving affine transformations of R,

Aff+(R) :=
{
ϕ ∈ Diff(R)

∣∣ ϕ(x) = ax+ b for some a > 0, b ∈ R
}
.

Compute the modular function on Aff+(R), and check that it is a group homomorphism.
Hint: There is no need to actually compute a left-invariant volume form! Try to reduce the
condition defining f(g) to a relation between two elements of Λng∗.

Observe that we’ve proved the following rather nice result: every compact connected Lie group G with
a choice of orientation admits a unique bi-invariant volume form µ such that

∫
G
µ = 1. Note that µ

depends on a choice of orientation because the integral does, but only up to a sign.

4. The simplest example of a closed, orientable but non-parallelizable (cf. Problem 2) manifold is S2. To
see this, we shall prove in this problem the so-called “hairy sphere” theorem: S2 does not admit a
continuous vector field that is nowhere zero. (In other words, “you can’t comb the hair on a sphere”.)

(a) Show that the normal bundle of S2 ⊂ R3 is trivial.

(b) Show that if M ⊂ Rn is a smooth hypersurface (i.e. an (n − 1)-dimensional submanifold) with
trivial normal bundle, then M is orientable.

(c) Show that every parallelizable manifold admits a smooth vector field that is nowhere zero.

In preparation for proving the hairy sphere theorem, we now recall the notion of a winding number.
A continuous function f : R/2πZ → R2 \ {0} has winding number wind(f) = k ∈ Z if, using polar
coordinates (r, θ) on R2, f can be presented as

f([t]) = (r(t), θ(t))

for some continuous functions r, θ : R → R such that θ(t + 2π) = θ(t) + 2πk. The crucial property of
wind(f) is that it is homotopy invariant: for any continuous family of functions fτ : R/2πZ→ R2 \{0}
depending on a parameter τ ∈ [0, 1], wind(f0) = wind(f1).

(d) Recall (cf. Problem Set 5 #4) the standard spherical coordinates (θ, φ) on S2, related to Cartesian
coordinates (x, y, z) by x = sin θ cosφ, y = sin θ sinφ and z = cos θ. Any continuous vector field
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X on S2 can then be written on the complement of the poles p+ := {θ = 0} and p− := {θ = π}
in the form

X(θ, φ) = Θ(θ, φ)
∂

∂θ
+ Φ(θ, φ)

∂

∂φ
,

where Θ and Φ are continuous real-valued functions that are 2π-periodic in φ, hence these define
a continuous family of functions

Fθ := (Θ(θ, ·),Φ(θ, ·)) : R/2πZ→ R2

for θ ∈ (0, π) such that Fθ([φ]) = 0 if and only if X(θ, φ) = 0. Show that if X is nonzero at both
p+ and p−, then

wind(Fε) = −1 and wind(F1−ε) = 1

for all ε > 0 sufficiently small. Deduce that X cannot then be nonzero everywhere.
Hint: First convince yourself that as long as ε is sufficiently small, the winding numbers in question
cannot depend on your choice of X. Then choose X as conveniently as possible near the poles.

Combining the above results with Problem 2, we’ve proved that there exists no Lie group diffeomorphic
to S2, or put another way, one cannot define any group structure on S2 for which the maps defined by
the group operations are smooth.

5. Show that exp : sl(2,R)→ SL(2,R) is not surjective.
Hint: If A ∈ sl(2,R), what can you deduce about the eigenvalues of eA?

Remark: One can use techniques from Riemannian geometry to prove that exp : g → G is surjective
whenever the Lie group G is both connected and compact. We will see this explicitly in Problem 7
for the examples SO(2) and SO(3). Notice that SL(2,R) is connected (this follows easily from the fact
that GL+(2,R) is connected), but it is not compact.

6. In this problem we use exterior algebra to prove some basic properties of the cross product on R3, in
particular that it satisfies the Jacobi identity and thus makes R3 into a Lie algebra. This is meant as
preparation for Problem 7, though if you already feel you know everything that is important to know
about the cross product, or if you just aren’t in the mood for exterior algebra, feel free to skip this and
move on to Problem 7.

Let V = Rn, fix the standard basis e1, . . . , en ∈ V , denote its dual basis by λ1, . . . , λn ∈ V ∗, and let
〈 , 〉 denote the standard Euclidean inner product. The latter determines an isomorphism

V → V ∗ : v 7→ v[ := 〈v, ·〉, (2)

whose inverse we will denote by V ∗ → V : α 7→ α]. Notice that (ei)[ = λi for each i = 1, . . . , n. Recall
that for each k = 0, . . . , n, dim ΛkV ∗ = n!

k!(n−k)! , hence ΛkV ∗ and Λn−kV ∗ are always isomorphic. In

the following, we will define a specific isomorphism

∗ : ΛkV ∗ → Λn−kV ∗,

called the Hodge star operator, which in the case n = 3, k = 2 is determined by

∗ (λ1 ∧ λ2) = λ3, ∗(λ2 ∧ λ3) = λ1, ∗(λ3 ∧ λ1) = λ2. (3)

We can then define a product on V ∗ by

α× β := ∗(α ∧ β) (4)

and use the so-called “musical” isomorphism (2) to transfer this definition to V = R3, i.e. by defining

v ×w := (v[ ×w[)
].

Take a moment to convince yourself that this matches whatever definition of the cross product you’ve
seen before. (It should suffice actually to observe that it is bilinear and antisymmetric, and to check
how it behaves on basis vectors e1, e2, e3.)
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The right hand side of (4) makes sense for any n, but it is an (n − 2)-form, which is not the same
as a 1-form unless n = 3. This is one reason why the cross product operation is not defined in every
dimension, but is special to dimension three. To define the Hodge star for arbitrary n, one starts
by defining an inner product 〈 , 〉 on each ΛkV ∗ such that the collection of all k-forms of the form
λi1 ∧ . . . ∧ λik forms an orthonormal basis.1 For k = 1, this means λ1, . . . , λn is an orthonormal basis
of V ∗, so the musical isomorphisms are isometries, i.e. 〈v[,w[〉 = 〈v,w〉. For k = n, it means that the
natural choice of volume form µ := λ1 ∧ . . . ∧ λn has unit norm. We then define ∗ : ΛkV ∗ → Λn−kV ∗

as the unique vector space isomorphism such that

〈α, β〉µ = α ∧ (∗β) for all α, β ∈ ΛkV ∗. (5)

To see that a map satisfying this relation exists and is unique, it suffices to observe that both sides of
the relation are bilinear with respect to α and β, and then derive a formula for the case when α and
β are both of the form λi1 ∧ . . . ∧ λik .

(a) Verify that the general definition of ∗ given by (5) implies (3) for n = 3 and k = 2.

(b) Show that the inverse of ∗ : ΛkV ∗ → Λn−kV ∗ is (−1)k(n−k)∗ : Λn−kV ∗ → ΛkV ∗. In particular,
there is no sign change when n = 3.

(c) Prove that the cross product on R3 satisfies

〈u,v ×w〉+ 〈v × u,w〉 = 0. (6)

(d) Show that 〈α ∧ β, γ〉 = 〈β, ια]γ〉 for all α ∈ Λ1V ∗, β ∈ Λk−1V ∗ and γ ∈ ΛkV ∗. In other words,
the exterior product with α is the transpose of the interior product with α].
Hint: It suffices to check this for your favorite basis elements.

(e) Deduce the formula α∧∗β = ∗(ια]β) and combine it with the graded Leibniz rule for the interior
product to prove that the cross product satisfies

u× (v ×w) = 〈u,v〉w − 〈u,w〉v. (7)

(f) Use (7) to prove the Jacobi identity,

u× (v ×w) + v × (w × u) + w × (u× v) = 0. (8)

This proves that (R3,×) is a Lie algebra. We will see in the next problem which Lie algebra it is.

7. Let us clarify the reasons why SO(2) and SO(3) are regarded as groups of “rotations”.

(a) Let J0 =

(
0 −1
1 0

)
∈ so(2). Show that every element of SO(2) can be written as eθJ0 for some

θ ∈ R, and that this matrix acts on R2 by a rotation of angle θ.

(b) Define Φ : R3 → End(R3) in terms of the cross product on R3 by Φ(v)w := v ×w. Show that
the image of this map is in so(3), and that it defines a Lie algebra isomorphism from (R3,×) to
(so(3), [ , ]), i.e. it is a vector space isomorphism R3 → so(3) satisfying

Φ(v ×w) = [Φ(v),Φ(w)] for all v,w ∈ R3.

Hint: There are at least two sensible ways you could go about this. One would be to just check
what Φ does to your favorite basis of R3. If you prefer not choosing a basis, then you might find
the relations (6) and (8) helpful.

(c) Show that every A ∈ SO(3) has 1 as an eigenvalue, and that the dimension of the corresponding
eigenspace is 1 unless A = 1.

(d) Show that if A ∈ SO(3) has a 1-dimensional eigenspace ` ⊂ R3 with eigenvalue 1, then A acts as
a rotation on the orthogonal complement of `, and A = eΦ(v) for some v ∈ `.

We can infer from this problem a new geometric interpretation of the cross product on R3: v × w
measures the degree to which rotations about v fail to commute with rotations about w.

1One can show that this inner product on ΛkV ∗ depends only on the inner product on V , not on the specific choice of
orthonormal basis e1, . . . , ek. As a consequence, ∗ : ΛkV ∗ → Λn−kV ∗ is well defined for any oriented n-dimensional vector
space with an inner product, not just for the specific vector space V = Rn with its preferred basis.
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