
Differential Geometry I Humboldt-Universität zu Berlin

C. Wendl Winter Semester 2016–17

TAKE-HOME MIDTERM

Instructions

To receive credit for this assignment, you must hand it in on Tuesday, January 24 in lecture, or beforehand
in my office (slipping it under the door is fine if I’m not there). You are free to use any resources at your
disposal and discuss the problems with your comrades, but you must write up your solutions alone. Solutions
may be written up in German or English, this is up to you. We will discuss the solutions on January 24 in
the Übung.

There are 100 points in total: a score of 50 points or better will boost your final exam grade according to the
(approximate) formula that was indicated in the course syllabus. Note that the number of points assigned to
each part of each problem is approximately proportional to its conceptual importance/difficulty. A piece of
advice: if you get stuck on one part of a problem, it may often still be possible to move on and do the next part.

Please feel free to e-mail me if questions arise. (I will not be in Berlin during the week January 13–19, but
I should still be reachable by e-mail.)

Suggested reading for the next two weeks

Lecture notes (on the website): Chapter 4, Natural Constructions on Vector Bundles

(Note: This suggestion is not relevant to the take-home midterm, but will be important for keeping up with
new course material in the mean time.)

Scheduling note

The class will be canceled on Tuesday, January 17 (both lecture and Übung) and Thursday, January 26

(lecture). The class will meet as usual on Thursday, January 19, but with a substitute lecturer.

Problems

1. [20 pts total] In class we defined the real projective n-space RPn as Sn/ ∼, where the equivalence
relation identifies antipodal points x ∼ −x on the unit sphere Sn ⊂ Rn+1. Since every line through the
origin in Rn+1 passes through exactly two points on Sn, which are antipodal, an equivalent definition is

RP
n := (Rn+1 \ {0})

/

R
∗,

where R∗ := R \ {0} denotes the multiplicative group of nonzero real numbers, acting on elements of
Rn+1 \ {0} by scalar multiplication. In other words, two nonzero vectors in Rn+1 represent the same
element of RPn if and only if one is a scalar multiple of the other, and it is thus natural to denote
elements of RPn in the form

[x0 : . . . : xn] ∈ RP
n,

meaning the equivalence class represented by (x0, . . . , xn) ∈ Rn+1, where we assume always that xj 6= 0
for at least one of the j = 0, . . . , n, and one must keep in mind that [x0 : . . . : xn] = [λx0 : . . . : λxn]
for any λ ∈ R∗.

(a) [2 pts] For each n ≥ 1 and j = 0, . . . , n, write down a bijective map from RPn−1 to the subset

Σj :=
{

[x0 : . . . : xn] ∈ RP
n
∣

∣ xj = 0
}

⊂ RP
n.
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(b) [2 pts] Notice that since every [x0 : . . . : xn] ∈ RPn satisfies xj 6= 0 for some j ∈ {0, . . . , n},
RPn =

⋃n

j=0 Uj , where Uj := RPn \ Σj . One can now define a smooth structure on RPn via the
following charts: for each j = 0, . . . , n, define the map

ϕj : Uj → R
n : [x0 : . . . : xn] 7→

(

x0

xj

, . . . ,
xj−1

xj

,
xj+1

xj

, . . . ,
xn

xj

)

.

Show that ϕj is bijective, and write down its inverse.

(c) [7 pts] Write down a formula for the transition map ϕ1 ◦ϕ
−1
0 . It should be clear from the formula

that this map is smooth. What are its domain and image? Is it orientation preserving, orientation
reversing, or neither? (Note that the formulas for all other transition maps ϕj ◦ ϕ

−1
k will be the

same just with some of the coordinates switched around; in particular, they are all smooth.)

(d) [4 pts] Using the charts ϕj : Uj → Rn, show that Σ0 is a smooth submanifold of RPn and is
diffeomorphic to RPn−1. (Note: You may choose freely between the two equivalent definitions of
“submanifold” that we have discussed in this class—see Problem Set 3#1.)

(e) [5 pts] Show that RPn is non-orientable for every even n.
Hint: You might find some helpful inspiration in Problem Set 6#2.

Remark: One can also show that RPn is orientable for every odd n, but the charts ϕj do not furnish
the most convenient proof of this. It is obvious at least for n = 1, since RP1 ∼= S1.

2. [30 pts total] Since the spaces of closed or exact k-forms on a smooth manifold M are both infinite
dimensional, it may seem surprising that their quotient, the de Rham cohomology Hk

dR(M), is finite
dimensional for most examples of interest; in particular it turns out that this is always true when M
is compact. In this problem, we shall compute that for every n ∈ N and k ∈ {0, . . . , n},

dimHk
dR(S

n) =

{

1 if k = 0 or k = n,

0 otherwise.
(1)

In the big picture, one usually thinks of this as a consequence of de Rham’s theorem, which gives an
isomorphism between de Rham cohomology and the singular cohomology of M with real coefficients;
the latter is a topological invariant that is easy to compute using methods of algebraic topology. But
that would take us somewhat far afield, so instead we’ll work out a self-contained differential geometric
proof of (1), based mainly on Stokes’ theorem.

Recall that we showed H1
dR(S

1) ∼= R in Problem Set 6#5, so part (a) below establishes (1) in the case
n = 1. We will obtain the rest by induction on n.

(a) [3 pts] Show that H0
dR(M) ∼= R for every connected manifold M .

Hint: Recall that since there is no such thing as a “(−1)-form,” we set Ω−1(M) := {0} by
convention, hence the space of “exact 0-forms” is defined as the trivial subspace of Ω0(M).

(b) [6 pts] Show that if M is any closed and oriented n-manifold, then there is a well-defined linear
map

Hn
dR(M) → R : [ω] 7→

∫

M

ω, (2)

and the following conditions are equivalent:

i. Hn
dR(M) ∼= R;

ii. The map (2) is an isomorphism;

iii. Every ω ∈ Ωn(M) satisfying
∫

M
ω = 0 is exact.

Hint: Recall that every n-form is closed since Ωn+1(M) = {0}. You will need to use the theorem
that every orientable manifold admits a volume form.

(c) [8 pts] Suppose M is a closed n-manifold and ω+, ω− is a pair of k-forms on M × [−1, 1] such that
dω+ = dω−. Show that the following conditions are equivalent:
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i. ω+ − ω− is exact;

ii. ι∗tω+ − ι∗tω− is an exact k-form on M for every t ∈ [−1, 1], where ιt : M → M × [−1, 1]
denotes the inclusion p 7→ (p, t).

iii. There exists a k-form ω on M × [−1, 1] which matches ω± near M × {±1} and satisfies
dω = dω+ = dω−.

Hint: First prove the equivalence of (i) and (ii), using the fact that ιt : M → M × [−1, 1] is a
smooth homotopy equivalence. (Do not give a detailed proof of this fact, but sketch the idea.)

(d) [5 pts] Under the same assumptions as in part (c), suppose also that M is oriented and k = n.
Show that the number

∫

M×{t}
ω+ −

∫

M×{t}
ω− ∈ R is the same for any choice of t ∈ [−1, 1].

Hint: Given −1 ≤ t− < t+ ≤ 1, integrate something over M × [t−, t+] and apply Stokes’ theorem.

(e) [8 pts] Now given an integer n ≥ 2, assume (1) is true for Sn−1, and fix k ∈ {1, . . . , n}. Regarding
Sn as the unit sphere in Rn+1 with standard coordinates (x1, . . . , xn+1), we can decompose it into
two overlapping n-dimensional disks Sn = D+ ∪D− whose intersection looks like Sn−1 × [−1, 1];
specifically, define

D+ := {x1 ≥ −1/2} ∩ Sn, D− := {x1 ≤ 1/2} ∩ Sn.

Take a moment to convince yourself that there is a diffeomorphism D+ ∩ D−
∼= Sn−1 × [−1, 1].

Recall next that by the Poincaré lemma, any closed k-form ω on Sn will then by exact over each
of D+ and D−, giving α± ∈ Ωk−1(D±) such that dα± = ω on D±. The difficulty is that α+

and α− need not match on D+ ∩ D−. Use the inductive hypothesis and the previous steps in
this problem to show that if either 1 ≤ k ≤ n − 1 or k = n with

∫

Sn
ω = 0, then there exists

α ∈ Ωk−1(Sn) satisfying dα = ω; show in fact that α can be chosen to match α± on the portions
of D± where D+ and D− do not overlap. This completes the inductive proof of (1).
Hint: The case k = n is trickiest, as you need to use the hypothesis

∫

Sn
ω = 0 to deduce

something about α+ and α−. What can you say about the integrals of α± over the “equator”
Sn−1 ∼= {x1 = 0} ⊂ Sn? Try Stokes’ theorem, but be careful with orientations!

3. [25 pts total] On a 2n-dimensional manifold M , we’ve previously defined the term “symplectic form”
to mean a 2-form ω ∈ Ω2(M) that is closed and nondegenerate (cf. Problem Set 7 #4(e)). By a funda-
mental result in symplectic geometry called Darboux’s theorem, the following definition is equivalent:
ω ∈ Ω2(M) is a symplectic form if every point x ∈ M is contained in the domain U ⊂ M of a chart of
the form (q1, p1, . . . , qn, pn) : U → R2n in which

ω =

n
∑

j=1

dpj ∧ dqj .

Any local coordinate chart in which ω takes this form is called a Darboux chart.

(a) [2 pts] Show that if ω is symplectic, then ωn := ω ∧ . . . ∧ ω ∈ Ω2n(M) is a volume form.

(b) [5 pts] Show that every closed manifold M admitting a symplectic form satisfies H2
dR(M) 6= {0}.

Be sure to point out where you are using the assumption thatM is compact and without boundary.
Show also (by example) that the result is not true for noncompact manifolds in general.

Remark: By the result of Problem 2, it follows that the spheres S2n do not admit symplectic forms
except in the case n = 1 (on an oriented surface, every volume form is closed and nondegenerate
and is thus a symplectic form). By contrast, a theorem of Gromov from 1969 based on the h-
principle implies that a noncompact manifold always admits a symplectic form if it admits an
almost complex structure; no cohomological condition is necessary. Popular examples of closed
manifolds that do admit symplectic forms include the tori T2n := R2n/Z2n, and the complex
projective spaces CPn (i.e. the complex version of RPn, cf. Problem 1).

(c) [3 pts] A smooth function H : M → R on a symplectic manifold (M,ω) gives rise to a so-called
Hamiltonian vector field XH ∈ Vec(M), defined as the unique vector field satisfying1

ω(XH , ·) = −dH.

1Some authors define XH instead by ω(XH , ·) = dH. There are good motivations to include the minus sign as I did here,
but it is to some extent a matter of taste.
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This determines XH uniquely due to the nondegeneracy of ω, i.e. for any x ∈ M , the linear
map TxM → T ∗

xM : Y 7→ ω(Y, ·) is injective and is therefore an isomorphism, whose inverse
determines XH(x) from −dH |TxM . Given another function F : M → R, we say that F is
conserved under the Hamiltonian flow of H if for every solution x : R → M of the differential
equation ẋ(t) = XH(x(t)), the function F (x(t)) is constant in t. Show that H itself is conserved.
(In applications to mechanical systems, H is typically interpreted as the “energy” of the system.)

(d) [4 pts] In 1915, Emmy Noether established a beautiful correspondence between the conserved
quantities of a mechanical system and its symmetries. A simple version of this theorem in the
Hamiltonian context takes the following form: fixing H : M → R as above, suppose F : M → R is
another function which is conserved under the Hamiltonian flow of H . Then the flow of the vector
field XF determined by ω(XF , ·) = −dF gives a smooth 1-parameter family of diffeomorphisms
ϕt : M → M which are symplectic and preserve H , meaning

ϕ∗
tω = ω and H ◦ ϕt = H (3)

for all t. Prove this, assuming that the flow of XF exists for all t ∈ R.2

(e) [5 pts] In some settings, there is a converse to the result proved in part (d). Suppose (M,ω) is
diffeomorphic to R2n, and Y ∈ Vec(M) is a vector field with a well-defined flow ϕt : M → M
satisfying (3) for all t. Show that there exists a function F : M → R, uniquely defined up to
addition of a constant, which satisfies ω(Y, ·) = −dF and is conserved under the Hamiltonian flow
of H .

Let’s work out a concrete example. Let M = R4 with coordinates (x, px, y, py) and the standard
symplectic form

ωstd = dpx ∧ dx + dpy ∧ dy.

We can think of R4 as the “position-momentum space” (also called phase space) representing the
motion of a single particle of mass m > 0 in a plane: its position is given by q := (x, y) ∈ R2,
and p := (px, py) ∈ R2 are the corresponding “momentum variables”. Given a “potential” function
V : R2 → R, the total energy of the system is given by the function

H(q,p) =
|p|2

2m
+ V (q).

Suppose now that the potential V is chosen to be rotationally symmetric, e.g. this is the case if q
represents the position of the Earth moving around the sun (with the latter positioned at the origin).
To express this condition succinctly, one can transform to polar coordinates (r, θ) on R2, related to the
(x, y)-coordinates as usual by x = r cos θ and y = r sin θ. The condition imposed on V is then ∂θV ≡ 0.

(f) [3 pts] Regarding r and θ as real-valued functions on (a suitable subdomain of) R4 that depend
on the coordinates x and y but not on px and py, define two additional functions on the same
domain by

pr :=
x

r
px +

y

r
py, pθ := −ypx + xpy.

Show that (r, pr, θ, pθ) is then a Darboux chart with respect to the symplectic form ωstd.
Hint: It suffices to compute ωstd in the new coordinates and show that it satisfies the right formula,
but this computation is a bit long. You could make your life easier by observing that ωstd = dλstd

for λstd := px dx+ py dy, and then computing λstd in the new coordinates.

(g) [3 pts] Write down H as a function of (r, pr, θ, pθ) and show that the family of diffeomorphisms
defined in these coordinates by ϕt(r, pr, θ, pθ) := (r, pr, θ + t, pθ) satisfy (3). Derive a formula
for the corresponding conserved quantity F as promised by part (e). (It is called the “angular
momentum,” for reasons that should now appear somewhat natural.)

2If M is not closed, then the flow of XF might not exist for all time, but let’s not worry about this detail right now.
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4. [25 pts total] Recall that the special unitary group is defined for each n ∈ N by

SU(n) =
{

A ∈ GL(n,C)
∣

∣ A†A = 1 and detA = 1
}

,

where A† denotes the complex congugate of the transpose of A. Its Lie algebra is the vector space of
traceless anti-Hermitian matrices

su(n) =
{

A ∈ C
n×n

∣

∣ A+A† = 0 and trA = 0
}

.

Note that su(n) is only a real vector space, not complex, as the anti-Hermitian condition is not invariant
under multiplication by i.

In this problem, we will investigate an interesting relationship between the Lie groups SU(2) and SO(3).

(a) [2 pts] Write down a diffeomorphism between SU(2) and S3, and explain briefly why it is bijective.
Hint: Think of S3 as the unit sphere in R

4 with the latter identified with C
2. Then each column

of a matrix in SU(2) is also a vector in S3.

(b) [2 pts] Show that for every n ∈ N, the pairing

〈A,B〉 := tr(A†B) (4)

defines a Hermitian inner product on gl(n,C) = Cn×n which restricts to a Euclidean (i.e. real)
inner product on the real subspace su(n) ⊂ gl(n,C).

(c) [2 pts] Recall from Problem Set 8 #7 that so(3) admits a Lie algebra isomorphism to R3, with
the Lie algebra structure of the latter defined via the cross product. This means in particular
that so(3) admits a basis J1, J2, J3 ∈ so(3) satisfying the relations

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2.

Find a basis of su(2) that satisfies these same relations, and deduce that there exists a Lie algebra
isomorphism

Φ : su(2) → so(3). (5)

(d) [2 pts] Despite having isomorphic Lie algebras and both being connected, it is not true that SU(2)
and SO(3) are isomorphic, nor diffeomorphic. The following observation gives a hint of this: find
an element A ∈ su(2) such that [0, 2π] → SU(2) : t 7→ etA is an embedded path from 1 to −1,
while [0, 2π] → SO(3) : t 7→ etΦ(A) is a loop from 1 to itself.

(e) [6 pts] In order to see the global relationship between SU(2) and SO(3) more clearly, we shall use
the following general construction. Given a Lie group G with Lie algebra g, let Aut(g) denote the
group of vector space isomorphisms g → g. For each g ∈ G and X ∈ g, define

Ad(g)X :=
d

dt

(

g exp(tX)g−1
)

∣

∣

∣

∣

t=0

∈ g.

Show that Ad(g) : g → g is linear and invertible for every g ∈ G, and that the resulting map
Ad : G → Aut(g) is a group homomorphism. It is called the adjoint representation of G.
Hint: Relate Ad(g) to the smooth map Cg : G → G defined by Cg(h) := ghg−1 for every g ∈ G.

(f) [2 pts] For matrix groups G ⊂ GL(n,F), the definition of the adjoint representation reduces to
the straightforward formula

Ad(A)B = ABA−1.

Choosing any basis of g then identifies Aut(g) with GL(n,R) for n := dimG, thus we obtain a
group homomorphism G → GL(n,R) which is also manifestly a smooth map. Applying this to
SU(2) gives

Ad : SU(2) → Aut(su(2)) ∼= GL(3,R).

Show that the image of this map is actually in O(su(2)), the group of isomorphisms on su(2) that
preserve the inner product defined in part (b).
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(g) [4 pts] Compute the derivative of Ad : SU(2) → O(su(2)) at 1 and show that it is a Lie algebra
isomorphism from su(2) to the Lie algebra o(su(2)) of O(su(2)).
Hint: You might find the Jacobi identity useful.

(h) [5 pts] It follows that any choice of orthogonal isomorphism between su(2) and R3 transforms
Ad : SU(2) → Aut(su(2)) into a Lie group homomorphism

Ψ : SU(2) → O(3),

whose image is actually in SO(3) since SU(2) is connected. The derivative of Ψ at 1 is in turn a
Lie algebra isomorphism

Ψ∗ : su(2) → so(3).

Show that Ψ(exp(tA)) = exp(tΨ∗A) for all A ∈ su(2) and t ∈ R, and deduce that Ψ is surjective
onto SO(3). (Recall from Problem Set 8 #7(d) that exp : so(3) → SO(3) is surjective.)
Hint: Use the characterization of exp : g → G in terms of smooth group homomorphisms R → G.

(i) [0 pts, but included for the sake of completeness] Observe however that Ψ : SU(2) → SO(3) is not
injective, as Ψ(−A) = Ψ(A) for every A ∈ SU(2). Show that kerΨ = {±1} and deduce that Ψ
is globally two-to-one.

Combined with part (a), the last step implies that SO(3) is diffeomorphic to RP3. There are also more
explicitly geometric ways to see this if you think of SO(3) as the group of rotations on R3, e.g. you might
find the explanation at https://en.wikipedia.org/wiki/Rotation_group_SO(3)#Topology in-
teresting. (But I do not recommend reading the section on that page about the “Connection between
SO(3) and SU(2)”; it is dreadfully ugly.)
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