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1 Gradings and Cli�ord Modules

De�nition 1.1. Recall that a module W over a Cli�ord algebra Cl(V ) is said to be

graded if it is provided with a decomposition W = W+ ⊕W− such that multiplication

with any v ∈ V exchanges W+ and W−. Let S be a Cli�ord bundle on a Riemannian

manifold. Then S is graded if it has a decomposition S = S+ ⊕ S−, such that

� the metric and connection on S respect this decomposition,

� and each �ber Sx is a graded Cli�ord module over Cl(TxM).

We de�ne the grading operator ε ∈ End(S) associated to the grading by requiring that

the S± are the ±1 eigenspaces of ε. Conversely, any self-adjoint involution ε of S which

� commutes with covariant derivation and

� with εc(v) + c(v)ε = 0 for all v ∈ TM ,

gives rise to a grading on S.

For even-dimensional oriented manifolds with dimM = 2m, there is a canonical grading

on any cli�ord bundle, which is obtained as follows: The volume element ω ∈ Cl(TxM) is
given as ω = e1 . . . e2m ∈ Cl(TxM) for a positively oriented orthonormal basis e1, . . . , e2m.

It satis�es ω2 = (−1)m and vω = −ωv for v ∈ TxM . Thus multiplication with imω de�nes

a grading operator ε0 on S. Other gradings exist however. Given a second grading ε, then
εε0 is has almost all the properties of a grading operator, except it commutes with the

Cli�ord algebra i.e. c(v)εε0 = εε0c(v). Considering its eigenvalues yields the following:

Lemma 1.2. Any graded Cli�ord bundle S is split in the sum of two graded Cli�ord

sub-bundles, on one of which ε = ε0 (canonically graded part of S) and on the other

ε = −ε0 (anticanonically graded).

Thus it often su�ces to consider only canonically graded Cli�ord bundles.
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2 The Supertrace

De�nition 2.1. Let A be a trace-class operator on L2(S), where S is a graded Cli�ord

bundle with grading operator ε, then the supertrace of A is de�ned by

Trs(A) = Tr(εA)

Recall that the normal trace vanishes on commutators, it is easy to check that the

supertrace vanishes on supercommutators [A,B]s if one of A or B is trace-class.

Theorem 2.2. Let A be a smoothing operator on L2(S) with kernel k ∈ C∞(S � S∗),
i.e.

Au(m1) =

∫
M
k(m1,m2)u(m2) vol(m2)

then its supertrace is given by

Trs(A) =

∫
M

trs(k(x, x)) vol(x)

where the 'local supertrace' trs(a), a ∈ End(Sx) is de�ned to be tr(εa).

Recall from the representation theory of the Cli�ord Algebra (chapter 4) that we can

write Sx = ∆⊗V where ∆ is the spin representation and V some auxiliary vectory space.

We also know

EndC(Sx) = Cl(TxM)⊗ EndC(V ), EndC(V ) = EndCl(Sx)

If Sx is canonically graded, then the eigenspaces ∆± ⊆ ∆ of multiplication with imω
(wrt ±1) give the grading of Sx = (∆+⊗V )⊕ (∆−⊗V ). Since the trace is multiplicative
on tensor products, we obtain the following proposition:

Proposition 2.3. If a = c⊗ F ∈ EndC(Sx) with c ∈ Cl(TxM) and F ∈ EndCl(Sx) and

S canonically graded, we have

trs(a) = τs(c) trS/∆(F )

where τs(c) is the supertrace of the action of Cl(TxM) on ∆ and trS/∆ is the relative trace,

i.e. the trace of the endomorphism of V corresponding to F via EndCl(Sx) = EndC(V ).

We show how the super trace τs is computed. Let {e1, . . . , e2m} be an orthonormal basis

of R2m. If E ⊆ {1, . . . , 2m} then let Ẽ =
∏
i∈E ei ∈ Cl(R2m). The Ẽ generate the cli�ord

algebra as a C-vector space.

Lemma 2.4. Let c =
∑
E cEẼ ∈ Cl(R2m) with cE ∈ C, then τs(c) = (−2i)mc12...2m i.e.

the supertrace is (up to scalar) the projection to the 'top degree part' of c.
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Proof. Since the grading operator is given by multiplication with imω, we have τs(c) =
τ(imωc), where τ is the ordinary trace. Thus it is equivalent to show τ(c) = 2mc∅, i.e.

τ(Ẽ) =

{
2m if E = ∅
τ(Ẽ) = 0 otherwise

Note ∅̃ = 1 acts trivially on ∆ and hence its trace is 2m. If E 6= ∅, consider Ẽ acting

on ∆. Then Ẽ permutes the basis elements without a �xed point, so tr(Ẽ) = 0. Recall
the Cli�ord algebra as a representation is equal to ∆ ⊗∆∗ with left action on the �rst

factor ∆. So τ(Ẽ) = 2m tr(E) = 0.

3 Graded Dirac Operators

The Dirac operator of a graded Cli�ord bundle anticommutes with the grading operator

and hence exchanges S+ and S−. We thus have maps

C∞(S+)
D+−−→ C∞(S−)

D−−−→ C∞(S+)

where D+ and D− are restrictions of D, and D− is the adjoint of D+.

De�nition 3.1. The index of a graded Dirac operator D is de�ned as

Ind(D) = dim kerD+ − dim kerD−

Example 3.2. Consider D = d+d∗ with the grading operator ε = (−1)q on Ωq(M). We

know by Hodge theory that the index of D is just the Euler characteristic of M . Notice

that this grading, which is called the Euler grading of the de Rham operator, is not the

canonical grading. For example, the element 1 ∈ Ω0(M) is positively graded with respect
to ε, but it is not �xed under multiplication with imω.

Let P be the orthogonal projection of L2(S) to ker(D). Then Ind(D) = Trs(P ). More

generally,

Proposition 3.3. Let F be a rapidly decreasing smooth function on R+ with f(0) = 1.
Then Ind(D) = Trs(f(D2)).

Proof. For an eigenvalue λ of D2 let n+(λ) denote the dimension of the λ-eigenspace of
D2 restricted to S+ and similarly for n−(λ). Then

Trs f(D2) =
∑
λ

f(λ)(n+(λ)− n−(λ)) = Ind(D) +
∑
λ>0

f(λ)(n+(λ)− n−(λ))

But for λ 6= 0, the operator D is an isomorphism between λ-eigenspaces of D2 on S+

and S−, so n+(λ) = n−(λ).
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In particular, this shows the McKean-Singer formula, for any t > 0:

Ind(D) = Trs e
−tD2

We now consider the variation of the index as the operatorD varies. LetDt, t ∈ [0, 1] be a
continuous family of graded Dirac operators on (M,S). This means that the Riemannian

metric, the Cli�ord action and the metric and connection on S all vary continuously with

t. Then t 7→ Dt is a continuous map [0, 1]→ B(W k+1,W k) for any k.

Proposition 3.4. Let Dt be a continuous family of graded Dirac operators, as above.

Then Ind(D0) = Ind(D1).

Proof (Sketch). Since the assignment t 7→ Dt is continuous, it can be shown that the

index Ind(Dt) = Trs e
−t′D2

t depends continuously on t. But the index is an integer, so it

is constant.

This shows that the index of D is a topological invariant, that is it depends only upon

homotopy-theoretic data of the manifold M and the bundle S.

At this point, Roe makes a number of remarks on the relevance and the proof of the

index theorem. The index theorem allowed a vigorous exchange between analysis and

topology. On the one hand, information about the index derived from PDE theory (even

the information that Ind(D) is an integer) could be used to constrain the characteristic

classes and hence the topology ofM . On the other hand topological conditions could force

the existence of solutions to di�erential equations. Milnor's construction of the exotic

sqheres and the Kodaira embedding theorem are examples of these two phenomena which

predate the general form of the index theorem itself.

The original proof of the index theorem relied on algebraic topology (either cobordism

theory or K-theory) to organize the possible pairs (M,S) into some kind of group and

then check the index theorem only on speci�c generators. Thus the proofs were essentially

global and topological in nature. This book proves the index theorem by an alternative

method: As McKean and Singer pointed out, the asymptotical expression of the heat

kernel is in principle locally computable and the index can be computed with the local

super-trace of certain coe�cients in that expansion. The computation of the coe�cients is

almost impossible by brute force, but Getzler showed that it can be made more tractable

by paying careful attention to the role of the Cli�ord algebra. Using the fact that the

local supertrace corresponds to the top degree part of the Cli�ord algebra reduces the

computation to a model that is essentially the harmonic oscillator.

4 The heat equation and the index theorem

Recall from 7.15 the asymptotic expansion near 0 for the heat kernel kt associated to the

smoothing operator e−tD
2
,

kt(p, q) ∼ ht(p, q)
Ä
Θ0(p, q) + tΘ1(p, q) + t2Θ(p, q) + . . .

ä
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for certain smooth sections Θi of S � S∗. Thus we obtain:

Ind(D) = Trs(e
−tD2

) =

∫
M

trs kt(p, p) vol(p)

∼ 1

(4πt)n/2

Å∫
trs Θ0 vol +t

∫
trs Θ1 vol + . . .

ã
(recall ht(p, p) = 1/(4πt)n/2). But Trs(e

−tD2
) is constant, so letting t go to 0 we obtain

the following theorem, which is the main result of this chapter:

Proposition 4.1. The index of the graded Dirac operator D is zero if n = dimM is

odd, and equal to

Ind(D) =
1

(4π)n/2

∫
trs Θn/2 vol

if n is even, where Θn/2 is a certain algebraic expression in the metrics and connection

coe�cients and their derivatives.

Corollary 4.2. The index is multiplicative under coverings, i.e. if M̃ is a k-fold covering

of M and S̃, D̃ are the natural lifts of S and D to M̃ , then Ind(D̃) = k Ind(D).

This is obvious from the preceding theorem, since Θn/2 is a local expression involving

the metric and connection, hence the same on M and M̃ . But it is not at all obvious

from the de�nition of the index.
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