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To be discussed: 31.01.2018

Instructions

This homework will not be collected or graded, but it is highly advisable to at least think through all of the
problems before the next Wednesday lecture after they are distributed, as they will often serve as mental
preparation for the material in that lecture. We will discuss the solutions in the Übung beforehand.

A note on terminology and notation: from now on, when we have an n-dimensional manifold M and a closed
oriented k-dimensional submanifold N Ă M , the words “the homology class in HkpMq represented by N”
refer to the class i˚rN s P HkpMq, where i : N ãÑ M is the inclusion and rN s is a distinguished element of
HkpNq, typically a generator of HkpNq – Z if N is connected. By slight abuse of notation, we shall also
denote this homology class in HkpMq by rN s.

1. Let K2 denote the Klein bottle, as depicted in the picture below left (a non-injective immersion of K2

into R
3) or either of the squares at the right (which describe two distinct cell decompositions of K2).
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Compute H˚pK2 ˆ S1q, and for k “ 1 and k “ 2 describe a specific set of closed k-dimensional
submanifolds that represent homology classes generating HkpK2 ˆ S1q. Do they generate it freely,
i.e. do they form a basis?
Hint: Either of the above cell decompositions can be used to compute H˚pK2q, but if you want an
explicit description of its generators, then one of these decompositions might be more convenient than
the other.

2. We saw in lecture that the Künneth formula yields the following description of H˚pRP2 ˆ RP
2q:

HkpRP2 ˆ RP
2q –

$

’

’

’

&

’

’

’

%

Z if k “ 0,

Z2 ‘ Z2 if k “ 1,

Z2 if k “ 2 or k “ 3,

0 for all other k P Z.

(a) For k “ 0, 1, 2, describe explicit closed submanifolds representing classes that generate the groups
HkpRP2 ˆ RP

2q.
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(b) Describe an explicit cell decomposition of RP2 ˆRP
2 and a specific element of the corresponding

cellular chain complex that represents the nontrivial element of H3pRP2 ˆ RP
2q “ Z2.

(c) What is H˚pRP2 ˆ RP
2q?

3. Recall that the topology of a CW-complex X is defined normally as the strongest topology for which
the characteristic maps of all cells Φα : Dk Ñ X are continuous. Given another CW-complex Y , let Z
and Z 1 denote the set X ˆ Y with two (potentially) different topologies: we assign to Z the product
topology, and to Z 1 the topology of the product CW-complex induced by the CW-decompositions of
X and Y .

(a) Prove that every open set in Z is also an open set in Z 1, i.e. the identity map Z 1 Ñ Z is continuous.
Remark: In general, the identity map Z 1 Ñ Z might not be a homeomorphism!1

(b) Prove that the identity map Z 1 Ñ Z is a homeomorphism ifX and Y are both finite cell complexes.

(c) Prove that a subset K Ă Z is compact if and only if it is compact in Z 1, and the two subspace
topologies induced by Z and Z 1 on K are the same. Deduce from this that Z and Z 1 have the
same singular homology and cohomology groups.

4. This problem is intended to elucidate the intuitive reason behind the formula Bpa ˆ bq “ Ba ˆ b `
p´1q|a|a ˆ Bb for the boundary map on product CW-complexes.2

Recall first that an orientation of a real n-dimensional vector space V means an equivalence class of
bases, where two bases are equivalent if they are connected to each other by a continuous family of
bases. The fact that the group GLpn,Rq has two connected components (determined by whether the
determinant is positive or negative) means that every real vector space of dimension n ą 0 has exactly
two choices of orientation.3 On an oriented vector space, we call a basis positive whenever it belongs
to the equivalence class determined by the orientation. A linear isomorphism V Ñ W between two
oriented vector spaces is called orientation preserving if it maps positive bases to positive bases,
and is otherwise orientation reversing.

A smooth n-manifold M has a tangent space TxM at every point x, which is an n-dimensional vector
space. If you haven’t seen this notion in differential geometry, then you should just picture M as a
regular level-set f´1p0q Ă R

k of some smooth function f : Rk Ñ R
k´n for some k P N; a famous

theorem of Whitney says that every smooth n-manifold can be described in this way if k ě 2n. The
tangent space TxM at each point x P M is then the n-dimensional linear subspace kerdfpxq Ă R

k. With
this notion understood, an orientation of M means a choice of orientation for every tangent space
TxM such that the orientations vary continuously with x, i.e. every point x0 P M has a neighborhood
U Ă M admitting a continuous family of bases tpv1pxq, . . . , vnpxqquxPU of the tangent spaces TxM such
that all of them are positive. If M and N are smooth manifolds of the same dimension, then any
smooth map f : M Ñ N has a derivative dfpxq : TxM Ñ TfpxqN at every point x P M , and we call
f an immersion if dfpxq is an isomorphism for every x P M . If M and N are both oriented, then
an immersion f : M Ñ N is called orientation preserving/reversing if dfpxq : TxM Ñ TfpxqN is
orientation preserving/reversing for every x P M .

(a) Convince yourself that S2 admits an orientation (i.e. it is orientable), but RP
2 and the Klein

bottle do not.

If V and W are both oriented vector spaces, we define the product orientation of V ‘ W to be
the one such that if pv1, . . . , vnq and pw1, . . . , wmq are positive bases of V and W respectively, then
pv1, . . . , vn, w1, . . . , wmq is a positive basis of V ‘W . This notion carries over immediately to a product
of manifolds M and N since for each px, yq P M ˆ N , Tpx,yqpM ˆ Nq can be naturally identified with
TxM ‘ TyN , hence orientations of M and N give rise to a product orientation of M ˆ N .

1This is easily said, but writing down actual counterexamples is surprisingly difficult, e.g. it turns out that they must involve

uncountable many cells. For more on such bizarre issues, see https://arxiv.org/abs/1710.05296.
2For a direct proof of the formula itself, see Proposition 3B.1 on page 269 of Hatcher.
3Dimension zero must always be treated as a special case in orientation discussions. For this informal discussion we make

our lives easier by assuming all dimensions are positive.
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(b) Show that if M and N are oriented manifolds of dimensions m and n respectively, then for the
natural product orientations, the map M ˆN Ñ N ˆM : px, yq ÞÑ py, xq is orientation preserving
if either m or n is even, and orientation reversing if both m and n are odd.

We say M is an n-manifold with boundary if every point x P M has a neighborhood homeomorphic
to an open subset of the closed half-space

H
n :“ r0,8q ˆ R

n´1 Ă R
n,

and its boundary BM is then the set of all points that get identified with points in BHn “ t0u ˆR
n´1

under such local homeomorphisms. In particular, the boundary of an n-manifold is always an pn ´ 1q-
manifold, and for each x P BM , the tangent space TxpBMq is naturally a codimension 1 linear subspace
of TxM . The set TxMzTxpBMq thus has two connected components, characterized as the tangent
vectors in TxM that point “outward” or “inward” with respect to the boundary. Now if M has an
orientation, this induces on BM the so-called boundary orientation, defined such that for any choice
of outward pointing vector ν P TxM , a basis pX1, . . . , Xn´1q of TxpBMq is positive (with respect to
the orientation of BM) if and only if the basis pν,X1, . . . , Xn´1q of TxM is positive with respect to the
orientation of M . Take a moment to convince yourself that this notion is well defined.

The simplest example is also the most relevant for our discussion of cell complexes: the closed n-disk
D

n is a compact n-dimensional smooth manifold with boundary BDn “ Sn´1. Since all the tangent
spaces to D

n are canonically isomorphic to R
n, Dn has a canonical orientation, and this determines a

canonical orientation for Sn´1.

Finally, consider a product M ˆ N of two smooth manifolds with boundary, with dimensions m and
n respectively. This is a slightly more general object called a “smooth manifold with boundary and
corners”; rather than defining this notion precisely, let us simply agree that in the complement of the
“corner” BM ˆ BN , the object M ˆN is a smooth manifold whose boundary BpM ˆNq is the union of
two smooth manifolds BM ˆN and M ˆBN of dimension m`n´1. The question is: what orientations
should these two pieces of BpM ˆ Nq carry?

(c) Assume M and N are both oriented, MˆN is endowed with the resulting product orientation and
BM and BN are each endowed with the boundary orientation. Show that the induced boundary
orientation on BpM ˆNq always matches the product orientation of BM ˆN , and that it matches
the product orientation of M ˆ BN if and only if m is even.

Remark: The result of part (c) can be summarized as follows. If M has an orientation and we denote
the same manifold with the opposite orientation by ´M , then for any two oriented manifolds M and
N of dimensions m and n respectively,

BpM ˆ Nq “ pBM ˆ Nq Y p´1qmpM ˆ BNq.

If you apply this to the case M “ D
m and N “ D

n and consider that the degree of a map Sk Ñ Sk

changes sign if you compose it with an orientation-reversing homeomorphism, you may now be able to
imagine the reason for the sign in the cellular boundary formula Bpa ˆ bq “ Ba ˆ b ` p´1q|a|a ˆ Bb.
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