
Topology II Humboldt-Universität zu Berlin

C. Wendl Winter Semester 2017–18

PROBLEM SET 12

To be discussed: 14.02.2018

Instructions

This homework will not be collected or graded, but it is highly advisable to at least think through all of the
problems before the next Wednesday lecture after they are distributed, as they will often serve as mental
preparation for the material in that lecture. We will discuss the solutions in the Übung beforehand.

1. In Problem Set 2 #4, we established that for any closed topological n-manifold M with an oriented

triangulation, one can define a homology class in the form rM s “ r
ř

i ǫixσiys P HnpM ;Zq, where the
σi : ∆

n Ñ M are suitable parametrizations of the oriented simplices in the triangulation, and the signs
ǫi P t1,´1u are determined by the orientations so that

ř

i ǫixσiy is a cycle. At the time, we called rM s
a “fundamental class,” but we did not actually prove that it is independent of the triangulation, nor
that it is nontrivial. Now we can.

(a) Prove that the class rM s P HnpM ;Zq described above in terms of a triangulation agrees with the
general notion of a fundamental class for a closed topological n-manifold: for any point x P M ,
the map induced by the inclusion pM,Hq ãÑ pM,Mztxuq sends rM s to a generator (i.e. a “local
orientation”) rM sx P HnpM,Mztxu;Zq – Z.
Hint: It suffices (why?) to consider only points x P M belonging to some dense subset, e.g. the
points that are in the interiors of n-simplices in the triangulation. Compare Problem Set 5 #2(a).

(b) Adapt the discussion for arbitrary (not necessarily oriented) triangulations using homology with
Z2 coefficients.

(c) Adapt the discussion for a compact triangulated n-manifold with boundary as in Problem Set 2 #4(e),
i.e. show that the relatative class rM s P HnpM, BMq (with coefficients in Z or Z2) described there
maps to a generator of HnpM,Mztxuq for any point x P MzBM (cf. #4 on this sheet).

2. Prove that if M is a non-orientable connected topological manifold, then π1pMq contains a subgroup
of index 2. (In particular, this implies that every simply connected manifold is orientable.)

3. Suppose M is any topological manifold of dimension n P N.

(a) Prove that the torsion subgroup of Hn´1pMq is Z2 if M is compact and non-orientable, and it is
otherwise trivial.
Hint: Use the universal coefficient theorem to compute TorpHn´1pMq,Zpq “ 0 for every prime
number p, and see what you can deduce from it. You may want to consider separately the cases
where M is noncompact, compact and orientable, or compact and non-orientable. If it helps, feel
free to assume also that H˚pMq is finitely generated (though this is not strictly necessary).

(b) Deduce that if H˚pMq is finitely generated and M is orientable, then HnpM ;Zq – HnpM ;Zq.

4. In this problem, assume M is a topological n-manifold with boundary (see Problem Set 10 #4 for the
definition). The interior M̊ “ MzBM is then an n-manifold without boundary, so given a commutative
ring with unit R (typically Z or Z2), we can define an R-orientation of M to mean simply an R-
orientation of M̊ . We will need the following basic observation from point-set topology: if BM is
compact, then it has a so-called collar neighborhood in M , meaning a neighborhood U Ă M of BM
that is homeomorphic to p´1, 0s ˆ BM via a homeomorphism sending BM to t0u ˆ BM . This is not
completely obvious, but the proof is not hard (see e.g. Hatcher, Proposition 3.42). It follows that M is
homotopy equivalent to its interior, hence the latter has finitely generated homology if M is compact.

Since M̊ is a manifold, a theorem we proved in lecture gives an isomorphism

JA : HnpM̊, M̊zA;Gq Ñ ΓcpΘG|Aq
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for any closed subset A Ă M̊ and abelian group G, where ΘG “
Ť

xPM ΘG
x denotes the orientation

bundle with fibers ΘG
x “ HnpM,Mztxu;Gq – G for x P M̊ , and ΓcpΘG|Aq is its group of compactly

supported sections along A. Now set G “ R and assume M has an R-orientation, so a generator
rM sx P HnpM,Mztxu;Rq – R is fixed for every x P M̊ . We will refer to a relative homology class

rM s P HnpM, BM ;Rq

as a relative fundamental class for M if the natural map ix : HnpM, BM ;Rq Ñ HnpM,Mztxu;Rq
defined via the inclusion pM, BMq ãÑ pM,Mztxuq for every x P M̊ sends rM s to rM sx. Notice that if
BM “ H, this matches our previous definition of fundamental classes for closed manifolds.

(a) Prove that if M is compact and an R-orientation of M is fixed, then a relative fundamental class
rM s P HnpM, BM ;Rq exists, is unique, and generates HnpM, BM ;Rq – R.

(b) Under the same assumptions, show that if M and BM are both connected and BM is nonempty,
then BM is alsoR-orientable, and the connecting homomorphism B˚ : HnpM, BM ;Rq Ñ Hn´1pBM ;Rq
in the long exact sequence of pM, BMq is an isomorphism sending rM s to a fundamental class rBM s
of BM (for a suitable choice of orientation of BM).
Hint: Focus on the case R “ Z. It is easy to prove that B˚ is injective; show that if it were not
surjective, then Hn´1pMq would have torsion, contradicting the result of Problem 3(a).

(c) Generalize the result of part (b) to prove B˚rM s “ rBM s without assuming BM is connected.
Hint: For any connected componentN Ă BM , consider the exact sequence of the triple pM, BM, BMzNq
and notice that Hn´1pBM, BMzNq – Hn´1pNq by excision.

(d) Conclude that for any compact manifold M with boundary and an R-orientation, the map
Hn´1pBM ;Rq Ñ Hn´1pM ;Rq induced by the inclusion BM ãÑ M sends rBM s to 0. In other
words, “the boundary of a compact oriented n-manifold M represents the trivial homology class
in Hn´1pMq.”
Remark: Compare Problem Set 2 #4(g), which proved essentially the same thing in the presence
of oriented triangulations.

5. In lecture we defined the compactly supported cohomology H˚
c pXq of a space X via the direct

limit
Hk

c pX ;Gq :“ limÝÑ

 

HkpX,XzK;Gq
(

K

whereK ranges over the set of all compact subsets of X , ordered by inclusion K Ă K 1 Ă X and forming
a direct system via the maps HkpX,XzK;Gq Ñ HkpX,XzK 1;Gq induced by inclusions pX,XzK 1q ãÑ
pX,XzKq.

(a) Show that there is a canonical isomorphism H˚pXq “ H˚
c pXq whenever X is compact.

(b) Prove that Hn
c pRn;Gq – G and Hk

c pRn;Gq “ 0 for all k ‰ n.

(c) Construct a canonical isomorphism between H˚
c pX ;Gq and the homology of the subcomplex

C˚
c pX ;Gq Ă C˚pX ;Gq consisting of every cochain λ : CkpXq Ñ G that vanishes on all simplices

with images outside some compact subset K Ă X . (Note that K may depend on λ).

(d) Recall that a continuous map f : X Ñ Y is called proper if for every compact set K Ă Y ,
f´1pKq Ă X is also compact. Show that proper maps f : X Ñ Y induce homomorphisms
f˚ : H˚

c pY ;Gq Ñ H˚
c pX ;Gq, making H˚

c p¨;Gq into a contravariant functor on the category of
topological spaces with morphisms defined as proper maps.

(e) Deduce from part (d) that H˚
c p¨;Gq is a topological invariant, i.e. H˚

c pX ;Gq and H˚
c pY ;Gq are

isomorphic whenever X and Y are homeomorphic. Give an example showing that this need not
be true if X and Y are only homotopy equivalent.

(f) In contrast to part (d), show that H˚
c p¨;Gq does not define a functor on the usual category of

topological spaces with morphisms defined to be continuous (but not necessarily proper) maps.
Hint: Think about maps between R

n and the one-point space.
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(g) We say that two proper maps f, g : X Ñ Y are properly homotopic if there exists a homotopy
h : I ˆ X Ñ Y between them that is also a proper map. Show that under this assumption, the
induced maps f˚, g˚ : H˚

c pY ;Gq Ñ H˚
c pX ;Gq in part (d) are identical if X is Hausdorff and

locally compact. In other words, H˚
c p¨;Gq defines a contravariant functor on the category whose

objects are locally compact Hausdorff spaces and whose morphisms are proper homotopy classes
of proper maps.
Hint: You might first want to remind yourself how one proves the homotopy axiom for H˚p¨;Gq.1

It will then help to show that every compact subset K Ă I ˆ X is contained in some set of the
form I ˆ K 1 for a compact subset K 1 Ă X . You will find a helpful lemma for this in Problem
Set 3 #6 of last semester’s Topologie I class.

6. Let’s prove a couple of results that have been used often in recent lectures but were skipped earlier in
the semester. Suppose A Ă X Ă Z and B Ă Y Ă Z are subsets of a topological space Z, with the
property that the chain maps C˚pAq`C˚pBq ãÑ C˚pAYBq and C˚pXq`C˚pY q ãÑ C˚pX YY q defined
by inclusion all induce isomorphisms on homology. We’ve seen for instance that (by a subdivision
argument) this is true whenever all of the sets involved are open.

(a) Show that under the assumptions above, the induced map of quotients

C˚pXq ` C˚pY q

C˚pAq ` C˚pBq
Ñ

C˚pX Y Y q

C˚pA Y Bq
“ C˚pX Y Y,A Y Bq

also descends to an isomorphism on homology.
Hint: Compare the obvious short exact sequence 0 Ñ C˚pAq ` C˚pBq ãÑ C˚pXq ` C˚pY q Ñ
C˚pXq`C˚pY q
C˚pAq`C˚pBq Ñ 0 with the short exact sequence of chain complexes for the pair pX Y Y,A Y Bq.

There is a natural morphism of short exact sequences from the first to the second, which therefore
gives a morphism between the corresponding long exact sequences of homology groups. Write this
down, then use the 5-lemma.

(b) Show that the obvious sequence

0 ÝÑ C˚pX X Y,A X Bq
α

ÝÑ C˚pX,Aq ‘ C˚pY,Bq
β

ÝÑ
C˚pXq ` C˚pY q

C˚pAq ` C˚pBq
ÝÑ 0

defined by αprcsq “ prcs,´rcsq and βprxs, rysq “ rx ` ys is a short exact sequence of chain com-
plexes.2 Using part (a), the induced long exact sequence is then the relative Mayer-Vietoris

sequence3

. . . Ñ HkpXXY,AXBq Ñ HkpX,Aq‘HkpY,Bq Ñ HkpXYY,AYBq Ñ Hk´1pXXY,AXBq Ñ . . .

(c) Dualize this whole discussion to show that the cohomology of the chain complex pC˚pXq `
C˚pY qq{pC˚pAq ` C˚pBqq is naturally isomorphic to H˚pX Y Y,A Y Bq, and there is a relative
Mayer-Vietoris sequence

. . . Ñ HkpXYY,AYBq Ñ HkpX,Aq‘HkpY,Bq Ñ HkpXXY,AXBq Ñ Hk`1pXYY,AYBq Ñ . . .

7. Last week (Problem Set 11 #3) we computed the ring structure ofH˚pTnq by exploiting the relationship
between the cup and cross products on cohomology. This method suffices for a limited range of concrete
examples, but if we are willing to restrict our attention to smooth manifolds, then Poincaré duality
provides a much more powerful and geometrically revealing way to compute cup products. For a closed,

1. . . which should in any case be good preparation for the final exam!
2Hatcher gives a clever proof of this on page 152, but it looks to me like a much more straightforward argument would suf-

fice. I would be curious to see if any of you disagree. A question was asked about this on mathstackexchange about a year ago (see
https://math.stackexchange.com/questions/2156870/on-the-proof-of-mayer-vietoris-sequence-for-relative-homology-groups/21753

but it wasn’t satisfactorily answered.
3As you might guess, some version of this sequence can also be proved for arbitrary axiomatic homology theories, using

something that I can only describe as “diagram-chase wizardry”. If you really want to know the details, see §I.15 of the book
by Eilenberg and Steenrod.
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connected and oriented manifold M of dimension n with fundamental class rM s P HnpMq, denote the
Poincaré duality isomorphism (with integer coefficients) by

PD : HkpMq Ñ Hn´kpMq : α ÞÑ α X rM s.

The intersection product on H˚pMq is defined as the Poincaré dual of the cup product: for A P
Hn´kpMq and B P Hn´ℓpMq, define A ¨ B P Hn´pk`ℓqpMq by the relation

PD´1pA ¨ Bq “ PD´1pBq Y PD´1pAq.

Let us now take as a black box the following fact from intersection theory:4 if M is a smooth manifold
and A and B are closed and oriented smooth submanifolds that intersect each other transversely (so
that A X B is also a closed and oriented smooth submanifold), then

rAs ¨ rBs “ rA X Bs.

We say that A and B are of complementary dimension if dimA ` dimB “ n, in which case the
transverse intersection A X B is a compact oriented 0-manifold, hence a finite set of points with signs
attached. The signed count of these points then matches rAs ¨ rBs P H0pMq under the canonical
isomorphism H0pMq Ñ Z : c ÞÑ x1, cy defined by evaluating the unit 1 P H0pMq, and it is conventional
in this case to regard rAs ¨ rBs as an integer instead of an element of H0pMq.

(a) Use the standard relations between the cup and cap products (see the cheat sheet below) to derive
the formula

xα, cy “ c ¨ PDpαq P Z

for α P HkpMq and c P HkpMq.
Remark: In the absence of torsion, you can use this relation to fully characterize any cohomology
class in terms of the intersections of its Poincaré dual class with other homology classes.

(b) Now consider Tn “ pS1qˆn “ R
n{Zn, with S1 identified with R{Z, and for each k “ 1, . . . , n and

tuple of integers 1 ď j1 ă . . . ă jk ď n, define the submanifold

T
n
j1,...,jk

“ tpx1, . . . , xnq P T
n | xj1 “ . . . “ xjk “ r0su.

This is a smooth submanifold diffeomorphic to T
n´k, and after choosing an orientation (we shall

not worry here about signs), it represents a homology class rTn
j1,...,jk

s P Hn´kpTnq. Deduce from
Problem Set 11 #3(a) that for each fixed k “ 1, . . . , n, the collection of all submanifolds of this
form freely generates Hn´kpTnq, and that (in the notation of that problem), rTn

j1,...,jk
s is Poincaré

dual to the cohomology class λj1,...,jk P HkpTnq, up to a sign.

(c) Use the intersection product to reprove the formula

λj1 Y . . . Y λjk “ ˘λj1,...,jk .

Cap product cheat sheet

For easy reference, here are the most important properties of the cap product X : HkpX ;Rq b HℓpX ;Rq Ñ
Hℓ´kpX ;Rq. They are all straightforward to derive from the definition of X in terms of diagonal approxi-
mations, see e.g. §VI.5 in Bredon. Each property also holds for the relative cap product X : HkpX,A;Rq b
HℓpX,A Y B;Rq Ñ Hℓ´kpX,B;Rq whenever it makes sense. The coefficient group R is assumed to be any
commutative ring with unit.

• 1 X c “ c for all c P H˚pX ;Rq

• xα, cy “ x1, α X cy for α P HkpX ;Rq and c P HkpX ;Rq

• pα Y βq X c “ α X pβ X cq for all α, β P H˚pX ;Rq and c P H˚pX ;Rq

• f˚pf˚α X cq “ α X f˚c for any continuous map f : X Ñ Y , α P H˚pY ;Rq and c P H˚pX ;Rq

4to be discussed in lecture next week
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