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PROBLEM SET 6

To be discussed: 29.11.2017

Instructions

This homework will not be collected or graded, but it is highly advisable to at least think through all of the
problems before the next Wednesday lecture after they are distributed, as they will often serve as mental
preparation for the material in that lecture. We will discuss the solutions in the Übung beforehand.

1. Use the Eilenberg-Steenrod axioms to prove that if h˚ : Toprel Ñ AbZ is any axiomatic cohomology
theory on the category of all pairs, there is a natural isomorphism of reduced cohomologies ΦX :
h̃kpXq Ñ h̃k`1pΣXq for every k P Z, every space X and its suspension ΣX “ C`X YX C´X . Here,
the word “natural” is meant in the sense of “natural transformations”: specifically, for any continuous
map f : X Ñ Y and the induced map Σf : ΣX Ñ ΣY on suspensions, we have a commuting diagram:

h̃kpY q h̃k`1pΣY q

h̃kpXq h̃k`1pΣXq

ΦY

f˚ pΣfq˚

ΦX

2. It is time to start getting acquainted with direct and inverse limits. These are essential for the definitions
of Čech homology and cohomology, and they will play an increasing role in proofs of standard results
about singular (co)homology as well, not to mention Problem 3(d) on this sheet. We shall start out with
a general and somewhat abstract discussion that applies to arbitrary categories, but then specialize to
our two favorite categories: topological spaces and abelian groups.

Suppose I is a set with a pre-order ď, i.e. ď is reflexive (α ď α) and transitive (α ď β and β ď γ

implies α ď γ), but the relations α ď β and β ď α need not imply α “ β, so ď need not be a partial
order. We call pI,ďq a directed set if for every pair α, β P I, there exists γ P I with γ ě α and γ ě β.
Given a category C , a direct system in C over pI,ďq associates to each α P I an object Xα of C and
to each pair α, β P I with α ď β a morphism ϕβα : Xα Ñ Xβ , such that ϕαα is the identity morphism
and ϕγβ ˝ ϕβα “ ϕγα whenever α ď β ď γ. A closely related notion is that of an inverse system,
which is defined in the same way except that the morphism ϕβα defined for each β ě α goes from Xβ

to Xα, and the composition law is correspondingly adjusted to ϕβα ˝ ϕγβ “ ϕγα.
1

Notice that any covariant functor A Ñ B transforms a direct/inverse system in A to a direct/inverse
system in B. If the functor is instead contravariant, then direct systems are transformed into inverse
systems and vice versa. Important examples appear in Problems 2(h), 2(i) and 4(d) below.

For a direct system tXα, ϕβαu, an object X8 of C with associated morphisms tϕα : Xα Ñ X8uαPI is
called a target of the system tXα, ϕβαu if it satisfies ϕα “ ϕβ ˝ ϕβα whenever β ě α. Such a target is
called a direct limit2 of the system and written as

X8 “ lim
ÝÑ

tXαu

if it satisfies the following “universal” property: for all other targets Y with associated morphisms
tψα : Xα Ñ Y uαPI , there is a unique morphism ψ : X8 Ñ Y such that ψ ˝ ϕα “ ψα for all α P I.
Inverse limits of an inverse system tXα, ϕβαu are defined in an analogous way with reversed arrows:
we now call an object X8 with morphisms tϕα : X8 Ñ XαuαPI a target if ϕβα ˝ ϕβ “ ϕα whenever
β ě α, and write

X8 “ limÐÝtXαu

1If you recall Problem Set 2 #1, you may notice that there was a shorter way to say all this: denoting by I the category
whose objects are the elements of I with a unique morphism from α to β whenever α ď β, a direct system in C over pI,ďq is
simply a covariant functor I Ñ C , and an inverse system is a contravariant functor I Ñ C .

2Direct limits are also sometimes called inductive limits, and inverse limits are sometimes called projective limits.
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if for every other target Y with associated morphisms tψα : Y Ñ XαuαPI , there is a unique morphism
ψ : Y Ñ X8 satisfying ϕα ˝ ψ “ ψα for all α P I.

Note that from these definitions, there is generally no guarantee that a direct or inverse limit exists, and
if it exists then it may not be unique, but the universal property provides a distinguished isomorphism
between any two limits of the same system.

(a) Show that in the category of topological spaces with continuous maps, a direct limit of a system
tXα, ϕβαu can always be defined as the space

lim
ÝÑ

tXαu “
ž

αPI

Xα

N
„

with an equivalence relation defined by x „ ϕβαpxq for every x P Xα and β ě α, and the associated
maps ϕα : Xα Ñ lim

ÝÑ
tXαu are then the compositions of the natural inclusions Xα ãÑ

š
β Xβ with

the quotient projection. Show also that the natural topology on this space is the strongest one
for which the maps ϕα are all continuous.

(b) Show that for an inverse system of topological spaces, an inverse limit can always be defined as
the space

limÐÝtXαu “

"
p. . . , xα, . . .q P

ź

αPI

Xα

ˇ̌
ˇ̌ ϕβαpxβq “ xα for all β ě α

*
,

with the associated maps ϕα : limÐÝtXαu Ñ Xα defined as restrictions of the natural projectionsś
β Xβ Ñ Xα. Show moreover that the natural topology on this space is the weakest one for

which the maps ϕα are all continuous.

(c) Consider the special case of part (b) in which the spaces Xα are all subsets (with the subspace
topology) of some fixed space X , β ě α if and only if Xβ Ă Xα and the maps ϕβα : Xβ Ñ Xα are
the natural inclusions. Show that

Ş
αXα with the natural inclusions ϕα :

Ş
βXβ ãÑ Xα defines

an inverse limit of the system.

(d) Consider now the direct system analogue of part (c): all spaces are subsets of some fixed space X ,
β ě α if and only if Xα Ă Xβ, and the ϕβα : Xα Ñ Xβ are inclusion maps. It is easy to find a
natural bijection between lim

ÝÑ
tXαu and

Ť
αXα, but it is not always a homeomorphism. Take for

example the family of sets Xt “ t0u Y pt, 1s P R, indexed by t P p0, 1q and ordered by inclusion:
the union of these sets is the interval r0, 1s, but show that the topological space lim

ÝÑ
tXtu is not

connected.

(e) Let tXαuαPI denote the family of all countable subsets of S1, ordered by inclusion. Show that
this forms a direct system of topological spaces whose direct limit is S1, with its usual topology.

(f) Show that any direct system of abelian groups tGα, ϕβαu has a direct limit of the form

limÝÑtGαu “
à

αPI

Gα

N
H,

were H Ă
À

αGα is the subgroup generated by all elements of the form g ´ ϕβαpgq for g P Gα

and β ě α, and the associated homomorphisms ϕα : Gα Ñ lim
ÝÑ

tGαu are the compositions of the
natural inclusions Gα ãÑ

À
β Gβ with the quotient projection.

(g) Show that any inverse system of abelian groups tGα, ϕβαu has an inverse limit of the form

lim
ÐÝ

tGαu “

"
p. . . , gα, . . .q P

ź

αPI

Gα

ˇ̌
ˇ̌ ϕβαpgβq “ gα for all β ě α

*
,

with the associated homomorphisms ϕα : limÐÝtGαu Ñ Gα defined as restrictions of the natural
projections

ś
β Gβ Ñ Gα.
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(h) Given a direct system of abelian groups tGα, ϕβαu and another abelian group H , one can dualize
the direct system to define an inverse system tHompGα, Hq, ϕ˚

βαu, where ϕ˚
βα : HompGβ , Hq Ñ

HompGα, Hq : Φ ÞÑ Φ ˝ ϕβα. Show that there is a natural isomorphism

Homplim
ÝÑ

tGαu, Hq – lim
ÐÝ

tHompGα, Hqu.

(i) Recall from Problem Set 1 #1 the category Chain of chain complexes of abelian groups, whose
morphisms are chain maps, and the covariant functor H˚ : Chain Ñ AbZ that assigns to each
chain complex its homology groups. In analogy with parts (f) and (g), it is not hard to write
down explicit descriptions of the direct/inverse limit of any direct/inverse system in the categories
Chain and AbZ. In particular, if tpCα

˚ , B
αq, ϕβαu is a direct system of chain complexes and lim

ÝÑ
tCα

˚ u
denotes its direct limit as a system of Z-graded abelian groups, you can check that the boundary
maps Bα : Cα

˚ Ñ Cα
˚´1

naturally determine a boundary map B8 on lim
ÝÑ

tCα
˚ u that makes it into a

chain complex. With this understood, prove that there is a natural isomorphism

H˚plim
ÝÑ

tCα
˚ u, B8q – lim

ÝÑ
tH˚pCα

˚ , B
αqu.

Specializing to the case of chain complexes with trivial homology, this proves that any direct
system of exact sequences has a direct limit which is also an exact sequence.
Hint: The direct limit of a system of abelian groups tGα, ϕβαu has the convenient feature that ev-
ery element in lim

ÝÑ
tGαu “

À
αGα

L
„ can be represented by some element in one of the subgroups

Gβ Ă
À

αGα for “sufficiently large” β P I. (Why?)

(j) Try to prove the analogue of part (i) for inverse limits of chain complexes, but don’t try very
hard.
Hint: It isn’t true. In particular, there exist inverse systems of exact sequences whose inverse
limits are not exact.3 This embarrassing algebraic fact is the reason why Čech homology—which
is defined as an inverse limit of homologies of chain complexes—does not satisfy the exactness
axiom of Eilenberg and Steenrod, at least not without placing restrictions on the category of
spaces or on the coefficient group. By contrast, the Čech cohomology is defined as a direct limit,
and thus does not have this defect, due to part (i).

3. The Alexander-Spanier cohomology sH˚pX ;Gq of a space X with coefficients in G is defined as
the homology of the following (co)chain complex. For integers k ě 0, let sCkpX ;Gq denote the group
of equivalence classes of (not necessarily continuous) functions ϕ : Xk`1 Ñ G, where we say ϕ „ ψ

whenever ϕ and ψ are identical on some neighborhood of the diagonal ∆ :“ tpx, . . . , xq P Xk`1 | x P
Xu. Associate to each function ϕ : Xk`1 Ñ G the function δϕ : Xk`2 Ñ G defined by

δϕpx0, . . . , xk`1q “
k`1ÿ

j“0

p´1qjϕpx0, . . . , xj´1, xj`1, . . . , xk`1q.

This defines a homomorphism from the group of pk ` 1q-functions to the group of pk ` 2q-functions
such that δ2 “ 0, and it preserves the subgroup of functions that vanish near the diagonal, thus it
descends to a coboundary homomorphism

δ : sCkpX ;Gq Ñ sCk`1pX ;Gq.

Extending this to all k P Z by defining sCkpX ;Gq “ 0 for k ă 0, we obtain a cochain4 complex
p sC˚pX ;Gq, δq, and its homology is denoted by sH˚pX ;Gq. It is not hard to give sH˚ the structure of a

3For an explicit example, see Example 5.5 in Eilenberg and Steenrod, Foundations of Algebraic Topology (Princeton Uni-
versity Press 1952).

4I am calling sC˚pX;Gq a cochain complex instead of a chain complex simply because δ raises degree by 1 instead of lowering
it, but this terminology is a debatable matter of convention. Notice in particular that sC˚pX;Gq is not in any obvious way
the dual complex of any chain complex, thus it is far from obvious at this stage what the definition of “Alexander-Spanier
homology” might be. We refer to sH˚pX;Gq as “cohomology” instead of “homology” because it is a contravariant functor, not
covariant. A corresponding homology theory was defined in an appendix of Spanier’s paper Cohomology theory for general

spaces (Annals of Mathematics, 1948), but its definition is much more complicated, requiring inverse limits, and as a result it
suffers from the same drawbacks as Čech homology, i.e. it fails to satisfy the exactness axiom of Eilenberg-Steenrod.
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contravariant functor: given a continuous map f : X Ñ Y , one defines a chain map

f˚ : sC˚pY ;Gq Ñ sC˚pX ;Gq : ϕ ÞÑ ϕ ˝ pf ˆ . . .ˆ fq,

thus inducing homomorphisms f˚ : sH˚pY ;Gq Ñ sH˚pX ;Gq. With some more effort, one can also
define relative groups sH˚pX,A;Gq and prove that sH˚ satisfies all of the Eilenberg-Steenrod axioms
for a cohomology theory.5 This implies in particular that sH˚pX ;Gq is isomorphic to the singular
cohomology H˚pX ;Gq whenever X is a sufficiently “nice” space such as a manifold or CW-complex.
The goal of this problem is to gain some understanding of why sH˚, in spite of having a radically
different definition from H˚, ends up seeing much of the same topological information for nice spaces,
and how this ceases to be true for spaces that are less nice.

(a) Show that for any space X , sH0pX ;Gq is a direct product of copies of G, one for each connected
component of X .

(b) Show by explicit computation that sH1pR;Gq “ 0 and sH1pS1;Gq – G.

Hint: Consider the map sH1pX ;Gq Ñ G : rϕs ÞÑ
řN

j“1
ϕpγptjq, γptj´1qq for any loop γ : r0, 1s Ñ X

and partition 0 “ t0 ă t1 ă . . . ă tN “ 1. It is well defined because ϕ represents a cocycle. (Why?)

(c) Notice that in part (a), I said “connected component,”, not “path-component”. Let

X :“ pt0u ˆ r´1, 1sq Y
 

px, yq P R
2 | y “ sinp1{xq and 0 ă x ď 1

(
Ă R

2,

with its natural subspace topology as a subset of R2. This space is “nice” in the sense that it
is compact and Hausdorff, but it is also a classic example of a connected space that has two
path-components, so that its singular cohomology satisfies H0pX ;Zq – Z

2, while part (a) implies

sH0pX ;Zq – Z. The corresponding reduced cohomologies are thus rH0pX ;Zq – Z and ĂĎH0pX,Zq “
0, thus Problem 1 implies that for the suspension ΣX ,

H1pΣX ;Zq “ Z, but sH1pΣX ;Zq “ 0.

Note that suspensions are always path-connected, so one of our standard results about singular
(co)homology implies H1pΣX ;Zq “ Hompπ1pΣXq,Zq, which is therefore not true for sH1pΣX ;Zq.
I suppose you’re waiting for me to stop rambling and ask a question. Fine, here is one: since the
above discussion implies that π1pΣXq is not torsion, find an explicit loop in ΣX that represents
a non-torsion element of π1pΣXq.

(d) There is an “extra” axiom that Alexander-Spanier cohomology satisfies but singular cohomology
does not. Observe that since sH˚ is a contravariant functor, any inverse system of spaces tXα, ϕβαu
gives rise to a direct system of cohomology groups t sH˚pXα;Gq, ϕ˚

βαu. The continuity property
states that whenever the spaces Xα are all compact and Hausdorff, there is an isomorphism

sH˚plimÐÝtXαu;Gq – limÝÑt sH˚pXα;Gqu.

Find an inverse system of compact Hausdorff spaces whose inverse limit is the space X in part (c),
and verify that the continuity property holds in this example for sH˚, but not for singular coho-
mology H˚. Hint: Problem 2(c) might be helpful.
Remark: One can show that every compact Hausdorff space is an inverse limit of some inverse
system of compact Hausdorff spaces homotopy equivalent to CW-complexes. It follows that up to
isomorphism, there is only one cohomology theory satisfying all of the Eilenberg-Steenrod axioms
plus continuity. The Čech cohomology qH˚pX ;Gq also satisfies all of these properties, and is thus
isomorphic to sH˚pX ;Gq (but not necessarily to H˚pX ;Gq) for all compact Hausdorff spaces X .
(This result can be generalized beyond compact spaces using sheaf cohomology; details are carried
out in Chapter 6 of Spanier’s book.)

One last remark: you may wonder whether there is also a continuity property involving the
(co)homology of direct limits of spaces. The example in Problem 2(e) should make you suspect
that no such result could hold without serious restrictions, but we will revisit this question in the
context of singular homology when we prove Poincaré duality.

5For a good exposition of the details, see §6.4–6.5 in Spanier, Algebraic Topology (Springer-Verlag 1966).
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