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TAKE-HOME MIDTERM

Instructions

To receive credit for this assignment, you must hand it in by Wednesday, January 24 before the Übung.
The solutions will be discussed in the Übung on that day.

You are free to use any resources at your disposal and to discuss the problems with your comrades, but you
must write up your solutions alone. Solutions may be written up in German or English, this is up to you.

There are 100 points in total; a score of 75 points or better will boost your final exam grade according to
the formula that was indicated in the course syllabus. Note that the number of points assigned to each part
of each problem is usually proportional to its conceptual importance/difficulty.

If a problem asks you to prove something, then unless it says otherwise, a complete argument is typically
expected, not just a sketch of the idea. Partial credit may sometimes be given for incomplete arguments if
you can demonstrate that you have the right idea, but for this it is important to write as clearly as possible.
Less complete arguments can sometimes be sufficient, e.g. in cases where you want to show that two spaces
are homotopy equivalent and can justify it with a very convincing picture (use your own judgement). You
are free to make use of all results we’ve proved in lectures or problem sets, without reproving them. (When
using a result from a problem set, say explicitly which one.)

One more piece of general advice: if you get stuck on one part of a problem, it may often still be possible to
move on and do the next part.

You are free to ask for clarification or hints via e-mail or in office hours; of course I reserve the right not to
answer such questions.

Problems

1. [70 pts total] Consider a knot K ⊂ R3, i.e. the image of a topological embedding1 S1 →֒ R3. For
technical reasons, it is conventional in knot theory to assume that K is not too “wild,” for instance it
is good enough to assume that the embedding S1 →֒ R3 is smooth (meaning C∞).

Figure 1: A smooth knot.

Figure 2: A “wild” knot, which is continu-
ous, but not smooth. We will not consider
these.

The smoothness condition has the following advantage: if K is the image of f : S1 →֒ R3, we can
always assume there exists an extension of f to a topological embedding S1 × D2 →֒ R3 that matches
f along S1 × {0}. (Take a moment to convince yourself that no such extension exists for the knot in
Figure 2.) We shall denote the image of this extension by N ⊂ R3, so

K ⊂ N̊ ⊂ N ⊂ R
3 where N ∼= S1 × D

2.

1Recall that a map f : X → Y between two topological spaces is called a topological embedding if it is continuous and
injective and the inverse f−1 : f(X) → X is also continuous with respect to the subspace topology on f(X) ⊂ Y .
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One way to distinguish topologically between two knots is via their knot groups, meaning the group
π1(R

3 \K). As you might recall from a homework problem in Topology I, one can equivalently extend
R3 to its one-point compactification S3 and replace π1(R

3 \K) with π1(S
3 \K), as it is easy to show

via the Seifert-van Kampen theorem that these two groups are isomorphic. With this in mind, we shall
regard all knots as subsets of S3.

(a) [20 pts] Show that H1(S
3 \K) ∼= Z.

Hint: Consider the Mayer-Vietoris sequence for S3 = N ∪ (S3 \K).2

A union of multiple disjoint knots K1 ∪ . . . ∪Kn in S3 is called a link, and we say it is isotopic to
another link K ′

1
∪ . . . ∪K ′

n
⊂ S3 if there exists a continuous family of homeomorphisms ϕt : S

3 → S3

for t ∈ [0, 1] such that ϕ0 = Id and ϕ1(Ki) = K ′

i
for i = 1, . . . , n. We say moreover that K1 ∪ . . .∪Kn

is unlinked if it is isotopic to a link whose connected components are each contained in disjoint balls.

It will be convenient in the following to assume that our knots K ⊂ S3 are endowed with orientations,
meaning we have a distinguished class of embeddings f : S1 →֒ S3 for K = f(S1) that are all related to
each other by orientation-preserving reparametrizations S1 → S1. It follows that all the distinguished
parametrizations of K are homotopic, hence for any subset U ⊂ S3 containing K, there is a uniquely
determined homology class [K] := f∗[S

1] ∈ H1(U), where [S1] denotes a fixed generator ofH1(S
1) ∼= Z.

Changing the orientation of K changes [K] ∈ H1(U) by a sign.

(b) [15 pts] For a given oriented knot K0 ⊂ S3, fix3 a generator [S3 \K0] ∈ H1(S
3 \K0) ∼= Z. Then

if K1 ⊂ S3 is another oriented knot which is disjoint from K0, it represents a homology class
[K1] ∈ H1(S

3 \K0). We define the linking number of the link K0 ∪K1 by

link(K0,K1) := m ∈ Z where [K1] = m[S3 \K0] ∈ H1(S
3 \K0).

Show that if K0 ∪K1 is unlinked, then link(K0,K1) = 0.

For any oriented knot K ⊂ S3 with its neighborhood S1 × D2 ∼= N ⊂ S3, an oriented knot µ ⊂ S3

contained in ∂N ∼= T
2 is called ameridian forK if it is nullhomotopic inN and satisfies link(K,µ) = 1.

For example, the circles {const} × ∂D2 ⊂ N with a suitable choice of orientation are meridians. In
contrast, an oriented knot λ ⊂ S3 contained in ∂N is called a longitude if it is of the form S1×{const}
for some identification of S1 × D2 with N that maps S1 × {0} to K and preserves the orientation.

µ

λ

Figure 3: The knot from Figure 1 with a meridian µ and a longitude λ.

(c) [20 pts] Show that meridians for K ⊂ S3 are unique up to homotopy of loops S1 → ∂N ∼= T2, but
there are infinitely many homotopy classes of longitudes; in fact, for every m ∈ Z, there exists a
longitude λ with link(K,λ) = m and it is unique up to homotopy through loops S1 → ∂N .
Hint 1: The homotopy classes of maps S1 → T2 are easy to classify by considering lifts of loops
in T2 to paths in its universal cover R2. They are in bijective correspondence with Z2. (Why?)

2Note that since the result of Problem 1(a) does not depend on the knot K, it is bad news if your goal is to distinguish
inequivalent knots: you cannot do so by distinguishing the abelianizations of their knot groups, as these are all isomorphic to Z.
One has to find cleverer algebraic tricks for distinguishing two non-isomorphic knot groups, e.g. one such trick involving the
center of π1(S3 \K) is used for torus knots in Example 1.24 of Hatcher.

3Actually there is a canonical way to choose the generator [S3 \K0] ∈ H1(S3 \K0) that depends on the orientation of K0,
but let’s not worry about this.
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Hint 2: Given a homeomorphism f : S1 × D2 → N , one can write down another one in the form
(t, z) 7→ f(t, e2πiktz) for any k ∈ Z, where S1 is identified with R/Z and D2 with the closed unit
disk in C.

(d) [15 pts] The following standard example of a 2-component link is often called the Hopf link :
regarding S3 as the unit sphere in R4, letK0 = ∂D2×{0} ⊂ R2×R2 andK1 = {0}×∂D2 ⊂ R2×R2.
Show that link(K0,K1) is either 1 or −1. (It is conventional to choose orientations so that the
answer is +1.)

Remark: Part (c) in this problem is one of the basic observations underlying the notion of Dehn surgery
along knots in S3, a fundamental technique for constructing interesting examples in low-dimensional
topology. The idea is to form a new 3-manifold M by cutting the interior of N out of S3 and replacing
it with another copy of S1 × D2, attached along its boundary ∂(S1 × D2) = T2 to ∂(S3 \ N̊) ∼= T2 via
some homeomorphism T

2 → T
2. The topological type of M then depends on the homotopy class of

this “attaching” homeomorphism, and the unique longitude λ with link(K,λ) = 0 serves as a kind of
“normalization” for describing these homotopy classes. If you’re curious, a good place to read about
surgery along knots is the book “Lectures on the Topology of 3-Manifolds” by Nikolai Saveliev (de
Gruyter 1999).

2. [30 pts total] Recall that on any path-connected space X with a fixed base point, the Hurewicz map

Φ : π1(X) → H1(X) is defined by identifying closed paths γ : [0, 1] → X with singular 1-cycles
〈γ〉 ∈ C1(X) after identifying [0, 1] with the standard 1-simplex ∆1. We’ve seen in our study of
singular homology that this map is a homomorphism, and that it descends to the abelianization of
π1(X) as an isomorphism. In this problem, we consider to what extent this discussion can be extended
to an arbitrary axiomatic homology theory h∗ with coefficients h0({pt}) ∼= Z.

There is an obvious definition for a map Φ : π1(X) → h1(X). Indeed, we know from the usual exact
sequence arguments that h1(S

1) ∼= h̃0(S
0) ∼= Z, so we can fix a generator [S1] ∈ h1(S

1), regard elements
of π1(X) as pointed homotopy classes of loops γ : S1 → X , and set

Φ([γ]) := γ∗[S
1] ∈ h1(X).

This map is well defined due to the homotopy axiom for h∗, but it will not generally descend to an
isomorphism of the abelianization of π1(X) to h1(X); indeed, we’ve seen in lecture that the cohomo-
logical analogue of this statement fails to hold in general for Čech or Alexander-Spanier cohomologies
on suspensions of spaces that are connected but not path-connected. But right now we have an even
more basic problem: it is not obvious whether Φ is a homomorphism. Let us prove that it is.

(a) [20 pts] Given two distinct points x, y ∈ S1, fix an identification of S1 ∨ S1 with the quotient
S1/{x, y} and consider the resulting quotient projection p : S1 → S1 ∨ S1. Show that there is a
natural isomorphism of h̃1(S

1∨S1) to h1(S
1)⊕h1(S

1) ∼= Z⊕Z such that p∗ : h̃1(S
1) → h̃1(S

1∨S1)
is determined by the formula

p∗[S
1] = ([S1], [S1]).

Hint: You could probably do this using only the Eilenberg-Steenrod axioms, but it might be easier
to make use of cellular homology for a well-chosen cell decomposition of S1.

(b) [10 pts] Prove that for any two base-point preserving maps f, g : S1 → X and their concatenation
f · g : S1 → X , (f · g)∗[S

1] = f∗[S
1] + g∗[S

1] ∈ h1(X), thus implying that Φ : π1(X) → h1(X) is
a homomorphism.
Hint: Can you factor f · g : S1 → X through S1 ∨ S1?
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