
A NOTE ON OBSTRUCTION BUNDLES

CHRIS WENDL

1. Finite dimensions

In order to understand the geometric idea behind obstruction bundles, it’s useful to start with
a finite-dimensional analogue. All objects considered in the following discussion have natural
counterparts in the infinite-dimensional setting of Gromov-Witten theory described in §2.

1.1. Transversality. Let’s suppose

E → B

is a smooth oriented vector bundle of real rank n over a closed oriented n-dimensional manifold,
and we would like to compute its Euler number

〈e(E), [B]〉 ∈ Z.

The Euler number is the algebraic count of zeroes of any smooth section η : B → E that is
generic enough for its zeroes p ∈ η−1(0) ⊂ B to be isolated, in which case each zero has a
well-defined order ord(η; p) ∈ Z as defined in [Mil97], and the algebraic count is

Z(η) :=
∑

p∈η−1(0)

ord(η; p).

In particular, if η ∈ Γ(E) is transverse to the zero-section, then the linearization

(1.1) Dη(p) : TpB → Ep

defined by Dη(p)X = ∇Xη for any choice1 of connection ∇ is an isomorphism2 for every p ∈
η−1(0), and one can then deduce from the inverse function theorem that every zero is isolated
and satisfies ord(η; p) = ±1.

The above situation is especially simple because rankE = dimB, but more generally, if
E → B has arbitrary finite rank m ≤ n, the condition of η ∈ Γ(E) being transverse to the zero-
section is equivalent to the linearization (1.1) being surjective for all p ∈ η−1(0), and the implicit
function theorem then gives M(η) := η−1(0) ⊂ M the structure of a smooth submanifold with
dimension n −m, along with a canonical identification between TpM(η) and kerDη(p) ⊂ TpB
for every p ∈ η−1(0). All of this is also true if m > n, but η being transverse to the zero-section
in this case just means that it never intersects it, so M(η) = ∅.

1.2. Clean intersections and the obstruction bundle. Obstruction bundles arise naturally
in various situations where one wants to allow sections η ∈ Γ(E) that are not generic. A common
example is when the bundle E → B is equipped with a group action: if one prefers to consider
only sections that are equivariant with respect to this group action, then it may be impossible to
make η transverse to the zero-section, but it may still be possible to achieve a weaker condition
known as “clean intersection”. In general, one says that two submanifolds P,Q ⊂ M in a
smooth manifold M have a clean intersection if their intersection P ∩Q ⊂M is also a smooth
submanifold such that for every p ∈ P ∩Q, the obvious inclusion

(1.2) Tp(P ∩Q) ↪→ TpP ∩ TpQ

1The linearization Dη(p) at p ∈ η−1(0) does not depend on the choice of connection since for any other choice
∇′, ∇Xη −∇′Xη depends linearly on η(p) and thus vanishes.

2also known as a “surjective Fredholm operator of index zero”
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is an isomorphism. The implicit function theorem implies that this is true whenever P and Q
intersect transversely, but in this more general definition we are not requiring TpP+TpQ = TpM ,
thus there is no general theorem dictating what the dimension of P ∩ Q must be; it may even
be a manifold with different dimensions on different connected components. All that can be
said about this in general is the following easy exercise in linear algebra: the dimension of
each component of P ∩ Q will always be at least as large as what it would be if P and Q
were transverse. Without the clean intersection condition, it may also happen that P ∩ Q is a
submanifold, in which case the inclusion (1.2) still makes sense, but it may fail to be surjective.
Of course, it can also happen in the non-transverse case that P ∩Q is not a submanifold at all,
but just a subset with no especially nice structure. We will have nothing useful to say about
this level of generality, but we claim that the case of a clean intersection between η ∈ Γ(E) and
the zero-section gives enough information to compute the Euler number of the bundle E → B.

We must first reformulate the definition of clean intersections in terms of an equivalent con-
dition on the linearization (1.1).

Definition 1.1. We say that η ∈ Γ(E) intersects the zero-section cleanly ifM(η) := η−1(0) ⊂
B is a smooth orientable submanifold such that for every p ∈M(η), the natural inclusion

TpM(η) ↪→ kerDη(p)

is an isomorphism.

In the situation described by this definition, M(η) ⊂ B may again have different dimensions
on different connected components, which will in general satisfy the lower bound

dimM(η) ≥ vir-dimM(η) := dimB − rankE.

Here we have defined the virtual dimension vir-dimM(η) as the dimension thatM(η) would
have if η were transverse to the zero-section; equivalently, this is the Fredholm index of Dη(p) :
TpB → Ep. The inequality is clear since for a clean intersection the dimension of M(η) near
p ∈M(η) is

dimTpM(η) = dim kerDη(p) = indDη(p) + codim imDη(p) ≥ indDη(p).

An additional consequence is that since dimTpM(η) depends only on the connected component
of M(η) that p lies in, the dimension of

cokerDη(p) := Ep
/

imDη(p)

is also fixed on connected components; specifically, it equals the local dimension ofM(η) minus
indDη(p). One can use the implicit function theorem to show that these cokernels fit together
to form a smooth vector bundle over M(η), which we denote by

Ob→M(η), Obp := cokerDη(p)

and call the obstruction bundle for η. In the situation of most interest to us, we have
indDη(p) = dimB − rankE = 0, thus the rank of the obstruction bundle over each component
ofM(η) matches the dimension of that component. Note that since E and B were both assumed
to be oriented and Dη(p) descends to an isomorphism TpB

/
kerDη(p)→ imDη(p), the resulting

isomorphism
TpB

kerDη(p)
⊕Obp ∼= Ep

associates to any choice of orientation for M(η) an orientation for the bundle Ob → M(η).
Since reversing either of these orientations forces the other to reverse as well, the Euler number

〈e(Ob), [M(η)]〉 ∈ Z

of Ob→M(η) is defined independently of this choice.
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Remark 1.2. One can show that for any smooth group action by bundle isomorphisms on E → B
such that the isotropy group of the underlying action on B at each point has order at most 3,
generic equivariant sections intersect the zero-section cleanly. But it is also easy to find examples
with isotropy of order 2 in which no equivariant section can ever be transverse to the zero-section;
see [Wena] for details.

1.3. Local Euler numbers. We now consider an arbitrary smooth section η ∈ Γ(E) without
any transversality or clean intersection condition, but suppose

C ⊂M(η) := η−1(0) ⊂ B

is an open and closed subset of its zero-set. If η is transverse to the zero-section, this just means
C is a finite set of zeroes; if η only intersects the zero-section cleanly, then a natural choice
for C would be any connected component of the zero-set, which is then a closed connected and
orientable submanifold of B.

Proposition 1.3. Given η ∈ Γ(E) and an open and closed subset C ⊂ M(η), there exists a
unique integer

e(E|C) ∈ Z

with the following significance. For any open set U ⊂ B satisfying U ∩M(η) = C, there exists
a neighborhood V ⊂ Γ(E) of η such that for every ηε ∈ V with only finitely many zeroes in U ,∑

p∈η−1
ε (0)∩U

ord(ηε; p) = e(E|C).

Proof. Given U , choose a smaller neighborhood U0 ⊂ U of C and choose the neighborhood
V ⊂ Γ(E) to be small enough so that any two sections ξ0, ξ1 ∈ V are homotopic through a
family of sections {ξs ∈ V}s∈[0,1] with

ξs(p) 6= 0 for all p ∈ U \ U0, s ∈ [0, 1].

Now if ξ0 and ξ1 both have at most finitely many zeroes in U , we can first perturb both without
changing the algebraic count of zeroes so as to assume that both are transverse to the zero-
section over U , and then perturb the above homotopy between them so that a smooth, compact,
oriented 1-dimensional cobordism between ξ−1

0 (0) ∩ U and ξ−1
1 (0) ∩ U is defined by

M({ξs} ; U) :=
{

(s, p) ∈ [0, 1]× U
∣∣ ξs(p) = 0

}
.

The key point here is thatM({ξs} ; U) is compact because zeroes of ξs|U cannot escape from the
smaller region U0. It follows since the signed count of boundary points in a compact oriented
1-manifold with boundary is always zero that the counts of zeroes of ξ0 and ξ1 over U match. �

Remark 1.4. If you found any detail in the proof above non-obvious, then now might be a good
time to read [Mil97].

One could sensibly call e(E|C) ∈ Z in the above proposition the local Euler number of the
bundle E → B along C ⊂ M(η). It is now easy to see that if M(η) can be decomposed into a
finite disjoint union of open and closed subsets C1 q . . .q CN , then

(1.3) 〈e(E), [B]〉 =
N∑
i=1

e(E|Ci).

Indeed, choosing suitable disjoint open neighborhoods Ui ⊂ B of the components Ci ⊂ M(η),
a generic small perturbation ηε ∈ Γ(E) of η will remain nonzero outside these neighborhoods,
and its count of zeroes in Ui is exactly e(E|Ci).
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1.4. An obstruction bundle computation. We can now prove the most important result
about obstruction bundles.

Theorem 1.5. Suppose η ∈ Γ(E) intersects the zero-section cleanly and C ⊂ M(η) := η−1(0)
is a connected component of its zero-set. Then

e(E|C) = 〈e(Ob|C), [C]〉.

Sketch of the proof. Choose a small tubular neighborhood U ⊂ B of C with projection π : U →
B and use a deformation retraction to identify E|U with π∗(E|B). Choose also a smooth family
of subspaces complementary to imDη(p) ⊂ Ep for p ∈ C; these subspaces have a canonical
identification with fibers of the obstruction bundle, thus giving a splitting

Ep ∼= imDη(π(p))⊕Obπ(p) for all p ∈ U .
Using this identification, we then choose a section ξ ∈ Γ(Ob|C) transverse to the zero-section
and define a perturbation of η in U by

ηε(p) := η(p) + εξ(π(p))

for ε ∈ R close to 0. Since η(p) can be assumed to lie arbitrarily close to the subspace
imDη(π(p)) ⊂ Ep and Obπ(p) is complementary to it, the zero-set of ηε in U is precisely the
zero-set of ξ. One can now check that each such zero is nondegenerate and gets counted with
the same sign for ηε as it does for ξ. �

In conjunction with (1.3), one now obtains the formula

〈e(E), [B]〉 =

N∑
i=1

〈e(Ob|Ci), [Ci]〉,

where the sum is over all connected components of the zero-set of an arbitrary smooth section
η ∈ Γ(E) that intersects the zero-section cleanly.

2. Gromov-Witten theory and super-rigid curves

In a loose sense, each Gromov-Witten invariant can be interpreted as a computation of the
“Euler number” of a certain infinite-dimensional Banach space bundle E → B, namely by count-
ing zeroes (up to equivalence) of the nonlinear Cauchy-Riemann operator ∂̄J : B → E . In general
this perspective only makes sense locally, so one should not take it overly seriously, but nonethe-
less, every object in the finite-dimensional case can be understood to have an analogue in this
infinite-dimensional setting.

In particular, suppose (M,ω) is a symplectic Calabi-Yau 3-fold (meaning its first Chern
class vanishes and its real dimension is 6), with compatible almost complex structure J , and
let Mg(A, J) denote the moduli space of closed J-holomorphic curves up to parametrization
with genus g and homology class A ∈ H2(M). If we ignore the automorphism groups of their
domains or consider only cases in which these are finite (as is true e.g. for every g ≥ 2), the
linearized operator D∂̄J(j, u) that describes the local structure of this moduli space will always
have index 0, hence vir-dimMg(A, J) = 0 and the Gromov-Witten invariant

Ng
A(M,ω) ∈ Q

is meant to be defined as an algebraic count of the elements in Mg(A, J).3 This intuition
unfortunately cannot be used as a precise definition, because whenever A ∈ H2(M) is not a
primitive class, Mg(A, J) may contain multiple covers for which transversality is not achieved
and the set Mg(A, J) is not even discrete. However, there are various ways of perturbing the
usual nonlinear Cauchy-Riemann equation

du(z) + J(u(z)) ◦ du(z) ◦ j(z) = 0

3Everything being said here also either is true or admits a reasonable generalization to cases where domains
have non-discrete automorphism groups.
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to a new equation whose solutions form a discrete set that can be counted. The prescription
for this in [MS04] is roughly that one should choose a generic smooth family of almost complex
structures {Jz ∈ J (M,ω)}z∈Σg and count solutions to the equation

(2.1) du(z) + Jz(u(z)) ◦ du(z) ◦ j(z) = 0,

i.e. one makes J into a “domain-dependent” almost complex structure. I am oversimplifying this
discussion a bit since e.g. it is not obvious what the notion of equivalence “up to parametrization”
should mean for solutions of the equation (2.1), but such issues can be dealt with; I will avoid
discussing this here and instead refer to [MS04] or [RT95] for details in the g = 0 case and [RT97]
for higher genus. The point is that one can make sense of Ng

A(M,ω) as a signed count of finitely
many Fredholm regular solutions to a generalized nonlinear Cauchy-Riemann equation such as
(2.1) depending on generic auxiliary choices. In the case of domain-dependent almost complex
structures, the reason it works is that allowing J(z, p) to depend explicitly on z eliminates the
usual difficulty in the proof that the universal moduli space is a smooth Banach manifold—
one need no longer restrict attention to simple curves, and in fact, the notion of a multiply
covered curve no longer makes sense, as composition of solutions to (2.1) with holomorphic
branched covers will not generally satisfy (2.1). In other words, this type of perturbation kills
the symmetry and thus makes transversality possible. There is still a small worry involving
multiple covers: if a sequence of solutions to (2.1) degenerates to a nodal curve that includes
genus zero “bubbles,” then some of these bubbles may in general be multiply covered, but this
can be dealt with by dimensional arguments due to the fact that all symplectic 6-manifolds are
semipositive.

The “clean intersection” condition arises if one prefers to avoid the use of domain-dependent
almost complex structures and just perturb J generically within J (M,ω). In this case multiple
covers cannot generally be avoided, but one can show that they contribute something to the
Gromov-Witten invariants, and this contribution is always expressible as the Euler number of
an obstruction bundle. Given a curve u ∈Mg(A, J) and integers d ≥ 1 and h ≥ 0, let

Mh(d;u) ⊂Mh(dA, J)

denote the subset consisting of compositions of u with d-fold holomorphic branched covers
Σh → Σg.

Proposition 2.1. If u ∈ Mg(A, J) is a super-rigid curve, then for every d ≥ 1 and h ≥ 0, the
spaceMh(d;u) is an open and closed subset ofMh(dA, J) and corresponds to a clean intersection
of the nonlinear Cauchy-Riemann operator ∂̄J with the zero-section.

Proof. For simplicity we shall consider only branched covers of u whose domains have discrete
automorphism groups; the argument requires small modifications without this assumption.

The fact thatMh(d;u) is an open and closed subset ofMh(dA, J) is [Wenb, Prop. B.1]. The
clean intersection condition means the following. For a given parametrization u : (Σg, j) →
(M,J) of u ∈ Mg(A, J), there is a natural identification between Mh(d;u) and Mh(d[Σg], j),
the moduli space of holomorphic branched covers of genus h and degree d over (Σg, j). Each
such cover ϕ : Σh → Σg satisfies

Z(dϕ) = −χ(Σh) + dχ(Σg)

according to the Riemann-Hurwitz formula, where Z(dϕ) is its algebraic count of branch points;
one can see this by interpreting dϕ as a holomorphic section of the line bundle HomC(TΣh, ϕ

∗TΣg)
over Σh and then computing the first Chern number of the latter. Now, it is a classical fact that
Mh(d[Σg], j) is naturally a smooth orbifold with real dimension

dimRMh(d[Σg], j) = 2 [−χ(Σh) + dχ(Σg)] .

One can deduce this from the standard analysis of J-holomorphic curves after using the similarity
principle to prove that elements of Mh(d[Σg], j) are always automatically Fredholm regular
(i.e. no generic perturbation is required for proving this). The dimension formula also has
an easy geometric interpretation: two branched covers ϕ,ϕ′ ∈ Mh(d[Σg], j) are obviously not
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equivalent if the images of their branch points are different, and in fact the positions of the
critical values of these branched covers can be used to parametrize small neighborhoods in the
moduli spaceMh(d[Σg], j). Since generically there are Z(dϕ) branch points, this yields 2Z(dϕ)
real parameters.

It follows from this discussion thatMh(d;u) is an orbifold of dimension 2Z(dϕ) for any curve
ũ := u◦ϕ : (Σh, ̃)→ (M,J) representing an element ofMh(d;u), so the condition we now need
to check is that the kernel of the linearized operator

D∂̄J(̃, ũ) : T̃T ⊕W 1,p(ũ∗TM)→ Lp
(
HomC(TΣh, ũ

∗TM)
)

has dimension 2Z(dϕ). Since we are assuming dim Aut(Σh, ̃) = 0, [Wen10, Theorem 3] gives
the relation

dim kerD∂̄J(̃, ũ) = 2Z(dũ) + dim ker DN
ũ ,

where Z(dũ) is the algebraic count of critical points of ũ and DN
ũ is the normal Cauchy-Riemann

operator. But the super-rigidity condition is that DN
ũ is injective, and since u is immersed by

assumption, critical points of ũ are in bijective correspondence to branch points of ϕ; this yields
the desired result. �

As in the finite-dimensional case, the (finite-dimensional) cokernels of the operators D∂̄(̃, ũ)
now fit together to form a smooth finite-rank vector bundle

Obu →Mh(d;u),

whose rank matches the dimension of its base. Strictly speaking, the fact that the (always
finite) automorphism groups of the covers ũ = u ◦ ϕ ∈ Mh(d;u) can vary as ϕ moves around
in Mh(d[Σg], j) means that Obu is an orbibundle rather than a vector bundle, just as Mh(d, u)
is an orbifold rather than a manifold. One must also extend this construction to the closure
Mh(d;u) ofMh(d;u) in the Gromov compactificationMh(dA, J), sinceMh(d;u) on its own is
not compact; full details of how this can be done are explained in [Zin11,LP12]. SinceMh(d, u) is
an open and closed subset ofMh(dA, J), one can define the local Gromov-Witten invariant

Nh
d (u) ∈ Q

of the curve u in analogy with Proposition 1.3: it is the algebraic count of solutions of the
perturbed equation (2.1) that will exist in a small neighborhood of the moduli space Mh(d;u)
after making a sufficiently small domain-dependent perturbation. The same type of argument
as in Theorem 1.5 then identifies this invariant with the Euler number of the orbibundle Obu →
Mh(d;u), which generally lies in Q rather than Z since Obu is an orbibundle instead of a vector
bundle.

Remark 2.2. It can be a bit tricky to define precisely what “Euler number of Obu →Mh(d;u)”
means sinceMh(d;u) is not generally a closed manifold, nor even an orbifold—its “top stratum”
Mh(d;u) is quite well behaved, but a few subtle issues arise when nodal curves are allowed. For
instance, there are cases whereMh(d;u) is empty butMh(d;u) is not. This happens whenever
d = 1 and h > g: holomorphic branched covers of degree 1 are just biholomorphic maps,
so there exist none from Σh to Σg, but Mh(d[Σg], j) does contain a nodal curve consisting
of the identity map Σg → Σg attached by nodes to another component on which the map is
constant. It is known that such objects actually contribute to Gromov-Witten invariants: they
can give rise to nontrivial solutions of the perturbed equation (2.1) which must be counted in
the computation of Nh

1 (u). Since holomorphic branched covers are also algebraic curves, one can
deal with this issue using methods from algebraic geometry: one thus defines the Euler number
of Obu →Mh(d;u) by evaluating its Euler class on a virtual fundamental cycle [Mh(d[Σg], j)]

vir,
which is defined in [LT98] for computing Gromov-Witten invariants of algebraic varieties.
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