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Due: Thursday, 26.11.2020 (18pts total)

Problems marked with p˚q will be graded. Solutions may be written up in German or

English and should be submitted electronically via the moodle before the Übung on the

due date. For problems without p˚q, you do not need to write up your solutions, but it is

highly recommended that you think through them before the next Tuesday lecture. You

may also use the results of those problems in your written solutions to the graded problems.

Problem 1 p˚q
For H a Hilbert space and X Ä H a linear subspace with closure denoted by sX, prove

pXKqK “ sX. Does this remain true in general if H is assumed to be an inner product

space but not complete? [4pts]

Problem 2
Assume X and Y are inner product spaces, and A : X Ñ Y and A˚

: Y Ñ X are linear

maps satisfying the adjoint relation

xy,Axy “ xA˚y, xy for all x P X, y P Y.

Denote the images of these operators by imA Ä Y and imA˚ Ä X.

(a) Prove: kerA˚ “ pimAqK
and kerA “ pimA˚qK

.

(b) p˚q Assume Y is complete, A : X Ñ Y is continuous and its image is closed. Show

that for a given y P Y , the equation Ax “ y has solutions x P X if and only if

xy, zy “ 0 for all z P kerA˚
. [4pts]

Problem 3
For an inner product space H and subspace X Ä H such that H “ X‘XK

, the orthogonal
projection to X is the unique linear map P : H Ñ H such that P |X is the identity map

on X and kerP “ XK
. Prove:

(a) P is bounded and self-adjoint,
1
and satisfies P 2 “ P .

(b) The orthogonal projection to XK
is given by 1 ´ P : H Ñ H.

(c) p˚q If H is complete and ⇧ : H Ñ H is a self-adjoint bounded linear operator with

⇧
2 “ ⇧, then im⇧ Ä H is closed and ⇧ is the orthogonal projection onto im⇧.

Hint: The image of an orthogonal projection is the kernel of another one. [4pts]

Problem 4
For a Hilbert space H over K P tR,Cu, associate to each x P H the corresponding dual

vector ⇤x :“ xx, ¨y P H
˚
.
2

(a) Show that the formula x⇤x,⇤yy :“ xy, xy defines an inner product on H
˚
such that

the operator norm } ¨ } satisfies }⇤}2 “ x⇤,⇤y for all ⇤ P H
˚
, thus making H

˚
into

a Hilbert space over K.

1
A linear operator L : H Ñ H on an inner product space is called self-adjoint if it satisfies xx, Lyy “

xLx, yy for all x, y P H.
2
Recall that in the case K “ C, our convention is that x , y is complex-antilinear in its first argument

and complex-linear in its second. It follows that the isomorphism H Ñ H
˚
: x fiÑ ⇤x is complex-antilinear.
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(b) Prove that every Hilbert space is reflexive.

Problem 5
Let ⌫ denote the counting measure on a set I, i.e. every subset E Ä I is ⌫-measurable and

⌫pEq P NX t0,8u is the number of points in E. It follows that every function f : I Ñ C is

⌫-measurable, and by a straightforward exercise in measure theory, a ⌫-integrable function
can be nonzero on at most countably many points ↵1,↵2,↵3, . . . P I, so that its integral is

given by an absolutely convergent series

ª

I
f d⌫ “

ÿ

↵PI
fp↵q :“

8ÿ

n“1

fp↵nq P C.

All summations appearing in the following should be understood in this sense. The complex

Hilbert space L2pI, ⌫q now consists of all functions f : I Ñ C that are nonzero on at most

countably many points and satisfy }f}2L2 “ ∞
↵PI |fp↵q|2 † 8, with the inner product of

two functions in this space given by

xf, gyL2 “
ÿ

↵PI
Üfp↵qgp↵q P C.

(a) Show that if the set I is finite or countably infinite, then L2pI, ⌫q is separable.

Hint: Show that every f P L2pI, ⌫q can be approximated arbitrarily well by functions

that have real and imaginary parts in Q at all points and are nonzero on at most

finitely many.

(b) Show that if I is uncountable, then L2pI, ⌫q is not separable.

(c) p˚q If H is a complex
3
Hilbert space with orthonormal basis te↵u↵PI , show that the

map

H Ñ L2pI, ⌫q : x fiÑ fx where fxp↵q :“ xe↵, xy
is a unitary isomorphism of Hilbert spaces, i.e. it is an isomorphism and satisfies

xfx, fyyL2 “ xx, yy for all x, y P H. Conclude that both this map and its inverse are

continuous, and that H is separable if and only if I is not uncountable. [6pts]

Comment: Almost all infinite-dimensional Hilbert spaces that one encounters in applicati-

ons (e.g. L2pRq or L2pr0, 1sq and the related Sobolev spaces that we will study later) turn

out to be separable. Thus all of them are unitarily isomorphic to `2 :“ L2pN, ⌫q.

Problem 6
For H a Hilbert space containing an infinite orthonormal set e1, e2, e3, . . . P H, prove that

the bounded sequence tenu8
n“1 has no convergent subsequence. In particular, the closed

unit ball in H is not compact.

Comment: A topological space X is called “locally compact” if for every point x P X,

every neighborhood of x contains a compact neighborhood of x, e.g. in a Hilbert space,

such a neighborhood could be a su�ciently small closed ball about x. Local compactness

in a Hilbert space is in fact equivalent to the condition that the closed unit ball is compact,

so this problem in combination with a standard result from first-year analysis proves that

a Hilbert space is locally compact if and only if it is finite dimensional. We will later prove

that the same is true in Banach spaces; in fact, it is true in arbitrary Hausdor↵ topological

vector spaces. If you’re curious to see a proof of the latter statement, see

https://terrytao.wordpress.com/2011/05/24/locally-compact-topological-vector-spaces/

3
The analogous statement for a real Hilbert space is obtained by taking functions in L2pI, ⌫q to be real

valued and omitting complex conjugation from all formulas.
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