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PRACTICE FINAL EXAM / PROBEKLAUSUR

This is a lightly edited version of an exam that was given in this course the last time I taught it. It should
give a roughly accurate impression of the level of difficulty for this year’s exams. The real exam will have
100 points in total; this one has 90 because I removed a problem that did not fit in with this year’s syllabus.

Instructions

For reference, you may use any notes or books that you bring with you, but nothing electronic, i.e. no
calculators or smartphones.

All answers require justification (within reason) in order to receive full credit, though you need not reprove
any results that were proved in the lectures or on the problem sets. Keep in mind that if you get stuck on
one part of a problem, it may sometimes be possible to skip it and do the next part.

Problems [90 pts total]

1. [10 pts] Recall that the 2-dimensional torus is defined as T2 := R2/ ∼, where the equivalence relation
∼ identifies any two vectors that differ by an element of Z2. Let π : R2 → T2 denote the natural
quotient projection. Then the maps

φα : (0, 1)× (0, 1)
π−→ T2, φβ : (−1/2, 1/2)× (0, 1)

π−→ T2,

each defined by sending pairs (θ, ϕ) to their equivalence classes [(θ, ϕ)] ∈ R2/Z2, are both embeddings
onto open subsets Uα and Uβ respectively in T2, and we can regard their inverses xα := φ−1

α : Uα → R2

and xβ := φ−1
β : Uβ → R2 as charts. Write down an explicit formula for the transition map xβ ◦ x−1

α :
xα(Uα ∩ Uβ) → xβ(Uα ∩ Uβ). Is it smooth and/or orientation preserving?
Advice: Start by describing the domain xα(Uα ∩ Uβ) ⊂ R2.

2. Let (r, θ) denote the standard polar coordinates on R2, related to the Cartesian coordinates (x, y) by
x = r cos θ and y = r sin θ. This defines smooth 1-forms dr and dθ on R2 \ {0}. Assume f : [0,∞) → R
is a smooth function such that the rotationally symmetric function defined in polar coordinates by

R2 \ {0} → R : (r, θ) 7→ f(r)

r2

has a smooth extension over the origin; for instance, one example of such a function is f(r) = r2,
though there are many more examples. Note that f must necessarily satisfy f(0) = f ′(0) = 0. We now
define a 1-form λ on R2 \ {0} by

λ = f(r) dθ.

(a) [10 pts] Show that λ admits an extension over the origin to define a smooth 1-form on R2.
Hint: What does λ look like in Cartesian coordinates?

(b) [10 pts] Show that dλ ∈ Ω2(R2) is then a volume form near the origin if and only if f ′′(0) ̸= 0.

3. [15 pts] Consider the sphere S2 with a volume form µ ∈ Ω2(S2), and let Diff(S2, µ) denote the group
of orientation- and area-preserving diffeomorphisms, i.e. diffeomorphisms φ : S2 → S2 that satisfy
φ∗µ = µ. The vector space diff(S2, µ) of so-called infinitessimal area-preserving diffeomorphisms is
then defined to consist of all vector fields X ∈ Vec(S2) such that the time-t flow φt

X : S2 → S2 belongs
to Diff(S2, µ) for all t close to zero.1 Show that every X ∈ diff(S2, µ) satisfies

µ(X, ·) = dH

1The notation is motivated by thinking of Diff(S2, µ) as a Lie group with diff(S2, µ) as the space of tangent vectors at the
identity, i.e. its Lie algebra. This is difficult to make precise, however, since Diff(S2, µ) turns out to be infinite dimensional.
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for some smooth function H : S2 → R, and that H uniquely determines X.
Hint: Use Cartan’s formula for the Lie derivative of µ. You will also need to use some knowledge of
the de Rham cohomology of S2—you may quote the relevant result without proof.

4. [15 pts] Suppose M is a smooth n-manifold and λ ∈ Ω1(M) is nowhere zero, so its kernel

ξ := kerλ := {X ∈ TM | λ(X) = 0} ⊂ TM

defines an (n− 1)-dimensional distribution on M . Show that the following conditions are equivalent:

(i) Through every p ∈ M there exists an (n− 1)-dimensional submanifold everywhere tangent to ξ;

(ii) dλ(X,Y ) = 0 for all pairs of vectors X and Y tangent to ξ.

Hint: Remember our favorite formula for dλ(X,Y ) when X and Y are vector fields?

5. Let Σ ⊂ R3 denote the surface obtained by rotating the circle C0 := {(x, 0, z) ∈ R3 | (x−2)2+ z2 = 1}
about the z-axis. In other words, Σ is our usual picture of the torus T2 embedded in R3:

Assume Σ is endowed with the Riemannian metric g that it inherits from the standard Euclidean inner
product on R3.

(a) [10 pts] For i = 1, 2, 3, consider the circles Ci ⊂ Σ obtained by rotating the points

p1 := (3, 0, 0), p2 := (1, 0, 0), p3 := (2, 0, 1) ∈ C0

about the z-axis. Without any explicit computations, show that C0, C1 and C2 are all images of
geodesics on (Σ, g), but C3 is not.
Hint: A helpful fact—which you may use without proof—is that every circle in R3 can be
parametrized by an embedding γ : S1 ↪→ R3 such that |γ̇(t)| is constant and γ̈(t) always points
from γ(t) toward the center of the circle. How is γ̈(t) related to Tγ(t)Σ in each case, and why is
this relevant?

(b) [10 pts] If Σ+ ⊂ Σ denotes the portion of Σ lying in the region {x ≥ 0, y ≥ 0} and dA ∈ Ω2(Σ)
is any choice of volume form such that dA(X,Y ) = 1 for some orthonormal basis X,Y ∈ TpΣ at
each p ∈ Σ, prove that the Gaussian curvature KG : Σ → R satisfies∫

Σ+

KG dA = 0.

Remark: I can think of at least a couple of ways to do this, using either version of the Gauss-
Bonnet formula. Any correct argument will be accepted!

(c) [10 pts] Is KG(p3) positive, negative, or zero? What about KG(p1)? Explain your answers briefly,
but do not try to compute them explicitly.
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