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Problem Set 5: Solution to Problem 1

Problem 1

Suppose M is a 3-manifold and o € Q!(M) is nowhere zero, so for every p € M, there is
a well-defined 2-dimensional subspace &, := ker oy, < T),M. The set £ := UpE & cTM
in this situation is called a smooth 2-plane field in M. We say that £ is integrable if its
defining 1-form « satisfies the condition o A da = 0.

(a) Show that the integrability condition depends only on ¢ and not on «, i.e. for any
B € QY(M) that is also nowhere zero and satisfies ker Bp =& forallpe M, anda =0
if and only if 8 A dB = 0.
Hint: If ker o, = ker 3, how are the two cotangent vectors oy, 8, € T,y M related?

Suppose a, 8 € QY(M) are both nowhere zero and satisfy kera, = ker 3, = &, for all
p € M. Here is a basic fact from linear algebra: if two nontrivial linear functionals v, 5, :
T,M — R have the same kernel, then one is a multiple of the other. It follows that there
exists a nowhere-zero funtion f : M — R such that § = fa everywhere. Since o and 3 are
both smooth, f will also be smooth. Now use the Leibniz rule to compute:

BAadB=fand(fa)=fan(df na+ fda)=f>anda,

where the first term in parentheses has disappeared because a A (df A @) = —an (andf) =
—(a A a) Adf =0, since the wedge product of a 1-form with itself is always 0. Since f # 0
everywhere, we now see that 8 A df can vanish if and only if o A da vanishes.

(b) Prove that the following conditions are each equivalent to integrability:

(i) (da)ple, € A*&: vanishes for every p e M.
Hint: Evaluate (o A da), on a basis of T,M that includes two vectors in &p.

Since dim M = 3, anda € Q*(M) is a top-dimensional form, thus (arda), € AST* M
vanishes at a point p € M if and only if (o A da)(X1, X2, X3) = 0 for some basis
X1,X2,X3 € T,M. For this we can choose any basis we like, so let us choose one
so that X, X3 form a basis of the 2-dimensional subspace §, < T,M and X; ¢ &,
which means a(X2) = a(X3) = 0 but a(X;) # 0. Using Equation (9.4) from the

notes,
(Oé A da)(Xl’X2aX3) = 119! 5 (71) (Oé ® da)(XU(l)’XU(Q)’XU(fS))
T 0eSs
1 g
=3 D (=Dlla(X,q)) - dod( X o), Xos)),
0'653

but in this expression, permutations that satisfy o(1) # 1 will contribute nothing
because a(X2) = a(X3) = 0, so there are only two nontrivial terms in the sum, and
since do is antiysymmetric,

(a A da)(X1, Xs, X3) = % [a(X1) - da(Xa, X3) — a(X}) - da(Xs, X)]
= (X(Xl) . dOz(Xg,Xg).
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We already know «(X7) # 0, so this expression vanishes if and only if da(Xs, X3) =
0. Now recall that X, X3 is a basis of £, and observe that the restriction of (da), €
AQT;‘M to a bilinear form on ¢, < T,M is a top-dimensional alternating form
on &, i.e. an element of Azfl’," , which therefore vanishes if and only if it evaluates
to zero on the basis X, X3, thus (a A da), = 0 is now equivalent to the condition
(da)ple, =0 € A%;.

(ii) For every pair of vector fields X,Y € X(M) with X (p),Y (p) € §, for all pe M,
[X,Y] e X(M) also satisfies [X,Y](p) € &, for all pe M.
Hint: Use our original definition of the exterior derivative, via C*®-linearity.

Using the £ = 1 case of Proposition 8.6 in the notes, any 1-form « and vector fields
X, Y satisfy
do(X,Y) = Lx (a(Y)) = Ly («(X)) — o([X,Y]). (1)

If X and Y both take values in £ everywhere, then the first two terms on the right
hand side vanish, leaving only «([ X, Y']), which vanishes precisely at the points where
[X, Y] has its values in £. If that is true everywhere, it follows that da(X,Y") vanishes
everywhere, and if this is assumed to be true for every pair of vector fields valued
in £, then it means (do)|¢ = 0, since one can always choose X and Y to form a basis
of &, at any given point p. This means that the condition of part (b)(i) is satisfied,
and ¢ is therefore integrable. Conversely, if the condition da|¢s = 0 is satisfied, then
the left hand side of (1) vanishes for all X,Y € X(M) with values in &, thus forcing
a([X,Y]) to vanish, which means [X, Y] takes values in £ everywhere.

(c) Using Cartesian coordinates (x,%,z) on M := R3, suppose a = f(z) dy + g(x) dz for
smooth functions f,g : R — R. Under what conditions on f and g is £ integrable?
Show that if these conditions hold, then for every point p € R? there exists a 2-
dimensional submanifold ¥ < R? such that p € ¥ and Ty3 =&, for all g e 3.

We can regard f and ¢ as functions on R® whose partial derivatives in the y and z
directions vanish everywhere, thus df = f’(z)dx and dg = ¢'(x)dz. We then compute
do=d(fdy+gdz)=df ndy+dg ndz= f'de A dy+ ¢ dz A dz, thus

anda=(fdy+gdz) n (f doAdy+ g da ndz)
=ffldy nde ndy+ fg' dy ndx Andz+ gf dz Adx Ady + gg dz A do A dz
= (—fg +gf)dx A dy A dz,

where we have eliminated the two terms that contained wedge products of dy or dz with
themselves, and used permutations to rewrite dy A dx A dz = —dx A dy A dz and dz A
dx A dy = dr A dy A dz. This shows that a A da vanishes if and only if the function
f(x)g (x) — g(x)f'(z) vanishes. I like to imagine z — (f(x),g(z)) as a path in R? and
fg — gf’ as the determinant of a 2-by-2 matrix: its vanishing then tells us that for all x,
the vectors (f(x),g(z)) and (f'(x), ¢ (x)) in R? are linearly dependent, which means that
the path (f(z),g(x)) is confined to a single line through the origin. It cannot ever touch
the origin, since that would cause a to vanish somewhere, so the conclusion is that there
exists a constant nonzero vector (a,b) € R? and a nowhere-zero smooth function ¢ : R — R
such that (f(z),g(z)) = p(x) - (a,b) € R%, and « can thus be written in the form

a=¢(z)(ady+bdz) .
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Recalling part (a), observe that the function ¢(z) does not affect the kernel of v at any
point, so if we just want to understand the 2-plane field £, we are now free to ignore ¢
and write

& = ker (ady + bdz) for all p e R3.

The difference between this situation and the picture below is that since a and b are
constant, the 2-plane field we are considering here does not “twist”: in fact there are two
constant nonzero vector fields

0 0 0
Vi(z,y,z) = ba—y —ax and  Z(x,y,2) = o

on R3 whose span at every point p = (x,y,2) € R3 is £,. The flows of these vector fields
are easy to compute, and they commute with each other; if you now start at any given
point p € R3 and follow the flows of both V and Z, you obtain a surface (more specifically
a plane) whose tangent space at each point is identical to £ at that point. In other words,
the surface I'm describing is the image of

R* = R?: (s,1) = ¢} 0 9% (p),
and more precisely, if p = (20, Yo, 20) € R3, this surface is
S = {(zo+s,y0 + bt, 20 —at) | s,t e R} < R,

Remark: The result of part (c) is a special case of the Frobenius integrability theorem,
which we will prove later in this course. In case you’re curious, the following picture gives
an example of what £ < TR? might look like if it is not integrable. Can you picture a
2-dimensional submanifold that is everywhere tangent to &7 (I didn’t think so.)

z

o o

v
A4

/7
v .
y

ol ol o




