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Problem Set 6: Solution to Problem 4

Problem 4
Using Cartesian coordinates px, y, zq on R3, let ω :� x dy ^ dz � y dz ^ dx � z dx ^ dy P
Ω2pR3q, and let i : S2

ãÑ R3 denote the inclusion of the unit sphere.

(a) Show that for an appropriate choice of orientation on S2, dvolS2 :� i�ω P Ω2pS2q is
the Riemannian volume form corresponding to the Riemannian metric on S2 that is
induced by the Euclidean inner product of R3.
Hint: Pick a good vector field X P XpR3q with which to write ω as ιXpdx^ dy^ dzq.

We claim first that ω � ιXpdx^dy^dzq for the “radial” vector field X :� xBx�yBy�zBz.
To see this, recall that dx^ dy ^ dz is a sum of permutations of tensor products such as
dxb dy b dz, where terms like dxb dz b dy for which the permutation is odd come with
minus signs. Computing the interior product with Bx, only permutations that place dx at
the beginning will contribute, since dypBxq � dzpBxq � 0, thus

ιBxpdx^ dy ^ dzq � pdxb dy b dzqpBx, �, �q � pdxb dz b dyqpBx, �, �q
� dxpBxq dy b dz � dxpBxq dz b dy � dy b dz � dz b dy � dy ^ dz.

Observe next that dx ^ dy ^ dz � dy ^ dz ^ dx � dz ^ dx ^ dy, since both of the last
two expressions can be obtained via even permutations of the 1-forms dx, dy and dz. The
interior products of dx^ dy^ dz with By and Bz can thus be derived via exactly the same
calculation as above, but using the other two expressions for dx^ dy ^ dz, which give

ιypdx^ dy ^ dzq � dz ^ dx, and ιzpdx^ dy ^ dzq � dx^ dy.

Since ιXpdx^ dy ^ dzq depends linearly on X, we conclude

ιxBx�yBy�zBzpdx^ dy ^ dzq � x dy ^ dz � y dz ^ dx� z dx^ dy � ω

as claimed.
Now observe that along S2, X is a unit normal vector field for the sphere, and since
dx ^ dy ^ dz is the Riemannian volume form for the Riemannian metric on R3 given
by the Euclidean inner product, a result proved in lecture (see Prop. 11.14 in the notes)
implies that the restriction of ιXpdx ^ dy ^ dzq to S2 is a volume form compatible with
its induced Riemannian metric. That restriction is precisely i�ω P Ω2pS2q.

(b) Show that in the spherical coordinates pθ, ϕq of Problem Set 1 #1, dvolS2 � cosϕdθ^
dϕ.

The Cartesian and spherical coordinates are related to each other by

x � r cos θ cosϕ, y � r sin θ cosϕ, z � r sinϕ.

These can be understood as equalities between smooth functions that are valid on whiche-
ver open subset of R3 we choose as the domain of the spherical chart; a standard choice
would be the complement of the set rE :� tpx, 0, zq | x ¥ 0u � R3, so that the image of
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the chart pr, θ, ϕq is p0,8q� p0, 2πq � p�π{2, π{2q � R3. Restricting to r � 1, we obtain a
chart pθ, ϕq on S2 with domain

U :� S2zE � S2, where E :� rE X S2 � S2,

and image p0, 2πq � p�π{2, π{2q � R2. The coordinates px, y, zq no longer define a chart
when restricted to U � S2, but they are still well-defined smooth functions on U and are
now related to θ and ϕ by

x � cos θ cosϕ, y � sin θ cosϕ, z � sinϕ, on U � S2. (1)

To write down i�ω, we can first use the fact that wedge products and exterior derivatives
are respected by pullbacks, giving rise to the slightly pedantic formula

i�ω � pi�xq dpi�yq ^ dpi�zq � pi�yq dpi�zq ^ dpi�xq � pi�zq dpi�xq ^ dpi�yq. (2)

I call this “pedantic” because it can be made to look a lot simpler: the function i�x � x� i
is actually just the restriction of the coordinate function x : R3 Ñ R to S2, and similarly
with the other coordinates, which can then be written on U � S2 in terms of θ and ϕ
using (1), so we obtain

i�ω � pcos θ cosϕq dpsin θ cosϕq ^ dpsinϕq � psin θ cosϕq dpsinϕq ^ dpcos θ cosϕq
� psinϕq dpcos θ cosϕq ^ dpsin θ cosϕq.

To simplify this, we use the fact that any function f has differential df � Bf
Bxi dx

i on the
domain of any chart px1, . . . , xnq, so using pθ, ϕq as the chart on U , we find

i�ω � pcos θ cosϕq pcos θ cosϕdθ � sin θ sinϕdϕq ^ pcosϕdϕq
� psin θ cosϕqpcosϕdϕq ^ p� sin θ cosϕdθ � cos θ sinϕdϕq
� psinϕq p� sin θ cosϕdθ � cos θ sinϕdϕq ^ pcos θ cosϕdθ � sin θ sinϕdϕq .

The next step is to combine all terms that contain wedge products of dθ with dϕ, use the
relation dϕ ^ dθ � �dθ ^ dϕ to reorder them all into products of smooth functions with
dθ ^ dϕ, and throw out all terms that contain dθ ^ dθ � dϕ^ dϕ � 0: this gives

i�ω � �
cos2 θ cos3 ϕ� sin2 θ cos3 ϕ� sin2 θ sin2 ϕ cosϕ� cos2 θ sin2 ϕ cosϕ

�
dθ ^ dϕ

� �
cos3 ϕ� sin2 ϕ cosϕ

�
dθ ^ dϕ � cosϕdθ ^ dϕ.

Note that this is a volume form since the values of ϕ on the domain of our spherical chart
lie in p�π{2, π{2q, so that cosϕ ¡ 0. The positivity of cosϕ also indicates that if we assign
to S2 the orientation for which i�ω is a positive volume form, then pθ, ϕq is an oriented
chart. (This is why I chose to write the spherical chart as pθ, ϕq instead of pϕ, θq; the latter
would not have turned out to be an oriented chart.)

(c) On the open upper hemisphere U� :� tz ¡ 0u � S2 � R3, one can define a chart
px, yq : U� Ñ R2 by restricting to U� the usual Cartesian coordinates x and y,
which are then related to the z-coordinate on this set by z �

a
1� x2 � y2. Show

that dvolS2 � 1
z dx^ dy on U�.

We can start from (2), but write x instead of i�x and so forth since the latter is just the
restriction of x : R3 Ñ R to S2. Incorporating also the relation z �

a
1� x2 � y2, we have

z2 � 1� x2 � y2 and thus

dpz2q � 2z dz � dp1� x2 � y2q � �2x dx� 2y dy,
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implying

dz � �x
z
dx� y

z
dy on U� � S2.

Combining this with (2) and the fact that x2 � y2 � z2 � 1 on S2 gives

i�ω � x dy ^
�
�x
z
dx� y

z
dy
	
� y

�
�x
z
dx� y

z
dy
	
^ dx� z dx^ dy

� �x
2

z
dy ^ dx� y2

z
dy ^ dx� z dx^ dy � z2 � x2 � y2

z
dx^ dy � 1

z
dx^ dy.

Note that since z ¡ 0 on U�, this computation proves that px, yq is also an oriented chart
for the orientation on S2 such that i�ω ¡ 0.

(d) Compute the surface area of S2 � R3 in two ways: once using the formula for dvolS2

in part (b), and once using part (c) instead. In both cases, you should be able to
express the answer in terms of a single Lebesgue integral1 over a region in R2, and
there will be no need for any partition of unity.

Here’s a computation using the formula dvolS2 � i�ω � cosϕdθ ^ dϕ from part (b).
The domain on which that formula is valid is the complement U � S2zE of the set
E � tpx, 0, zq P S2 | x ¥ 0u, which is a semicircle connecting the north and south poles
p0, 0,�1q P S2. It should be easy to convince yourself that E has measure zero, i.e. its inter-
section with the domain of any chart looks like a set of measure zero in the corresponding
coordinates. (I will skip this detail.) Now, Exercise 11.2 in the notes implies»

S2

dvolS2 �
»
U
dvolS2 �

»
E
dvolS2 �

»
U
dvolS2 .

Since the domain of integration in the last expression is contained in the domain of a single
chart pθ, ϕq, and we saw above that this chart has the correct orientation, Proposition 11.3
from the notes allows us to use only that chart for the computation and avoid choosing a
partition of unity. The image of pθ, ϕq : U Ñ R2 is p0, 2πq � p�π{2, π{2q, so we find

»
U
dvolS2 �

»
U
cosϕdθ ^ dϕ �

»
p0,2πq�p�π

2
,π
2 q

cosϕdθ dϕ � 2π

» π{2

�π{2
cosϕ � 4π.

If we want to use the formula dvolS2 � 1
z dx ^ dy from part (c) instead, then it is useful

to observe that the hemisphere U� � S2 on which this formula is valid has the same area
as its reflection U� :� tz   0u � S2, and the complement of these two sets in S2 is the
circle tz � 0u � S2, which is a set of measure zero. Exercise 11.2 in the notes thus implies»

S2

dvolS2 � 2

»
U�
dvolS2 � 2

»
U�

1

z
dx^ dy,

where the latter integral can be computed entirely in the oriented chart px, yq : U� Ñ R2

due to Proposition 11.3 in the notes. The image of this chart is the unit ball B2p1q :� px, yq P R2
�� x2 � y2   1

(
, and since z �

a
1� x2 � y2 on U�, we have»

S2

dvolS2 � 2

»
B2p1q

1a
1� x2 � y2

dx dy.

1You may assume that the upper and lower hemispheres have the same area.
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This integral on B2p1q � R2 is unfortunately not as easy to compute as the one we
obtained in spherical coordinates, but it becomes computable if we switch from px, yq to
polar coordinates: write x � ρ cosψ and y � ρ sinψ, then the classical change of variables
formula gives

2

»
B2p1q

1a
1� x2 � y2

dx dy � 2

»
p0,1q�p0,2πq

1a
1� ρ2

ρ dρ dψ � 4π

» 1

0

ρ dρa
1� ρ2

� 4π.

I’m assuming you don’t need any tips on computing
³1
0

ρ dρ?
1�ρ2

.

Comment: what actually happened in this last step was that we replaced px, yq with yet
another chart on S2 for which the integral turns out to be more easily computable. Strictly
speaking, if we want to regard pρ, ψq as a chart, then it cannot be defined on all of U�,
but is well defined as soon as we exclude a suitable subset such as E X U� � U�; we can
denote the complement of this set by U 1

� � U� and assume the chart pρ, ψq : U 1
� Ñ R2 has

image p0, 1q�p0, 2πq. Using the relations x � ρ cosψ, y � ρ sinψ and z �
a
1� x2 � y2 �a

1� ρ2 on U 1
�, we find

dvolS2 � 1

z
dx^ dy � 1a

1� ρ2
dpρ cosψq ^ dpρ sinψq

� 1a
1� ρ2

pcosψ dρ� ρ sinψ dψq ^ psinψ dρ� ρ cosψ dψq

� 1a
1� ρ2

�
ρ cos2 ψ � ρ sin2 ψ

�
dρ^ dψ � ρa

1� ρ2
dρ^ dψ.

Since the function ρ?
1�ρ2

is positive, this shows that pρ, ψq is also an oriented chart on

its domain, and since the set U� XE we had to exclude in order to define it has measure
zero, we can now reframe the computation above as

2

»
U�
dvolS2 � 2

»
U 1

�

dvolS2 � 2

»
U 1

�

ρa
1� ρ2

dρ^ dψ � 2

»
p0,1q�p0,2πq

ρa
1� ρ2

dρ dψ

� 4π

» 1

0

ρ dρa
1� ρ2

� 4π.
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